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ABSTRACT

We study the problem of converting a trajectory tracking controller to a
path tracking controller for a nonlinear non-minimum phase longitudinal
aircraft model.  The solution of the trajectory tracking problem is based on the
requirement that the aircraft follows a given time parameterized trajectory in
inertial frame.  In this paper we introduce an alternative nonlinear control
design approach called path tracking control.  The path tracking approach is
based on designing a nonlinear state feedback controller that maintains a
desired speed along a desired path with closed loop stability.  This design
approach is different from the trajectory tracking approach where aircraft
speed and position are regulated along the desired path.  The path tracking
controller regulates the position errors transverse to the desired path but it does
not regulate the position error along the desired path.  First, a trajectory
tracking controller, consisting of feedforward and static state feedback, is
designed to guarantee uniform asymptotic trajectory tracking.  The feedforward
is determined by solving a stable noncausal inversion problem.  Constant
feedback gains are determined based on LQR with singular perturbation
approach.  A path tracking controller is then obtained from the trajectory
tracking controller by introducing a suitable state projection.
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I. INTRODUCTION

In a trajectory tracking problem, the desired outputs,
parameterized by time, are provided by a command
generator.  The trajectory tracking controller processes the
desired outputs and forces the system outputs to follow the
desired outputs as closely as possible.  In the presence of
tracking errors, the trajectory tracking controller attempts
to make the outputs “catch up” with the time-parameter-
ized desired outputs; this may lead to closed loop perfor-
mance difficulties and to large control signals.

One approach to eliminate such problems is to use a
path tracking controller instead of a trajectory tracking

controller.  The objective of path tracking is to track a
specified geometric path in the output space with specified
“velocity” along the path.  The path tracking controller
eliminates the aggressiveness of the trajectory tracking
controller by forcing convergence to the desired path in a
smooth way.

Path tracking, maneuver regulation or path follow-
ing controllers have been studied for robotic systems [7,
15] and for aerospace vehicles [10,12].  A general ap-
proach has been developed by Hauser and Hindman [9,11]
for feedback linearizable nonlinear control system.

The present paper introduces an alternative nonlin-
ear control design approach for the nonlinear non-mini-
mum phase longitudinal aircraft model, treated in [4],
called path tracking.  The path tracking controller regu-
lates the position errors transverse to the desired path but
it does not regulate the position error along the desired
path.  Based on our experience with the planar vertical take
off and landing (PVTOL) aircraft model treated in [5] and
the simplified longitudinal aircraft model treated in [3],
this method improves closed loop properties and reduces
the size of control inputs.  The path tracking approach is
based on designing a tracking controller that maintain a
desired speed along a desired path with closed loop stability.
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This design approach is different from the trajectory track-
ing approach treated in [4] where aircraft speed and
position are regulated along the desired path.  This work
represent an extension to the work of Hauser and Hindman
modified for nonlinear non-minimum phase flight control
problems.

As suggested in [1,6], first a trajectory tracking con-
troller, consisting of feedforward and static state feedback,
is designed to guarantee uniform asymptotic trajectory
tracking.  The feedforward is determined by solving a
stable noncausal inversion problem.  Constant feedback
gains are determined based on LQR optimization and
assumed satisfaction of a robustness inequality.  A path
tracking controller is obtained from the tracking controller
by introducing a suitable state projection that is related to
the LQR feedback gains.  Properties of the closed loop,
including local asymptotic convergence of the transverse
errors, are developed.

II. EQUATIONS OF MOTION OF THE
FLIGHT VEHICLE

We consider the longitudinal flight control model
introduced in [1,4] which describes the dynamics of an
aircraft in forward flight.  The longitudinal aircraft model
provides a challenging example for nonlinear flight con-
trol studies.  The aircraft model includes aerodynamic
forces as well as coupling between the aerodynamic pitch
moment and the aerodynamic translational forces.  Figure
1 shows a prototype longitudinal aircraft in flight.  The
aircraft state is the position, X, Z, of the aircraft center of
mass, the pitch angle θ, of the aircraft, and the correspond-
ing velocities, X , Z, θ.  The control inputs, T and MMMMM are,
respectively, the thrust along the aircraft body fixed x-axis
and the pitching moment about the aircraft center of mass.

Deflecting an elevator upward produces a small
negative lift force which generate a positive pitching mo-
ment about the center of mass of the aircraft.  The presence
of this parasitic aerodynamic force makes the longitudinal
aircraft model non-minimum phase.  In this case nonlinear
control design method such as dynamic inversion is not
directly applicable to this flight control problem [14].

The full longitudinal equations of motion of an
aircraft can be written as:

   mX =– D cos γ – L sinγ +T cos θ (1)

   – mZ =D sinγ – L cos γ – T sin θ +mg (2)

  I yθ  = MMMMM. (3)

The aerodynamic lift force (L), the aerodynamic
drag force (D) and the aerodynamic pitching moment (MMMMM)
are given by:

   L = 1
2

ρV 2SCl (4)

   D = 1
2

ρV 2SCd, (5)

MMMMM    = 1
2

ρV 2Sc Cm , (6)

where ρ is the air density, V is the aircraft speed, S is the
reference wing area, c  is the mean aerodynamic chord, Cl

is the lift coefficient, Cd is the drag coefficient, and Cm is
the pitching moment coefficient.  Note that the coefficient
of lift Cl, the coefficient of drag Cd, and the coefficient of
pitching moment Cm can be written as

Cl = Cl0 + Clαα + Clδeδe (7)

Cd = Cd0 + K   C l
2 (8)

   
Cm =Cm0 +Cmαα +

c

2V
(Cmq +Cmα)θ –

c Cmα

2V
γ+Cmδe

δe,

(9)

where, V2 =   X 2 +  Z 2, α = θ – tan–1  Z
X

 is the angle of attack,

δe is the elevator deflection and Cl0, Clα, Clδe, Cd0, K, Cm0,
Cmα, Cmq,   Cmα,   Cmδe

 are assumed constants.  The rate of
change of flight path angle γ  in equation (9) is

   γ =
m(XZ – ZX)

mV 2
(10)

Define Qs = 1
2

ρV2S,  C l = Cl0 + Clαα and  Cd  = Cd0 +

K   C l
2.  Then after substituting equations (1),(2) into equa-

tion (10), the aerodynamic lift force (L), the aerodynamic
drag force (D), and the aerodynamic pitching moment (MMMMM)
can be written as:

   L =Q s[Cl +Clδe
δe] (11)

    D =Q s[Cd +2KClδe
C lδe +KClδe

2 δe
2] (12)Fig. 1.  Longitudinal aircraft model in flight.
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M M M M M = 
   

Q sc [Cm0 +Cmαα –
c CmαρS

4m
Cl +

c

2V
(Cmq +Cmα)θ

   
+

c Cmαg

2V 2
cos γ+

c Cmα

2mV 2
T sin α

   
+(Cmδe

–
c CmαClδe

ρS

4m
)δe]. (13)

From equation (13), we can solve for δe and then sub-
stitute the result into equations (11, 12) to obtain:

   L =Q s[Cl0 +Clαα] – mgK 1 cos γ –K 1T sin α

    – K 2Vθ +n 0MMMMM (14)

   D =Q s[Cd0 +
K

Q s
2
L 2], (15)

where

    
n 0 =

Clδe

c [Cmδe
–

c Clδe
Cmα ρS

4m
]

, K 1 =
n 0 c 2Cmα ρS

4m
,

    
K 2 =

n 0 c 2ρS(Cmq +Cmα )

4

   C l0 =(1 +K 1)Cl0 +n 0 c Cm0

and

    C lα =(1 +K 1)Clα +n 0 c Cmα.

Equations (14), (15) show the relation between the
aerodynamic lift L and drag D and the aerodynamic
pitching moment (MMMMM).  The parameter n0 in equation (14)
gives the explicit coupling between the aerodynamic forces
and the aerodynamic control moment.  This parameter
represents approximately the ratio between the aerody-
namic lift force and the aerodynamic moment generated
by the elevator.  We scale the longitudinal aircraft model
by dividing equations (1), (2) by mg, and dividing equation
(3) by Iy.  Define x= X/g, z = –Z/g, ux = T/(mg), um = MMMMM/Iy

and n = n0Iy/(mg).  Then the rescaled dynamics become

   x =– D ′cos γ – L′sin γ +u xcos θ (16)

   z =– D ′sin γ +L′cos γ +u xsin θ – 1 (17)

   θ =u m, (18)

where L′  and D′  are dimensionless lift and drag forces
given by:

    
L′ =a lυ2(1 +cα) – K 1 cos γ–

K 2

m υθ +nu m – K 1u xsin α   (19)

   
D ′ =a dυ2(1 +b(1 +cα)2) +

2K 3

υ2
[a lυ2(1 +cα) – K 1cos γ

    
–

K 2

m υθ][nu m – K 1u xsin α]

    
+

K 3

υ2
[(nu m – K 1u xsin α)2 +(K 1cos γ+

K 2

m υθ)2

   
– 2a lυ2(1 +cα)(K 1cos γ+

K 2

m υθ)] (20)

where

   υ = V
g , a l =

ρgSCl0

2m
, a d =

ρgSCd0

2m
, c =

Clα

Cl0

,

    
b =

KCl0
2

Cd0

, K 3 = 2mK
ρgS

.

The zero dynamics of the longitudinal aircraft sys-
tem can be obtained by assuming that the aircraft is flying
with a constant horizontal speed  xc

* at a constant altitude.
In this case x = z = z = γ = 0 and α = θ.  The analysis of the
longitudinal aircraft zero dynamics can be found in [1,4].
It was shown that the zero dynamics of the above longitu-
dinal aircraft model is unstable or the longitudinal aircraft
system is non-minimum phase.

III. THE TRACKING PROBLEM
FORMULATION

We consider the flight control problem studied in [6]
where the aircraft is required to perform a nap of the earth
(NOE) maneuver in a vertical plane.  The NOE maneuver
commands correspond to a fixed horizontal velocity com-
mand of 130 m/s and to a vertical position command given
by zc =(250/2) * (1 – cos(π * t/60))(m).

The controller design in this case is complicated due
to the fact that the longitudinal aircraft model is non-
minimum phase and also not linear affine in the control.  In
[1,4], a two degrees of freedom trajectory tracking con-
troller was designed for the nonlinear non-minimum phase
longitudinal aircraft model described by equations (16),
(17), (18) using the control architecture shown in Fig. 2.

The resulting trajectory tracking controller from [1,
4] can be summarized as:

(1) A state feedback controller that partially linearize the
longitudinal aircraft model (16), (17), (18) is designed
as

num = (1 + K1)ux sin α + (υz + K1 + 1) cos γ

– υx sin γ – alυ2(1 + cα). (21)
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where the thrust control ux ≥ 0 satisfies the quadratic
equation

   δ(x )u x
2 +b(x ,υ)u x +c(x ,υ) =0. (22)

Here υ  = (υx, υz) is a new control variables, x  = (x, x,
z, z, θ, θ), and

   
δ(x ) =K 3

sinα
υ

2

cos α ,

   
b(x ,υ) =

K 3

υ2
sin2α[(υz +1) cos γ – υxsin γ] – cos2 α ,

   
c(x ,υ) =

K 3

υ2
[(υz +1) cos γ– υx sin γ]2 cos α

   +[(υz +1) cos γ– υxsin γ] sin α

   +(υz +1) sin θ +υx cos θ +a dυ2 cos α .

Note that δ(x ) in equation (22) is small (dividing by
aircraft speed), and in this case the solution of equa-
tion (22) can be written in a perturbation form as

   
u x =–

c(x ,υ)

b(x ,υ)
+ ∆u x.

where ∆ux is the change in ux.  Substitute this into
equation (22) and solve for ∆ux (ignoring products of
small terms).  An approximate solution of equation
(22) can be then written as

   
u x =– c(x ,υ)

[b(x ,υ)]2 + δ(x )c(x ,υ)

[b(x,υ)]3
.

Using the new control variables (υx, υz), the longitudi-
nal aircraft model described by equations (16), (17),
(18) can be written in the normal form as

   x =υx (23)

   z =υz (24)

    nθ =(1 +K 1)u x sin α +(υz +K 1 +1) cos γ

   – υx sin γ– a lυ 2(1 +cα). (25)

(2) A feedforward controller is then designed using the
bounded solutions θ* and  θ*  of the driven dynamics

    nθ* =(1 +K 1)u x
* sinα* +(zc +K 1 +1) cos γ

   – a l(xc
2 +zc

2)(1 +cα*). (26)

Here γ = tan–1(   zc /xc ), α* = θ* – α and  u x
* satisfies

   δ(θ*, t)u x
* 2 +b(θ*, t)u x

* +c(θ*, t) =0 (27)

where

   
δ (θ*, t) =K 3

sinα*

xc
2 +zc

2

2

cosα*,

   
b(θ*, t) =

K 3

xc
2 +zc

2
sin2α*[(zc +1) cos γ] – cos2 α*,

   
c(θ*, t) =

K 3

xc
2 +zc

2
[(zc +1) cos γ]2 cosα*

   +[(zc +1) cos γ] sinα* +(zc +1) sinθ*

   +a d(xc
2 +zc

2) cosα*.

The bounded solutions are obtained numerically us-
ing the iterative method introduced in [8].  The results
are shown in Fig. 3.

(3) Finally a static state feedback controller that guaran-
tees uniform asymptotic trajectory tracking is de-
signed based on the decomposition shown in Fig. 2 as

    
υx =xc –

β1
n 1

(x – xc) –
β2

n 1
2

(x – xc) (28)

   υz =zc – k 1(z – zc) – k 2(z – zc) – k 3(θ – θ*) – k 4(θ – θ*)
(29)

Fig. 2.  Block diagram of the trajectory tracking closed loop.
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The feedback controller gains from [4] are given by
n1 = 1, β1 = 6, β2 = 8, [k1, k2, k3 , k4] = [–2.2361, –12.
2245, –51.9616, –8.6262].

Note that this trajectory tracking controller requires
non-causal knowledge of the complete tracking com-
mands and their derivatives plus knowledge of the state for
feedback.

To summarize the resulting trajectory tracking closed
loop system, we introduce the following notations: Errors
coordinate ex = x – xc, ez = z – zc, η = η – ηs, where η = (θ,
θ) and ηs = (θ*, θ*).  Define the commands vector as Yc =
(xc, xc, zc, zc) and the non-minimum phase states as z  = (en,
η), where en = (ez, ez).  Then the exact closed loop, in the
error coordinates, using the above two degrees of freedom
controller can be written in perturbation form [1,4] as:

    

ex =–
β1
n 1

ex –
β2

n 1
2
ex, (30)

   z =A cz +g(ex, ex, en,η +η s, Y c) – g(0, 0, 0,η s, Y c).
(31)

Here the constant matrix Ac is Hurwitz.
In [4] we have introduced robustness inequality for

the above closed loop system that guarantees local uni-
form asymptotic trajectory tracking of the desired output
commands with closed loop stability.  Proofs of local
uniform asymptotic trajectory tracking for such systems
can be found in [2,4,6,13].  Thus according to [9,11], the
above trajectory tracking controller is suitable for conver-
sion to a path tracking (or maneuver regulation) controller.

IV. THE PATH TRACKING PROBLEM

In this section we design a path tracking controller
for the aircraft model, so that its center of mass tracks a

path in the vertical plane described by a fixed horizontal
velocity of xc = 130 m/s an altitude change given by the
equation zc = (250/2) * (1 – cos(π * t/60))(m).  The path
tracking controller regulates the position errors transverse
to the desired path but it does not regulate the position error
along the desired path.  To formalize this approach, we
introduce the following notation:

   Y p =(x, x),Y n =(z, z),Y =(Y p, Y n),η =(θ,θ)

  Y p c
=(xc, xc), Y n c

=(zc, zc), Y c =(Y p c
, Y n c

),

   η s =(θ*,θ*)

Let P11 be the positive definite solution of the
Lyapunov equation

   
P 11A 11 +A 11

T P 11 =– I 2 ×2, where A 11 = 0 1
– β2 – β1

.

Define the projection matrix    P 6 ×6 as

    
P 6 ×6 =

M(n 1)P 11M(n 1) 0
0 P

,

where M(n1) = diag(1/  n 1
2, 1/n1), n1 > 0 is the time scale

parameter that was introduced in the trajectory tracking
control and P is the positive definite solution of algebraic
Riccati equation

ATP + PA + Q – PBR–1BTP = 0, (32)

where A is obtained from linearizing equations (24) and
(25) under the assumption that the aircraft is flying hori-
zontal at a fixed speed of xc = 130 m/s, Q is positive definite
matrix, R > 0, B = (0, 1, 0, 1).

Following the same procedure as in [1,6], we define
path variable for each (   Y(t), η(t)), as

   

π(Y,η) = arg min
0 ≤ τ ≤120 sec .

Y p(t) – Y p c
(τ)

Y n(t) – Y n c
(τ),η(t) – η s(τ)

T

P

.

(33)

Note that   x
P

:= xTPx , x ∈  R6.
Define transverse errors as  e p =  Y p  –  Y p c

(π) and z  =
(  e n, ξ ), where  e n =  Y n  –  Y n c

(π) and ξ  = η – ηs(π).  Follow-
ing the approach of [9,11], the maneuver regulation con-
troller is thus obtained by replacing the explicit time
variable in the trajectory tracking controller (28) and (29)

Fig. 3. Non-causal solution of the aircraft driven dynamics: NOE
maneuver.
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by the projection variable π as

    
υx =xc(π) –

β1
n 1

(x – xc(π))–
β2

n 1
2
(x – xc(π)) (34)

   υz =zc(π) – k 1(z – zc(π)) – k 2(z – zc(π))

   – k 3(θ – θ*(π)) – k 4(θ – θ*(π)) (35)

Note that the path tracking controller (34), (35) is in
the form of nonlinear feedback and requires on-line solu-
tion of the minimization problem (33).  We emphasize that
the path tracking controller (34), (35) is not causal with
respect to the command; the complete command is re-
quired to compute the bounded solution of the driven dyn-
amics (26).  This again reflects the non-minimum phase
features of the longitudinal aircraft model.

Define  ep= M(n1)  e p, then the path tracking closed
loop in the transverse errors coordinate can be written in
perturbation from as

    
n 1ep

z
=

A 11 0
0 A c

ep

z
+

n 1M(n 1)Y p c

′
(π)

Y n c

′
(π), η s

′ (π)
T

(1 – π)

    

+
0

g(n 1ep +Y p c
(π), e n +Y n c

(π),ξ +η s(π), zc(π)) – g(Y p c
(π), Y n c

(π),η s(π), zc(π))

(36)

where A11 and Ac are Hurwitz.
In [1,6] we have introduced robustness inequality for

the above path tracking closed loop system that guarantees
the following local results:

(a) if (Y(0), η(0)) = (    Y c(π), ηs(π)) for some π ∈  R, the
output response satisfies

   Y(t) =Y c(t + π), η(t) =η s(t +π), t ≥0

and hence x(t) = xc(t + π) and z(t) = zc(t + π), t ≥ 0.6;
(b) there is r > 0 such that for all initial conditions satisfy-

ing

   min
τ ∈ R

(Y(0),η(0)) – (Y c(τ),η s(τ)) <r ,

the output response satisfies

   Y(t) – Y c(π) →0, η(t) – η s(π) →0, as t →∞,

and hence x(t) – xc(π) → 0 and z(t) – zc(π) → 0 as
t → ∞.

Proofs of these results follow from [1].
The result (a) simply states that if the aircraft is

initialized on the desired path (xc, xc, zc, zc, θ*, θ*) with zero
transverse errors then the aircraft will continue flying the
desired path with the desired speed without correcting for
along path errors (note that the along path errors may not
be initially zero in this case).  The result (b) states that if
the aircraft is initialized on a tube of radius r from the
desired path (xc, xc, zc, zc, θ*, θ*) then the aircraft will
converge asymptotically to the desired path by correcting
only for the transverse errors and not the along path errors.

Simulations and comparison

Simulations in Fig. 4 to Fig. 7, are obtained assuming
that the aircraft initial condition is x (0) = (2000, 130, 34.

Fig. 4. Path tracking responses and trajectory tracking responses for
NOE maneuver for the longitudinal aircraft model, non-zero
initial errors.

Fig. 5. Thrust and pitching moment required by path tracking and that
required by trajectory tracking control for NOE maneuver for the
longitudinal aircraft model, non-zero initial errors
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shows the behavior of the path variable π(x ) described by
equation (33).  Because the aircraft initial conditions
correspond to a point on the desired path, the response of
the path variable is π(x ) = t + c, where c is a constant.

Next we study the effect of a horizontal wind distur-
bance of magnitude 20 m/s on the closed loop performance
of the trajectory tracking design and the path tracking
design.  Simulations in this case are obtained using zero
initial errors namely x (0) = (0, 130, 0, 0, 0.0280, 0.0027).
As shown in Fig. 8, the closed loop performance of the
trajectory tracking design is significantly degraded by the
wind disturbance of 20 m/s.  On the other hand the path
tracking design compensate for the wind disturbance and
perfectly maintains the aircraft on the desired path.  This
advantage of path tracking control can be explained by
studying the response of the path variable π(x ) described
by equation (33).  Note that in the absence of wind
disturbance and initial errors, the trajectory tracking de-
sign and the path tracking design produce the same result.
In other words the rate of change of the path variable π(x )
= 1 or π(x ) = t.  Figure 11 shows the behavior the rate of
change of the path variable π(x ) under the influence of the
wind disturbance.  Because the wind is in the opposite
direction of the desired aircraft motion, the rate of change
of the path variable π(x ) is less than 1, indicating that the
commands are generated at a rate slower than that the
nominal rate π(x ) = 1.

In Fig. 9 we show the control signals required to
execute the desired maneuver under the influence of the
wind disturbance.  Figure 10 shows that the response of the
pitch angle (driven dynamics) is bounded.

V. CONCLUSIONS

In this paper we have studied a flight control problem
for a nonlinear non-minimum phase longitudinal aircraft

Fig. 6. Longitudinal pitch angle responses for NOE maneuver using
path tracking and trajectory tracking controllers, non-zero initial
errors

Fig. 7. Path variable π(x ) responses for NOE maneuver for the longi-
tudinal aircraft, non-zero initial errors

8, 0, 0.0280, 0.0027).  Figure 4 shows the desired NOE
path, the path that results from trajectory tracking design
and the path that results form the path tracking design.
Note that the trajectory tracking controller induces large
deviations from the desired path because of the large initial
errors.  In fact the aircraft stalls in this case.  This is obvious
from Fig. 5 where the thrust is zero for almost 40 seconds
and this cause the aircraft speed to drop below 50 m/s; the
lower part of Fig. 5 shows the initial transient pitching
moment only over 2 sec.  On the other hand, we see in Fig.
4 that the path tracking design performs perfectly and
tracks the desired path with negligible deviation.  The
reason for this is that the aircraft initial conditions corre-
spond to a point on the desired path.  Thus the path tracking
controller detects that the aircraft is on the desired path and
hence control the aircraft to remain on the desired path
starting from that point.  Figure 6 shows that the response
of the pitch angle (driven dynamics) is bounded.  Figure 7

Fig. 8. Trajectory tracking responses and path tracking responses for
NOE maneuver for the longitudinal aircraft model, 20 m/s wind
disturbance
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maneuver for which the aircraft is intended to follow a
path in a vertical plane corresponding to a specified
change in altitude.  First we formulate the problem as a
nonlinear output trajectory tracking control problem.  Next
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