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Summary. Normal tissue complications are a common side effect of radiation therapy. They
are the consequence of the dose of radiation that is received by the normal tissue surrounding
the site of the tumour. Within a specified organ each voxel receives a certain dose of radiation,
leading to a distribution of doses over the organ. It is often not known what aspect of the dose
distribution drives the presence and severity of the complications. A summary measure of the
dose distribution can be obtained by integrating a weighting function of dose (w.d/) over the
density of dose. For biological reasons the weight function should be monotonic. We propose a
generalized monotonic functional mixed model to study the dose effect on a clinical outcome by
estimating this weight function non-parametrically by using splines and subject to the monoto-
nicity constraint, while allowing for overdispersion and correlation of multiple obervations within
the same subject. We illustrate our method with data from a head and neck cancer study in
which the irradiation of the parotid gland results in loss of saliva flow.

Keywords: Dose effect; Functional data; Monotonicity; Non-parametric regression; Normal
tissue complications; Overdispersion; Splines

1. Introduction

Radiation therapy is commonly used to treat cancer. The goal is to deliver the highest possible
dose to the site of a tumour and the lowest possible dose to the surrounding normal tissue.
Higher doses to the tumour result in more damage to the cancer cells, whereas higher doses to
the normal tissue cause damage that can lead to normal tissue complications. Pneumonitis is
an example of a serious but rare normal tissue complication that is experienced by lung cancer
patients. Other examples include rectal failure in colon cancer patients and xerostoma (loss of
saliva production) in head and neck cancer patients. There are many potential treatment plans
depending on the number, direction and intensity of the radiation beams. In choosing a treat-
ment plan, the physician must trade off maximizing damage to the tumour with minimizing
damage to the surrounding tissue. To do this efficiently, it is necessary to understand precisely
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how the dose of radiation to the normal tissue and the probability or the severity of normal
tissue complications are related.

Modern treatment planning techniques allow the physician to compute, for a given treatment
plan, the spatial distribution of dose within the tissue being irradiated. This dose distribution is
typically represented by using the dose volume histogram (DVH) (Lichter, 1991). It is common
for the region of the tumour to be given an approximately uniform dose. Such is not so for the
surrounding normal tissue where the dose depends on its proximity to the tumour as well as on
the treatment plan.

Our motivating example is the head and neck cancer data that were collected at the University
of Michigan. This study involved 82 patients with a cancerous tumour in their head or neck who
were treated with external beam radiation therapy. A common side effect in these patients is loss
of saliva flow due to the irradiation of the parotid glands. The two parotid glands, one in either
cheek, are responsible for producing saliva. The doses of radiation to each voxel in the parotid
ranged from 0 to 82 Gy and the DVH bin widths are 0.5 Gy. Fig. 1 is an example of the DVHs
for the two glands (ipsilateral and contralateral) of a particular subject. For a more detailed
description of the data, see Section 4.1. The question of major interest in such settings is how
to relate the radiation dose distribution that is received by the normal tissue to the observed
complication, e.g. saliva flow. Simple approaches include creating a summary measure of the
dose distribution, e.g. the mean dose, and regressing the normal tissue complication on the
summary dose measure.

It is of significant interest to estimate the effect of the dose distribution on a normal tissue
complication non-parametrically. In other words, we are interested in relating a functional pre-
dictor to a scalar outcome. Ramsay and Silverman (1997), chapter 10, considered a functional
model that relates a precisely measured functional covariate to a scalar outcome. A more general
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Fig. 1. Example of one subject’s DVHs (the ipsilateral gland is the gland on the same side of the head as
the tumour, whereas the contralateral gland is on the opposite side of the head): , ipsilateral parotid
gland; - - - - - - - , contralateral parotid gland
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model is the functional generalized linear model (James, 2002; Zhang et al., 2007), where the
observed functional predictor is assumed to be measured over time and with error. Rather than
time, our functional predictor is measured over dose. Denote by p.d/ the density of the dose
distribution, i.e. the fraction of the organ receiving dose less than c is

∫ c
0 p.d/dd. Then a general

measure of the dose effect is given by
∫

p.d/w.d/dd, where w.d/ is a weighting function to be
estimated. We can easily see that commonly used dose summaries are special cases of this gen-
eral summary measure. The mean dose is obtained with a linear weighting function (w.d/=d).
The partial volume or proportion of tissue receiving dose greater than X Gy is obtained by an
indicator function (w.d/= I.d>X/).

In this paper, we propose a generalized monotone functional mixed model which relates a
multivariate complication outcome to a dose distribution. The dose effect is summarized by
using the summary measure that was discussed above. Within this model framework we pro-
pose a new method for non-parametric estimation of w.d/ subject to two constraints. The first
is that any biologically meaningful estimate of w.d/ should be monotone since increasing dose
cannot lead to lower probability or severity of complications. The second is that w.0/=0. The
biological reason for this is clear since zero dose should correspond to no effect. The statistical
reason for this constraint is model identifiability. We define w.d/ as the integral of a smooth
positive function, where the smooth positive function is obtained as a positive transformation
of an unconstrained regression spline. Our model differs from the functional generalized lin-
ear model in that we wish to estimate w.d/ monotonically, and we introduce random effects
to accommodate correlation and overdispersion of multivariate complication outcomes. Max-
imum likelihood is used for model fitting.

There are many approaches to monotone non-parametric regression (Friedman and Tibshira-
ni, 1984; Ramsay, 1988, 1998; Kelly and Rice, 1990; Hall and Huang, 2001; Gelfand and Kuo,
1991; Holmes and Heard, 2003; Dunson, 2005). Existing techniques were generally designed
to estimate a monotone relationship between two scalar quantities and hence are not directly
applicable to relating a scalar outcome to a functional predictor (dose distribution). Although
some of the existing techniques could potentially be modified to this setting, they generally
impose monotonicity through constraints on the parameter space. Such constraints complicate
estimation and inference with the possibility of estimates on the boundary of the parameter
space. In contrast, our proposed method requires no such constraints.

This paper is organized as follows. Section 2 describes the model as well as the formulation of
w.d/. Section 3 discusses estimation of the model. We describe in detail the head and neck cancer
saliva data in Section 4 and apply the proposed methods to analyse the saliva data. Section 5
presents simulation results, followed by discussion in Section 6.

2. The generalized monotonic functional mixed model

Let Yij denote the complication outcome for the jth observation .j =1, . . . , J) of the ith subject
.i = 1, . . . , n/. We assume that, conditionally on random effects bi, Yij follows an exponential
family distribution (McCullagh and Nelder, 1989) with mean μij given by

g.μij/=XT
ijα+

∫ D

0
pij.d/w.d/dd +ZT

ijbi .1/

where g.·/ is a link function, α and bi represent fixed and random effects with corresponding
design matrices Xij and Zij, and pij.d/ is the density of the dose distribution; [0, D] is the range
of dose. We further assume that random effects bi are independent and each follows N.0, Σ/.
The marginal likelihood is given by
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L=
n∏

i=1

∫
J∏

j=1
f.Yij|bi/f.bi/dbi, .2/

where f.Yij|bi/ is the conditional density of Yij|bi and f.bi/ is the normal likelihood density of
bi. For the head and neck cancer data, the outcome is saliva flow, which is measured separately
from each subject’s two parotid glands and hence J =2. Since saliva flows are measured as rates,
we assume that Yij|bi follows a Poisson distribution in our analysis. We could alternatively make
a weaker assumption by using the quasi-likelihood with the conditional mean E.Yij|bi/ =μij

and the conditional variance var.Yij|bi/=μij (McCullagh and Nelder, 1989; Breslow and Clay-
ton, 1993). The random effects bi account for correlation between bivariate observations within
subject as well as possible overdispersion. Since α includes an intercept term and p.d/ is a den-
sity function satisfying

∫
p.d/dd =1, we need to constrain w.d/ for identifiability. Specifically,

if w.d/ is an arbitrary constant w, then∫
p.d/w.d/dd =w,

which would confound with the intercept α0. We hence constrain w.d/ by w.0/=0.
As discussed in Section 1, biologically, w.d/ needs to be monotone increasing. A convenient

way to impose this constraint is to define w.d/ as the integral of a non-negative function. We
consider the formulation

w.d/=
∫ d

0
s.c/dc .3/

where

s.d/=h{r.d/} .4/

and

r.d/=
L+4∑
l=1

βl Bl.d/: .5/

Here h.·/ is a known, non-negative continuous function defined on the real line, the Bl.·/s are
known basis functions which are defined by using L interior knots, e.g. B-spline bases, and
the βl are unknown parameters. In this formulation, equation (5) imposes smoothness whereas
equations (3) and (4) impose monotonicity. No constraint is needed for the βs.

It follows that model (1) can be rewritten as

g.μij/=XT
ijα+

∫ D

0
pij.d/

∫ d

0
h

{
L+4∑
l=1

βl Bl.c/

}
dc dd +ZT

ijbi: .6/

In the absence of the functional effect
∫

p.d/w.d/dd, model (1) specifies a generalized linear
mixed model (Breslow and Clayton, 1993). However, it can be seen from model (6) that, since
h.·/ can be non-linear, the second term need not be a linear function of βl. Thus the dose sum-
mary measure in model (1) may also not be linear in βl and model (6) is a functional extension
of the generalized linear mixed model.

Fig. 2 demonstrates the flexibility of the proposed functional dose summary measure
∫

p.d/×
w.d/dd by illustrating a few of the possible shapes for w.d/ using this formulation, as well as
the underlying r.d/ and s.d/ that result in these shapes. We here set h.x/=1000φ.x/, where φ.·/
is the standard normal density. These results show that our model can cover a wide range of
shapes of w.d/. The flexibility of w.d/ depends on the flexibility of r.d/. We approximate r.d/

by using a regression spline that is specified by using a small number of knots. In simulations
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Fig. 2. Three examples of w.d/ with the corresponding r.d/ and s.d/: (a) linear; (b) sigmoidal; (c) plateau

and the saliva flow example, we found that relatively few (two or three) knots worked well. A
standard choice for knot placement is to place the knots by using percentiles of the data.

Monotonicity of w.d/ requires only that s.d/ and hence h.·/ be non-negative. Possible choices
for h.z/ include exp(z), z2 or density functions, e.g. normal or logistic density functions. Note
that if a density function is bounded, e.g. the normal density φ.·/, we need to multiply it by
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a large constant so as not to restrict the range of s.d/. Since r.d/ is estimated non-parametri-
cally, the estimates of w.d/ are robust to the choice of h.·/. Our numerical results confirm this.
However, if we wish to test the null hypothesis of no dose effect, it is desirable to choose h.·/ so
that h.0/=0, e.g. h.z/= z2 or h.z/=a{φ.0/−φ.z/} if the normal density is used, where a is an
arbitrary scale constant to make the range of s.d/ practically unconstrained. Then no dose effect
occurs when β1 =β2 = . . . =βL+4 = 0 and a likelihood ratio test can be used to test this null
hypothesis. Another special case of our model is when β1 =β2 = . . . =βL+4, which corresponds
to a mean dose model since ΣL+4

l Bl.t/=1 for all t. A likelihood ratio test can also be used to test
whether mean dose is a suitable summary of the dose effect. Using a symmetric h.·/ function
technically results in non-identifiability of the signs of r.d/ since h.z/=h.−z/. In practice this
will generally not be an issue and does not affect the estimator of w.d/.

3. Estimation

The specification of the generalized monotone functional mixed model (1) assumes that the dose
distribution p.d/ is known and continuous. In practice only the empirical distribution of p.d/,
which is called the DVH, is observed. The DVH discretizes dose into K bins and measures the
proportion of the gland that received a dose within each bin. Fig. 1 shows two example DVHs
of the saliva data of a representative subject.

Using the DVH as an empirical estimate of p.d/, we replace model (1) by

g.μij/=XT
ijα+

K∑
k=1

pij.dk/w.dk/+ZT
ijbi .7/

where K is the number of DVH bins, dk = .k −1/bin width, i.e. dk is the left end point of the kth
bin and p.dk/ is the proportion of normal tissue receiving dose in bin k. We also approximate
the integral in equation (3) as w.d1/=0 and

w.dk/≈
k∑

l=2
s.dl/Δd

for k =2, . . . , K, where Δd is the bin width. Plugging this into model (7), we obtain

g.μij/=XT
ijα+

K∑
k=2

pij.dk/

{
k∑

m=2
s.dm/Δd

}
+ZT

ijbi

=XT
ijα+

K∑
k=2

pij.dk/

[
k∑

m=2
h

{
L+4∑
l=1

βl Bl.dm/

}
Δd

]
+ZT

ijbi: .8/

Estimation in this model proceeds with the maximum likelihood method which maximizes the
likelihood function (2), where the conditional likelihood of L.Yij|bi/ is specified by using the
mean model (8) under the exponential family. The random effects bi are assumed to be N.0, Σ/.
In contrast with the generalized linear mixed model (Breslow and Clayton, 1993), where regres-
sion coefficients enter the linear predictor linearly, regression coefficients βls in model (8) enter
g.μij/ non-linearly. The marginal likelihood (2) generally does not have a closed form expres-
sion. We numerically approximate the integrated likelihood (2) by using adaptive quadrature
(Pinheiro and Bates, 1995) and estimate the regression coefficients .α, β/ and the variance com-
ponents Σ by using the Newton–Raphson method. The maximum likelihood estimation can
be implemented in SAS by using procedure NLMIXED, which allows the specification of an
arbitrary mean function.
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4. Application to head and neck cancer data

4.1. Description of the data
In this section we fit the generalized monotone functional mixed model to the head and neck
cancer data that were introduced in Section 1. Patients with a cancerous tumour in their head or
neck were treated with external beam radiation therapy. A common side effect in these patients
is loss of saliva flow due to the irradiation of the parotid glands. The parotid glands, of which
there are two, one in either cheek, are responsible for producing saliva. The doses of radiation
to each voxel in the parotid ranged from 0 to 82 Gy and the DVH bin widths are 0.5 Gy;
thus K = 164. Fig. 1 is an example of the DVHs for the two glands of a particular subject.
Clearly one gland of this subject received a much larger dose than the other. This is common
because in treatment planning the dose to the gland on the opposite side from the tumour
(contralateral) is usually minimized, whereas no such attempt is made for the gland on the
same side as the tumour (ipsilateral). Saliva flows are measured separately from both cheeks.
We study in this paper the effect of the dose distribution on saliva flow at 6 months after the
baseline. This analysis involved 157 saliva flow measurements (with corresponding DVHs) from
82 subjects.

4.2. Model description
The saliva flows are measured as rates (millilitres per minute), which suggests a Poisson dis-
tribution for the outcome distribution. Since the measured saliva flows are not integers, we
multiplied the original flows by 150 and rounded to the nearest integer. We used 150 because
it was sufficiently large to ensure that meaningful differences in saliva flow resulted in different
transformed values, but sufficiently small to prevent a highly discrete distribution with gaps that
are inconsistent with Poisson data. Continuous distributions such as the gamma distribution are
not appropriate since roughly 30% of the saliva flows are exactly 0. Let Yij denote the rescaled
saliva flow from gland j (j = 1 for the ipsilateral gland; j = 2 for the contralateral gland) of
subject i (i=1, 2, . . . , 82). Let bi = .bi1 bi2/τ denote the subject level random effects assumed
to be independently distributed as N.0, Σ/, where Σ is an unstructured covariance matrix. Fur-
ther, denote the log(baseline saliva flow) from gland j of subject i by baseij. We assume that,
conditionally on the random effects, the saliva flows follow a Poisson distribution with mean
μij given by

log.μij/=α0 +α1 baseij −
164∑
k=2

pij.dk/w.dk/+bij .9/

where pij.·/ is the DVH for the jth gland of the ith subject. We give a minus sign to the dose
effect term because we wish to interpret this term as damage. With this parameterization, higher
damage implies lower expected saliva flow. Exploratory analyses indicate that the marginal var-
iance is approximately proportional to the square of the marginal mean. The gland-specific
random effect bij approximates this marginal variance structure and also allows us to account
for different degrees of overdispersion between the two sides. There was some thought by the
physicians that there might be compensation between the two glands, so that, if one gland
was heavily damaged, the other gland would compensate by producing more saliva. For this
reason we allow the off-diagonal element in Σ, which represents the covariance between the
two sides, to be estimated. Note that including a subject level random effect would only allow
positive correlation between the sides and does not allow for different degrees of overdipersion
of the two sides. Besides dose, we have only included baseline saliva flow as a covariate. Clinical
covariates such as age, gender, chemotherapy, medications, comorbidity and surgery before
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radiation therapy were previously found not to impact saliva flow (Eisbruch et al., 1999). We
used a regression spline with two interior knots at 30 and 60 Gy for r.d/. As discussed in Section
2, the two-knot cubic regression spline formulation for r.d/ is parameterized by six B-spline
basis functions and we fit

log.μij/=α0 +α1 baseij −
164∑
k=2

pij.dk/
k∑

m=1
h

{
6∑

l=1
βl Bl.dm/

}
+bij .10/

where βj are unconstrained parameters and Bj.·/ are six B-spline basis functions defined on
(0,82 Gy). Here we used h.z/=1000φ.z/, where φ.·/ is the standard normal density. We fit model
(10) by using the maximum likelihood method that was discussed in Section 3.

These data and earlier versions of them have previously been analysed by other investigators
by assuming strong parametric models. Eisbruch et al. (1999) considered two models. The first
was a generalized linear model in which the dose effect was summarized by a threshold mean
dose effect and the outcome was the observed saliva flow rate. They also considered a normal
tissue complication probability (NTCP) model (Lyman, 1985; Kutcher et al., 1989) for binary
outcomes. The NTCP model is a probit regression model which relates a DVH to the probability
of complication by using three parameters. Patients whose post-baseline salivary flow was at or
below 25% of their salivary flow at baseline were considered to have xerostoma. Subjects who did
not meet this criterion were considered not to have xerostoma. Johnson et al. (2005) proposed
a complex Bayesian model where the dose effect was assumed to be captured by a parametric
model by using a percentile of the dose distribution (the DVH). Our approach differs from
those above primarily in how it models the dose effect. Rather than assuming that the damage
is given by the mean dose or a percentile of the dose distribution, we use the general functional
summary measure

∫
pij.d/w.d/dd and estimate the dose effect w.d/ non-parametrically. Also,

unlike the NTCP model, our model does not require a binary outcome and uses the observed
saliva flow rates.

4.3. Results
The maximum likelihood estimate and 95% pointwise confidence intervals of w.d/ are shown
in Fig. 3. Very similar results are obtained with different choices for r.d/ (two knots at 25 and
50 Gy or three knots at 20, 40 and 60 Gy) and h.z/ (exp(z) or z2). The pointwise confidence
intervals are calculated by using a delta method estimate of the standard error. To interpret
the estimated w.d/, it is helpful to note that regression coefficients have both subject-specific
and population-average interpretations in Poisson–normal random-intercept models. In other
words, the marginal means still have the same exponential form except that the intercept is
changed (Breslow and Clayton, 1993). Consider two parotid glands, say gland A and gland B,
which are of the same type (ipsilateral or contralateral) but differ only in the dose of radiation
received. Assume that gland A receives a uniform dose dc and gland B receives no dose of
radiation. Let μA and μB be the expected saliva flows for glands A and B respectively. Then,
from equation (9), some calculations show that log.μA/− log.μB/=−w.dc/: Thus w.dc/ could
be interpreted as the difference in expected saliva flow (on the log-scale) between a gland that
received uniform dose dc and a gland that received no dose of radiation. Similarly, exp{−w.dc/}
can be interpreted as the ratio μA=μB.

Our results show that the estimated w.d/ is flat for the first 40 Gy. The clinical implication of
this finding is that the parotid gland could be uniformly irradiated at 40 Gy with minimal effect
on saliva flow. It is also interesting that the estimated w.d/ is not linear, implying that mean
dose does not seem to be a suitable summary of the DVH. We can test this by using a likelihood
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Fig. 3. Maximum likelihood estimate and pointwise 95% confidence intervals of w.d/: , generalized
monotone functional mixed model estimate; - - - - - - - , 95% confidence interval; – – –, estimate by using I-
splines

Table 1. Parameter estimates and stan-
dard errors for the saliva flow data

Parameter Estimate Standard error

α0 1.23 0.09
α1 0.72 0.02
Σ11 11.77 3.01
Σ12 0.005 0.17
Σ22 0.72 0.12

ratio test by testing H0 : β1 =β2 = . . . =β6. The χ2-statistic with p-value in parentheses for the
likelihood ratio test is 29.9 (p< 0:0001/. Thus we strongly reject the mean dose model in favour
of our non-parametric model.

Estimates of the baseline saliva effect and the variance components are shown in Table 1.
The results show that baseline saliva flow is a significant factor for saliva flow at month 6.
Overdispersion for the ipsilateral and contralateral glands is captured by Σ1,1 and Σ2,2 respec-
tively. Overdispersion is significant for both but much larger for the ipsilateral glands. The
correlation between glands could be measured by using the covariance parameter estimates
Σ12=

√
.Σ11Σ22/=0:002, which is not significantly different from 0. A significantly negative Σ12

would have given support to the notion of compensation whereas a significantly positive cor-
relation would indicate that the two glands within a subject tend to behave similarly. We thus
find no support for the notion of compensation between glands.

Fig. 4 plots, for each gland, the log-proportion change in saliva flow against the estimated
summary measure of the dose effect Σk=164

k=2 pij.dk/ ŵ.dk/. Because some of the saliva flows are
0, we added 1 before taking logarithms. This plot does not exactly correspond to the model
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Fig. 4. Change in log-saliva-flow from baseline versus estimated dose effect summary measure

given by equation (9) since α̂1 �= 1. However, the plot changes very little if instead we plot
log{.Yij + 1/=.α̂1 baseij + 1/}. There is clearly a decreasing and approximately linear trend. It
is also apparent that there is substantial variation in the change in saliva flows from baseline,
even at a fixed dose effect level. Some of this variation is due to variability between glands and
subjects.

The NTCP model is equivalent to a probit regression model with a power law mean dose
term for the linear predictor:

NTCPij =Φ
[
β0 +β1

{
164∑
k=2

dλ
k pij.dk/

}1=λ]
.11/

where NTCPij is the probability of complication for the jth gland of the ith subject. This model
cannot be directly compared with the generalized monotonic functional mixed model that we
used to analyse the saliva data because it applies to binary outcomes. It is, however, possible to
compare how each model summarizes the dose effect. To do so we replace the summary measure
of dose effect in model (10) with the summary measure of dose effect in the NTCP model and
fit the model with mean given by

log.μij/=α0 +α1 baseij +α2

{
164∑
k=2

dλ
k pij.dk/

}1=λ

+bij: .12/

The resulting −2 log-likelihood value is 1081.8, which is larger than 1075.5, the value that was
obtained from our generalized monotonic functional mixed model. Because the two models are
not nested a likelihood ratio test is not possible.
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An alternative approach to estimating w.d/ monotonically is to approximate w.d/ directly by
using a regression spline with I -spline basis functions (Ramsay, 1988) as w.d/ =ΣL+4

l=1 βl Il.d/,
where the βls are constrained to be positive and Il.d/= ∫ d

0 Bl.c/dc are the I -spline basis func-
tions defined as the integral of the B-spline basis functions and are thus monotone increasing.
We used this approach to estimate w.d/ for the month 6 saliva flow data. Of the six param-
eters, two were estimated to be at the boundary value of 0. The resulting estimate of w.d/ is
shown in Fig. 3 and is somewhat different from the generalized monotonic functional mixed
model estimate. Rather than being flat for doses up to 50 Gy, the I -spline estimator starts to
increase after 30 Gy and is more linear thereafter than our estimate. We show in the simulation
study in Section 5 that I -splines do not work well for estimating flat regions. The associated
−2 log-likelihoods are 1105.4, 1079.5 and 1075.5 for models that are based on the mean dose,
I -spline and our method respectively. The I -spline model and our model have the same number
of parameters and likelihood values favour our model, although we cannot test this, since the
two models are not nested.

4.4. Goodness of fit
Goodness-of-fit statistics are used to assess whether the model fits the data reasonably well. One
commonly used such statistic is the Pearson X2-statistic and is computed as

∑
i

∑
j

.yij −μij/2=μij .13/

where μij =E[yij|bi] is the conditional mean and is obtained from equation (9) by plugging in
estimates of the fixed effect parameters α and β and of the random-effect estimates bi. Condi-
tional on the random effect bi, Yij follows a Poisson distribution and so the variance is simply
equal to the (conditional) mean and thus we divide by μij. There are two variants on statistic
(13) that we also consider. The first is obtained with the same numerator but a different stan-
dardization. Rather than dividing by μij, we divide by the conditional mean-squared error of
prediction (Booth and Hobert, 1998). Doing so accounts for the variability in the estimates of
the random effects. The second is to subtract the marginal mean and to divide by the marginal
variance of Yij. For a detailed discussion of goodness of fit in generalized non-linear mixed
models, and in particular how residuals that are based on marginal and conditional means are
sensitive to different model assumptions, see Vonesh et al. (1996). The null distribution of these
statistics is not known, so we use a parametric bootstrap approach to obtain empirical esti-
mates. Specifically we simulate 100 data sets of the same size as our observed data set, using the
parameter estimates from the observed data. For each data set we fit the model and compute the
goodness-of-fit statistic. Of the 100 simulated data sets, 21 had goodness-of-fit statistics (based
on the marginal mean and variance) that were larger than that of our observed data. Results are
similar (p-values 0.55 and 0.15) for the other two goodness-of-fit statistics. Thus, on the basis
of these metrics, our proposed model appears to be consistent with the data.

5. Simulations

To evaluate our method, we simulate Poisson data with a mean that is dependent on a variety of
shapes for w.d/. We then estimate w.d/ with our method where r.d/ is a cubic regression spline
with knots at 30 and 60 Gy, and h.x/ = 1000φ.x/, where φ.·/ is the standard normal density.
Specifically, for each of the three shapes for w.d/ in Fig. 1, we simulate 100 data sets each with
157 independent Poisson variables with means μi given by
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log.μi/=α0 −
k=164∑
k=2

w.dk/pi.dk/ .14/

where we set α0 = 5, which is roughly the mean of the sum of the estimated intercept and
baseline flow terms in the observed data. To mimic the saliva data, the DVHs were simulated
as normal densities (truncated to lie in (0,82)) with means drawn uniformly in (5,76.5) and
standard deviations drawn uniformly on (1,10). Fig. 5 shows the mean and median of the
estimated values of w.d/ − α0 for each shape along with the underlying true w.d/ − α0. We
have used w.d/−α0 because estimates of this quantity are more stable than estimates of w.d/

alone.
We next conduct a simulation study to assess the performance of this method for overdispersed

Poisson data such as the saliva flow data. We simulate data by using the model

log.μi/=α0 −
k=164∑
k=2

w.dk/pi.dk/+bi

where we set α0 =5 and the random effects bi ∼N.0, 1/. We simulate 100 data sets of size 157 for
each of the three different shapes of w.d/. The results are shown in Fig. 5. For both the Poisson
and the overdispersed Poisson data, there is little bias except in the tails. There are relatively
little data in these regions for some of the simulated data sets so the estimates tend to be more
variable with a few extreme estimates having a large effect on the mean.

We wished to assess the robustness of our proposed estimator to the choice of h.·/. To do
so we analysed the Poisson data sets that were discussed above, which were generated by using
h.z/=1000φ.z/, with h.z/=z2. The results are in Fig. 5, where we see no evidence of bias from
using a different h.·/ function in the analysis. We also wished to assess the robustness of our
proposed estimator to the choice of the number of knots that are used to define r.d/. To do so
we generated 100 simulated data sets as discussed above by using a three-knot regression spline
formulation for r.d/ with knots at 20, 40 and 60 Gy. We then analysed these data sets by using
a two-knot regression spline with knots at 30 and 55 Gy. The results (which are not shown)
indicate a good fit with no evidence of bias.

To illustrate the increased flexibility in our estimator compared with the I -spline estimator,
we consider the extreme case where w.d/ is a step function. We simulate a single Poisson data
set based on this w.d/ from equation (14). We then fit both our model and the I -spline-based
model to these data. The resulting estimates are shown in Fig. 6. The I -spline method severely
oversmooths this step function. The reason for this is that the slope and maximum value of
the I -regression spline are linked. To obtain a steeper function, we need a larger parameter
coefficient, which also means a larger maximum value. It is thus not possible to obtain a ‘small
steep’ increase. To be fair, our method is also not ideally suited to estimating step functions.
Extremely large parameter values are required to do so. Our method also suffers from a lack
of identifiability when w.d/ is a step function, because there are many sets of parameters that
yield nearly identical estimates. This complicates tasks such as computing confidence intervals
for w.d/. Nevertheless, the method can indicate whether the true function being estimated is a
step function.

6. Discussion

We present a flexible generalized monotone functional mixed model for modelling the effect
of a radiation dose distribution on a normal tissue complication outcome variable. This model
allows us to estimate a general summary measure of the dose distribution by non-parametrically
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Fig. 5. Simulation results for Poisson data (- - - - - - - , mean and median of the 100 estimates of w (d ) at each
dose): (a) Poisson data; (b) overdispersed Poisson data; (c) same data sets as in (a) analysed by using
h.z/Dz2
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Fig. 6. Comparison of our method and the I-spline method for estimating a step function: , true
function; - - - - - - - , I-spline estimator; – – –, our estimator

estimating a monotone weight function w.d/, which includes several commonly used summaries
such as the mean dose as special cases. This non-parametric method is in contrast with typical
radiobiological models which tend to be highly parametric. Simulations for both Poisson and
overdispersed Poisson data show that the method performs well in estimating various shapes of
the weight function w.d/.

There are two principal uses of the model that is presented in this paper. The first is to
aid in the choice of treatment plan. To choose between multiple potential treatments plans
for a new patient, the radiation oncologist could choose the plan with the lowest value of
Σ164

k=1pij.dk/w.dk/. Alternatively the non-parametric estimate can be used to motivate a para-
metric summary measure. For instance the non-parametric estimate of w.d/ in Fig. 3 is similar
to a step function with a step at 50 Gy. Thus, rather than using ŵ.d/, the radiation oncologist
could instead use V50, the proportion of the gland receiving a dose more than 50 Gy, which is
easier to compute, to choose between plans. The second use of our proposed model is in pre-
diction. Predicted saliva flow rates 6 months after treatment with a given plan can be obtained
from equation (10) by plugging in parameter estimates. To obtain expected rates for an average
patient, the random effect bij could be replaced by 0.

In comparing our estimator with the estimator that is based on I -spline functions with the
same number of knots, we found our method to be more flexible especially for flat regions. It
also does not require constraints on the regression parametric space. We consider in this paper a
regression spline method. A key advantage of the regression spline approach is that it is compu-
tationally easy. Drawbacks include unstable behaviour near the end points as well as the need to
choose the number and placement of knots. The data example and simulation study, however,
show that the regression spline method works well in modelling our normal tissue complication
data except for the boundary. An alternative approach is to use smoothing splines (Green and
Silverman, 1994) and P-splines (Ruppert et al., 2003). A major disadvantage of such approaches
is computational burden, especially for non-linear mixed models for non-Gaussian outcomes.

In some cases like the step function example, as well as the parotid analysis, a method that
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explicictly allows for flat regions is desirable. Dunson (2005) proposed such a method within
a Bayesian framework, for relating a scalar dose value with a scalar outcome. This approach
could be adapted to estimate w.d/ within the generalized monotone functional mixed model
that is proposed in this paper. The results are in Schipper et al. (2007).
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