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Abstract

A scaling rule of ecological theory, accepted but lacking experimental confirmation, is

that the magnitude of fluctuations in population densities due to demographic

stochasticity scales inversely with the square root of population numbers. This

supposition is based on analyses of models exhibiting exponential growth or stable

equilibria. Using two quantitative measures, we extend the scaling rule to situations in

which population densities fluctuate due to nonlinear deterministic dynamics. These

measures are applied to populations of the flour beetle Tribolium castaneum that display

chaotic dynamics in both 20-g and 60-g habitats. Populations cultured in the larger

habitat exhibit a clarification of the deterministic dynamics, which follows the inverse

square root rule. Lattice effects, a deterministic phenomenon caused by the discrete

nature of individuals, can cause deviations from the scaling rule when population

numbers are small. The scaling rule is robust to the probability distribution used to

model demographic variation among individuals.
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I N TRODUCT ION

A fundamental concern in ecology is to understand how

stochasticity influences the dynamics of a population.

Demographic stochasticity arises from the discrete nature

of organisms and the fact that individual births and deaths

occur as discrete random events. Previous treatments of

demographic stochasticity have focused on the variance in

population density relative to the mean value for exponen-

tially growing populations or populations with a stable

deterministic equilibrium. For example, May (1973) showed

that for both continuous and discrete time versions of a

stochastic model with constant �per capita� birth and death

rates, the mean population density grows exponentially and

the coefficient of variation in population density is

asymptotically proportional to N
�1=2
0 , where N0 is the

initial population size. Nisbet & Gurney (1982) considered a

birth–death process that is a stochastic analogue of the

deterministic logistic model and found that the quasi-

stationary probability distribution (i.e. conditional on non-

extinction) has a both mean and variance of K, where K is

the carrying capacity of population numbers. Thus, the
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coefficient of variation of population density is K )1/2.

Desharnais & Costantino (1982) analysed a birth–death

population model with a Ricker birth rate bNe)cN and a

mortality rate lN and found that the quasi-stationary

probability distribution of population numbers has a mean

of E[N] » c)1 log (b/l) and variance of var[N] » c)1 and

so, as c decreases, the coefficient of variation is proportional

to E[N])1/2. In these cases and others (Leslie 1958; Bartlett

1960; Watt 1968; Anderson et al. 1982; Nisbet & Gurney

1982; Costantino & Desharnais 1991), the coefficient of

variation of population densities decreases according to an

inverse square root rule when population numbers increase.

If two populations have the same densities, but different

total numbers of individuals (which implies different habitat

sizes), then density fluctuations due to demographic

stochasticity will be smaller in the larger population.

These previous studies apply to single-species popula-

tions with a single age/stage class and to cases in which the

deterministic version of the stochastic model has a stable

equilibrium. Application of the scaling rule to populations

with deterministic cyclic or aperiodic components is

problematic because such populations would exhibit fluc-

tuations in the absence of any demographic noise. Conse-

quently, a reduction in demographic stochasticity would not

necessarily result in a significant decrease in the variance of

the population densities. An alternative to the examination

of the variance of population densities is to consider the

hypothesis that a reduction in demographic stochasticity

should lead to a clarification of the deterministic dynamics;

periodic or aperiodic patterns should be increasingly similar

to the underlying deterministic skeleton as the overall

population size increases. A procedure to quantify the clarity

of the deterministic signal would allow for a study of the

scaling rule in these dynamically more complex situations.

We have two aims in the present study: (i) to provide a

means for extending the square root scaling rule to situations

in which deterministic dynamics also contribute to popula-

tion variability; and (ii) to provide experimental support for

the scaling rule. We introduce two measures for assessing the

influence of stochasticity when a deterministic model is

available for predicting changes in population densities. The

first measure, dr, is the mean length of one-time step residual

vectors. The second measure, ds, quantifies the mean

distance of the state variables to the deterministic attractor

in phase space as predicted by the model. As the magnitude

of demographic stochasticity depends on population num-

bers, while the deterministic dynamics typically depend on

population density, the measures dr and ds would be expected

to decrease in a larger habitat with the same dynamics but

greater population numbers. These measures are applied to a

nonlinear stochastic model for laboratory populations of the

flour beetle Tribolium castaneum and to data from an

experiment designed and conducted to test the scaling rule.

MODELS

Previous studies with the Tribolium experimental system

(Costantino et al. 1995; Dennis et al. 1995; Dennis et al.

1997; Cushing et al. 2003) identified the following �LPA�
deterministic model for the dynamics of life-stage num-

bers:

Lt ¼ bAt�1 exp � cel

V

� �
Lt�1 �

cea

V

� �
At�1

� �
;

Pt ¼ ð1� llÞLt�1;

At ¼ Pt�1 exp � cpa

V

� �
At�1

� �
þ ð1� laÞAt�1:

ð1Þ

Here Lt is the number of feeding larvae, Pt is the number of

non-feeding larvae, pupae and callow adults, and At is the

number of sexually mature adults at time t. The unit of time

is 2 weeks, the approximate amount of time spent in each of

the L- and P-stages. The average number of larvae recruited

per adult per unit time in the absence of cannibalism is

b > 0, and ll and la are the larval and adult probabilities of

dying in one-time unit, respectively. Tribolium castaneum

larvae and adults eat eggs, and adults eat pupae. The

exponential expressions represent the fractions of individ-

uals surviving cannibalism in one-unit of time. The

cannibalism coefficients cel/V, cea/V, cpa/V > 0 are

inversely related to habitat size V, which has units equal

to the volume occupied by 20 g of flour. In model (1), the

density dynamics are invariant with respect to habitat size.

However, overall numbers increase in proportion to V and

therefore, in our system, the scaling rule can be expressed in

terms of habitat size rather than population size.

A model of demographic stochasticity makes individual

reproduction and survival probabilistic events. For Tribolium,

we use the binomial and Poisson distributions to charac-

terize the aggregation of demographic events within life

stages (Watkins 2000; Dennis et al. 2001; Costantino et al.

2005; Desharnais et al. 2005). The Poisson–binomial (PB)

model used in the present study is

Lt � Poisson bat�1 exp � cel

V

� �
lt�1 �

cea

V

� �
at�1

� �h i
;

Pt � binomial½lt�1; ð1� llÞ�;

At ¼ round pt�1 exp �
cpa

V

� �
at�1

� �h i
þ round½ð1� laÞat�1�;

ð2Þ

where life-stage numbers Lt and Pt are now random

variables that are conditional upon the realized values lt)1
and at)1 in the previous time step. Here, ��� means �is
distributed as� and the �round� operation rounds to the

nearest integer. The random variable describing the

number of L-stage animals at time t is the result of a

compound process: each adult produces a random number
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of potential recruits, which, by assumption, has a Poisson

distribution with mean b, and each potential recruit

subsequently undergoes an independent process of survi-

ving cannibalism where the conditional survival probability

is exp ()(cel/V)lt)1)(cea/V)at)1). Summing the reproduc-

tive output of all at)1 adults yields a Poisson-distributed

random variable for the number of L-stage animals at time

t which is conditional on the expected number of

individuals from the deterministic model (1). The number

of pupae is described by a binomial distribution where

each member of a cohort of lt)1 larvae is independently at

risk of dying with probability ll. In our experiment, we

manipulated adult numbers using the expression from the

deterministic model (1) with the numbers of new and

surviving adults confined to integer values. The number of

adults in model (2) conforms to this experimental protocol.

In model (2) the dynamics of life-stage numbers are

confined to the three-dimensional lattice of non-negative

integers.

MATER I A L S AND METHODS

We experimentally evaluated the scaling rule by comparing

two sets of T. castaneum populations with similar densities

and the same deterministic dynamics, but different overall

numbers. As one of the aims of the present study is to

extend the scaling rule to situations in which deterministic

dynamics also contribute to population variability, we chose

to focus on populations that fluctuate around a chaotic

attractor. We maintained three replicate populations in 20 g

of flour media (V ¼ 1) and a second treatment of three

populations in 60 g of media (V ¼ 3). We subjected both

sets of cultures to a laboratory protocol that fixed the adult

mortality rate at la ¼ 0.96 and the cannibalism rate of

pupae at cpa ¼ 0.35 (Costantino et al. 1997). Previous work

has shown that these conditions produce chaotic population

dynamics (Costantino et al. 1997; Dennis et al. 2001). The

initial populations were composed of 250 larvae, five pupae

and 100 adults for the 20-g cultures and 114 larvae, five

pupae and 148 adults for the 60-g cultures. (The different

initial stage numbers come from the fact that the 20-g

cultures were also part of a separate study. However, all the

populations quickly approached the chaotic attractor and

initial numbers were excluded from the data analyses.) All

cultures were maintained in a half-pint (237 mL) milk

bottles and kept in a dark incubator at 32 �C. Every 2 weeks

the larval, pupal and adult stages were counted and returned

to fresh media (95% bleached wheat flour and 5% dried

brewer’s yeast). To control for genetic change, at every other

census, adults were replaced with an equal number from the

laboratory stocks. This procedure was repeated for

108 weeks yielding a time series of 54 censuses for each

replicate population.

RESUL T S

The L-stage densities for the six experimental populations

are plotted in Fig. 1. The three populations cultured in 20 g

of media (V ¼ 1) are on the left and the replicates for the

60-g treatment (V ¼ 3) are on the right. The deterministic

model (1) was used with maximum likelihood parameter

estimates for model (2) from a previous study (Dennis et al.

2001) to generate one-step predicted values for population

densities. These one-step predictions are plotted as open

circles in Fig. 1. Three features are worth noting. First, the

overall L-stage densities in the two treatment groups are

similar, lending support to the model prediction that the

overall population densities scale in proportion to habitat

size. Second, the one-step model predictions work well for

the V ¼ 3 populations, even though none of these data

were used to obtain the parameter estimates. Third, the

residual differences between the data points and one-step

predictions are, in general, smaller for the population in the

larger habitat, suggesting a decrease in the amount of

demographic stochasticity.

The response of the life-stage residuals to a change in

habitat size was investigated for model (2) and the

experimental data. Using the parameter estimates from

Dennis et al. (2001), the PB model was simulated 1000 times

at V ¼ 1 and V ¼ 3 to produce two long stochastic time

series. The residuals were computed as the difference

between the data density values (simulated or observed) and

the values predicted from the deterministic model (1) using

the L-, P- and A-stage values from the previous time step.

These residuals were plotted for the PB simulations

(Fig. 2a,b) and the experimental populations (Fig. 2c,d).

The mean residual distance dr was computed as the mean of

the distances of residual pairs from the origin:

dr ¼ n�1
Xn

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lt

V
� L̂t

V

� �2

þ Pt

V
� P̂t

V

� �2

:

s
ð3Þ

Here n is the sample size, (Lt/V,Pt/V) are the data densities,

and ðL̂t=V ; P̂t=V Þ are the corresponding predicted values.

Although the PB model tends to underestimate the

magnitude of the experimental residuals, dr decreases as V

increases for both the stochastic model and the data,

suggesting that a stronger deterministic signal is present

when habitat size increases.

The response of the state variables to an increase in habitat

size was also evaluated by looking at the data in phase space.

The same stochastic realizations that were generated for the

residual analysis were plotted in phase space together with the

chaotic attractor predicted by the deterministic model

(Fig. 3a,b). The phase space dimensions are the life-stage

densities, so the number of animals is three times larger for

V ¼ 3 compared with V ¼ 1. As predicted, both the PB
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stochastic simulations and the data scale linearly with V. In

the larger habitat, the data points for both the PB simulations

and the experimental populations cling more closely to the

predicted chaotic attractor (Fig. 3). This was confirmed by

taking each data point, finding its minimum distance in phase

space from 1000 points on the deterministic attractor, and

computing ds as the mean of these minimum distances:

ds ¼ n�1
Xn

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
i2½1;m�

Lt

V
�

~Li

V

� �2

þ Pt

V
�

~Pi
V

� �2

þ At

V
�

~Ai

V

� �2
( )

:

vuut
ð4Þ

Here ð~L1; ~P1; ~A1Þ; ð~L2; ~P2; ~A2Þ; . . . ; ð~Lm; ~Pm; ~AmÞ
� �

is the

set of m points that make up the attractor (a large finite

sample of points in the case of an aperiodic attractor). The

mean minimum distance ds decreases as habitat size

increases (Fig. 3).

To explore how dr and ds scale with V, we conducted

stochastic simulations using habitat size ranges from V ¼ 1

to V ¼ 100 and plotted the values of both measures on a

log–log scale. For dr, a strong linear trend with a slope of

approximately )0.5 is evident throughout most of the range

of habitat sizes, except for slight deviations near V ¼ 1

(Fig. 4a). This indicates an inverse square root scaling of the

residuals as habitat size increases. For ds, a strong linear trend

with a slope of approximately )0.5 exists for V > 5, but

significant departures are present for smaller habitat sizes

(Fig. 4b). These deviations are the result of �lattice effects�
which were documented in previous studies (Henson et al.

2001; King et al. 2004; Scheuring & Domokos 2005).

Confining the deterministic dynamics of animal numbers

to integer values leads to cyclic attractors that may differ

significantly from the continuous-model attractors. When

V ¼ 1 there is a strong lattice cycle with a period of six as
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Figure 1 Time series of L-stage densities for

the six experimental populations. Closed

circles are the observed densities and open

circles are the one-step predictions for the

deterministic model (1) with parameter

values b ¼ 10.67, cel ¼ 0.01647, cea ¼
0.01313, cpa ¼ 0.35, ll ¼ 0.1955 and la ¼
0.96. On the left are the populations

cultured in 20 g of media (V ¼ 1); on the

right are the populations cultured in 60 g of

media (V ¼ 3).
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well as other weaker lattice cycles with periods of eight and

three (King et al. 2004). One can see evidence of this

six-cycle in the phase space plots as aggregations of points

for the simulations (Fig. 3a) and the experimental data

(Fig. 3c) that are far from the chaotic attractor. For

example, the clusters of data points located above and to

the right side of the chaotic attractor along the A-stage axis

are near two of the fixed points of the period-six lattice cycle

(Fig. 3a,c). The mean minimum distance of the predicted

lattice six cycle from the continuous attractor is 24.1 which is

close to the maximum ds value obtained for the PB

simulations at V ¼ 1 (Fig. 4b).

A study of the ratios of the dr and ds measures for the

two habitat volumes provides experimental support for the

inverse square root scaling rule (Fig. 5). We obtained

sampling distributions for these ratios from the PB model

(2) using the experimental protocol, and for comparison,

we calculated dr and ds ratios in the same way for all nine

possible pairings of the three experimental replicates for

V ¼ 3 and V ¼ 1. (These ratios are not independent

estimates, as each replicate is used in three of the ratios.)

As the replicates at V ¼ 3 have numbers that are, on

average, three times larger than replicates at V ¼ 1,

the expected ratio for this rule is
ffiffiffiffiffiffiffi
1=3

p
� 0:577. The

experimental dr ratios scatter around this value and are

mostly contained within a predicted 95% CI based on

PB model simulations (Fig. 5a). For the ds ratios, the

observed values fall within the long right tail of the

predicted distribution (Fig. 5b). Because the ds values at

V ¼ 1 are inflated because of an accumulation of points

around lattice cycles, the majority of the simulated ratios

fall below the predicted 0.577. When the volumes increase

by a factor of 10, the influence of lattice cycles diminishes

(Fig. 5c,d).

ROBUSTNESS OF THE SCAL ING RULE

Although the inverse square root scaling rule has been

demonstrated for a variety of stochastic models (Kendall

1949; Bartlett 1960; May 1973; Nisbet & Gurney 1982),

its generality remains an open question. In the present

study, one could be misled into believing that the scaling

rule is a consequence of our choice of the Poisson

distribution in model (2) to represent variation among

individuals in the production of potential recruits. For a

Poisson random variable X, the mean E(X) and

variance var(X) are equal, and so the coefficient of

variation is

CVðX Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðX Þ

p
EðX Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

EðX Þ
p :
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Figure 2 Predicted and observed one-step residuals for the L- and P-stages. In (a) and (b) the residuals are the results for 1000 iterations of

the Poisson–binomial model (2) with parameter values from Fig. 1 and (a) V ¼ 1 or (b) V ¼ 3. Panels (c) and (d) show the residuals for the

experimental observations. The mean distances dr of the residuals from the origin are given in each panel.
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This suggests inverse square root scaling. However, for

demographic stochasticity, the inverse square root scaling

arises through a process that is not tied to the Poisson

distribution.

As an example, consider the equation for larval numbers.

Let Xi be a random variable for the number of larvae

produced by adult i in the absence of cannibalism. Assume

E(Xi) ¼ b and var(Xi) ¼ r2. Let Yit be the total number of

larvae produced by adult i that survive cannibalism from

time t to time t + 1. The random variable Yit will be a

random sum of Xi independent Bernoulli random variables,

each with a probability

/t ¼ exp
�cellt

V
� ceaat

V

� �
of survival. From the rules for conditional expectations (e.g.

Minh 2001), one can show that

EðYitÞ ¼ b/t and varðYitÞ ¼ b/tð1� /tÞ þ r2/2
t :

The total number of L-stage insects at time t + 1 will be a

random variable given by Ltþ1 ¼
Pat

i¼1 Yit , where at is the

number of adults at time t. If we assume the fecundity and

survival events are independent, the mean and variance

of this random variable will be E(Lt+1) ¼ atE(Yit)

and var(Lt+1) ¼ atvar(Yit). The coefficient of variation of

Lt+1 is

CVðLtþ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðLtþ1Þ

p
EðLtþ1Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
atvarðYit Þ

p
atEðYitÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b/tð1� /tÞ þ r2/2

t

q
b/t

ffiffiffiffi
at

p : ð5Þ

V = 1 ds = 18.64
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Figure 3 Phase space plots of the Poisson–binomial (PB) model simulations and the experimental data. Panels (a) and (b) show the same

PB-model simulations that appear in Fig. 2. Panels (c) and (d) show the data from the three replicate populations in the two experimental

treatments with the initial condition omitted. Open circles are the stochastic simulations or experimental data and closed circles are 1000

points on the chaotic attractor. The mean minimum distance ds of the state variables from the chaotic attractor is listed in each panel.
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If population numbers scale with habitat size, then lt and at
will be proportional to V. This means that /t will not

change with V and so the coefficient of variation for the

residuals of L-stage numbers (5) will follow the inverse

square root rule. As coefficient of variation is invariant to

a linear transformation of the random variable, the

residuals in L-stage densities will also follow the inverse

square root rule. This is true for any arbitrary probability

distribution for per capita fecundity Xi that has a positive

mean and finite variance; it does not rely on the Poisson

distribution.

To illustrate, we considered a stochastic LPA model that

uses a negative binomial distribution in place of the Poisson

for the per capita fecundity Xi, with E(Xi) ¼ b and

var(Xi) ¼ r2. The P-stage and A-stage equations were the

same as in model (2). Using the same parameter values that

were used for the PB model, we conducted simulations with

habitat sizes from V ¼ 1 to V ¼ 100 and two different

variances of the random variable Xi: r
2 ¼ 5b and r2 ¼

10b. (For the Poisson model, r2 ¼ b.) We plotted the values

of dr and ds vs. V on a log–log scale. Outside the range of

influence of lattice effects, the inverse square root scaling

rule holds for this negative binomial version of the

stochastic LPA model (Fig. 6).

D I SCUSS ION

Previous studies of demographic stochasticity focused on

the how the variance in population densities changes as

population size increases. Implicit was the assumption that

all fluctuations in population numbers are due to random

demographic events. This precluded the possibility of

nonlinear dynamics as a source of population variability.

In the present study we take the perspective that population

fluctuations are the joint result of deterministic forces and

demographic stochasticity. By looking at the clarity of the

deterministic signal in both the time series and in phase

space, we were able to extend the analysis to situations

where population densities cycle or have aperiodic beha-

viour such as invariant loops and chaos. A valid mechanistic

model of the deterministic sources of population variability

is a prerequisite for the use of the measures dr and ds
proposed here to evaluate the effects of demographic noise.

Finding such models for natural systems is a continuing

challenge (Kendall et al. 1999; Turchin 2003).

There is an increasing awareness of the importance of

transient dynamical behaviour in ecological systems (Hast-

ings 2004). Populations may take a long time to approach

their asymptotic behaviour. Also, unstable invariant sets

with stable manifolds (saddles) may exert their influence in

the presence of stochasticity. For example, Cushing et al.

(1998) provide experimental evidence for �flybys� of a saddle
equilibrium in Tribolium populations with a stable two-cycle

attractor and King et al. (2004) present evidence of flybys of

longer-period saddle cycles in chaotic Tribolium population

data. In the present study, ds measures the mean minimum

distance of population densities from its asymptotic

attractor and would be inappropriate when transient

behaviour dominated the population time series. On the

other hand, the mean residual distance, dr, is based on

deviations of the population densities from their predicted

values for one-time step. As transients are a model-predicted

behaviour, dr could be used in these situations to evaluate

the influence of demographic stochasticity.

Demographic stochasticity and lattice effects both occur

when population numbers are small. The present study

illustrates the difference between these two phenomena.

Demographic stochasticity is a �random� phenomenon that

arises from the fact that individual births and deaths occur

dr = 6.54 V –0.497 

ds = 4.05 V –0.494 

1 10 100
V

1

10

ds

(b)

1

10

dr

(a)

Lattice effects

Figure 4 Scaling of distance measures dr and ds with habitat

volume. Values from V ¼ 1 to V ¼ 100 were chosen on the

logarithmic scale. For each V, the Poisson–binomial model was

iterated 100 times to eliminate transients and then 1000 times to

compute (a) dr and (b) ds. A linear regression from V ¼ 2 to V ¼
100 yielded the equation listed in (a). A linear regression from

V ¼ 5 to V ¼ 100 yielded the equation listed in (b). In (b) lattice

effects caused deviations for V < 5.
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as discrete probabilistic events. At small population sizes

this can be a significant source of variation in population

densities. For example, if each of 10 individuals in a

population has 50% chance of surviving to the next census

and the survival outcome of each individual is an

independent event, then the expected coefficient of

variation in the number of survivors is 0.316. On the other

hand, if there are 1000 individuals, the coefficient of

variation is only 0.0316. Thus, a 100-fold increase in

population numbers result in a 10-fold decrease in the

relative magnitude of the fluctuations in the number of

survivors – a simple example of the inverse square root

scaling rule. Lattice effects are a �deterministic� phenomenon

that occurs because, when habitat size is small, state space is

discretized onto a lattice of possible population densities. If

population size is bounded, deterministic dynamics on this

lattice lead to periodic cycles (Henson et al. 2001, 2003). For

example, a continuous-state chaotic attractor may be broken

into multiple asymptotic cycles with patchy basins of

attraction. Deterministic dynamics are cyclic (not chaotic),

with periods depending on initial conditions. Stochasticity

acting on small discrete-valued populations allows popula-

tions to move from one basin of attraction to another

visiting each of the cycles (King et al. 2004). However,

depending on habitat size, the dominant lattice cycles can

differ significantly from the predicted continuous attractor

in state space. The mean state space distance measure, ds,

reveals these lattice effects as large deviations from the

predicted inverse square root rule (Figs 4b and 6b,d)

because the demographic stochasticity causes deviations

from the deterministic lattice attractors rather than the

continuous state space attractor and these lattice attractors

are far from the continuous attractor when habitat size is

small. As habitat size increases, the lattice of possible

population densities becomes more finely spaced and the

cyclic lattice attractors will lie closer to the continuous

attractor in state space, although this convergence may not

happen in a simple monotonic fashion (Henson et al. 2001).

Thus, the state space distance measure ds may serve as a

useful tool for predicting the relative contributions of

demographic stochasticity and lattice effects on population

dynamics.

Figure 5 Distribution of dr and ds ratios for different habitat volumes. The Poisson–binomial model was used to simulate a pair of replicates

with V ¼ 1 and V ¼ 3 using the experimental protocol. The distance measures were computed for each replicate pair as was the ratio of the

measures for V ¼ 3 to V ¼ 1. This was repeated 10 000 times and the sampling distributions of the dr ratios (a) and ds ratios (b) were

estimated as histograms. The distributions in (c) and (d) were obtained in the same way for V ¼ 10 and V ¼ 30. The solid vertical lines are

the theoretical expectation of
ffiffiffiffiffiffiffi
1=3

p
� 0:577 and the dashed vertical lines are 95% CI. The arrows in (a) and (b) are all possible V ¼ 1 to

V ¼ 3 ratios for the experimental populations.
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Our choice of the Poisson distribution in model (2) to

describe the random variation among individuals in the

number of offspring produced per adult was based on both

convenience and the fact that it has been used in previous

studies involving Tribolium and the LPA model (Watkins

2000; Dennis et al. 2001; Costantino et al. 2005; Desharnais

et al. 2005). One of the advantages of the Poisson is than no

new parameters are introduced; the deterministic and

stochastic models have the same seven parameters. This

allowed us to use previous parameter estimates for the LPA

model (Dennis et al. 2001). (The habitat size parameter V is

determined by the experimental protocol.) However, it is

evident from the residuals (Fig. 2) that the Poisson

underestimates the magnitude of variation in life-stage

densities. There are several possible reasons for this. The

Poisson distribution does not take into account fluctuations

in the number of males and females among adults, which

could be an important source of variability when adult

numbers are small. The Poisson distribution also assumes

that adults are identical with respect to their expected

contribution of offspring, b. One model that relaxes this

assumption is to assume that the parameter b itself has an

underlying gamma-probability distribution. This compound

distribution leads to a negative binomial probability model

for the number of offspring produced per adult prior to

cannibalism. As discussed in the previous section, the

inverse square root scaling rule for demographic stochas-

ticity is robust to the choice of the probability distribution

used for adult fecundity (Fig. 6). The inadequacy of the

Poisson model underscores the point made by Clark (2003)

that intrinsic differences among individuals should receive

greater attention as a source of variability in studies of

population dynamics.

Experimental support for the scaling rule has implications

for a variety of population systems, from conservation

studies and population viability analyses (Shaffer 1981;

Beissinger & McCullough 2002; Morris & Doak 2002), to

epidemiological studies where there is an increasing

appreciation for the role of demographic stochasticity

(Bjørnstad et al. 2002; Grenfell et al. 2002; Lloyd 2004).

σ

dr = 9.44 V –0.485 ds = 6.17 V –0.499 

dr = 11.59 V –0.474 ds = 8.54 V –0.515 

1

10

dr

(a)

1

10

dr

(c)

10

ds

(b)

1

10

ds

(d)

1 10 100

V

1 10 100

V

 2 = 5b σ 2 = 5b

σ 2 = 10bσ 2 = 10b

Figure 6 Scaling of distance measures dr and ds with habitat volume for a stochastic LPA model with a negative binomial per capita fecundity

distribution. Values from V ¼ 1 to V ¼ 100 were chosen on the logarithmic scale. For each V, the stochastic model was iterated 100 times

to eliminate transients and then 1000 times to compute (a, c) dr and (b, d) ds. In panels (a) and (b), the negative binomial distribution has a

variance equal to five times the mean. In panels (c) and (d), the negative binomial distribution has a variance equal to 10 times the mean. A

linear regression from V ¼ 2 to V ¼ 100 yielded the equations listed in (a) and (c). A linear regression from V ¼ 5 to V ¼ 100 yielded the

equations listed in (b) and (d).
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However, additional factors may need to be considered

when applying the findings of the present study to other

systems. Here the populations are assumed to be �well
mixed� so that interactions among individuals depend on

global densities. In large natural populations, interactions

among individuals may have a spatial component, which

could have implications for the relative effects of

demographic stochasticity as habitat sizes increase, especi-

ally if the habitat is heterogeneous. External sources of

variability (environmental stochasticity) that affect all

individuals simultaneously, such as weather, may also

cause fluctuations in population densities (Athreya &

Karlin 1971; May 1973). In general, demographic and

environmental stochasticity will act in concert to cause

deviations from deterministic dynamical predictions (Lande

1993; Engen et al. 1998; Sæther et al. 2000; Vucetich &

Peterson 2004). However, even in these situations, the

demographic component of the noise should decrease as

population numbers increase.

The original interpretation of the scaling rule for

populations exhibiting exponential growth or stable

equilibria was that when population numbers are sufficiently

large demographic stochasticity can be ignored (Leslie 1958;

May 1973; Maynard Smith 1974). The scaling rule has been

demonstrated for a variety of models (Bartlett 1960; Watt

1968; Anderson et al. 1982; Nisbet & Gurney 1982;

Costantino & Desharnais 1991) and it is likely that it can

be justified on very general grounds, although we are

unaware of any theoretical treatment that shows this to be

true. The scaling rule is often presented as a justification for

the use of deterministic models. However, prior to the

present study, we were unaware of any experimental studies

that directly tested the inverse square root scaling rule. This

assumption, often cited as an ecological principle, now has a

firmer empirical footing.
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