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ABSTRACT: The DNA microarray has revolutionized cancer research. Now,
scientists can obtain a genome-wide perspective of cancer gene expression. One
potential application of this technology is the discovery of novel cancer bio-
markers for more accurate diagnosis and prognosis, and potentially for the
earlier detection of disease or the monitoring of treatment effectiveness. Because
microarray experiments generate a tremendous amount of data and because
the number of laboratories generating microarray data is rapidly growing, new
bioinformatics strategies that promote the maximum utilization of such data
are necessary. Here, we describe a method to validate multiple microarray data
sets, a Web-based cancer microarray database for biomarker discovery, and
methods for integrating gene ontology annotations with microarray data to
improve candidate biomarker selection.
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INTRODUCTION

Advances in DNA microarray technologies have led to an explosion of cancer
gene expression profiling studies revealing a number of potential cancer markers:
both tissue markers that may aid in more accurate diagnosis and prognosis, and
potential serum markers that may aid in the early detection of cancer and in monitoring
the effectiveness of therapy. The task of translating genome-wide expression data
into clinically useful biomarkers poses many challenges, one being the selection of
the most promising potential markers for future studies and another being the careful
validation of markers on a large cohort of clinical samples. Because this validation
process can be labor- and resource-intensive, the task of selecting candidate markers
becomes very important. Furthermore, because a relatively small number of labora-
tories are applying DNA microarray technology and generating genome-wide expres-
sion data, the task of making gene expression data and analysis methods available to
the cancer research community is equally important. With the rising flood of cancer
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gene expression profiling data in the public domain, it is up to those in the field of
bioinformatics to provide methods to evaluate, integrate, and make available
genome-wide expression data. In this report, we will discuss bioinformatics strategies
that we and others are employing to improve candidate marker selection and,
ultimately, the translation of genome-wide expression analyses into clinically useful
cancer markers (FI1G. 1).
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FIGURE 1. A flowchart demonstrating the application of bioinformatic strategies to
the improved identification of candidate biomarkers from cancer genome-wide expression
analyses. (A) The typical experimental procedure used to generate genome-wide expression
data. (B) Study authors may attempt to identify and validate candidate biomarkers. (C) Micro-
array data in the public domain allows for multiple data set analysis strategies including meta-
analysis of microarrays, a statistical method used to intervalidate data sets and thus reduce
the candidate biomarker false-positive rate. (D) Furthermore, data in the public domain can
be unified and made available to the cancer research community, as with the ONCOMINE
cancer microarray database, so that more potential markers can be identified and validated.
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MARKERS IDENTIFIED BY GENOME-WIDE EXPRESSION ANALYSIS

To date, more than 100 studies have profiled human cancer samples using DNA
microarrays; however, only a fraction of these studies have demonstrated thorough
validation of results and the development of clinically useful biomarkers (FiGs. 1A
and 1B). Validation usually involves confirming that the protein product of a gene
highly expressed in cancer is similarly overexpressed. This is necessary because most
clinical tests involve measuring protein level, either by immunohistochemistry in the
case of tissue biomarkers or by ELISA in the case of serum biomarkers. Furthermore,
validation should be carried out on a large sample set to assure that the results can
be generalized to the population of patients. This need has been addressed by the
development of tissue microarrays, a technology that allows one to measure a protein’s
expression level in hundreds or thousands of clinical samples in a single assay.

An example of a cancer tissue marker discovered by genome-wide expression
profiling and then validated by tissue microarray is alpha-methylacyl CoA racemase
(AMACR), a protein specifically overexpressed in prostate cancer.! Multiple gene
expression profiling studies,2 as well as a meta-analysis,® found the AMACR gene
transcript to be highly overexpressed in prostate cancer. Immunohistochemical
analysis with tissue microarrays revealed that AMACR was similarly overexpressed
at the protein level in 94 prostate cancer needle biopsy samples (97% sensitivity,
100% specificity). Studies are now under way evaluating the clinical utility of
AMACR in uncertain diagnoses. Another example of a marker discovered in this
manner is enhancer of zeste homolog 2 (EZH2). EZH2 gene transcript and protein
were found to be highly expressed in metastatic prostate cancer’ and, interestingly,
were more highly expressed in tumors of patients with progressive disease. A
follow-up study found that EZH2 protein level in conjunction with E-cadherin protein
level significantly predicted disease recurrence following surgery in a multivariable
model, which included other clinical and pathological prognostic variables.3

Genome-wide expression analyses have also been useful in identifying serum
biomarkers that could potentially aid in the early detection of cancer. One study used
microarrays to identify genes overexpressed in ovarian cancer.” They identified
prostasin, a gene that encodes a protein thought to be secreted from cells, as one of
the most highly expressed transcripts. Validation by ELISA confirmed that prostasin
protein is at high levels in the serum of patients with ovarian cancer and that it may
serve as a biomarker useful for the early detection of ovarian cancer (92% sensitivity,
94% specificity). Another example was the discovery of osteopontin as a potential
serum biomarker for hepatocellular carcinoma.!?

BIOINFORMATICS HURDLES SLOWING BIOMARKER DISCOVERY

While the examples highlighted in the previous section serve to illustrate the
potential use of genome-wide expression data in the discovery of clinically important
biomarkers, it is worth noting that these examples only represent a small minority of
studies and that, in the majority of genome-wide analyses, little or no validation is
performed. While the lack of validation is unfortunate, the data from these analyses
are often made available to the public, so it is conceivable that those researchers
interested in cancer biomarkers could further analyze published data to identify
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promising candidate markers for validation. This task presents a number of challenges,
many of which are being addressed by the growing field of bioinformatics.

One challenge lies in coping with multiple data sets that have profiled similar
cancer samples. While it is surely best to use these multiple data sets to validate one
another so that the most promising candidate biomarkers can be identified, this task
is challenging because microarray data exist on a variety of scales depending on the
specific technological platform utilized as well as the experimental procedure.
Usually, microarray data from independent laboratories are not thought to be directly
comparable. Computational/statistical methods are being developed so that
independent microarray data sets can be easily compared.

Another challenge lies simply in data availability and data exchange. While many
genome-wide expression data sets are made freely available upon publication, the
format that the data are stored in is often heterogeneous. Recently, standards have
been developed for microarray data storage and exchange, designated Minimum
Information about Microarray Experiments (MIAME).!! These standards will likely
facilitate use of public repositories and common data analysis tools. Multiple
repositories that implement the MIAME standards are being developed, including
Gene Expression Omnibus!? and Array Express.!? While these efforts are already
beginning to prove fruitful, a mass of invaluable data in the public domain may not
be deposited in these repositories. In order for these data sets to be utilized, they
must be actively collected, which can be a daunting task.

A final challenge lies in microarray data analysis. This is a complex field requiring
computational and statistical expertise. Moreover, because those most likely to
translate genome-wide expression data into useful markers do not always possess
such expertise, it is up to those in the field of bioinformatics to provide the tools
necessary to analyze and visualize the data, as well as integrate the data with gene
annotation resources.

META-ANALYSIS OF MICROARRAYS

While most cancer gene expression profiling studies claim to identify large sets of
potential cancer markers, it is generally thought necessary to demonstrate independent
experimental validations using techniques such as reverse transcriptase polymerase
chain reaction (RT-PCR), Northern blots, or tissue microarrays before a gene (or a
set of genes) is considered as a valid potential marker. Validation is necessary
because microarray studies are known to generate falsely positive results for a number
of reasons including random chance, experimental artifacts, sampling bias, cross-
hybridization, etc.; therefore, it is commonplace to use the microarray as a screening
tool and then to validate a few promising candidates for future study (FiGs. 1A and
1B). While this model has proved somewhat fruitful in identifying markers, it
underutilizes the original microarray data set, often overlooking many other possible
markers. It is likely that the best markers may have been missed or overlooked
simply because of the challenge in validating many genes.

With the increasing number of publicly available gene expression data sets, we
have proposed a meta-analysis of multiple data sets that addresses similar hypotheses
in order to validate and statistically assess all positive results simultaneously
(FIG. 1C).% While validating microarray data sets against one another does not offer
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the same confidence as validation by protein expression profiling with tissue micro-
arrays, it does rid us of most of the causes of false positives and is sure to be void of
artifacts of individual studies. Interstudy validation of microarray data sets poses
unique challenges both statistically and computationally—for while the hypotheses
in microarray studies are often similar (i.e., identify genes differentially expressed
in cancer), individual investigators often use distinct protocols, microarray platforms,
and analysis techniques, and additionally the raw gene expression measurements are
often incomparable.

We developed a method, termed meta-analysis of microarrays, that compares
statistical measures across studies instead of actual gene expression measure-
ments—for while the actual expression measurements may have different meaning
in different studies, P values generated for each study by a common statistical test
are easily comparable. Our method begins by assigning P values to each gene in each
study using the ¢ statistic, and then the similarity of P values for each gene profiled
is assessed using traditional meta-analysis methods combined with a simple
correction for multiple hypothesis testing.
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FIGURE 2. Meta-analysis of four prostate cancer gene expression data sets present in
the public domain identifies in silico validated genes that are overexpressed in prostate cancer
(P) relative to benign prostate (B). Each column represents an individual sample (number of
samples is in parentheses) and each row represents a specific gene. Within each study, the
data were normalized so that the mean expression level of the genes in the benign prostate
specimens equaled zero and the standard deviation equaled one. Forty genes with the lowest
meta-g value for overexpression are shown. Gray intensity level indicates degree of over-
expression, while black indicates equal or lower expression than the mean benign sample
(see scale).
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The model was first implemented on four publicly available prostate cancer gene
expression data sets generated by independent laboratories.> !4 All four studies
made comparisons between the gene expression profiles of clinically localized
prostate cancer and benign prostate tissue, with the goal of identifying genes differ-
entially expressed between the two sample groups. Two of the groups used spotted
¢DNA technology,> while two groups used commercial oligonucleotide-based
technology.*!4 As anticipated, a large group of genes, many more so than would be
expected by chance, were significantly differentially expressed in multiple indepen-
dent data sets, suggesting that they are truly differentially expressed, thus increasing
the likelihood that they could serve as potential cancer markers. We found 50 genes
to be reliably overexpressed and 103 genes to be reliably underexpressed in prostate
cancer at a g value (i.e., meta-analysis measure of significance) of 0.10. FIGURE 2
displays the top 40 overexpressed genes. Several of the genes validated or commented
on in the individual studies scored high in this analysis, including Aepsin, myc, and
fatty acid synthase, and AMACR, but importantly many genes that had not yet been
validated scored equally high. In summary, our method for the meta-analysis of
microarrays provided a statistical framework for interstudy validation, suggesting a
new approach for dealing with multiple analogous microarray data sets.

We have recently extended our approach to a large compendium of public cancer
microarray data sets, further defining cancer-type specific meta-profiles as well as
generating meta-profiles common to multiple cancer types.

THE AVAILABILITY AND INTEGRATION OF
GENE EXPRESSION PROFILING DATA

In the previous section, we discussed the issues of microarray result reliability
and statistical approaches for the validation of multiple analogous data sets. In this
section, we will address the importance of data availability and the need for bio-
informatics tools to make cancer gene expression data available and easily interpret-
able by the cancer research community. This issue is critical because only a fraction
of laboratories are applying DNA microarrays to cancer genome-wide expression
profiling, but the results from these experiments could be potentially useful to a large
number of cancer researchers, both basic science and clinical. For most published
microarray studies, which may comprise thousands of gene measurements across
tens or hundreds of cancer specimens, the authors have usually presented one inter-
pretation of their data and have reported on only a subset of genes that demonstrate
their particular hypothesis. Furthermore, the focus is not always on developing novel
cancer markers, so often times there is no validation or follow-up studies. This may
be due to the fact that the researchers involved in cancer genomics are often interested
in global patterns of gene expression and are not necessarily interested in translating
gene expression profiles into novel cancer markers. For those interested in developing
cancer markers, the complete microarray data sets are sometimes made available as
supplementary data; however, even if that is the case, the data sets often sit as cryptic
text files, stored and processed in an unsystematic manner, and thus difficult to
interpret unless one has a fair amount of computational expertise. While the afore-
mentioned standards and repositories have begun to ameliorate this problem, cancer
microarray data will be most useful to clinical cancer researchers only when it is
unified, logically analyzed, and made easily accessible.
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To this end, we initiated an effort to systematically curate, analyze, and make
available all public cancer microarray data via a Web-based database and data-mining
platform, designated “ONCOMINE” (http://www.oncomine.org/)'® (FiG. 1D). Our
effort also includes centralizing gene annotation data from various genome resources
to facilitate rapid interpretation of a gene’s potential role in cancer. Furthermore, we
have integrated microarray data analysis with other resources including gene ontology
annotations and a therapeutic target database so that clinically interesting subsets of
genes can be focused on. Currently, the ONCOMINE database houses 65 independent
data sets comprising nearly 50 million gene expression measurements from more
than 4700 microarray experiments. More than 100 differential expression analyses
define the genes most over- and underexpressed in nearly every major cancer type as
well as a number of clinical and pathology-based cancer subtypes. It is our hope that,
by making these data easily accessible to the cancer research community, potential
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FIGURE 3. The ONCOMINE cancer microarray database used to identify potential serum
biomarkers for ovarian cancer. By selecting an ovarian cancer data set generated by Welsh
et al.,’ specifying the differential expression analysis that identified genes overexpressed in
ovarian cancer relative to normal ovary tissue, and then applying the “secreted” gene filter,
which was derived from gene ontology cellular localization annotations, ONCOMINE
provides a gene expression heatmap representation of the 10 genes that encode secreted
proteins that are most highly expressed in ovarian cancer.
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cancer markers will be easily identified, promoting an increase in validation studies
and ultimately an increase in clinically useful markers.

Genes are usually considered as potential markers if they are differentially over-
expressed in a particular cancer and their molecular function or localization suggests
that they might be amenable to detection in serum or tissue. To provide a platform
for the discovery of potential markers that are overexpressed in cancer, ONCOMINE
is integrated with gene ontology annotations from the Gene Ontology Consortium.!”
Now, rather than investigating the function and localization of the genes most over-
expressed in cancer to assess their potential as candidate markers, users can begin
with only those genes whose function or localization suggests that they might be
useful markers. For example, genes that encode proteins that are secreted from cancer
cells would likely serve as candidate serum biomarkers. These include genes with a
cellular localization annotation of extracellular space, extracellular matrix, or extra-
cellular. With this ontology filter in place, for each cancer type in the ONCOMINE
database, users can quickly identify genes that encode secreted products that are
specifically overexpressed in a particular cancer. FIGURE 3 shows an analysis session
as an example from ONCOMINE that highlights the genes that encode secreted
proteins that are overexpressed in ovarian cancer relative to normal ovarian tissue.’
Interestingly, the fifth most overexpressed gene, prostasin, was recently found to be
a novel serum biomarker for ovarian cancer.” Perhaps the other genes that are more
significantly overexpressed may serve as even better biomarkers. Further analysis
with ONCOMINE revealed that prostasin is similarly overexpressed in prostate
cancer, suggesting a broadened role for this marker.

A recent study by Welsh et al.'® demonstrated a similar approach to serum marker
discovery from genome-wide expression data. They used the gene ontology—based
approach also used in ONCOMINE, as well as a sequence-based approach to define
additional genes that encode secreted products. By integrating the secreted annota-
tions defined by these two approaches with a large multicancer-type microarray data
set, they were able to define 74 potential serum cancer markers. A number of the
identified markers have been shown previously to be elevated in the serum of cancer
patients, including kallikreins in ovarian carcinomas, gastrin releasing peptide in
lung carcinomas, and alpha-fetoprotein in liver carcinomas. Other new markers were
also identified and validated, including MIC-1, which by ELISA was found to be at
high levels in a number of cancer types.

CONCLUSIONS

In summary, the field of bioinformatics is playing a critical role in beginning the
translation of cancer gene expression profiling into useful cancer markers. Our
approach for meta-analysis allows for the integration and validation of multiple
microarray data sets so that the most promising candidate markers can be identified
and followed up on. Furthermore, the development of ONCOMINE and other cancer
microarray databases should promote the maximum utilization of cancer microarray
data by the research community. Finally, integration of gene expression profiling data
with other genome resources such as gene ontology annotations provides a powerful
platform for marker discovery, as evidenced by the recent work of Welsh e al.18
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