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Abstract — Because they are designed to produced just one tree, neighbor-joining programs
can obscure ambiguities in data. Ambiguities can be uncovered by resampling, but existing
neighbor-joining programs may give misleading bootstrap frequencies because they do not
suppress zero-length branches and/or are sensitive to the order of terminals in the data. A
new procedure, parsimony jackknifing, overcomes these problems while running hundreds of
times faster than existing programs for neighbor-joining bootstrapping. For analysis of large
matrices, parsimony jackknifing is hundreds of thousands of times faster than extensive
branch-swapping, yet is better able to screen out poorly-supported groups.

 1996 The Willi Hennig Society

Introduction

A large, ambiguous matrix may have many most parsimonious trees, and finding
them all by branch-swapping may take considerable time. Stoneking et al. (1992:
386) advanced this as a reason to use neighbor-joining instead.

“There is thus an inherent and, at this time, insoluble problem with applying parsimony analysis
to these data . . .. By contrast . . .. The NJ [neighbor-joining] algorithm (Saitou and Nei, 1987) is
computationally much more efficient than parsimony algorithms, so an NJ tree can be con-
structed even for a very large data set.”

Neighbor-joining programs seem fast primarily because they are designed to
produce just one tree; Saitou and Nei (1987: 406) introduced their method as
yielding a “unique final tree”. But in fact that method may admit more than one
tree, so that, if used alone, a neighbor-joining program may conceal ambiguities in
data. Ambiguities can be uncovered by using resampling methods, and this takes
less effort than branch-swapping. But resampling can be employed with parsimony
too, and far more efficiently than with neighbor-joining.

Neighbor-joining

A neighbor-joining program constructs just one tree for any one input matrix,
but may achieve this by making arbitrary choices. Matrices Two and Three from
Källersjö et al. (1992) will provide examples.
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Fig. 1. MEGA neighbor-joining trees for two orderings of matrix Two.

Two Three
A atttttttta aatttttttt
B attttatttt aaaatttttt
C tatttatttt aaaaaatttt
D tattttattt aaaaaaaatt
E ttatttattt aaaaaaaaaa
F ttattttatt ttaaaaaaaa
G tttatttatt ttttaaaaaa
H tttattttat ttttttaaaa
I ttttatttat ttttttttaa
J ttttatttta tttttttttt

The trees in Figs 1 and 2 were obtained using Kumar et al.’s (1993) MEGA pro-
gram. Terminal D was employed as an outgroup to simplify comparison with later
figures. The Kimura two-parameter distance was used for matrix Two. For matrix
Three, MEGA gave a “Failure in estimating distances” diagnostic with the Kimura
distance, and we used number of sequence differences instead.

Analysed by the neighbor-joining procedure in MEGA, matrix Two gives the tree
of Fig. 1a. But if terminal A is moved so as to become the last row of the matrix, the
program gives the tree of Fig. 1b instead. The two trees have no informative groups
in common.

For matrix Three, MEGA’s neighbor-joining produces the tree of Fig. 2a. If the
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Fig. 2. MEGA neighbor-joining trees for three orderings of matrix Three.

terminals are rearranged into the order DEFGHIJCBA, the tree of Fig. 2b is
obtained. Order GHIJFEDCBA gives the tree of Fig. 2c. There are still other possi-
bilities, but the strict consensus of just these three is entirely unresolved.

The reason for such results is readily found from Saitou and Nei’s (1987)
description of their method. A group of two terminals is first selected to minimize
the length of an otherwise-unresolved tree, the branch lengths being least-squares
fits to the distance matrix. The two terminals are united and their columns in the
distance matrix are pooled; they are treated as a single unit for purposes of further
grouping. These steps are repeated until a complete tree has been formed.

The criterion for choosing pairs is distinctive, but the algorithm is otherwise
quite like much older clustering techniques such as UPGMA (reviewed by Farris,
1977). As in earlier methods, the sensitivity to the order of terminals in the input
arises in selecting the next pair to be united. If any of several pairs might equally
well be picked, the program simply uses the first such pair identified in its search.



102 J. S. FARRIS ET AL.

Fig. 3. NEIGHBOR neighbor-joining trees for two orderings of matrix Two.

This does not apply only to MEGA; Felsenstein’s (1993) NEIGHBOR program
for neighbor-joining shows similar behavior. (For all PHYLIP runs, we used the
extended DOS executables distributed by Felsenstein.) Using MEGA’s Kimura dis-
tances for matrix Two, NEIGHBOR yields the tree of Fig. 3a. If terminal A is
placed last, NEIGHBOR instead gives the tree of Fig. 3b, which shares no informa-
tive groups with the first.

The effects of search order are not limited to the input order of terminals. Avail-
able neighbor-joining programs vary in detail and may consequently produce diff-
erent trees from the same input. Group GHIJ is placed with AB by MEGA in Fig.
1a, but with EF by NEIGHBOR in Fig. 3a. MEGA groups AJHI with BC in Fig. 1b,
while NEIGHBOR puts AJHI with FG in Fig. 3b.

Rzhetsky and Nei’s (1994) METREE program provides another illustration.
Using Kimura distances for matrix Two, METREE’s neighbor-joining yields the
tree of Fig. 4a when terminal A is placed first, but the tree of Fig. 4b when A is
placed last. Again, those two trees have no groups in common. But further,
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Fig. 4. METREE neighbor-joining trees for two orderings of matrix Two.

METREE’s tree of Fig. 4a has no groups in common with MEGA’s tree of Fig. 1a,
although these are obtained from the same matrix with the same order of ter-
minals. Likewise for Figs 4b and 1b.

For a last example, replace terminal A of matrix Two with three copies A1–A3,
the analyses being performed as before. Making the As a group rather than a ter-
minal causes changes in other parts of the tree. NEIGHBOR (Fig. 5) now puts IJ
with AB, not with GH as in Fig. 3a. MEGA’s new result (Fig. 6) matches neither
tree from Fig. 1, and the two programs now agree only in uniting the As.

It is certainly most convenient to represent conclusions as a single tree, but this
hardly means that the tree can be picked arbitrarily. If one program is run with
one order of terminals, neighbour-joining seems to provide a single, definite
solution, but this is highly misleading when the data are ambiguous. The only
single tree that could reasonably be concluded for matrix Two or Three would be
an unresolved consensus.

Documentation

While it has been considered before (for example by Sourdis and Nei, 1988),
the possibility of multiple trees with neighbor-joining has seldom been emphas-
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Fig. 5. NEIGHBOR neighbor-joining tree for matrix Two with terminal A replicated.

ized1. Kumar et al. (1993) did not mention the subject at all, and Felsenstein
(1993) even maintained that multiple trees should not be calculated. It will be
illuminating to consider his reasons.

According to Felsenstein (1993, in MAIN.DOC):

“The ‘. . . PENNY’ programs and CLIQUE are not sensitive to the input order of species, and
NEIGHBOR is only slightly sensitive to it, so that multiple Jumbling is not possible with these
programs.”

Multiple jumbles—random reorderings of the terminals—might well help direct
ambiguities, but Felsenstein apparently did not consider this desirable. He never

1A noteworthy exception is Backeljau et al. (1996), which appeared after the present paper had been
accepted.



105PARSIMONY JACKKNIFING VERSUS NEIGHBOR-JOINING

G

Terminals A1–A3 first

H

I

J

F

B

E

D

C

A1

A2

A3

Fig. 6. MEGA neighbor-joining tree for matrix Two with terminal A replicated.

disclosed the evidence for his theory on the order-insensitivity of NEIGHBOR, but
in NEIGHBOR.DOC he added further grounds for leaving out multiple orders.

“The Jumble option (J) does not allow multiple jumbles (as most of the other programs that
have it do), as there is no objective way of choosing which of the multiple results is best, there
being no explicit criterion for optimality of the tree.”

It is a curious explanation. If, as Felsenstein first suggested, order of terminals
made little difference, why would multiple jumbling now lead to multiple results?
Worse, if there were truly no way to choose among trees, this would scarcely pro-
vide a reason for settling on NEIGHBOR’s tree to the exclusion of others.

In fact, however, neighbor-joining is based on an optimality criterion, as is clear
from Kumar et al.’s (1993: 35) discussion.

“[Neighbor-joining] is a simplified version of the minimum evolution (ME) method (Saitou and
Imanishi, 1989, Rzhetsky and Nei, 1992). In the ME method . . . a topology showing the smallest
sum (S) of all branches [i.e., branch lengths] . . . is chosen as an estimate of the correct tree . . ..
In the case of the NJ method, the S value is not computed for all or many topologies, but the
examination of different topologies is imbedded in the algorithm, so that only one final tree is
produced.”

For any one search order, at least. Inasmuch as neighbor-joining is meant to
minimize S the lack of an optimality criterion cannot very well be the reason for
calculating only one tree. Felsenstein (1993, in NEIGHBOR.DOC) had one more
reason, though.

“There is no feature saving multiply [sic] trees tied for best, partly because we do not expect
exact ties except in cases where the branch lengths make the nature of the tie obvious, as when a
branch is of zero length.”

Exact ties in the optimality criterion, that is, despite “there being no explicit cri-
terion for optimality”. Far from justifying neglect of multiple trees, Felsenstein’s
view of zero-length branches instead encourages misinterpretation of results.
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NEIGHBOR produces zero-length branches in cases like Fig. 5, where the zero
length between nodes 9 and 10 means that any other bifurcating resolution of the
identical As would lead to the same value of S. Of course all of those schemes are
really just one trifurcation, as indeed MEGA displays it in Fig. 6. The 9–10 branch
indicates a “tie” between “multiple trees” only because NEIGHBOR (like most of
PHYLIP) always generates a bifurcating tree, even in the absence of relevant data.

But Felsenstein did not restrict his wording to multifurcations. A NEIGHBOR
user might then take the result of Fig. 3a to indicate that there is just one optimal
tree, since none of the branch lengths is zero. That inference would be incorrect,
for the tree of Fig. 3b has the same value of S, as do both trees of Fig. 1, both trees
of Fig. 4, and 4 others as well2.

One might think that, if not literally zero-length, at least the short branches
would be the suspect ones. Long branches would still set off well-supported
groups. That is not safe either. The longest branches in Fig. 3a delimit pair-groups
EF and IJ. Neither of those groups occurs in Fig. 3b, which has the same S. In the
sense of Bremer’s (1988) length difference3, both groups have zero support. The
data provide no grounds at all for concluding either.

Zero lengths as such aside, Felsenstein’s last reason for not saving multiple trees
is that “we do not expect exact ties”. This implies that near-optimal trees should be
discarded, but that is not a safe procedure. An example can be obtained by mod-
ifying matrix Two.

Notice that the first five sites of matrix Two favor the pair-groups of Fig. 1a,
while the last five favor those of Fig. 1b. Produce new matrix TwoX by including 21
copies of each of the first five sites and 20 copies of each of the last five, so that the
total number of sites is now 205.

With matrix TwoX, the data now favor Fig. 1a with S=2.55. The grounds for pref-
erence are obviously weak, however, and Fig. 1b has near-optimal S=2.59. The
groups of Fig. 1a, then, cannot be considered strongly supported. But if only
exactly optimal trees were saved, Fig. 1b would never be considered and the weak-
ness of the support would not be recognized.

Improvements

Artificial matrices have been used here to provide easily-understood cases, but
similar difficulties can occur with real data matrices. All but the cleanest data allow
near-optimal alternatives, and even exact ties are sometimes found (see Backeljau
et al., 1996). If conclusions are to be drawn with any confidence, then, a method
must be used that can uncover ambiguities. That is easy with small matrices; the
problem is to detect ambiguities efficiently enough that large matrices may readily
be analysed.

One possibility is Rzhetsky and Nei’s (1992) confidence probability (CP) tech-
nique, which both MEGA and METREE provide for neighbor-joining trees. A CP
value is the complement of the tail probability from a Student’s t-test, the null

2Least-squares branch lengths for all 10 trees can be found with PHYLIP’s FITCH program.
3Now called Bremer support (cf. Källersjö et al., 1992). Bremer had parsimony in mind, but his idea

applies to S just as well.
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Fig. 7. METREE neighbor-joining trees for two orderings of matrix Two, expanded to 500 sites.

hypothesis being that the length of a branch has zero expectation. CP is intended
as the statistical confidence of the conclusion that the branch is real, that is, sets
off a true monophyletic group.

This approach seems to work well enough in some cases. Applied to matrix Two
(Fig. 4), it assigns low confidence to every branch, correctly indicating that these
data offer no substantial grounds for grouping. Nonetheless, CP rests on a serious
oversimplification. Rzhetsky and Nei’s calculation takes the tree as given, but a
realistic assessment of confidence would have to consider the strength of evidence
favoring that tree over others.

In particular, CP increases with the number of sites, while support for a tree
need not. Again obtain an example by modifying matrix Two. This time produce
matrix TwoY by including 50 copies of each site, so that the total number of sites is
now 500.

With matrix TwoY analysed as before, the two orderings of terminals still give
two trees with no groups in common (Fig. 7). As before, each tree has optimal S, so
that there are still no grounds for concluding any grouping. But now every branch
of each tree is assigned a “confidence probability” of 99%. With this method,
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either of the runs by itself would give an entirely misleading impression, so that
multiple runs would still be needed.

Rohlf’s (1993) NTSYS-pc package offers a different solution to the problem of
ambiguity. The neighbor-joining method is extended to search for multiple trees.
Unfortunately, promising though this sounds, it does not seem to work well in
practice. When instructed to find multiple neighbor-joining trees for small matrix
Two, NTSYS-pc ran out of memory and crashed the computer.

Another disadvantage of Rohlf’s program is that its execution time increases
rapidly with the number of terminals, even when the multiple tree option is not
used. For the first 25 terminals from Chase et al.’s (1993) 500-terminal ‘Search II’
data, NTSYS-pc’s neighbor-joining took just 10 seconds on a 66 MHz 80486DX2.
But for the first 50 terminals, 261 seconds were required; doubling the number of
terminals increases the execution time by a factor of 26. At that rate, calculating a
neighbor-joining tree for the whole matrix would take over five months.

METREE provides an extended neighbor-joining method based on a local
branch-swapper. Data permitting, this can reduce S by rearranging a tree found by
simple neighbor-joining, and it can also retain multiple optimal and near-optimal
trees.

Such improvements would in principle avoid the arbitrary selections made by
the original neighbor-joining algorithm, but METREE’s branch-swapper has some
drawbacks. The trees of Fig. 1 each have optimal S for matrix Two, but METREE
could not find both of them in any one of our runs. Much like MEGA’s neighbor-
joining (and unlike METREE’s own neighbor-joining), the branch-swapper found
the tree of Fig. 1a if given the original matrix, one similar to Fig. 1b if given the
reordered matrix.

Multiple reordering could be helpful in such situations, but the present pro-
gram makes no provision for it. Further, processing several orders would increase
total execution time, and METREE can already take a long time to analyse a
poorly-structured matrix. This is seen even with a matrix as small as Three, for
which METREE ran for more than 70 minutes on the 80486 mentioned above.
When finally interrupted, the program had not yet completed its local branch-
swapping.

To put this in perspective: Hennig86’s mh*bb* command sequence completed its
global branch-swapping of matrix Three in 0.1 second on the same computer4.
Whereas Stoneking et al. (1992) considered parsimony branch-swapping too slow
to be practical for large matrices, METREE’s branch-swapping can be far slower.

Bootstrapping

If the matrix is large, bootstrapping with a quick clustering method like
neighbor-joining can go faster than a branch-swapping analysis of just the original
data. In practice this offers a substitute for finding multiple optimal and near-opti-
mal trees. The several trees would end up being reduced to a consensus anyway, so
that only better-supported groups would survive. Much the same effect can be
achieved by eliminating groups with low bootstrap frequencies.

4Hennig86 is available from AGK or DL.
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Fig. 8. MEGA neighbor-joining bootstrap trees for (a) matrix Two, (b) matrix TwoY and (C) matrix
TwoX.

In Felsenstein’s (1985) original proposal, the bootstrap frequency of a group
would represent the statistical confidence level of a conclusion of monophyly. That
view has limitations, some of which Felsenstein himself pointed out, but these do
not matter for present purposes. We will not rely on that interpretation here, but
consider the method simply as a way of discovering ambiguities in data.

How this can work is illustrated by bootstrapping matrix Two (Fig. 8a). Recall
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Fig. 9. MEGA neighbor-joining bootstrap trees for two orderings of matrix Four.

that the matrix is ambiguous because equal numbers of sites favor each of two
alternative suites of pair-groups, shown by the two trees of Fig. 1.

Ties are unlikely to survive random resampling; the relative frequencies of the
original sites will typically change in each replicate. The sites favoring a group
might at best predominate half the time, and the group will actually be formed less
often still, since resampling may omit its sites entirely. All the groups of Fig. 8a thus
have frequencies below 50%, and such groups should be discarded from bootstrap-
ping results, as discussed later. Only an unresolved tree remains, evidently the
right conclusion for matrix Two.

Bootstrapping largely lacks the drawback of CP illustrated before. In the
bootstrap of 500-site matrix TwoY (Fig. 8b), the groups still have frequencies below
50%, so that the right conclusion would be reached. The method also effectively
takes near-optimal alternatives into account. Bootstrapping 205-site matrix TwoX
(Fig. 8c) gives a frequency of about 55% for each pair-group, correctly indicating
positive but weak support.

Some precautions, however, must be taken in applying this approach. Bootstrap
frequency would be used to indicate group support, but MEGA and NEIGHBOR
are not quite ideal for that purpose. Matrix Four will provide an illustration.

Terminal A B C D E F G H
a a t t t t t t
t t a a t t t t
t t t t a a t t
t t t t t t a a

The trees of Fig. 9 were produced by bootstrapping this matrix with 1000 repli-



111PARSIMONY JACKKNIFING VERSUS NEIGHBOR-JOINING

Fig. 10. PHYLIP neighbor-joining bootstrap trees for three ways of ordering matrix Four.

cates, using MEGA’s neighbor-joining. They are rooted by the midpoint method5,
the default in MEGA. MEGA complained of “Failure in estimating distances” when
asked to bootstrap matrix Four with the Kimura distance, so we used number of
sequence differences. The same distance measure was provided to NEIGHBOR for
similar bootstrapping, yielding the unrooted trees of Fig. 10.

For this matrix, MEGA’s bootstrap frequencies show no consistent relationship
to strength of support. In Fig. 9a, MEGA reports 68% for group CD, but 100% for

5Of Farris (1972), although MEGA’s documentation does not mention this.
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AB. With 1000 replicates, that difference is very highly significant (P ! 0.0001).
But it is plain from matrix Four that those two groups are supported by precisely
equal amounts of evidence. This is another manifestation of order-sensitivity. In
Fig. 9b, obtained by changing the order of terminals to CDABGHEF, the frequenc-
ies are reversed.

68% is the right value. Just one of the four sites sets off group AB, and that site
will be included once or more in any one bootstrap replicate with probability
1−(3/4)4, or 0.6836. (The general formula is given later.) Likewise for the other
pair-groups CD, EF and GH. The 100%, if it were real, would imply a substantially
larger number of supporting characters. If the data comprised four distinguishing
sites for each pair-group, the correct frequency for each group would still be only
1−0.7516, just under 99%.

In Figs 10a and 10b, NEIGHBOR also shows the AB/CD frequency switch, but
now combined with a further peculiarity. Group ABCD has 100% frequency,
although it is supported by no evidence whatever. This problem has two causes.
The particular choice of terminals is order-sensitivity again. But the branch setting
off that group is “resolved” in every one of 1000 replicates because NEIGHBOR
always produces a bifurcating tree, even in the absence of evidence. MEGA can
avoid that difficulty in Fig. 9 because it makes an effort to suppress zero-length
branches.

NEIGHBOR’s jumble option is beneficial here. If used in bootstrapping, it
causes a different, randomly-chosen order of terminals to be applied for each rep-
licate6. As seen in Fig. 10c, this does away with order-sensitivity. The variation
among the frequencies of the four pair-groups is now well within sampling error.

The reordering reduces the influence of zero-length branches, but does not
eliminate it. Group ABGH of Fig. 10c has only 22% frequency, not the 100% seen
before for ABCD (Fig. 10a). But it is still formed, although matrix Four includes
no evidence for it. More subtly, the pair-group frequencies are all too high. Averag-
ing nearly 77%, they exceed the correct 68% value by almost 9%, a very highly sig-
nificant difference (P ! 0.0001). The ideal program would have to include zero-
length branch elimination as well as reordering.

Finally, there is the matter of groups with low bootstrap frequencies. Felsenstein
(1993, in CONSENSE.DOC) stressed that such groups should not be retained, but
his program may nonetheless include them in the tree (Fig. 10c)—an anomaly on
which he did not comment. Deleting them is left to the user.

“You have to decide on the percentage level, figure out for yourself what number of occurrences
that would be (e.g. 15 in the above case for 100%), and resolutely ignore any group below that
number. Do not use numbers at or below 50%, because some groups occurring (say) 35% of the
time will not be shown on the tree. The collection of all groups that occur 35% or more of the
time may include two groups that are mutually self contradictory and cannot appear in the same
tree.”

So that accepting a low-frequency cluster from the diagram amounts to group-
ing arbitrarily. Unfortunately, not all users understand this. Wainwright et al.
(1993), for example, based their main conclusions on groups with PHYLIP
bootstrap frequencies below 50% (cf. Rodrigo et al., 1994). It would be safer if the
program discarded those groups before printing the tree.

6We thank N. Wikström for calling this to our attention. It is not pointed out in NEIGHBOR.DOC.
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Misinterpretations such as Wainwright et al.’s probably result from mistaking the
effective starting-point of the scale relating support to bootstrap frequency. If zero
support meant zero frequency, then any positive frequency would suggest at least
some support. But in fact the starting-point is higher. The 22% frequency for
group ABGH in Fig. 10c, again, corresponds to no evidence whatever.

Of course that group is only an artifact of NEIGHBOR’s treatment of zero-
length branches, but a more substantial effect is seen on bootstrapping matrix Two
(Fig. 8a). The pair-groups there are hardly artifacts; they correspond to sites in the
data. But other sites dispute them, and matrix Two collectively provides no
grounds for preferring group AB, for example, over alternative AJ. The shortest
trees with AB have the same S as those with AJ. AB has zero support, but its
bootstrap frequency is over 40%.

That is not the worst case. Matrix Five has four terminals and 1000 informative
binary characters. Half the characters split the terminals AB/CD, the other half,
AC/BD. The support for either arrangement is again zero. But, idiosyncrasies of
programs aside, each of the groups must have a bootstrap frequency of 50%. No
lower frequency, then, can sensibly be interpreted as indicating favorable
evidence.

Jackknifing

Neither MEGA nor NEIGHBOR eliminates both order-sensitivity and zero-
length branches. But a suitably-designed parsimony program can do so, and
developing one provides the opportunity to improve the resampling method as
well. As will be seen presently, the advantage of the approach taken here is that it
provides a great reduction in the time needed for analysis of large matrices.

Kumar et al. (1993: 46) thought of a way to ensure that parsimony analysis would
take longer than neighbor-joining.

“If the number of [terminal taxa] is so large that we have to use the [approximate] search, the
bootstrap test is not very meaningful, because we are not sure whether the tree obtained is the
[most-parsimonious] tree.”

By that reasoning, they should have used exact minimization of S—not just
simple neighbor-joining—in their own bootstrapping, but of course they did no
such thing. The practical benefit of resampling is that it effectively replaces exten-
sive analysis of the original matrix. For the parsimony calculations in our method
we use a fast approximate procedure, similar to the hennig command of Hennig86.

The hennig algorithm is sensitive to the order in which terminals are added to
the tree (cf. Farris, 1970), but randomly-selected orders can be used, as in PHYSYS’
PIMENTEL7 command. Our procedure randomly generates a new order for each
replicate.

Hennig86 deletes zero-length branches in a sense, but its method is not the best
one for present purposes. It discards only branches that would show no change
under any parsimonious reconstruction of the states of stem species on the con-
sidered tree8. It may thus retain groups that are not actually supported by any evi-

7For R. A. Pimentel, who first used this method (cf. Mickevich and Farris, 1981: 353).
8This criterion was incorporated into Hennig86 at the suggestion of N. I. Platnick—who later

reconsidered (cf. Platnick et al., 1991).
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dence, and here the aim is to eliminate such groups. In our method, a branch is
retained only if it must show a change under every parsimonious reconstruction9.
This rule is applied separately to the tree for each replicate.

For resampling, we use an independent-removal jackknife, rather than
bootstrapping. A resampled matrix (replicate) is formed by deleting characters
randomly and independently from the original matrix, each original character
having the same fixed probability p of being absent from any one replicate. The
advantage of this method is that it simplifies the relationship between group fre-
quency and support. Provided the data have no missing entries, the expected jack-
knife frequency of a group G set off by r uncontradicted characters is just 1−pr.

The simplification can be appreciated from Harshman’s (1994) discussion of a
peculiarity of bootstrapping. If the matrix has n characters in all, the expected
bootstrap frequency of G is 1−(1−r/n)n. With r fixed, this decreases as n increases,
leading to the counterintuitive result that adding characters logically irrelevant to
G—invariable ones, autapomorphies, even characters of separate groups—can
lower the bootstrap frequency of G.

In the case of autapomorphies and invariable characters, this problem might be
circumvented simply by deleting those characters. But as Harshman pointed out,
this can hardly be done for characters of separate groups.

Not wishing to abandon bootstrapping, Harshman maintained that this effect is
“small over the range of n likely to be encountered in real data sets” (p. 420). That
claim does not seem to hold up, since Carpenter (1996) has recently found larger
effects in several published matrices. But Harshman’s (p. 422f) concluding sugges-
tion might still be employed.

“Anyone concerned about the variation in bootstrap values due to irrelevant characters can
equalize the effect of irrelevant characters on all nodes by adding a large number of invariant
characters (1,000 seems more than adequate) to the data matrix.”

This works because 1−(1−r/n)n settles down to a limit 1−e−r if n is made large
enough. Of course, that strategy would generally change the frequency of G;
Harshman evidently considered any difference between the original 1−(1−r/n)n

and the limit 1−e−r inconsequential. But in that case, one might just as well use our
method, with the removal probability p set to e−1 (about 0.3679). That also makes
the expected frequency of G simply 1−e−r, and then there is no need to be con-
cerned with either irrelevant or dummy characters.

Felsenstein (1985: 787) preferred bootstrapping to jackknifing, but his reasons
pertained to the classical jackknife: dropping just one character at a time10. Trees
from different replicates would not usually vary much, and he observed:

“To make the variance among the jackknife estimates as large as that among the bootstrap esti-
mates, one would have to engage in an extrapolation to make their variances larger. The diffi-
culty in envisaging a procedure like this is that the space of possible phylogenies does not lend
itself readily to extrapolation.”

That difficulty does not apply to all jackknifing. (Felsenstein, 1985: 787)

9This method is also used in P. Goloboff’s efficient branch-swapping program NONA. Concerning
which, contact Dr J. Carpenter, Dept. Entomology, American Museum of Natural History, Central Park
West at 79th St, New York, New York 10024 USA.

10For a discussion of resampling methods, see Efron and Gong (1983). Earlier uses of resampling
techniques in systematics were reviewed by Farris (1971).
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“One way to make the jackknife vary as much as the bootstrap would be to drop not one obser-
vation, but half the observations chosen at random. This possibility is worth exploring.”

He did not propose any other ways. PHYLIP now includes an option for a delete-
half jackknife and, according to Felsenstein (1993, in SEQBOOT.DOC):

“The random variation from doing this should be very similar to that obtained from the
bootstrap.”

So Felsenstein offered no objection to jackknifing in general, but his last
proposal raises another issue. If group jackknife frequencies were to agree with
bootstrap frequencies in the limit, the fraction of characters deleted when jackknif-
ing would have to be e−1, not 50%.

Half the characters is too much to delete. With that method, the expected fre-
quency of a group set off by one uncontradicted character would be 50%. But a
group with no support can also attain that group frequency, as matrix Five illus-
trates. p should be kept substantially smaller than 50%, then, in order to maintain
a useful relationship between group frequency and support. In our method we use
p=e−1.

We have incorporated these ideas into a program, Jac11, that reads a matrix of
nucleotide-sequence data, performs resampling internally, and produces a tree
with group frequencies. The features of our program seem successful in overcom-
ing the various difficulties seen in MEGA and NEIGHBOR. The tree obtained by
jackknifing matrix Four 10 000 times (Fig. 11a) shows neither order-sensitivity nor
inclusion of zero-length branches. The group frequencies differ only by sampling
error from their common expectation 1−e−1. Similar analysis of matrix Two (or
Three) yields an unresolved tree, as one would like (Fig. 11b). The tree-printer
automatically eliminates groups with frequencies below 50%.

An illustration of the use of our program is provided by the ratite 12S rRNA data
of Cooper et al. (1992; cf. Albert and Bremer, 1993), which comprise 370 sites for
13 terminals. MEGA’s neighbor-joining bootstrapping tree (Fig. 12a) is presented

11A menu-driven extended DOS version is available from DL or AGK.
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Fig. 12. Trees for Cooper et al.’s (1992) ratite 12S rRNA sequence data. (a) MEGA neighbor-joining
bootstrap. (b) Jac parsimony jackknife.

with the result from parsimony jackknifing (Fig. 12b). The tinamou is the out-
group. For Fig. 12a, MEGA’s optional deletion of low-frequency groups was
employed. The two trees differ only in a group that is at best marginal (60% in Fig.
12a), but it is worthwhile to extend the comparison.

Even with p=e−1, jackknife frequencies need hardly agree perfectly with bootstrap
values. That aside, the group frequencies from Jac are generally lower than those
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from MEGA because Jac’s elimination of zero-length branches is more thorough.
The thoroughness is desirable. The whole point of using resampling methods,
after all, is to avoid drawing poorly-supported conclusions.

These data provide strong support for some groups, as is evident from the jack-
knife frequencies of Fig. 12b . One might think that MEGA’s tree demonstrates the
same, but such is not the case. MEGA can—and for these data apparently
does—assign high frequencies to well-supported groups. But because of its order-
sensitivity, it can also attribute high frequency to clusters with little support. Group
frequencies can be interpreted safely only if obtained by a method free of such
weaknesses.

Large Matrices

Another difference between Jac and MEGA is speed. For the ratite data, MEGA’s
neighbor-joining with 1000 bootstrap replicates required 146 seconds on a 66 MHz
80486DX2. On the same computer, Jac took 10.8 seconds for 10 000 replicates. For
this matrix, MEGA’s execution time per replicate is 135 times longer than Jac’s.

The speed advantage of parsimony jackknifing is greater for large matrices, but
illustrating this involves some complications. We first simply tried to compare
timings for Chase et al.’s (1993) ‘Search I‘ rbcL sequences, with 1428 sites and 479
terminals. This did not work. MEGA read12 the matrix, but crashed the computer
when asked to calculate a tree. PHYLIP’s DNADIST announced “Error allocating
memory”—on a computer with 16 megabytes of RAM. We then decided to
extrapolate from timings for subsets of the terminals.

Extrapolating for PHYLIP requires considering the multistage process used for
bootstrapping in that package. Working from the original data, SEQBOOT first
writes bootstrap replicate matrices to a file. DNADIST reads that file and produces
one containing a distance matrix for each replicate. NEIGHBOR then reads the
distances and creates still another file, containing a tree for each replicate. Finally,
CONSENSE reads those trees and combines them into a bootstrap tree.

Each stage has its own relationship to the number t of terminals, as is seen from
runs with the first 100 and first 200 terminals from the ‘Search I‘ matrix. All 1428
sites were included in both cases. Using the same 486, the times in seconds for 3
replicates were:

t SEQBOOT DNADIST NEIGHBOR total Jac (300)
100 6.6 310.8 51.6 369.0 98.1
200 16.5 1526.8 1349.4 2892.7 607.2

CONSENSE takes relatively little time and will be ignored. The total is that for
the three PHYLIP programs. Jac times for 300 replicates are given for comparison.
With 200 terminals, PHYLIP’s total execution time per replicate is 476 times
longer than Jac’s.

The extrapolation will be based on relating execution time to a suitable power

12After some editing. Question-marks had to be substituted for IUPAC codes K, S, and Y, which
MEGA cannot process (cf. Farris and Källersjö, 1994).
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of t. SEQBOOT’s execution time increases linearly with t (i.e. as t1), while
DNADIST’s increases as t2, and NEIGHBOR’s as at least t4. All three exponents are
conservative, which will favor PHYLIP in comparisons.

The exponents for SEQBOOT and DNADIST are uncontroversial, but
Felsenstein (1993, in NEIGHBOR.DOC) held a different view on the exponent for
NEIGHBOR.

“The major advantage of NEIGHBOR is its speed: it requires a time only proportional to the
square of the number of species . . .. Thus NEIGHBOR is well-suited to bootstrapping studies
and to analysis of very large trees.”

His theory is thoroughly at odds with the data. t2 for NEIGHBOR would predict
only a fourfold difference between the times for 100 and for 200 terminals, while
the actual ratio is over 2613.

MEGA performs its resampling internally, and the various calculations cannot be
timed separately. Fortunately, the high-exponent part should predominate if t is
large enough. For 5 replicates with 80 and 90 terminals (MEGA would not run
with 100), we obtained timings of 103 and 149 seconds, respectively. MEGA’s
neighbor-joining execution time then appears to increase as t3. This is as it should
be, if (as seems likely) the program employs Studier and Kepler’s (1988) improve-
ments to the Saitou/Nei algorithm.

To extrapolate to an analysis of the whole matrix, the 149 second timing for
MEGA is multiplied by (479/90)3 to account for the number of terminals, and
again by (1000/5) for 1000 replicates. This gives a predicted time of 52 days. For
PHYLIP, each stage is extrapolated separately from the 200-terminal case. The fac-
tor for replicates is (1000/3), and that for terminals is the appropriate power of
(479/200). The total comes to 205 days—recall that this figure is conservative. No
extrapolation is needed for Jac, which completed 1000 replicates of the full matrix
in 6.8 hours on the same 486.

PHYLIP’s bootstrapping has the further drawback that it may create very large
files. DNADIST’s input file of sequence-matrix replicates and its output file of dis-
tance matrices are open simultaneously. One replicate of the ‘Search I’ data takes
over 690 K of disk space, and one triangular distance matrix (if DNADIST would
calculate it) would take over 929 K. For 1000 replicates, the total disk space
required would exceed 1.5 gigabytes, far more than a desktop computer is likely to
have available. No such difficulty arises with the internal resampling used by Jac
and MEGA.

Jac can also be compared to PAUP’s parsimony bootstrapping. PAUP’s way of
removing zero-length branches is like Hennig86’s and so would not generally be
satisfactory for this application, but this does not matter for comparing execution
times. For all PAUP runs we used version 3.1.1 with the fastest options: one ran-
dom addition sequence per bootstrap replicate, and no branch-swapping.

With the fastest options, PAUP took 3.5 hours to complete ten replicates of the
full, 479-terminal matrix on a 33 MHz 68040 (Macintosh Quadra 650). 1000 repli-
cates would then take 14.6 days, better than MEGA’s 52 days but still considerably
longer than Jac’s 6.8 hours.

But then that 6.8 hour timing was obtained on the 486, not the Quadra. To

13NTSYS-pc’s neighbor joining has a similar ratio, but is even slower, taking nearly 400 times as long
as NEIGHBOR.
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check the performance of different computers, we recompiled Jac for other chips,
then used each version to run 100 replicates of Albert et al.’s (1992) 100-terminal
matrix of rbcL sequences. The times in seconds were:

PAUP-68040 Jac-68040 Jac-PowerPC Jac-Pentium
2 354.4 75.3 26.6 28.3

Run on the same computer, Jac is 31 times faster for the 100-terminal matrix.
Jac’s advantage increases with the number of terminals, as is seen from the times
for 10 replicates of the ‘Search I’ matrix.

PAUP-68040 Jac-68040 Jac-PowerPC Jac-Pentium
12 615.7 324.0 135.0 142.2

With 479 terminals, the 68040 version of Jac is 39 times faster than PAUP’s
bootstrapping.

That the newer chips are faster is unsurprising, but comparing Jac times
between them proves informative. The 60 MHz Pentium takes 5–6% longer than
the 66 MHz PowerPC 601, but this is less than the 10% difference in clock fre-
quency. In contrast to what might be expected from claims made by some manu-
facturers, the Pentium seems to be at least as efficient as the PowerPac at this type
of calculation.

Branch-Swapping

Applications of parsimony in the recent literature have increasingly employed
extensive branch-swapping in the effort to find all most-parsimonious trees. Far too
slow to be practical, this approach is also unlikely to be adequate as a way of dis-
covering ambiguities in data. Parsimony jackknifing provides improvements in
both respects.

The need for a faster method is apparent from some recent studies of rbcL
sequences. For their 500-terminal ‘Search II’ matrix, Chase et al. (1993) spent four
weeks of calculation on a Quadra. Albert et al. (1992) used more extensive branch-
swapping for their 100-terminal matrix, and this took three weeks on a Macintosh
IIfx. Olmstead et al. (1993) worked harder still, devoting over 20 weeks of IIfx time
to analyzing their 105-terminal asterid data.

Jac took four minutes to complete 1000 replicates of that 105-terminal matrix on
a 66 MHz PowerPC 601 (23 minutes on a IIfx). Similar analysis of the 100-terminal
matrix, which has a greater number of informative sites, took 4.3 minutes. Even for
the 500-terminal ‘Search II’ data, 1000 replicates took only 3.5 hours.

Olmstead et al. (1993: 701) stressed the importance of thoroughness.

“An inadequate analysis, in which a search for multiple islands is not carried out, may produce
exaggerated resolution, lead to misleading conclusions, and deter potential lines of further
research.”

Exaggerated resolution of the consensus tree, that is, and they certainly tried to
avoid that pitfall. Their consensus (their Fig. 3) was obtained from 8454 most-par-
simonious trees. But while they experimented with various combinations of PAUP
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(b) Parsimony jackknife(a) Olmstead et al. (1993)
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Fig. 13. Trees for Asteraceae and relatives, obtained from analyses of Olmstead et al.’s (1993) 105-
terminal matrix. (a) After their Fig. 3. (b) Parsimony jackknife.

options in their searches, there is nothing to insure that no other combination14

could find further trees. And as they pointed out, even if all most-parsimonious
trees had been found, a group present on the consensus need hardly be strongly
supported. A one-step difference in length—out of 3597 steps in this case—would
suffice to retain it.

The same applies to the other studies, and Jac’s results for the three matrices
show a consistent pattern. While in no case does a group with high jackknife fre-
quency conflict with groups on the published consensus, several of the latter are
absent from the jackknife tree. The published consensus trees, then, are more
resolved than the data justify15. The branch-swapping analyses may have missed
some most-parsimonious trees. At the best, the published consensus included
poorly-supported groups, groups that would have been lost, had slightly longer
trees been considered.

An example of the differences between our results and those of Olmstead et al.
is illustrated in Fig. 13, which shows parts of larger trees. In their consensus tree
(Fig. 13a), Campanula is grouped with Boopis. In the jackknife analysis (Fig. 13b),
that group is collapsed, as are two enclosing ones.

Why Campanula+Boopis is weakly supported is seen from the corresponding part

14Or program. What are several separate islands to PAUP may be just one stand to NONA’s more
sophisticated branch-swapper.

15But Albert et al.’s (1992) conclusions, on convergent evolution of insectivory, are still well
supported. These depend only on four main groups (cf. their Fig. 1), all of which have jackknife
frequencies of 89% or greater.
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Parsimony jackknife, 'Search II' matrix
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Fig. 14. Tree for Asteraceae and relatives, obtained from a parsimony jackknife analysis of Chase et
al.’s (1993) 500-terminal ‘Search II’ matrix.

of the jackknife tree for the 500-terminal ‘Search II’ matrix (Fig. 14). There Cam-
panula is instead grouped with Lobelia. Boopis+Scaevola is sister to the Asteraceae, in
agreement with the findings of Gustafsson and Bremer (1995).

Fig. 15 shows the same part of the jackknife tree for an 1120-terminal rbcL
matrix extracted from Genbank by MK. The relationship of Boopis+Scaevola to the
Asteraceae is now still better supported. With the more extensive sample of ter-
minals, the strongly supported and quite separate group containing Campanula
and Lobelia is now readily recognized as the Campanulaceae.

Campanula could not be placed with other Campanulaceae in Olmstead et al.’s
analysis simply because none had been included. In this case the restricted selec-
tion of terminals led to just the kind of misleading result that they had hoped to
avoid. Ironically, they had used a small suite of terminals precisely in order to
make extensive branch-swapping feasible. The speed of parsimony jackknifing
makes it easy to avoid such difficulties by including all relevant information.

Parsimony jackknifing can eliminate unjustified resolution more efficiently than
can branch-swapping because much of what branch-swapping does is unnecessary
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for this purpose. Olmstead et al.’s branch-swapping produced 8454 distinct most-
parsimonious trees, to bring out the obvious, because those trees differ in several
groups. But such groups have no support and will necessarily be lost in the consen-
sus. The effort of detailing them and the many trees that they distinguish is wasted.

Branch-swapping has been used because finding most-parsimonious trees is
known to be a difficult problem, one that requires laborious methods. But the dif-
ficulty lies in finding most-parsimonious trees exactly, and that effort is again
unnecessary. Forming strongly-supported groups is much simpler, precisely
because they are strongly-supported; even an approximate method such as hennig
is unlikely to miss them. Only a means of eliminating poorly-supported groups
from hennig trees is then needed, and jackknifing accomplishes this automatically.
Those groups cannot survive resampling.
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