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ABSTRACT

The purpose of this thesis is to develop & new method for
synthesizing an R-L-C network, which when excited by a prescribed unit
impulse input will have & prescribed output function as its response.
A synthesis problem generally requires the solution of two problems:
(1) the approximation problem; (2) the realization problem. In this
study attention is focused on the approximation problem. In particu-
lar, a method is developed for approximating a prescribed impulse re-
sponse by a function which can be an impulse response of a realizable
R-L-C network. The more general problem of obtaining & network with
a prescribed response to an arbitrary input (i.e., input different
from the unit impulse) can be reduced to an equivalent one with a
"prescribed" impulse response by known approximetion techniques, and
can thus be solved by the method presented.

The method proposed here is a numerical approximation pro-
cess, which yields an impulse response function approximating the
prescribed one. The error of the approximation, which is defined as
the difference between the approximete impulse response and the pre-
scribed one, is minimized in the Tschebyscheff sense. The approxi-
mating impulse response is such that its lLaplace transform is an
R-L-C network function. Thus one can find a network having an impulse
response approximating the prescribed one.

In this work the approximate impulse response function is
represented as a sum of exponential functions of a form Akesk
(k =1, 2, ..., n) vhere sp [Re (s) <0, k=1, 2, ..., n] is the
position of the kth pole of the approximating function, and the co-
efficient Ap (k =1, 2, ..., n) is the residue of the approximating
function at the pole s,. The number n denotes the number of terms
in the approximating impulse response function.

Since an efficient approximation process requires optimi-
zations of both the pole positions and the residues, two such optimi-
zations are made here. Both these optimizations are made through the
application of the discrete Tschebyscheff approximation theory, and
yield, as stated above, an error of approximation which is a minimum
in the Tschebyscheff sense.

The final part of this investigation consists of presentation
of two examples illustrating the approximation process.

xii



CHAPTER I

INTRODUCTION

The advent of radar, automatic control mechanisms, electronic
computers, and other new devices has made it necessary to provide means
for the synthesis of networks meeting prescribed time requirements.

This type of synthesis is commonly designated as "time-domain synthesis"

or "transient-response synthesis."

The problem of synthesis in the
time domain consists of prescribing an electrical input (usually voltage
or current input) and an electrical output (commonly voltage or current
output), where both these quantities are functions of time. The solution
to the problem consists of finding a network which, when excited by
the prescribed input, will yield the prescribed output.

A solution to a problem in network synthesis is rarely an
exact one. The limitations of physical realizability, and of the modest
number of elements which may be employed in a practical network, stringent-
ly limit the results which can be obtained using synthesis. A given
synthesis problem may reduce to the selection of the simplest network
meeting prescribed requirements, or, perhaps to the determination of the
network of restricted comp;exity which would best fulfill the requirements.
This means that, in general, the network which is found will, when excited
by the prescribed input, yield an output different from the prescribed
one. The difference between the two outputs constitutes an error. 1In
the normal case it is desired to find a network which will minimize the
error between these two outputs in some sense.

In network synthesis, the three most commonly employed approx-

imations are Taylor, least-mean-square error, and Tschebyscheff. The
1



Taylor approximation provides the best approximation to some given
function at a single point. At that point the error and as many of its
derivatives as possible equal zero. An error which is zero at this point
and which increases slowly in the immediate vicinity results. Generally
the price paid for this desirable behavior is a much larger error away
from the zero-error point. The least-mean-square-error approximation
minimizes the mean-square error. The parameters in the approximating
function are varied, and that set which minimizes the mean-square error
is chosen as the solution.

The Tschebyscheff approximation minimizes the magnitude of the
maximum error. The Tschebyscheff approximation is one of the most
desired types of approximation in the area of network synthesis. This
approximation makes a highly efficient use of circuit elements. No
approximation procedure minimizing the error in the time domain has
been offered in the past, probably because this type of approximation
gives rise to more complicated mathematical expressions than the more-
commonly-employed least-mean-square-error type of approximation.

The problem of synthesis of networks from prescribed time
requirements is a relatively important one in the general area of
network synthesis. Consequently, a considerable effort was expended
on this problem in the last decade, resulting in several excellent
contributions. In particular, the application of orthogonal functions,
computers, Fourier series theory, numerical methods, and time-moment
matching have provided useful approaches to this problem.

A number of useful methods have been proposed for the solution
of the problem of synthesis in the time domain. However, each method

that has been proposed suffers from either (1) restriction on the classes



of functions that can be approximated, (2) nonphysical realizability
of the resulting function (in general), (3) unsatisfactory control of
the approximation error, or (4) inefficient use of circuit elements.

It is the aim of this investigation to propose a general
approximation procedure which will yield a system function resulting
in a network realizable with R-L-C elements. The method of approximation
is a numerical one, employing discrete Tschebyscheff approximations.
The error between the desired time response and the obtained time response
is a minimum in the Tschebyscheff sense. It is felt that the proposed
method largely overcomes the outlined four limitations. The proposed
method also provides an approximation procedure minimizing the error in
the time domain in the Tschebyscheff sense, thus providing a desirable
type of error control. The theoretical development and the practical
application of this approximation method are the purposes of this
dissertation. |

In the method proposed in this investigation, attention is
focused on the problem of finding a network from the prescribed response
to unit impulse. It is shown (Appendix B) that a problem in which an
arbitrary input and a prescribed response are given, can be reduced to
one of prescribed impulse response. The Laplace transform of the impulse
response is the system function. It follows from network theory consider-
ations that the system function will result in a realizable R-L-C network,

if the impulse response is a sum of n exponential functions, of a form

skt

Ae (k =1, 2, ..., n). Sy (k =1, 2, ..., n) is the location of the
kth pole of the system function, and the coefficient Ak (k =1, 2, «uuy n)
is the residue of the system function at the pole 8 * The number n denotes

the number of terms in the impulse response and in the system function.



n is also directly proportional to the minimum number of elements in the
network realizing the system function. Hence, an efficient approximation
process is one which yields a tolerable approximation error with a
minimum number of terms for the impulse response. To obtain such an
approximation, two optimizations must be made, namely, an optimization

of pole positions and an optimization of residues.

In the proposed method two such optimizations are made. The
solution for optimum pole positions is developed. Once these pole positions
are determined, an optimization of residues takes place. Both these
optimizations are made in the Tschebyscheff sense through the application
of discrete Tschebyscheff approximation theory. Thus, the approximate
impulse response obtained results in a network which yields a tolerable
approximation error with a minimum number of elements. To say this in
other words, ip is believed that the errors obtained using the method to
be presented will for a given complexity of approximating function, general-
ly be smaller than those obtained by previous approaches.

The proposed method also largely overcomes the drawback of
restriction on the classes of functions that can be approximated. The
numerical process culminates in the system function and places no festric-
tions on types of function which can be approximated, provided, of course,
that one does not demand properties not obtainable with R-L-C networks.
Also, the drawback of non-physical realizability is overcome. The approxi-
mation error, being Tschebyscheff, is rather satisfactorily controlled.

The author believes the contributions of this dissertation as
providing a satisfactory solution to the problem of synthesis bf networks
for prescribed time requirements. A summary of the more important results

includes: (1) application of the discrete Tschebyscheff approximation



theory to network problems; (2) development of a general solution to the
problem of approximation of networks in the time domain; (3) development
of a general numerical method of approximation, optimizing both pole
locations and residues; and (4) detailed investigation of the errors of
approximation both in the pole determination and in the residue determina-
tion.

In the second chapter of this work the problem of synthesis of
networks in the time domain is stated in detail. In the succeeding
chapter the state of the art is reviewed, and some of the contributions
to the problem are outlined. In the fourth chapter, the impulse-response
approximation problem, i.e., synthesis of a network from the prescribed
impulse response, is stated and solved. Two examples illustrating the
approximation process are worked out in detail. In Appendix A, the
problem of synthesis from prescribed step response is solved, and it is
shown that the methods of Chapter IV can be applied to yield the desired
network. The arbitrary input problem is treated in Appendix B, where it
is shown that this problem can be reduced to the one treated in Chapter IV,

i.e., synthesis of networks from prescribed impulse response requirements.



CHAPTER II

STATEMENT OF THE PROBLEM

The synthesis problem is essentially an input-output problem;
i.e., it is in general desired to find a network that will produce a
prescribed response to a specified excitation. The specifications
of the input and of the output yield the system function H(s). In
general, there may exist no R-L-C network with H(s) as the system
function. A network N can be found, however, which when excited by
the specified input will produce an output approximating the prescrib-
ed one. For present purposes the network N which is to be found will
be characterized by its system function H*(s) such that:

o
(s) = L*(1)] = ] h*(t)e ™% at, (2.1)

where h¥*(t) is the response of N to the unit impulse function 5(t), as

shown in Fig. 2.1.

A
INPUT OUTPUT

S(t) hit)

S(t) N h*(t)
H* (s)

FIG. 2.1 TIME-DOMAIN SYNTHESIS REQUIREMENTS
6



It is assumed here that N is a finite, linear, passive, lumped-
parameter, bilateral electrical network. Then H¥(s) can be written:

Ay

S-S

n
B(s) = 2 (2.2)

k

where s, (k =1, 2, ..., n) are the poles of H¥(s) and A, is the

residue at the pole s = s Complex poles occur in conjugate pairs.

T
If it is assumed that there are no coincident poles, h¥(t), the inverse

laplace transform of H¥(s), is then

n skt
* = . .
¥ (t) WL Ae (2.3)
Stability requires that
Re (sk) <0 (k =1, 2, vvey 1) (2.4)
s, t s, t k-1 s, t

Since coincident poles give rise to te k s t2e k y eeey t e k , for

a kth-order pole, they must not occur with zero real part.

The statement of an approximation problem consists of prescrib-
ing the impulse response h(t) with tolerances on the allowable error.
One is to find a system function H*(s), as given in Eq. (2.2), with
the constraint of Eq. (2.4). It is also expected that the distancet
from h(t) to h*(t) is minimized in some sense (i.e., the error is
minimized in some sense). In Fig. 2.2 the above requirement is portray-
ed in the form of a block diagram.

In the following chapters a method will be developed for the
synthesis of an approximated system N when h(t) is prescribed. The

system N is restricted to be an interconnection of R-L-C elements

Distance between x and y é‘d(xy)
of the disparity between x and y

number which provides a measure
echet, 1906).

—~np
7 o



[es

—» PRESCRIBED SYSTEM hit)

»
(1) ERROR
t (DISTANCE) ETRO%'
EVALUATOR
P
APPROXIMATED SYSTEM
*
N hit)
_—»
WITH SYSTEM FUNCTION , .
H*(ﬂ ERROR = ERROR BETWEEN

h(t) (DESIRED RESPONSE)
AND h*(t) (APPROXIMATED
RESPONSE)

FIG. 2.2 THE APPROXIMATION PROCESS

(i.e., an R-L-C network). The error (distance) between h(t) and
h*(t) will be defined as h*(t)-h(t). A network N will be found, such
that max |h*(t) - h(t)| will be a minimum. The error, hence, will be
minimized in the Tschebyscheff sense.

It is to be noted that most problems for prescribed time
response include specifications of a particular input ei(t) and of the
corresponding response eo(t) rather than the impulse response h(t).
However, a number of techniques are available for reduction of such
input conditions to an equivalent prescribed impulse response h(t) [31].

One such technique is discussed in Appendix B.



CHAPTER III

STATUS OF THE ART

Recent contributions to the time-domain synthesis problem
have resulted from exploiting several ideas, of which the following

are noteworthy:

3.1 Fourier Series Approach [8, 2u]

This method is based upon the following idea: if h(t), the
prescribed impulse response, were to repeat periodically, it could
then be approximated by a finite trigonometric polynomial to any
required error tolerance. A corresponding Laplace transform could
then be obtained at once, and since the approximation takes place in
the time domain, time-domain error is controlled. Also, the methods
of Fourier series are well known and understood. In effect, if the
function shown in Fig. 3.1 is the desired impulse response of the

sought network N,

h(t) hit) =0 when t 2 T/2

T/2 T

FIG. 3.1 DESIRED IMPULSE RESPONSE OF N
9
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and if the periodic function hp(t) is as shown in Fig. 3.2,

A

hét)

T/2 T 37/2

FIG. 3.2 PERIODIC REPETITION OF h(t)

then evidently 0 .
_§ g ket _ exn
hp(t) = kE;-mcke yowo= (3.1)
If hp(t) = 0 for t <O
then
h(t) = h (t)-h_(t-T
() = [n(t)-n (+-1)]

hp(t) can then be approximated by trigonometric functions resulting
in an approximate network.

This method yields excellent results for certain types of
wvaveforms. Among its drawbacks is the fact that synthesis by this
technique often requires a non-positive real admittance (and hence
it is not realizable with passive elements only), and a modification
has to take place. It is also believed that this technique is not
very efficient in terms of degree of approximation for a utilized

number of elements.
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3.2 Impulse Method of Approximation [7,8,26]

This method is based upon the idea that an arbitrary function
can be related to a train of impulses. If the desired impulse response
h(t) is given, an approximate response h*(t) is obtained as a sequence
of v-1 curves, each of which is given by an (m-1)-degree polynomial.

This concept is illustrated in Fig. 3.3.

he (1)

h(t)

FIG. 3.3 APPROXIMATION OF h(t) BY h*(t)

If h*(t) is then differentiated m times, it will yield a sequence of v

impulses which, in turn, are approximated by some reasonable facsimile.
A suggestive approximation for a delayed impulse is a delayed pulse. A
good approximation, evidently, requires narrow pulse width, and if the

Laplace transform of one such pulse is approximated by an expression

of the form
(3.2)

Q,(s) =

TR
'._l
<
AT
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then a pulse occuring t seconds earlier would have a laplace transformT:
s t
A e v
v

3
Q,(s) =
2 v=l 575y

(3.3)

This method yields good results in many cases; however, one of
its drawbacks lies in the fact that two approximations are required—
one in the approximation of h(t) by a sequence of curves and the other
in the approximation of the delayed impulse by Qe(s)——thus increasing

the final error.

3.3 Numerical Calculations by Time Series [1,14,15]

A representative method in this class is the one due to

Ba Hli [1]. If h(t) is approximated by rectangles as shown in Fig. 3.k,

| .

|
|
|
|
!
|
A

A 240t 34t t
FIG. 3.4 APPROXIMATION OF h(t) BY RECTANGLES

o)

T t

i}

n s
-l _ v
Note that if L [Ql(s)] = vzl Ave ql(t):

n t
s, T S,

then qg(t) = ql(t+7) = vgl (Ave e T,

hence Qg(s) follows as given in Eq. (3.3).
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can be approximated by G*(s) given by:

G*(s) = h &t e S h, 4t emesAt (3.5)
consequently,
n
G*(s) =~ v;l h, At e VAL (3.6)
Expansion cof e-Sﬁt in a power series yields
2
-sit v
e ® = 1- E%% + LEg%l +oeee (3.7)
an expansion valid for all finite s.
Now, o
st (sat)
* = e -
G*(s) ot (1- =77 + 23574 )
2
2sib 2si4t
+ byt (1- =7 *LZ: - .
2
At nsit c
+ Hﬁtﬁrn%+(2!)-.“)- (3.8)
Collecting terms,
2 sAb 2
G*(s) = X h Ot - =77 2 Vh AL + ..., (3.9)
v=1 v=l
or
G*¥(s) = g +g.5 +¢g s 4 ... .
o} 1 2

This last expression is then approximated at the origin as a ratio of

two polynomials; i.e.,

m

. o m
= = . (3.10)

6%(s) x N(Sg n_ + nls + «e. + NS
do +dls + e +dns

dO is usually chosen to be one and the coefficients n, and a, are found

through solution of a system of equations.
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This method yields adequate results for many applications not
requiring a great degree of accuracy. It is seen that a number of
approximations has taken place, thus adding to the overall error. In
particular, experience reveals that functions which are not monotonically
rising and then monotonically falling are not well approximated by this

procedure.

3.4 Approximation by Means of least-Square Criteria [6,11]

This approach consists of approximating the impulse response

h(t) as the sum of orthogonal functions; i.e.,

n
h*(t) = 2 Co (t) , 11
() = 2 O (t) (3.11)

where [@l(t), @e(t) cee @n(t)] form an orthonormal set, and C, is chosen
so as to minimize the least-square error between h(t) and h*(t). In
particular, @k(t) is a sum of decaying exponentials and exponentially-
damped sinusoids.

This method, advanced by W. L. Kautz [1l], has also been
studied by E. G. Gilbert [6]. Gilbert has shown that analog-computer
circuits can be implemented to yield the desired constants Ck‘ However,
in this method the approximation is essentially in terms of coefficients
Ck (which form the residues) only, and by and large the poles are assumed
arbitrarily. Even though two methods are suggested by Kautz for locat-
ing pole positions, these methods leave something to be desired. In the
first method H(s) = L[h(t)] is found and expanded in a power series
which is then expanded into a continued fraction. Termination of this
continued fraction after several divisions will yield a rational fraction.

The roots of the denominator polynomial are suggested as pole positions.
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This method, even though straight-forward enough, requires that:
1. h(t) be given in an analytical form;
2. h(t) be L-transformable;
3. The roots in the denominator polynomial be in
the left-hand plane.
These conditions are not met in general.

The second method described by Kautz for locating the poles
is the Prony method. It consists of finding a linear, constant-
coefficient differential equation, which is nearly satisfied by h(t).
Such an equation can be solved through substitution of h(t) = eSt
into it, and it leads to a characteristic polynomial in s, the roots
of which are the "natural resonances" of its solution - hence related

approximately to the "natural resonances" of h(t). This polynomial

is obtained by forming the sequence of differential sums:

eo(t) = h(t)

el(t) = £ eo(t) + h'(t)

. . 0 e 000 t e s 00 e . . LK) ®esss 00 e s 000000000100 (5'12)
e (6) = £ e (8) ¥ Ten(t) + o ry e (6) + ()

The solution of the characteristic equation for e, is used to determine

the n poles. The coefficients fkj are computed from the integrals

Of“%(k)(t)ej(t)dt
oy = - . (3.13)
- I e?(t)dt

Thus, this method requires the availability of the numerator

and denominator integrals in addition to a considerable amount of
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computational work. A more detailed treatment of Prony's method is

found in the classical work of Prony [10].

3.5 Synthesis Through Matching of Time Moments [10,22]

This approach is based upon the expansion of the impulse
response into time moments. This method has the advantage that moments
are easily obtained from a graphical presentation of the impulse response
and that the moment coefficients are simply related to the transfer
function of the network. Since

o]

H(s) = f h(t)e %t (3.14)

ST, . .
expansion of e into power series yields

«© S © s2 w0 2
H(s) = /7 n(t)at - o7 STeh(t)at + 57 f“tn(t)at - ...
= m_ - ms +mys" - , (3.16)
where
1 w k
me = 5T of t h(t)dt (3.17)

is the kth moment of the impulse-response function h(t) around the

origin. Then, in particular:

m, = area under the impulse function,

it

= = center of gravity,
o

2m2

- = moment of inertia about the line t = O,
o}

and so on. Therefore, the coefficients can be identified with time

moments.
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The power series is then approximated by a continuous-
fraction expansion, as described in the previous sectionT. In effect,
H(s) is equated to a rational function, and the fraction is cleared by
multiplying both sides by the denominator polynomial. Matching coeffi-
cients of equal powers of s yields the coefficients of the numerator and
denominator polynomials. Some of the advantages of this method were
stated earlier. Its drawbacks are: (1) the error of the approximation
is not predictable in advance; (2) moments exist only for certain
classes of functions which are sufficiently bounded in amplitude and
time; (3) there is no guarantee that zeros of the denominator will lie
in the left-hand plane. In general, the method does not work well for

functions with oscillatory terms, such as the one illustrated in Fig. 3.5.

h(t)

FIG. 3.5 IMPULSE RESPONSE WITH OSCILLATORY TERMS

This method of approximation of a power series by a rational function
is described in detail in [20].
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3.6 Continued-Fraction Expansion [13] and Pade/[9,l5,l9,25,27]

Approximants

The method of continued-fraction expansion has been described
by Naedler [17]. It is not a time-domain synthesis method in the sense
of the statement of the problem, as stated in Chapter II. This approach
consists of finding the L-transform of the step response, approximating
it in the s-domain, and obtaining the inverse L-transform of the approx-
imated function. The details of this method follow:

Iet K(s) be the Laplace transform of the prescribed response

of the sought network N to the unit step function. Then,
1l .
K(s) = = H(s). (3.18)

Caver [2) has shown that if K(s) is positive-real and regular,

then
K(s) = slr + " 84 (5.19)
o S +X
where
f = lim K(s) (3.20)
© S 0 S
and

ay(x) = Bﬁlﬁi%jiﬁll (3.21)
TN X

Stieltes [2] has shown that if Y(x) is an increasing function

with infinitely many poles, and if the integrals

SO0 tax(x) (k= 1, 2, 3, ...) (3.22)

all exist, then one can represent the integral

I(x) = f° o) (3.23)

Z+X
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by a continued fraction of the form:

J(z) =

fl& + e (3.24)

with an infinite number of terms.
It can be seen that the right-hand side of Eq. (3.19) can be

expanded into a continued fraction similar to Eq. (3.24).

Then
s
K(s) = sf +f 5 I
15 7 1
.o +
2 £ 82 . 1
3 T,o+ oo, (3.29)
or
K(s) = sf_+ L =
f.s +
1l 1
fES + —
g gt
3 fis + cee , +(3.26)

One can now terminate the continued fraction in Eq. (3.26) and
equate the coefficients fk to those in the power series expansion for
K(s). The terminated continued fraction in addition to the sf | term,
represents, then, a rational function approximation to K(s).

The Pade [17] method of approximstion consists of listing
various rational fraction approximations in a double-entry table.

Hence, a function H(s) is approximated as a ratio of two polynomials,
N(s) and D(s) [i.e., H¥(s) = g%g% J. Now, if N(s) is an mth-degree
polynomial and D(s) an nth-degree polynomial, then N(s) has m+l

coefficients and D(s) has n+l coefficients. The rational function

N(s)

has, however, only m+n+l independent coefficients. Hence, if
D(s

one equates g%g% to the power series of H(s) he can determine the
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coefficients of N(s) and D(s) so that H(s)-D(s)-N(s) has g+l

the lowest power of s [i.e., coefficients of sm+n+l'%k = 1, 2, e,
m+n) are all zero]. These various rational function approximants to

H(s) can then be tabulated in a double-entry table, as shown in Table I

T Hoo Hol Ho2 coe
Hlo Hll Hle te
fao o1 fas
where m K
o aksm
_ N(s) _ k=0
th = d(s) T & (3.27)
n-k
z bks
k=0
TABLE I PADE TABLE FOR H(s)
Teasdale [25] suggests for better approximation in the time
domain the employment of an "indirect Padé approximant." A method

for obtaining this approximant is shown in the block diagram of Fig. 3.6.
This approach, excellent for s-plane approximations, suffers
in the time domein from the shortcomings mentioned in Section 3..4.
In this chapter, several contributions have been reviewed.
Other approaches have made use of Laguerre's functions [13,18] and

of analog computers [6,12,18]. These will not be discussed here.
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CHAPTER IV

THE IMPULSE-RESPONSE-APPROXIMATION PROBLEM

4,1 Introduction

In the second chapter the approximation problem has been
stated, and in the third chapter methods of attack have been reviewed.
In this chapter an alternative method of attack is developed, employ-
ing the concept of Tschebyscheff discrete approximations.

The problem considered here is one of determining an R-L-C
network with an impulse response h*(t) which approximates a prescribed
impulse response h(t). Since one knows how to synthesize a network

function of the form

K (4.1)

with

Re(sk) <0 (k=1,2, ..., n), (4.2)
the problem will be solved if the approximate impulse response h*(t)
can be found which is given by

(1) = % Ae ™ . (4.3)
k=1

withT
Re(sk) <0 (k=1,2, ..., n) . (k.4)

The problem can be considered to be two-fold, its part being:
(a) Determination of pole locations, i.e., the determination of
exponents of the approximating function in Eq. (4.3), and

(b) Determination of residues, i.e., the determination of coefficients

A, in Eq. (4.3).

t Note that this expansion assumes no coincident poles.
22



23

Both determinations are to be made so as to minimize the approximation
error in some sense.

In this chapter the parts (a) and (b) of the problem are
solved. The approximation error is minimized in the Tschebyscheff
sense., A brief summary of the contents of each section is given below.

In Section 4.2 of this chapter the problem of determination of
pole locations is solved. This is accomplished by a reduction of the
problem to an overdetermined system of linear equations. It is shown
that the solution of the overdetermined system will yield a set of
coefficients from which the desired poles can be obtained.

‘In the same section the theory of discrete Tschebyscheff
approximations is reviewed. It is shown that this theory can be
applied to solve the overdetermined system of equations. The formulas
for optimum poles (in Tschebyscheff sense) are developed, and are
listed in Table III.

In Section 4.3 the problem of determination of residues is
solved. It is shown that this problem can likewise be reduced to an
overdetermined system of linear equations, the solution of which yields
the residues.

In Section 4.4 the errors of the approximation are discussed.
A relationship between the Tschebyscheff error in the pole determination
and the final approximation is derived.

In Section 4.5 two examples are worked out to illustrate the
developed method. The results lead to realizable networks which are
shown at the end of each example. Also & comparison is made between

the desired impulse response, and the obtained one for each example.
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In section 4.6 discussion of the suggested method is made,
and the drawn conclusions are stated. A summary of the process is

offered at the end of the section.

4,2 The Determination of Pole Locations

In this section the problem of determination of pole locations
is solved. It is shown that this problem can be reduced to an over-
determined system of equations. The theory of discrete Tschebyscheff
approximations is reviewed, and it is shown that with this theory,
formulas for optimum poles (in Tschebyscheff sense) can be developed.

4,2.1 Reduction of the Problem to an Overdetermined System

of Linear Equations. In this section the problem of determination of

pole locations is reduced to the problem of an overdetermined system

of linear equations. The prescribed impulse response is assumed to be
given in form of g ordinates of h(t), denoted as h (m=1,2, ..., q),
at uniform time intervals. A set of n coefficlents Tyy Toy eees Ty is

introduced from which the desired poles 815 Spy +++y S cCBN be obtained.

The relationship between r, (k =1, 2, ..., n) and h (m=1,2, ..., Q)

k
is stated in Theorem 1. Theorem 1 in essence, is found in the
literature [21,29,%0], the proof of the theorem, however, is the
author's. By Theorem 1 one obtains a set of linear equations for
Ty (k =1, 2, ..., n) which are in general overdetermined (i.e., the
number of equations exceeds the number of unknowns).

The method developed for the determination of pole locations
is similar to the Prony method [10]. However, the discrete Tschebyscheff

approximation concept is employed to solve the overdetermined system of

equations.
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In general, h(t) will be given in the form of an equation, a
graph, or a set of data. From any of these three forms one can obtain
data for equal increments of time. If there are q points of data, and
if the first point of data is given at t; [i.e., h(tl) is given], and

if the increment is d, then the m ordinate of h(t) is given by

h = h(tm) (m=1, 2, .c., q). (4.5)

When v is an integer less than or equal to q, tv is given by

t =

v T+ (v-1)d (v <aq). (4.6)

Equating h to h*(tv), one obtains

s, t

a kv
h = Z A e . ()'1"7)
v k=1 k

A sketch of h(t) and the corresponding ordinates of

h(t) for equal time increments are shown in Fig. k4.1.

h(t)$

hl____.__ tm=f|+(m"')d

, ty tq t

FIG. 4.1 h(t) AND CORRESPONDING ORDINATES FOR EQUAL TIME INCREMENTS
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let
8,d .
e = Yy (k =1, 2, , n) (4.8)
and
Aksktv = 2, (k =1, 2, ..., n;
1<v<aq) (4.9)
Then
n
hv - kEl Zxv
n
v+l kgi ZxVk
n
hv+2 - kzl Zkyi
.......... A.....;
b,y = kél 2, Y - (4.10)
Since only g points of data are given, then v+i < q in
Eq. (4.10).
Assume that n+l equations of the same type as Eq. (4.10) for
the n unknowns Zyy (k=1,2, ..., n; 1 <v< q) were used. The n+l

equations for the n unknowns z, can be satisfiéd simultaneously if and

kv

only if the determinant of coefficients of Zyy is zero. This will

yield a relationship between y, (k =1, 2, ..., n) and b, (i =0, 1,

i
.., n).
This relationship can alternatively be obtained in the

following manner:
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Let

r = - Ly
k=1 ¥

n
r, = L Y.y
2 kl=l kl k

n >k, >k

2

n
= Loy, V.V
5 R

n > k5 >k2>kl

a1
1

r. = (-1)F I] Y (%.11)

Hence ro is the coefficient of yn-m in an algebraic equation
of nth degree, whose roots are Vi (k =1, 2, ..., n). The coefficient
of the leading term (i.e., the coefficient of y") is r (i.e., unity,

since r_ = 1). If one multiplies the first n+l equations in Egs. (4.10)

and (4.11) by one another so that h,,, is multiplied by r__, (i =0, 1,
..., 1), then,
L n
rnhv = (—l) H yk kEl ZkV
k=1
4.1 D n
r_.h = (1) X oy, ¥, ...y L oz,y
n-1v+l ke kl k2 kn-l K=l kv'k
- v+l>kv
a o n-1
1By in-1 “Loy Loy
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n

n
b, = ki 2 Y (4.12)

From Egs. (4.12) one can obtain the following theorem.

Theorem 1

If Egs. (4.12) are valid for all sets z,_ (k =1, 2, ..., n;

kv
1<v<gq-n) then
= 0. (L<v<g-n) (4.13)

Proof':

Assume that Eq. (4.13) is valid for sets z, (k =1, 2, ..., m;

kv

l<v<agqg- n) for a particular number of poles, say m. Then,

m
Lz
k=0

r Bk 0 (1<v<gqg-n).

where r_ = 1, and Ty (k =1, 2, ..., m) are functions of Yy (k =1, 2,
..., m) as defined in Egs. (L.11).
It will be shown that if Eq. (4.13) is valid for n = m then

also

m+l
] - -
k;b I’rnn-rl—khv+l«: =0 (l<v<a-n)

where ré =1 and r) (k =1, 2, ..., m+l) are functions of Yy (k = 1, 2,
..., m+l) as defined in Egs. (4.11).

It will be shown, moreover, that Eq. (4.13) is satisfied for
n = 1. This will then complete the proof of Theorem 1.

The coefficients r, (k =1, 2, ..., m) are functions of

k

Yy (k =1, 2, ..., m) defined in Egs. (4.11). r, = 0. The m values

Ve (i.e., Yo Yps oees ym) are the zeros of Pm(y), an algebraic

equation of mth degree.



29

It P(y) = ¥+t e, (4.14)

I

let Pm+l(y) be defined as

Py = P )(y-y,,;)

Then ¥y, ¥p, «++) ¥, 8T the zeros of P )

Let r denote the functions in Egs. (4.11) of m roots (yl,

cey ym) and r' denote the functions in Egs. (4.11) of m+l roots

(yl, Ypr cves m+l)' Then,

ré = 1 = T,
m
t — - = -
rl k§lyk Yl rl m+1
m m
t — - = -
o % kz'_lyklyk2 Tm+l kél Yk T2 ma"1
1= =
n>k 2>k 1
m m
1 = - - = -
T3 kgiyklykgyKB Ym+l kélyklykz Tz V412
n2k5>k2>kl k2>kl (4.15)
% B = -
™ = = T Vme1Tm-1
- = -
rs = V1T f

T

This last relationship 1s not apparent but follows if one considers

m
both cases, m even and m odd. For m even: r, = II yk’ hence
k=1
' - _ _ &b . oy _
Tl Yp+15m For m odd r, = éllyk and Tl = “Ypi1Tm®
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m+l
Then T

=0 (m+1)-k By ok

= r! h +r'h cee + T
m+l VvV m v+l

(4.16)

1 hv+m + hv+m+l'

Substitution of Egs. (4.15) into Eq.(4.16) yields,

m+1

Z I‘(m+l) & ik

) h

+ ...
v+1

1 ) h + (r -y

m+ +l m-1

+ (r2 - ym+lrl) b1t (rl-ym+l) bt hv+m+l

= (- ym+l)(r b, + Th- 1hv+1 o rlhv+m—l + hv+m)
+ rmhv+l e ¥ r2hv+m-l + rlhv+m + I‘ohv+m+l > (B.17)
or
m+1
1 —_— —_
kzb Tmel)-k vk T Tt I =
m m
= -y L r h + L r . h (4.18)
m+l ) Tmekovek keo M-k (v+1)+k

Now I,, the first expression on the right. side of Eq. (4.18),

is zero by the assumption. 12, the second expression, is equal to:

m m
I, = r L (z,.y.) +r L (z, y +
2 mo o Ve e B Uiy
2 m
+ rl Z’ (Zkvyk)yk + kél(zk'vyk)yk . ()4"19)
— t
Let zkyyk zkv
m
1 - 1
and h! = X 2y
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Then
3
I, = r . h' (4.20)
2 k=0 m-K v+k
is zero, since by the assumption Eq. (L.14) is valid for all sets 2y
(k =1, 2, ..., n; 1 <v < g-n), hence also for Ziv = 2, ¥, (k =1, 2,

..., n; 1< v < g-n). Consequently, it was shown that if:

m

kEb roBx = 0 (1 <v<g-n) (k.21)
then also

m+1

1 = - .

kgbr(m+l)_k ho 0 (L<v<g-n) (k.22

where
ri = Ty = YpaTeol (k =0, 1, ..., m+l)(L.23)

(rl = Thar T 0).

Therefore, it was proved that if Eq. (4.13), is valid for
the m roots of Pm(y), then it is also valid for the m+l roots of Pm+l(y)'
It will be shown now that Eq. (4.13) is valid for n = 1, which will
complete the proof of Theorem 1.

Expanding Eq. (4.10) for n = 1 yields

rh, = Y%y
byl = Y21y (k.24)
Hence
1
kéb_rl-khv+k = 0. (1 <v<qg-n) (4.25)

This completes the proof of Theorem 1.

. h

Equation (4.1%3) gives a relation between (hv’ van

hv+l’ te

and (ro, Ty eeey rn). Through an increase in the index v, from
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v to v+l, Eq. (4.13) will relate (hv+l’ hyos wees By oy

) with
(ro, rys e rn). If one has q equally-spaced values of h(t) (e.g.,
hy, hyy ven, hq), then Eq. (4.13) will give rise to g-n equations.

If g-n = p, one can write in general

n

kéb LIS = 0(v=1l 2, ..., p) (L4.26)

This allows one to differentiate among three cases.

Case 1: n > p - undetermined system.

Case 2: n = p - determined system.
Case 3: n < p - overdetermined system.

Case 1 implies that there are more terms chosen for the
approximating function, Eq. (4.3) than justified by the available points
of data. If n-p = m, then there are m conditions that can be fulfilled
arbitrarily. Since, in general, an economy of elements is desired, and
these are directly related to the number of terms in Eq. (4.3), Case 1
is of little practical interest, and will be commonly reduced to Case 2
[which can be simply accomplished by requiring the Eq. (4.3) to have p
terms only].

Case 2 will theoretically occur whenever essentially no
approximation error can be tolerated at the given points. Case 2
provides the theoretical optimum, or best approximation, for a given
number of points. Since the elements used for synthesis are not ideal,
it is of little value to talk about zero synthesis error.T One ray

wonder whether with fewer elements [i.e., fewer terms in Eq. (4.3%)]

one may not have at times a smaller synthesis error than one would

+ By synthesis error the overall error is meant, i.e., the error due
to approximation in addition to the error caused through use of
physical elements.
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obtain with more elements (even though the approximation error is
reduced). Also, in general, for the sake of economy, one would like
to have the maximum error that can be tolerated, since, by and large,
a design allowing a greater error is less costly than one allowing a
smaller error. All this reduces to the fact that one would like to
design with as few elements as possible, and therefore, in the typical
case, Case 3 is of most importance and interest.

Case 3 gives rise to an overdetermined system of egquations.
The characteristics of such a system are such that, in general, no
equation will be solved exactly [i.e., the right side of Egs. (4.26)
will be different from zero]. Since this case is of most practical
interest, a theory treating it will be developed in detail in the
succeeding section of this work.

4.2.2 Solution of Overdetermined Systems of Equations by

Means of Discrete Tschebyscheff Approximation. In this section the

overdetermined system of equations obtained in Egs. (h.26), will be
solved by means of discrete Tschebyscheff approximations. The theory

of discrete Tschebyscheff approximations to overdetermined systems

will be reviewed. It will be shown that this theory provides a

solution to Egs. (4.26). The right side of Egs. (4.26) will, in general,
be different from zero, and comprises an error. This error will be
minimized in Tschebyscheff sense.

The mathematical theory of the applications of discrete
Tschebyscheff approximations to overdetermined systems has been treated
by Vallee-Poussin [28]. More recent works in this area are due to
Collatz [5] and Stiefel [23]. The following review of the theory of

discrete Tschebyscheff approximations to overdetermined systems follows
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closely along lines of Stiefel [23]. The development is in a form
suitable for solution of the problem stated.

4L.2.2.1 The Theory of Tschebyscheff Approximations to Overdetermined

Systems of Equations. The theory of discrete Tschebyscheff approximations

offers a solution to an overdetermined system of equations. If there

are p equations such as Egs. (4.26), in n unknowns ry, Tpy «+., T, and

oY
if p > n, then, in general, one can not satisfy all p equations
simultaneously. Hence, any choice of values for F15 Toy eeey Ty,

will cause an error different from zero on the right side of Egs. (4.26).
The discrete Tschebyscheff approximation theory provides a means for
finding those values for the unknowns Ty Toy eees Tpo which'will
minimize the magnitude of the maximum error on the right side of Egs.
(4.26).

The process of finding the desired values for Tis Ty ooy T,
consists of a number of cycles. Each cycle is composed of the following
four steps:

(1) A set of n+l equations for the n unknowns T1y Tos eeey
rn is selected out of the p given equations. This set is called a
reference.

(2) The Tschebyscheff error for the selected reference is
computed.

(3) A set of values ry, Tps ++., T is obtained corresponding

n

to the reference.
(4) Errors for the p equations are obtained.
These four steps complete the cycle.

If the error for any of the p equations does not exceed the

reference error, the set of ry, r,, ..., r computed in (3) is the

2)
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desired one. If there is an equation which has an error larger than
the reference error, then this equation must replace one of the equations
of the reference. A replacement process is discussed which provides
definite rules determining the equation to be replaced. The n remaining
equations of the old reference and the new equation form a new reference,
thus providing step (1) for a new cycle.

It is shown that the process is convergent and that regardless
of the initial choice of reference the process terminates always with

the same values for Ty, T vey T The details of the theory will

2)
follow below.

Case 3 gives rise to an overdetermined system of equations for

D unknowns Iy, T, ..., T (rO =1).
Hence,
hvrn + hv+lrn-l + ..o +h, T+ h, 0 (4.27)
(v=12 ..., p)
where p > n.
One can interpret the system of equations in Egs. (4.27)
geometrically by considering every point P (rl, r2, coey rn) to be a

point in n-dimensional Euclidean space R®. Since p >n, there is, in
general, no point in Rn with coordinates which will satisfy Egs. (4.27)
forallv (v=1, 2, ..., p). If the coordinates of an arbitrary point
P are substituted into Eqs. (4.27), then in general, there will be an
error on the right side of some equations of Egqs. (4.27), rather than

zero. If this error is denoted €, then,

& = hvrn + hva—lrn-l Foeee t hv+n-lrl + hv+n

(v=12, ..., p) (4.28)
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The Tschebyscheff approximation problem consists then of finding a

point P such that
Max ]eV] is a minimum

(v =1,2, veny P) o
The point P of the best approximation is named the T-point (the
Tschebyscheff point).
Let us introduce the concept of a reference. The term
reference shall denote the choice of (n+l) hyper-planes from the p

given hyper-planes El’ E vey Ep of the Euclidean space R* [i.e.,

2)
choice of (n+l) equations from the p equations in Egs. (4.27)]. The
greek letter index ¢ will denote a choice of n+l numbers from the

series 1, 2, ..., p. The reference will be denoted as [Eg].

Let

(v = 1,2, ..., p)
be the normal vectors of the hyper-planes. Since the space is an
n-dimensional one, there are only n independent vectors. Hence, n+l
vectors are linearly dependent, and there exists a set of numbers A

such that:

5 A = 0 . 4.2
(531) & (4.29)

The sign Z' denotes that only the selected (n+l) terms are summed.
Equation(?2%%9) gives the dependence condition between the normal
vectors. In addition, kc # 0 for all values of g, since otherwise
the Euclidean space could not be n-dimensional.

A point P 1is denoted a reference point if for its residues

€ either
g

sgn €y sgn xc for all o

or

sen € -sgn A for all o. (4.20)
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This condition can be interpreted geometrically. In three
dimensional Euclidean space R5 it characterizes the points inside the
volume formed by the reference planes. In the general case, Eq. (k.30)
limits the magnitude of the error [eci. Thus a reference point in RY
can be considered to be located "inside" the volume formed by the hyper-
planes.

An example will be worked out to illustrate the concepts
introduced above. Let the space be two dimensional (n = 2), hence the
hyper-planes are straight lines. Let the following five equations be

given (p = 5):

El: .5r2 + 5rl + 1.5 = 0
E2: 5r2 + l.5rl + .5 = 0
EB: l.5r2 + .5rl - .5 = 0
Eu: .5r2 - .5rl + 2 = 0
E5: -.5r2 + 2rl + 4 = 0 .

If the reference is composed of EB’ Eh’ and E5, then the

vectors normal to the reference are:

x, = (1.5, .5)
Xl{» = ('5,' ‘-5)
X5 = ("5) 2)

By Eq. (4.29), there exists a set of numbers A such that

(%) KUXO' = O
Hence,
1.5}\.3 + .5h4 - .5%5 = 0
and 5hy = 5N, + 2N = O
. 5 . l+ 5 -
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] S - -2
Let KB 1, then hu 5 and k5 3

These concepts are illustrated in Fig. 4.2. The vectors X, (v =1, 2,
..., 5) are orthogonal to their corresponding planes (i.e., X is

t
orthogonal to Ec)' LA is a sum of three vectors. Since,

' (3)

z Acxc = 0, these vectors form a triangle.

(3)

X
g a

From Fig. 4.2, one notices that the point P(-2,-2) is located

inside the triangle formed by the reference planes EB’ Eu, E5. Hence,
P is a reference point, and its errors must satisfy one of the two
conditions of Eq. (4.30). Substitution of r, = -2andr, = -2,
into E5, E,, and E5, yields 55 = -4.5, €, = & €5 = 1. Hence,
the condition sgn €, = -S€0 A is satisfied for all o (¢ = 3, 4, 5).
By Eq. (4.28)
€y = hcrn + ho+lrn-l + e + ho+n-lrl + h0+n
Therefore,
Kcec - Xo(horn * hc+1rn-l T * ho+n-lrl * hc+n)
Since,
s T (ho’ Boprr o0 c+n-l) -
= ho n* h0+lrn--l * * ho+n-lrl ?
hence
xcec = Kgxc + xohq+n .
Due to Eq. (4.29),
] Z' u
Ny = Ao (4.31)

(n+1) (n+l)
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Because of the condition Eq. (4.3%0), either all A€, are
positive or all are negative.

Therefore,

(§+l)|xci-‘e6| = + (§+l)x6ec = + L Ah (4.32)

One shall denote by the term center of a reference that reference point

all of which errors €5 have the same magnitude |e|. Hence,

e, = e(samn) . (4.33)

g

One can interpret {e[ to be a measure of distance necessary to bring
the hyper-planes €5 to a mutual intersection. One can compute the

error at the center from Eq. (k4.31),

L ANe_ = 2L Nh s
(n+l) g o (n+l) o o+
or
€ (§+l)xo(sgn A = (n+1)h°h0+n
But
Mlsen ) = || .
Hence,
gnél}AO‘ntHn . (:’4.54)
NI
(n+1) ¢
By Eq. (k4.%2)
Gy Fom = E LIl
Therefore ( Z,)l)\c “le gl
e = A% : (4.35)
LNl
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From Eq. (4.%5) it follows that

LoIn] = Z In]- .
ol = 2 el
Let
Min.lecl = e -
Then
A PN L In] .
le] (3s1) ! O'I ‘ekl (n+l)l di
Hence
le] = Min Iecl .
Similarly
el = wex le | . (1.36)

This result is valid at every reference point and leads to the following

theorem.

Theorem 2
The center of a reference has the property that its error
satisfies Eq. (4.%6) and is the T-point of the (n+l) reference hyper-planes.
One can prove the uniqueness of the T-point for a system in a
general position (no hyper-planes are parallel to one another) by assuming

that there exists another T-point, T', which has errors eg . By Eq. (4.36),

le|] = Max |e'| .
c
The two T-points must satisfy the requirement that their maximum errors
are equal. By Eq. (4.%6)

le| = Max |e!] .

Then
1
let] = |e] .
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Let eU denote the error of the T point relative to €5
Therefore,

> -€e! > 0;
whenever, eU >0 then eU eo 0;

and

whenever ¢ < 0, then e _ - €' < Q.
g - o g
If the first condition of Eq. (4.30) is satisfied, i.e.,

if sgn € = sgn A
g O'—g g’

3 - 1
then, whenever € >0, N >0 and A/ (e eo) >0. If e <0,

ag

- 1 $ - !
then A < 0, and %.G(eo ec) > 0. Hence, in both cases all kg(e0 eo)
will be positive.

If,

sgn eU = =~ sgn Xc R

- 1
whenever € > 0, then A_< 0 and xc(ec eg) < 0. If € <0, then
ka > 0, and }\.o(e0 - e;) < 0. Thus, for the second sign condition
. - . o .
(i.e., Sgn € sgn kc), all )\.G(e0 eg) will be negative.

The above shows that for any one of these four cases all
the expressions ha(eo - e;) will have same sign.

From Eq. (L4.31),

L, Ne_ = 2 Ah = Ae' .
(n+1) ©° (n+1) ¢ 00 (n+1) © ©
Therefore,
1 1]
% N " Lz gL = 0
(n+l1) (n+1)
and
t
t = .
(n+l)x°(€° ) cc) 0

Since xg # O, and all terms in the summation have the seme sign,
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it follows that e0 = €' . This shows that T and T' are the same

'
o}
point.

One sees, therefore, that the (n+l) hyper-planes in the R®
space which are in general position (no two planes are parallel to one
another) have only one T-point, which is in the center. In the general
case of (n+l) planes in R” one could expect a convex polyhedron consist-
ing of T-points.

It has been shown that, given a reference [Eq] consisting of
(n+l) equations (i.e., hyper-planes), there exists a unique T-point (if
the hyper-planes are in a general position) with its corresponding
error €. If the coordinates r, Ty eees Ty of the T point are
substituted into the remaining equations (other than the reference),
one of the equations, Ei’ may have an error whose masgnitude exceeds
le[. Now, a new refergnce can be obtained consisting of Ei eand n of
the hyper-planes in the old reference. Hence, Eg "replaces" one of

the hyper-planes of the reference. These ideas are expressed in the

following theorem.

Theorem 3

Given a reference [Ec] and a corresponding reference point P,
let Ei be an additional hyper-plane which is not in the reference. Then
one can replace one of the (n+l) hyper-planes of [Eo] by E; and obtain
a new reference for which P is also a reference point.

Proof :
Assume that the given reference is [EU] (=1, 2, ..., n+l),

and let B be the additional hyper-plane. Equation (4.29) yields
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AXy + AXs + eee + A = Q;

1%t M%o n+l n+l

Since P is a reference point in the reference [Ea]’ hence, for its

residues €5 the sign rules are valid. Consequently, either

sgn € _ sen N (6 =1, 2, ..., n+l),

or

sgn eo -sgn ha .

Consider in the following the first of the two cases.

Since the system is n~dimensional, the unit vector X 40 is

linearly dependent upon the unit vectors in [Ec]' Consequently, a

relationship exists between the (n+l) unit vectors in [Ec] and x_ -

Hence, numbers exist such that the relationship

My

My TRt oeee F 0 %ne1 T e T 0 (4.37)

can be assumed.

But
xlxl + AEXQ + ce. + Xn+lxn+l = 0 .

Therefore:

Mrgap + iy = Ay )Xy + e+ (M= N g dxg g = 0

MXpo + (Nghy = Mug)xg + eee b (N g = N up)x L =0

e ettt enieateeteensenanacestesacenensnenaanaasnanes (4.38)

+ (N

A n+1fn” M Mosl

n+lxh+2 + A

(n

n+ltl T )%= 0

l“n+l)xl Toees

Case 1: The error € of P relative to En+ is positive. Then, one

+2 2
shall replace that hyper-plane which is designated by the number given

by
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“’0
Min o= (o0 =1, 2, ..., n+l).
g

One can note that no two quotients are equal. If this were not the
M K

case, if, say XZ = Xi-, then “zkm - “mkl = 0, and one coefficient
in the mth equation of Eq. (4.38) will vanish. But this will
contradict the assumption that the system is n-dimensional (since
if

A X +a.X. + o0 + 8

mn+2 - 171 m-1*m-1 * Cper¥mer *

+ 0

TRy % T Y T T

the n-unit vectors are not linearly independent).

Assume that { yields the minimum.

Then
Hl M
— <2 (0 = 1,2 1
hz }\ = Ly ,o-o,l"l,l"l‘ ,""n+l)
o
Assume
xz >0, hk >0
Then
M M
L
r M
Mo < ighy
Hhy = R >0 end N >0
Hence,
sgn (hzuk - uzkk) = sgn (szk) .
If
kl < 0, xk >0
then

L R

X!“k - “lhk <0 and xlxk <0 .
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Hence

sgn (M = wN) = sen (AN )

It is obvious that the same is true for

N, >0, AN <Oemd A <0, A <O.

Therefore,

sgn (A = u,N) = sen (NN .

Consider the fth equation in the set of Egs. (4.38). This equation

has the form
M¥aap iy = M dxg e+ Ny g = N g x4

gy A e O = N X

Division of this eqguation by sgn A, will yield the following relation

1

for the signs:
+ , sgn Xl, ceey 58N K!-l’ sgn K£+l’ ceey 8GN xn+l .

But, by assumption,

sgn xd = sgn €c
and
€ relative to E >0 .
n+2 n+2
Hence the errors €nap? €12 tver €g 10 €p gy vees €0 relative to

[Ec] (0= 1,2, ..., £-1, £41, ..., n+2) have the same sign as the
corresponding A. The new coefficients of Eq. (4.38) have the same

signs as the corresponding eo. The coefficient of Xn+2 is positive,

but, € > 0, hence P is a reference point and Theorem 3 is proved

n+2

for this case.
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Case 2: The error e relative to En+ is negative. A discussion

n+2 2
similar to the above will show that the plane with the number given by
Hg
Max = must be replaced.
g

In the case that €n+

5 = 0, P lies on En and one can consider

+2
it to be a special case of either case.

A consideration of the second sign rule (sgn ec = -sgn xc)
will cause an exchange of max with min and vice versa.

The above gives rise to the following table for the number

of the plane to be replaced.

TABLE IT

RULES FOR THE HYPER-PLANE TO BE REPIACED

Hyper-plane

sgn € €i+ to Be Replaced
. Mg
sgn ko >0 Min .
g
Ho
sgn Kc <0 Max .
g
Mo
~-sgn kc >0 Max -
g
Hg
-8¢ < —
sgn xc 0 Min kg

T relative to E, .
i

An example will be worked out which will illustrate the
replacement process. Let the space be 3-dimensional, hence n = 3.

Let the following four equations be given:



E, 2X +3y +2 = 1 (1)
E,: X -2y + 32 = -1 (11)
E3: X+y-2 = 5 (111)
E): X+ 3y -2z = 12 (1v)

Let the reference point be (2, 1, -3) and let E_. be given by -3x -10y +

5
8z = -20.

Then for [EU], the normal vectors are

Xl = (2) 3) l)
Xy = (1, -2, 3)
X3 = (l} l) 'l)

x, = (1, 3, -2) .

From
lel + k2x2 + x3x3 + kuxu = 0,
one obtains '
le + kg + x3 + ku = 0
3h1 - 2&2 + KB + 3A4 = 0
Kl + 3%2 - h3 - Eku = 0
let xl = 5, then hz = =7, x3 = 10, xu = =13.
Now
€ = 2(2) +3(1) +1(-3) -1 = 3
e, = 1(2) -2(1) +3(-3) +4 = -5
€3 = L2) +1(1) -1(-3) -5 = 1
€, = 1(2) +3(1) -2(-3) -12 = -1.
Therefore

sgn Ka = sgn eo



Since
x5 = (“3: -10, 8),
and by Eq. (4.37),
HiXq + HpXy + p3x3 + X, 4+ x5 = 0,
therefore,
Uy F oy 4 My + )y - 3 = 0
3up - 2uy 4+ My + 3uy - 10 =0

|
(@]

My + 3Mp = Hg - 2w 4 8

The last system of equations is undetermined. Since any exact solution
will be satisfactory, one unknown can be assumed arbitrarily.

The error 65 is given by

€5 = (=3)(2) - 10(1) +8(-3) +20 = =10 .
Since €5 < 0, sgn Ac = sgn ecg therefore one must replace
¥
that equation which is designated by the number given by Max Xg .
Mg o
The N are
o]
P11 2 M3 3 M o
= =2 = sy T % oSy 7T T
kl 5 ke -7 x3 10 Au =13
ot 3 "3
Since Max — = = » hence E_ is to be replaced.

N 10 X; 3

The sbove example illustrates the process of finding the
equation to be replaced. With the aid of this process the problem of
an overdetermined system of equations can be solved. If p equations

in n unknowns are given one will choose an arbitrary reference [EU]

and compute its center Tl’ and its error Ql (note that the error
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of Tl relative to any equation in [Ec] is & Then all the errors

l)'
€ of Tl relative to the remaining equations are calculated. If all
these errors €; satisfy the condition ]eililéll, one has the solution
of the problem and the process terminates. If there exists one
equation for which |e, |>|e|, the above-illustrated replacement process
should be applied. One equation is replaced by the new one, thereby

. A
forming a new reference. The new center T2’ and the new error €, are

2
then computed. It is to be noted that for the second reference the
absolute value of the error is larger than previously (i.e., lgel >
|21|). The process is now repeated. It is to be observed that the
error increases monotonically (i.e., [le > lég-ll)’ hence, this
insures that the process will terminate after a finite number of steps,
since, under the condition on errors of monotonic growth, the same

reference cannot be used twice. When the process terminates, one will

have the final reference center T and the final error €. Then obviously

]el > !evl (v=1,2, ..., p) (4.39)
and € is taken relative to its corresponding hyperplanes. Obviously

any point P has, by Eq. (4.36), errors eé relative to the last reference

such that
le] < Max |e'| .
- a
But
Max {eél < Max |e_\'f| (v =21,2, ..., D) .
Therefore

1, 2, «.v, p) . (4.50)

le] <Max fe!| (v

This can be stated as a Theorem.
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Theorem 4

The last reference center is the T-point of the p-equations.

It is to be noted that the last center has the property that
the magnitude of any of its p errors is at most equal to the magnitude
of €, the error of the last ereference.

The uniqueness of the T-point can be shown by assuming the
existence of another T-point T', with error ¢'.

Then
vex [ef| = le| (k=1,2, ..., p)

But for any point P,
vax le | > |e|

where o denotes the equations of the last reference (with center at T),

and l%xli! > Max k;{@<=l,2,.”,pL

Therefore,
Mex le | > Max |e!] ,

and T' is also a T-point of the last reference. But uniqueness of the
T-point in a reference was proved already. Hence T' and T are the same
point.

The above shows that the replacement process may be initiated
with any reference and will always yield the same T-point. It also
shows that the last error ]el is the sought approximation error.

4.,2.,2,2 Application to Solution of Overdetermined Systems of

Equations. The theory of the preceding section can be applied to find

those values for the unknowns Ty To

ceey T which will minimize the
magnitude of the maximum error on the right side of Egs. (4.26). The

magnitude of the maximum error, corresponding to ry, T ...y I _can

27 n

also be found.
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Apparently, the coordinates of the T-point, in the Euclidean
space Rn, have the desired property. Hence the coordinates of the

T-point are the desired values for ry, T ey T

27 " n

The coordinates of the T-point can be determined from the

last reference. By Egs. (4.28),

& = hvrn + hv+lrn-l oo t hv+n-lrl + hv+n

(v =1,2, ..., P).
For the last reference the error € can be determined from

Eq. (4.34) as Z' b

(n+lz g g+n
€ =

3
(n+1) lkc!

where o represents the last reference. The error of any eqguation of

the reference is given by Eq. (4.33) as

€5 = e(sgn xo)

Therefore,

hr +h

&n a+lrn—l + ... + h

o4n-151 * Bgyp - € S8R A =0, (k.41)

where o represents the n+l equations of the last reference. n of the

r

n+l equations of the reference will be used to find Tys Tpy evey Tpo
The magnitude of maximum error in Egs. (4.28) is Ie!.
Hence, one has found the desired values for !e| and Tis Tpy weey Ty

thus solving the overdetermined system of equations.

4.2.3 Formulas for Optimum Poles. With the method of the

previous section by approximate values for the functions of the roots

Tis Tpy eees r ~were found. By the fundamental theorem of algebra the
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roots of
N rlyn-l + veo 41 = O

are

yl’ yQ’ ey Y

From these values one can find the exponents of the approximating

function, which are the pole positions.

By Eq. (4.8),

skd
e = Y (k =1, 2, , n)
Hencé,
Skd = [n N
or
S - % in
k - g *ttVxo

which ylelds the desired pole positions.

(4.42)

(4.43)

If Vi is a complex root, then, since the algebraic equation

has real coefficients, there must exist a conjugate complex root.

Consequently, if: 5

j(arc tan -3 )
= + J8, = 248° e 7y
Y T T TI% T VTt Oy
_5k
and jlarc tan — )
N = 7y, - Jjb = 72 + 52 e 7k
k+l k k k k ?
then
o)
s, = % (4n «/72 + 85 4 J arc tan S ) =
k a k k 7k
= A om (72 + 62) +§ % arc tan EE
= 23 e %) *J 3 T
Similarly,
-5
1 (22 . k
Sy.1 = 3 (in 7 + 8+ J arc tan —7; )
o
1 2 2y .1 %
= 55 ln(yk + 5k) - § 7 arc tan >

k

(b.uk)
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It is to be noted that the principal value of the arc tan

has been listed in Egs. (4.44). One could also use for the imaginary

e}

part of Eq. (4.44) the expression % (arc tan — + 2In),

where

The approximation apparently will be unaffected when the conjugate

complex poles are moved vertically a distance + géﬁ.
If Vi is a negative root then the pole is again complex, as

it is shown below.

R P I P
s, = 3 (n |y ] - dn)

Since also -[yk| = lyk[e'JK, one can have also the representation
S = % [4n !Yk‘ - Jnl

Therefore, in case of negative y; one can use the conjugate complex

pair in the approximating function.T

Ir Y = o,
then
Sk = - 00
and -s. t
k
Ake = 0

Hence, in this case the term containing this pole can be eliminated from

the approximeting function. These results are listed in Table III.

+ It is to be noted that here, too, the principal value has been used.

1 . L
In general, s, = F In lykl +J3 (22 +L)n (£ =0, +1, +2, ...).
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TABLE III

FORMULAS FOR POLES

Yy S Comments
1
>0 a-Znyk
1 .1 .
<0 3 lnlyk]+3 3 introduce an additional

1 .
pole at 3 lnlykl-Jn

=0 - o eliminate the term
containing this pole
from the approximating
function

o)
. 1 2 .2y . 1 k
Y +38y 5 1n(7k+8k)+3 7 arc tan 7;

The requirement of stability demands that Re (sk) S 0. This requirement
restricts (yk) to the unit circle. In general, if the ordinates h  were
taken to include the decaying part of h(t), then this reguirement should

reflect itself in decaying exponentials.T If this is not the case, one

+ The requirement of stability demands that Ofwlh(T)‘dT be finite.
This follows from: |eo(t)| = | Ofwh(f)el (t-t)at| [where e (t) is
the response, and ei(t) is the input]; then
leg(t)| < f7In() e  (t-1)|atr <M f¥|n(v)|at, where M is the
maximum of e, (t). Now, if for bounded e; (t), e (t) is to be

bounded, then Of°° Ih|(7)]dT < .
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can always go back and include more decaying terms (more equations for
decaying ordinates). Also, in many instances it has been found that
if there were a pole with a positive real part, the residue proved
to be very small, thus providing a negligible contribution to the
approximating function and enabling one to neglect this pole altogether.

It is of interest to know whether any poles in the right-hand
plane are to be expected, prior to the solution of the algebraic equation
for y, (k =1, 2, ..., n),vhich is probably the most tedious step in
the process. Since whenever all Yy are in the unit circle all poles
will be in the left-hand plane, it is sufficient to determine whether
all Yy are inside the unit circle. This can be done by transforming
the interior of the unit circle in the y-plane into the left-hand w-
plane, and applying the Routh's criteria [3] to the transformed
polynomial, to determine whether it is a Hurwitz polynomial. The
Routh's criteria will also reveal which constants ry (k =1, 2, ..., n)
contribute to the instability, and by how much one has to adjust them
in order to bring the poles to the left-hand plane (although the
algebraic expressions are difficult to handle).

A transformation which maps the interior of the unit circle
into the left-hand plane is the bilinear fractional transformation [L].
In particular, one can map the unit circle in the y-plane into the

imeginary axis in the w-plane as shown in Fig. 4.3.
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y— PLANE W - PLANE

>
FIG. 4.3 TRANSFORMATION OF THE INTERIOR OF THE UNIT CIRCLE
INTO THE LEFT-HAND PLANE
If one requires that when
yl = J, wl = Js
y2 = —cj) W2 = -j;
y3 = 1, w3 = 0
Then from
(w-w)ly -wg) (v - 9Dy, - ¥3)
- )
(W - W3)(W2 - wl (y - Y3)(y2 - yl)
one obtains
(w=-4)(=3) _ (y-3)(-3-1)
w(-J - (y = 1)(-3 - 3J)
Hence,
-1 }
wo= g (4 (1.45)

is the desired transformation. That this transformation maps the

interior of the unit circle into the left-hand plane is seen from
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the fact that the point y = O maps into w = -1, i.e., the left-hand

plane.
Solving for y one obtains
1 +w ‘ Ll
y = 7 gl . (4.46)
If Eq. (4.46) is substituted into Ey. (4.42) the result is:
(1 + )" + rl(l + w)n_l(l - W)+ ... 4 rn(l )T = 0 L (kA7)
If one denotes the coefficient of Iy by ek then,
ék = (1 + w)n_k (1 - w)k
n-k n-k k k
. n-k- = k- k
= [ Z(g)w ‘J] [.Z ()% 9] (1)
J: J:
n-k n-k k k
= [( o) )wn-k + ( 1 ) Wikl + i][(o)w - (l)wk-l+ . 4(-1)%(<Dk
n ky yn-k
- onr r e ) Go) o
J=0 m=0
. n-j .. A .
Therefore, the coefficient of w in ¢, 1is

j n-k
EILI B 9 [ G
m=0

and, consequently, the coefficient of Wi in Eq. (4.47) is

1213 (-1)% r, [% (I}I{I) (fiifi) (-1)m] ,
k=0 m=

where ro =1,

Therefore, Eq. (4.47) can be written as:

P D ke (2GR ) - oo L e
J=0 k=0 m=
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If the Routh's test is applied to Eq. (4.48), one will

determine whether any y, (k =1, 2, ..., n) lie outside the unit circle.

4.3 The Determination of Residues

In the previous section the poles have been determined by the
method of discrete Tschebyscheff approximations to an overdetermined
system of eguations. It will be shown here that the same method can

be applied to determine residues.

By Eg. (4.5) and Eq. (k4.7)

n sktm
h = h{t) = Z Ae
m m k=1 k
Let st
e = bk_n] ] ()4‘.)4'9)
then
n
h = kzlbkmAk m=1,2, ..., a) . (4.50)

Eguation (4.50) represents a system of g equations. Since g > n,
the system is overdetermined and can be solved by means of the replacement
process. The resulting residues will then minimize the error in h(t)
in the Tschebyscheff sense at the t_ (m=1, 2, ..., q) points of the
time intervals. Since the approximating functions have exponentially-
decaying envelopes, it can be argued that for sufficiently small intervals,
a good approximation at the interval points will yield a good approxi-
mation between the interval points. The application of this method shows
that in general good approximations are obtained, and that the Tschebyscheff
error |e| (which is the error of the last reference) is a meaningful

indicator of the overall maximum error to be expected.
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Ir s, = a£+331 is a complex pole, then let Spl = al-JBI =
S, - Hence bzm = b£+l,m and Al = A£+l' Ir Al =8a, + Jbl then
s,t 5,t
X I 'm . L'm
Doty ¥ Ppaa g = @ v J,) e t(a, - gyl e =
aﬂtm
= - : = 1 1 .
= 2e (al cos B,t - D, sin Bﬂtm) a, @ +b, b (k.51)
where aztm
1 =
alm = 2e cos Bltm
and
a,t
Lm
! = - i . 0
blm 2e sin Bt (k.52)

It is somewhat simpler to solve eguations for a, and bz

rather than A, and A Hence, if there are n poles, 2w of which are

! 241°

complex, then one may use the form

n-2vw %
h = 2 b A + (at a, +b' Db,) (4.53)
m k=1 km 'k 1=1 Im 4 L+4m £
where
o _ sktm
km - €
a,t
Im
1 =
&m = 2e cos thm
altm
1 -— - 5
by, = -2 sin B,t . (4.54)

It should be noted that if desired the residues may also be
determined by means of the least-square-error criteria [6,11]. The

poles can be determined as before.
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L.4 The Discussion of Errors in the Approximation Process

The purpose of this section is to discuss the errors of the
approximation process. A comparison will be made between an approxima-
tion optimizing residues only and an approximation optimizing both
poles and residues. A rough relationship will be developed between
the errors in determination of pole locations and the errors at
residues. It is to be noted that the finel Tschebyscheff residue
error is the error of the approximation.

From Egs. (4.7),

n Sktm
h = L Ae (m=1,2, ..., q).(k.55)

k=1
Equations (4.55) form an overdetermined set and are, therefore, not

satisfied exactly. The error of the approximation at the g points is:

n sktm
€ = h - 2 Ae m=1, 2, ...,q)(4.56)
n m k=1 k
Hence,
n sktm
h -¢ = Z Ae (m=1, 2, ..., gkl.57)
B k=1

‘In Chapter IV, the relationship between Ty

and h_ (v =1, 2, ..., p) vwas derived as Theorem 1 ,

n
2

k=0

robex = O (v=1,2, ..., p) .(4.58)

The right side of Egs. (4.58) is, in general, different from
zero, since Egs. (L4.55) are not satisfied exactly. If the error on
the right side of Egs. (4.58) is denoted by E&, then,

n

e, = X

v % rBak (v=21,2, ..., p).(4.59)
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Equations (4.57) are satisfied exactly. Hence, if (hi-ei) is substitut-
ed for h, in Egs. (4.58), the right sides of Egs. (4.58) will be
exactly zero.

Therefore,

L r (h

kop BK ) =0 (v=1,2, ...,p)h.60)

vk T Svak

From Egs. (4.60) it follows that,

n n
2 I‘n-khw-k L

- (v=1,2, ..., p).(k.61)
k= 0O k=0

rn—k€v+k

But by Eq. (4.59), the left side of Egs. (L4.61) is E;. Hence

n
e, = L T €k (v =1,2, ...,p). (4.62)
k=0
Expansion of Egs. (4.62) yields (ro =1),
€ = T € 4T 1€, ... €
€ = Tp€p F T g€t e. F €
€ = Tnp tTpiifpa1 tott tCpuy (4.63)

The above equations relate errors in the pole locations (E&)
with the final errors (em). It is seen from Egs. (4.63) that if E&
(v=1,2, ..., p) and r, (k =1, 2, ..., n) are known, Egs. (4.63)
form an underdetermined set for the (g = p+n) unknowns € (m = 1, 2,

...y, P+n). Thus, there are infinitely many sets of values for €,

(m =1, 2, ..., p+n) which will satisfy Eqs. (4.63). The approximation
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process will permit one to find that set of values for €. (m =1, 2,
..., p+n), which will be & minimum in the Tschebyscheff sense.

However, sets of values for E& (v=1,2, ..., p)and r, (k =1, 2,

k
..., n) different from the previous ones, may produce a different
Tschebyscheff minimum set em(m =1, 2, ..., p+tn). It is desired, of

and E&, which will yield the

course, to determine those values for Ty

minimal set € However, the E& (v =1, 2, ..., p) are not independent,
but are given by Eq. (4.59). Hence, one has freedom only in the choice
of values for r, (k =1, 2, ..., n).

It follows from Egs. (4.63) that an optimum choice for the
Ty will be one which will cause all E§ to be zero. If all E& are zero,
all € (m =1, 2, ..., p+n) will be zero, too, thus yielding zero
error. But, whenever,p > n there does not exist, in general, a set
of r, (k =1, 2, ..., n) vhich causes all E& (v=1,2, ..., P) to

be zero. Hence, the best choice is to select r, (k =1, 2, ..., n) so

k
as to minimize E; (v=1,2, ..., p). This has been done. In the
process developed in Section 4.2, pole locations were selected which
minimize E& in the Tschebyscheff sense,

It is of interest to compare an approximation procedure
which will optimize residues only with an approximation procedure
optimizing both pole locations and residues. One may inquire, for
example, how many terms must the approximation function have (i.e.;
how large is n?) in both cases in order to produce zero error at the
interval points t (m=1, 2, ..., q). The difference between the
number of terms in the approximating function (which is proportional

to the number of elements in the network) required for both cases will

provide & measure of comparison.
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It follows from Egs. (4.56) that for arbitrary pole positions
n = q is needed to cause all the e (m=1, 2, ..., q) to be zero.
However, if both pole positions and residues are optimized, Egs. (4.63)
indicate that n = p is sufficient for all E& (v=1,2, ..., p) to be

zero, and then all e (m =1, 2, ..., q) can be made zero also. Since

nope B

p = g-n, hence n = in the latter case, thus requiring only half as
many terms as in an approximation optimizing the residues only.

A rough relationship will now be developed between the
maximum ]E&i (v =1, 2, ..., p) and the maximum ]em| (m=1,2, «.., Q).
This relationship will enable one to estimate the expected maximum error

in the early stages of the computational process.

If the fth equation in Egs. (4.63) is squared, one obtains,

© = % 410 e + + e +ore (r .e + +e, )
I 7 "n 4 n-1"4+1 Tt 24n n{ “n-1"2+1 e £+4n
* 2I‘n-leﬂ+.'L(rn--2611+2 Toeee ¥ €£+n)
+ 2I‘J_Eﬂ-f—n-le:,Hn ) (k.64)
If all equations in Egs. (4.63) are squared and added, then,
P p D
E T = r2 T 24t Y o€ 4.+ D€ (4.65)
v n v n-1 v+l v+4n
v=1 v=l v=1l v=1l

+ (cross-product terms)
Since, in the cross-product terms, all e (m=1,2, ..., q)
are equally likely to be positive as negative (since €, are points on
the Tschebyscheff error curve), it can be argued that the cross-product

terms contribute a small amount to the right side of Eq. (4.65). Then,
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o]
<

12

iz
sV

P P P
Z €§ + ri_l 2 €3+l +oeee + 0 e$+n . (4.66)
= V‘—'l V=l

<
I

’...J
<
}—J

Similarly, it can be argued that for sufficiently large p

2
v+K

~
~

Ngke
ngie

63 € (k =1, 2, ..., n). (4.67)

v=1 v=l

1
It

The above meahs that it does not matter too much whether the

squares of the p errors are summed from € to € or from €41 to €p+k'

1Y
If Eqs. (4.67) are substituted into Eq. (4.66) one obtains:

§-2

v = \ry ney toeee v 1) z ef_ . (4.68)

v=1

Taking square roots on both sides of Eq. (4.68) yields,

L L

(vilzf) : ~ (ri + ri_l oo ].‘)2(?15;.l 63 )w2 ) (4.69)

It can be observed, that if E& vs. v i1s plotted, and a curve
is drawn between the points, such a curve would be similar to a curve
cbtained from a plot of €, VS. V. FEach curve will have n+l ripples,

but the curves will differ in amplitude. The amplitude of the E& curve

will b; € ey’ and the amplitude of the €, curve will be ey .p Thus,.
if (vgl €, is equal to € iax times some constant k, then véi €
will be approximately equal to € max times the same constant k. This

result can be expressed as,

— ~

2 2
mex €max \/rn + rn+l + .. + 1 . (LL.'TO)

m

Therefore,

€ nax

- \/ = - . (4.71)
rn + rn-l + o0 + 1

€
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Equation (4.71) relates the error at the pole positions

with the final error (e ). It can be obverved that there

(E-max) max
is a degree of proportionality between the maximum error in the pole
locations and the final maximum error. Since at end of the first cycle
of computation the maximum error obtained is larger than Eﬁax one has
an upper-bound estimate on the expected approximation error quite soon
in the process. It should be noted, however, that Eq. (4.71) provides

a rough estimate only, since several assumptions were made in its
derivation. In a particular case, these assumptions may not be met;
hence the final error may differ substantially from the one predicted

by Eq. (4.71).

In summary, it has been shown that there are definite relation-
ships between the errors in pole locations and the approximation errors
(residue errors). Also, it has been shown (as was expected) that an
optimization both of pole locations and of residues will produce better
results (i.e, smaller error) than an optimization of residues only.

Also, a rough relationship was developed between the maximum error in

pole locations and the final maximum error.

4.5 Applications

In the preceeding sections of this chapter the impulse-response-
approximation problem has been stated and solved. The proposed method
consists first of determination of poles, and then of determination of
residues. In this section two examples will be worked to illustrate the

suggested process.
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4.5.1 Determination of a Network with Impulse Response ——E——E.
(1+t)
In the first example considered, h(t) is given as
h(t) = — (k.72)
(1+t)

It 1s desired to find an R-L-C network, N, having an output
voltage h(t) given by Eq. (4.72), when excited by an impulse-voltage
input 5(t).

A plot of h(t) vs. t is presented in Fig. L4.4k. A choice of
the interval spacing d, and the number of interval points g, must be
made. The choice of 4 is dictated by the behavior of h(t). Since
h*(t), the approximation to h(t), is a sum of decaying exponentials
and of decaying sinusoids, d must be selected in such a way as to
prevent the error between the inverval points from exceeding the error
at the interval points. As a simple guide for selecting d, one may
imagine h(t) as being replaced by a series of straight line segments
whose end-points are d seconds apart, and coincide with h(t). (See
Fig. 3.3).

The time interval of approximation (i.e., the time necessary
for |h(t)| to reach a small fraction of its maximum megnitude) is equal
to (gq-1)d. Hence both d and g are obtained through an examination of
the plot of h(t). An examination of Fig. 4.4 indicates that a choice
of 0.5 for the interval spacing d, and the choice of ¢ = 9 interval
points are reasonable ones. These choices result in the values of h.m

(m=1, 2, ..., 9) at interval points listed in Table IV.
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TABLE IV

VALUES OF hm AT INTERVAL POINTS

m t h
m m

1 0 1.0000
2 .5 L4450
3 1.0 .2500
L 1.5 .1600
5 2.0 .1110
6 2.5 L0817
7 3.0 L0625
8 3.5 L0LgkL
9 4.0 .0400

Let one consider an approximation with one approximating
term. Hence n = 1, and from Eq. (4.27) one obtains the following

relationship:

hory+h,; =0 (v =1,2, ..., 8). (4.73)

Substitution of values for hV from Table IV yields,

ry + ks = 0
.hhSrl + .25 = 0
.25r) + .16 = 0
.l6rl + .111 = 0
.lll:c'l + .0817 = 0
.OBl?rl + .0625 = 0
.0625rl + .0Lok = 0
.Ohghr, + .0k = 0 . (h.74)

Choosing the first two equations in Egs. (4.74), one obtains,
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and

.hu5rl + .25 = 0.
Then,
X, = (1)
and x, = (.b45) .
From Eq. (4.29),
hlxl + hzxe = 0 .
Hence,
Kl + .M45x2 = 0
Let A, = 1, then A = -.Lk5,
Consequently,
Z' ‘}\ | = l.lﬂs@
(2) °
and
(g; NG, = 0% .
From Eq. (4.34)
1
L Nh
o o+l
e = L . o
!
LIl
(2) °
By Eq. (%.33)
€, = € (sgn xo)
Therefore
€ = -.036
and
€, = .036

From Eq. (4.28)

+ 445 + 036 =

1

Solving for r, yields,

1
r, = =-.481 .

(k.75)

(4.76)

(4.77)

(L.78)

(4.79)

(4.80)
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Now one can compute the errors in Egs. (4.74). These are:

€, = -.03
€, = .036
€3 = .0k

€ = .03k
€5 = .0262
€g = .0232
€ = .01935
€g = .01l624

Since ‘e3| > |e|, the replacement process must be undertaken.

Now .
’ x3 = (.25) , (4.82)
and by Eq. (4.37)
HiXq 4 HoXy + x3 = 0.
Therefore,
pp + BB5 o+ 250 = 0 . (4.63)
let By = 0, then By = -.25.

Since sgn €, = sgn xg, and €5 > 0, from Table II, the

V)
equation which is designated by the number given by Min 2 must be

A
a
replaced.
Now ii - 222 R
2 - IS4 = 3

Xl -.4hs Ao 1

g Ho
Since Min N the second equation in Egs. (4.75) must

g 2

be replaced. The new equations are

ry o+ R

]
O

and
.251‘1 + -l6

I
O
*

(L.8k4)

The equation for AG is given by



xl + .25 h3 = 0
Let x3 = 1, then Kl = =25 .
Consequently,
1
(g) IAgl = 125,
and
' N
(g) Npg, = -OWT5
N
Hence, 2 Nh
o o+l
e = 2 o3
1
Lo nl
(2) °
Then
€l = =-.039
d- ~
an e3 = .039

By Eq. (4.28)
ry + Abhs 4 0039 = 0.

Hence,

r, = - .48k

The errors for all the Egs. (4.74) are now:

el = -.039
62 = .035
e3 = .,039
64 = .0336
€5 = L0241
€6 = .0230
57 = .,0192
€g = L0162

Since |e | < [e], (v =1, ..., 8)

r, = -.484 is the desired solution.

(4.85)

(4.86)



From Eq. (4.42),

Yy - L4EL

H
O

(4.88)

Therefore,

L8k (4.89)

<
s
i

From Table III,

s, = é Iny, = 21n (.B8K) = 2 (-.725) = -1.k5. (L.30)

The residue A, can be found from Egs. (4.50). This equation

1
requires the knowledge of the coefficients bkm’ which are defined in
s, t
Eg. (4.49) as bkm = e k m The computed values of blm are listed in
Table V.
TABLE V
VALUES OF blm AT INTERVAL POINTS
m tm bkm
1 0 1.0000
2 5 LL8LO
3 1.0 .2346
L 1.5 L1132
5 2.0 L0550
6 2.5 .0265
T 3.0 0129
8 3.5 .0062
9 4.0 .0030

From Egs. (4.50) one has the following relationship:

h = Dby Al (m=1,2, ..., 9). (4.91)
Substituting values for hm from Table IV, and values for blm from Table

V, one obtains:

1l = Al
b5 = b8k A
25 = .2346 Al



16 =
A1l =

0817 =

.06
.04

Ob =

25 =

oh =

.1132 A

1

.055 Al
.0265 Al
.0129 Al

.0062 A

1

.003 Al

Considering the first two equations in Egs. (4.92),

Then,

and

Hence,

Consequently,

and

Hence

Then,

lel+ xgxg

M

let k2

z
(2)

+ .484%2

=1,

Iagl =

i
(@]

]
(@]

then A, = -.434 .

1

1.484

(-.484)(-1) + (1)(~.4k5)

g' Ag(-ny)
€ = = .0263.
PN
(2)| 5|
] = € (sgn Xl) = -.,0263
o = € (sgn xe) = .0263 .

(4.92)

(4.93)

(4.9k)



Trherefore,

A, -

or

1

A

™

1+ .0263 = 0

]

1 L9737 . (4.95)

The errors in Egs. (4.92) are:

€, = -.0263
€, = .0263
€ = -.022
3
eu = ‘-0498
€. = =.0575
€ = -=-0959
€ = -.0499k4
€g = -.0432
&g = -.037 . (4.96)
since le .| [55] > |e|, the replacement process must be undertaken.
Now, _
Xg = (.055) , (4.97)
and, as before,
HiXy + poXy + x5 = 0.
Therefore,
Wy o+ L8k by ¥ 055 = 0 . (4.98)
Let by = 0O, then Wy = -.055 .
Since sgn € = sgn XU, and €y < 0, the equation which is
T
designated by the number given by Max XE must be replaced.
g
Now,
M1 -.0%5 Ho 0
= s - = T e
Moooowen e
“0 Hl
Since Max ;= = 3=, the first equation in Egs. (4.92) must
o 1

be replaced.




The new equations are:

48k Al - 4y = 0
and 055 Ay - 111 = 0. (4.99)
Now,
.48L KE + .055h5 = 0
Let g = .48, then ), = -.055.
Consequently,
> In | = .539
(2) ¢
and Z' (
A (-h ) = -.0291 .
(2) © ¢
Then
-.0291 i
€ 539 = -.,054,
€, = e(sgn N,) = .05k,
and
€5 = c(sgn x5) = -.054.
Therefore,
484 Al - A5 - L0854 = 0,
and A, = 1.03 . (4.101)

The errors in Egs. (4.92) are:

€ = .03

€& = .054
€3 = -.008
Eu = -.0)4-3
€5 = -.054
66 = =-.,053
€&y = -.049
€8 = —.0&3

& = -.037 . (4.102)
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since |e | Slel m=1, ..., 9), A, is the desired residue,

and the one-term approximation is

h*(t) = 1.03 e~1-H5t (4.103)
The Tschebyscheff error is .054.
The laplace transform of Eq. (4.103) is
H¥(s) = 1.03 = . (4.104)
) s + 1.45
A network with the voltage-transfer function of this equation is shown
in Fig. 4.5.
R
C— R,
E, E2
O- @
B
2 1
* = £ = 1.0%8 —
¥ (s) El 1.03 s + 1.45
R, = .97»9
R2 = 2.38 Q
C = 1fd

FIG. 4.5 NETWORK REALIZING THE h*(t) OF EQ. (4.103)

The example will be now repeated, using the same interval
spacing (4 = 0.5) and the same number of interval points (q = 9), as

before; but now a two-term approximation is sought. Hence, n = 2, and
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one obtains

h T +h,, = O (4.105)

ot h Ty
(v=1,2, cco, 7).

Substitution of values for hv from Table IV yields:

r, + .hhirl + .25 = 0
.Mh5r2 + .25rl + .16 = 0
.25r2 + .l6rl + .111 = 0
16r, + .1llr; + .0817 = 0
.lllr2 + .0817rl + 0625 = 0
.0817r, + .0625T, + .0k9k = 0
.0625r2 + .ou9url + .04 = 0 . (4.106)

Choosing the first three equations in Eqs. (4.106) as reference, one

obtains
r, + .hh5rl + .25 = 0
.hh5r2 + .25r; + .16 = 0
.25r, + .16ry + 111 = O . (4.107)
Then,
X, = (1, .445),
X, = (.445, .25),
X3 = (.25, .16) . (4.108)
From Eq. (4.29),
xl + .MASAQ + .25x3 = 0
and
.hh5kl + .25h2 + .l6>\.3 = 0.
let _
K3 = 1.
Then
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Hence, 2 |A0| = 2.1l12
(3)
and
1
Y A n = .0025
g o+2
(3)
Consequently, L Kcho+2
¢ - LﬁlT___~T_ = .001183 .
DI PN
o
(3)
By Eq. (4.33),
€, = € (sgn Xc) .
Therefore,
e, = .001183
e, = -.001183
€y = .001183 .

By Eq. ()-4'.28))

r, + .hhSrl + .25 - .001183
.h45r3 + .25r) + .16 + .001183
Hence,
I‘l = - 968
r2 = ,1822

Now one can compute the errors in Egs. (4.106).

€ = 0012
€& = -.0012
e3 = ,0012
€, = .003k
€5 = .0037
€ = .0008

67 = .0036

]

It

(4.109)

(4.110)

These are:

(4.111)
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Since [€5|_> le|, the replacement process must be undertaken.

Now, X5 = (.111, .o817) (4.112)
and by BEq. (4.37),
HiXy + HoXo + p3x3 + X5 = 0 .
Therefore,
My o+ .hh5p2 + -25u3 + 111 = O
LhSu 250, + .16;;3 + .0817 = O (k.113)

let u3 = 0, then By = .165, Ho = -.621.

Since sgn €y, =S80 Ko and € > 0, hence from Table II, the

9
equation which is designated by the number given by Min Xg must be
g
replaced.
Now,
M1 L165 Ho -l6p1 30
= S50 = C s X - T
xl A7 hg -.942 h3 1
Mg fﬁ
Min = hence, the third equation in Egs. (4.106) must be
o 3
replaced.

The new equations are:

r, + .hu5rl + .25 = = 0
.445r2 +.25T) + .16 = 0
.lllr2 + .0817rl + .0625 = O
The equations for ho are:
Xl + .h45x2 + .lll)\.5 = 0
BUSA) 4 25N, + L0BLTA; = O (4.115)
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Let A 1, then A, = .1654 and A -.621. Consequently,

5 = 1 2
5 |x0l = 1.786L4
(3)
and
' an = .004kLy .
(3) g og+2
Hence, !
(%))\Uhc-@ )
€ = —£7~————— = ,00251 . (4.116)
PP
(30 °
Then
e, = .00251
€, = =-.00251
€5 = .00251 .
By Eq. (4.28),
r, + .thrl + .25 - 0025 = O
and
AM%2+.2yl+-&6+.mm5= 0 . (4.117)
Hence,
r, = -1.007, 1, = .2009 . (4.118)
The errors in Eqs. (4.106) are:
€, = .0025
€, = =-.0025
63 = 0
€, = .0020
65 = .0025
€6 = .0028
€& = .0028 . (4.119)

Since Ieél > |e|, the replacement process must take place.
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Now,
xg = (.0817, .0625) , (4.120)

and by Eq. (4.37),

I
(@]

y + .4A5p2 + .lllu5 + .0817

1}
(@]

'“*5“1 + 25U, + .oblm5 + .0625 (4.121)

Llet g = O, then My = .1k420, By = -.0526.
Since sgn €5 = sen Kc and €5 > 0, hence from Table II,

M
the equation designated by the number given by Min g must be replaced.

Ko
Now,
1 L1keo oo -.5026 5o
= s = , = .
kl L1654 XQ -.621 x5 1
“G IJ5
Min o= hence the fifth equation in Egs. (4.106) must be replaced.
o >
The new equations are:
ry + .h45rl + .25 = 0
.Mh5r2 + .20r) + .16 = 0
.0817r2 + .0625rl + 0494 = 0. (4.122)
xg are determined from:
Kl + .uh5k2 + .O8l7k6 = 0
BBS 4 250, + 06250, = 0. (4.123)
Let x6 = 1, then kl = .1420, he = -.5026.
Consequently, .
L |>\0| = 1.6L446
(3)
and
]
é)}‘chme = 00448k .

Hence,
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L Ah
(3) 0 o+2
€ = e = ,00273 . (4.12k4)
Z x|
(3)
Then,
el = .00273
€& = -.00273
€ = .00273
By Eq. (4.28):
r, + .MABrl + .25 - .0027 = 0
Ab5r, + .25r) +.16 + 0027 = O (L.125)
Therefore,
r, = -1.00128, r, = .2033 . (4.126)
The errors in Egs. (4.106) are:
€ = .0027
€ = -.0027
e3 = -.0002
€ = .0018
€5 = ,0023
€6 = ,0027
€& = .0026 . (k.127)
since |e | < |e| (k=1,2, ..., 7) r; = -1.0128, and
r, = .2033 are the desired solutions.
From Eq. (4.L42):
v - 1.0128y + .2033 = O . (4.128)
Hence,

yl = . 7369
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Yy = 2759 . (4.129)
From Table III,
s, = % lnyl = 2in(.7369) = -.6106
s, = % tny, = 2in(.2759) = -2.5754 . (4.130)

The residues A, and A, can be found from Eq. (4.69). The

coefficients b and b are found from:

1k 2k
s.t
1™m
blm = e
Sth
o, = e (m=1,2, ..., 9). (4.131)
The values of blm and bgm»are computed, and are listed in
Table VI.
TABLE VI
VALUES OF blm AND bem AT INTERVAL POINTS
m tm blm bEm
1 0 1.00000 1.00000
3 1.0 .54302 .07612
4 1.5 40015 .02100
5 2.0 .29487 -00579
6 2.5 .21729 .00160
T 3.0 .16012 .000k44
8 3.5 L1799 .00012
9 4.0 .08695 .00003

From Eq. (4.50), one obtains the relationship,

h = b, A, +b, A
m

" 1Pl o (m=1,2, ..., 9).(4.132)

2
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i

Substituting values for hm from Table IV, and values for

blm and b2m from Table VI, one obtains:

1.0000 = AL+ A

1 2
4h50 = .T36908; + .27590A,
2500 = .5h302A; + .0T612A,
.1600 = .LOO15A; + .02100A,
1110 = .29487A; + .00579A,
0817 = .21729A; + .00L60A,
L0625 = .16012A; + -000k4A,
.0hok = L11799A; + .000124,
.0k00 = .08695A; + .00003A, .

The first, sixth and ninth equations in Egs. (4.133) are:

Al + A2 = ‘l

.21729Al + .00160A2 0817

i

il

.08695Al + .OOOOBA2

The equations for >\G are:

xl + .21729x6 + .08695x9

N, o+ .00160)\6 + .00003M

1 9

let A, = 1, then A .00061, M = -, 40299,

9 1°

Consequently,

PN

| = 1.40360
(3) °

and

.0k00 .

!
(@]

H
O

(4.133)

(4.134)

(4.135)
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Z'a (-h) = -.0076857 .
(3) 9 °

Hence,

Z'xo(-hc)
€ = Q) - = ~-.00548 . (4.136)

!

Zn ]
(3) ¢

Then,

I

'
(@)
O
\Ui
=
(e¢]

€ sgn Kl

€ sgn k6 = .00548

m
[O)N
I

€ sgn A, = =.00548 .

™
N
"

Al and Ao are determined from:

Al + A2 -1 + 00548

.21729Al + .00160A2 - 0817 - .00548

(4.137)

Hence,

A

1 39661, Ay, = 59771 . (4.138)

The errors in Egs. (4.133) are:
€ = -.00548
€ = ,01232
€ = ,01097
€l+ = -0113)4
€~ = .00947
€ = .00548
€ = ,00130
68 = -.00251

€. = -.00548 . (4.139)

Since |e,| > |e|, the replacement process must be undertaken.
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Now,
Xy = (.73690, .27590) , (4.140)

and by Eq. (4.37),

up + 21729, + .08695u9 + .73690 = O
Wy + .OOl6Ou6 + .OOOO3p9 + .27590 = 0 . (4.141)
Llet My = O , then By = -.27248, Hg = -2.13733.
Since sgn €= - sgn xa and € > 0, hence from Table II, the
9
equation which is designated by the number given by Max Xg must be
o}
replaced. Now,
M1 -.272k8 M6 -2.13733 P9 _ 0
A - .00061 ’ N T -.ho29y xg 1
“O‘ “6
Mox o= = =, hence the sixth equation in Egs. (4.133) must be
o 6
replaced.
The new eguations are:
Al + A2 = 1
.7369OA1 + .2759OA2 = 4450
o&@%l+ .000034, = .04000 . (4.142)
The equations fof KG are:
xl + .73690)\2 + .oo695x9 = 0
Ao+ 2T590M, + .oooo3>\9 = 0 (L.143)
Let Kg = 1, then kl = ,05199, xe = -.18855.
Consequently,
t
L In | = 1.24054
(3)
and
.
Z A (-h ) = -.00808525 .

Hence,
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) A (-n)
e = 8L . oo . (k. 144)
LoIn|
(3)
Then,
€, = € sgn xl = -.,00652
€, = € sgn Ay = .00652
€y = € sgn Kg = -.,00652 .
The equations for Al and A2 are:
Al + A2 -1 + .00652 = O
.73690Al + 275904, - LA450 - 00652 = O . (4.145)
Hence,
Al = .38L485, A, = .60863 . (4.146)
The errors in Egs. (4.133) are:
€ = -.00652
€, = .00652
€ = .00531
€5 = 00600
€ = .00290
€& = -.00061
€8 = -,00392
€ = -.00652 . (4.147)

since |e,| > |e|, the replacement process must take place.
From Egs. (4.133),

x, = (.ko015, .02100) , (4.148)
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and by Eq. (4.37),

By + .73690;12 + .08695u9 + .40015 = O
Wy + -27590u, + .oooo3u9 + .02100 = O . (4.149)
Let Mg = 0, then Wy = 20591, Hy = -.82245.
Since sgn €, = -sen xc and €5 > 0, hence from Table II,

v

the equation which is designated by the number given by Max XE must
g

be replaced.

Now,
H1 L2059 Moo -.802k5 B9 0
- J - 3 J - ¢
kl .05199 he -.18855 h9 1
Hg ko
Max S hence the second equation in Egs. (4.133) must be replaced.
o] 2
The new equations are:
Al + A2 = 1
.hOOlSAl + .02100A2 = .,1600
0&9%1+ .000034, = .04000 (4.150)
The equations for Kc are:
Ao+ .u0015xu + .08695x9 = 0
xl + .OElOOku + .OOOO3>\9 = 0. (4.151)
let hg = 1, then Kl = 00478, xu = -,22925 .
Therefore,

g
>
1

1.23403

and
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Hence,

Z'Kg(-hc)
e = Bl oo . (4.152)
LNl
(3)
Then,
€, = esgn N = -.00656
€, = esgni = .00656
€y = € sgn K9 = -.,00656 .
Al and AQ are determined from:
Ay + A, -1 + .00656 = 0
.40015Al + .02100A2 - .1600 - .0065% = O . (4.153)
Hence, '
Al = .38k427, A, = .60917 . (k.154)
The errors in Egqs. (4.133) are:
el = -.00656
€ = .00424
63 = .0050k4
€h = .00656
€5 = .00584
€6 = 00277
€ = =.00070
€8 = -,00399
€y = =--00636 (4.155)

Since {eml <le] (m=1,2, ..., 9), A, and A, are the

desired residues, and the two-term approximation is:

h*(t) = .3843e"6106t + 6092 e'2’575”t. (4.156)
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The Tschebyscheff error is .00656 only, as compared with .054
for the one-term approximation.

The Laplace transform of Eq. (4.169) is:

.3643 .6092
5 + .6106 ' 5 + 2.575h (4.157)

H¥(s) =

A network realizing H*(s) as a voltage ratio is shown in

Fig. 4.6.
R,
R ‘Li
[
O @
E
. 2 _ .9935 (s + 1.3706)
fx(s) = B, (s + .6106)(s +2.575%)

R, = .5000 Q

R, = .26310

Ry = L.9297

C, = 2.773L1 fd

C; = 2.0132 £4

FIG. 4.6 NETWORK REALIZING THE h*(t) OF EQ. (4.156)
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Plots of h(t) and h*(t) vs. t for one-term and two-term
approximations,are shown in Fig. 4.7. A plot of n*(t) for the two-
term approximation agrees so closely with h(t) that in Fig. 4.7 it
appears to coincide with h(t). The plots of [h*(t) - h(t)] vs. t
for these two cases appear in Fig. 4.8.

2
4.5.2 Determination of a Network with Impulse Response t-e-t .

As the second example, let

h(t) = te % . (4.156)

It is desired to find an R-L-C network N, having an output
voltage h(t) given by Eq. (4.158) where excited by an impulse-current
input 8(t).

A plot of h(t) vs. t is shown in Fig. 4.9. An examination
of this figure indicates that a choice of 0.2 second for the interval
spacing d, and the choice of q = 16 points are reasonable ones. These

choices result in the values of hm at interval points listed in Table VII.

TABLE VII

VALUES OF h AT INTERVAL POINTS

m t h
m m

1 0 0

2 .2 L1922
3 o . 3408
i .6 4187
5 .8 L4219
6 1.0 .3679
7 1.2 .2843
8 1.4 .1973
9 1.6 1237
10 1.8 .0706
11 2.0 .0366
12 2.2 .0158
13 2.k .0051
14 2.6 .003
15 2.8 .0011
16 3.0 .0003
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Let one consider an approximation with three approximating terms.

Hence n = 3, and from Eq. (4.27) one obtains the relationship:

hvr

3

Substitution

.l922r3

.3&08r3

.h187r3

.h219r3

.3769r3

.28u3r3

-19731'3

.1237r3

.O"(O6r3

.0366r3

.Ol58r3

.00511'3

+ h

of values

.3408r
.241871'2 +
.M219r2 +
-3679r, +
.28A3r2 +
.l973r2 +
.1237r2 +
.07061‘2 +
.O366r2 +
.0158r2 +
.0051r,, +

.OO3r2 +

r. +h

.19221'2 + .

2+

.M187rl +
.h219rl +
36797 +
.281#3rl +
.l973rl +
.1237rl +
.O706rl +
.0366r; +
.Ol58rl +
.00511‘l +
.OO3rl +

.001lr

+ h

v+l 2 v+2rl V43

(v =1,2, ...

5ho8rl +

l + .

L4187
L4219
3679
.2843
1973
.1237
.0706
.0366
.0158
.0051
.003

.0011

0003

0

for hV from Table VII

Choosing the first, fourth, ninth, and last equations

one obtains:

L4187r
.1237r

.0051r

4

+

+

.1922r
.1+219r2 +
.O7O6r2 +

.OO3r2 +

2+

.3&08rl +
.36791'l +
.O366rl +

.001llr. +

1

4187
2843
.0158

.0003

it

yields:

0

0

O

(4.159)

(4.160)

as reference,
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Then,
X, = (0, .1922, .3408)
xy, = (.K87, .k219, .3679)
xg = (.1237, .0706, .0366)
X)5 = (.0051, .003, .00ll) . (4.162)
From Eq. (4.29)
lel + xhxh + x9x9 + xl3xl3 = 0 .
Hence,
.u187xu + .1237x9 + .0051x13 = 0
-1922N, + 219N, + .0706x9 + .oo3>\l3 = 0
.3408xl + .3679xu + .o366x9 + .0011>\l3 = 0 . (4.163)
Let kl3 = 1 then A} = .006253, N, = =.007057, x9 = -,017345.
Consequently,
Z'lxol = 1.030655
(4)
and
t
h = . .
(E)K“ 043 00637775
Then .
2 Nh
(h) g 0+3
€ = .000619 . (4.164)
Z x|
(x) °
By Eq. (4.33),
€, = € (sgn xa)
Therefore, ¢, = .000619
€, = =.000619
€ = -.000619
€., = .000619



By Eq. (4.28),

1922r, + .3k08ry + 4187 - .000613 = O
.u187r3 + .&219r2 + .3679r) + .2843 + 000619 = O
.0051r3 + .003r, + .00llr; + .0003 - 000619 = 0 . (4.165)
Hence,
r, = -2.097,922, 1, = 1.54k4,698, xy = -.393,60k.  (4.166)

Now one can compute the errors in Egs. (4.160). These are:

€ = .000619
62 = -.0057186
63 = -.004588
€, = -.000619
65 = .003094
€ = .004131
67 ¥ .003554
€g = .0019038
69 = ~-.,000617
elO = ,000700
€1 = .002301
€ = =-.003535
€, = 000619 . (4.167)

since |e | > |e|, the replacement process must be undertaken.
2

Now,

X, = (.1922, .3408, .4187) , (4.168)

and by Eq. (4.37),

“lxl + uuxu + u9x9 + “l3xl3 + x2 = 0.



Therefore,

"
O

.Ltl87u)+ + .1237u9 + .0051u13 + .1922

1
(®

1922, + .h2l9u, + .0T06ug + 003wy, + .3408

L4187

(@]

. (L.169)

Lt}

+

.3uoaul + .3679;;h + .0366u9 + .OOllpl3

Let ) = 0, then Wy = -1.1638, Mg = 1.8791, M13 = -83.3232.

Since sgn €, = sgn kd, and € < 0, from Table II, the eqguation

v
which is designated by the number given by Max Xg must be replaced.
o]
Now,
1 -1.1638 hyo 0
N .006253 ’ N, -=.007057 7
b _ L.etol o M3 -83.3030
xg -.017345 kl3 1
Hc M)y
Max 3= = 3=, hence the fourth equation in Egs. (4.160) must be replaced.
o i
The new equations are:
.l922r2 + .3&081’l + 4187 = O
.1922r3 + .3408r2 + .4187rl + .4219 = 0
.1237r3 + .o7o6r2 + .0366rl + .0158 = 0O
.00511-3 + .003r, + .00llr; + .0003 = 0 (k.170)
Then,
X, = (0, .1922, .3408)
Xy = (.1922, .3408, .4187)
Xy = (.1237, .0706, .0366)
X)3 = (.0051, .003, .00ll) . (4.171)

The equations for A are:
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I
O

.l922k2 + .1237A9 + .0051)\13

.3&08%2 + .0706}\.9 + 003N

+
!
(@

.1922Xl 13

L3HOBN, + JBIBTA, + .0366x9 + 0011 5 0. (k.172)

+

Let A

13 = 1, then A

) = 0137565, Ay = -.0118285, A, = -.0228503.

Consequently,

]

DAEN | 1.048L437
(4) °

and

(E; >"ovha+3

i}

.000709205 .

Then Y A h

g o+3
e = M T 000676 . (4.173)

PN
(& GI

The errors for the reference are:

.000676

m
i

-.000676

no
]

- .000676

m
1

"

.000676
By Eq. (4.28),

.1922r2 + .3&08rl + 4187 - .000676 0

]

0

.19221'3 + .3&08r2 + .h187rl + 4219 + .000676

J237r

]

+ .0706r2 + .O366rl + .0158 + .000676 0. (4.174)

3

ry o= -2.203555; r, = 1.732297; r3 = -.469897 . (4.175)

The errors in Egs. (4.160) are now computed and are listed

below:
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e, = .000676
€, = -.000676
€; = .003392
€, = .007722
€5 = .009692
€ = .008556
€& = .006211
eg = .002603
ey = -.000676
€ = 000511
€1 = .00193k4
€, = --004100
€5 = -000676 . (k.176)

Since }e5l > le[, the replacement process must again be
undertaken. Now,
X5 = (.4219, .3679, .2643) . (4.177)

Hence, by Eq. (4.37),

1922y, + .1237u9 + .0051u13 + 4219 = 0O
.l922pl + .3&08p2 + .o7o6u9 + .OO3Oul3 + .3679 = O
'3“08“1 + .4187u2 + .o366u9 + .OOllpl3 + .2843 = 0 . (4.178)
Let p, = 0, then p, = -.607373, Mg = 1.38015k, M3 = -116.200940 .

Since sgn €y = 581 AO and €5 > 0, from Table II, the equation

M

which is designated by the number given by Min XE must be replaced.
o
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Egs. (4.160) must

Now,
Lo -.601313 e 0
N © 0137585 ’ N =.0118285 ’
Yo 1.3601%% "13 _ -116.200940
N -.0228503 M3 1
Mg M3 _
Since Min = the 13th equation in
o 13

be replaced.

The new equations are:

-1922r, + .3&O8rl + 4187 =
.l922r3 + .31+OBr2 + .4187rl + 4219 =
.h219r3 + .3679r2 + .28h3rl + 1973 =
.1237r3 + .0706r2 + .O366rl + 0158 =
Then

X, = (0, .1922, .3408)

X, = (.1922, .3408, .L4L187)

X5 = (.4219, .3679, .2843)

Xg = (.1237, .0706, .0366) .

The equatiohs for AN are:
1922\, + .u219x5 + .1237h9
.l922>\l + .3&08%2 + .3679%.5 + .0706%.9
.3&08%1 + .u187A2 + .2843x5 + .O366>\9

Let x9 = 1, then A} = -.777570, A, = 1.078037, Ay = =
Consequently,
1
Z Ingl = 3.639913
(4)
and
1
2 Nh = -.009688

I
o

i
o

Ll
(@]

.T84306.

(4.179)

(4.180)

(b.181)
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Then L Ah
€ = Lil__z_fii = =-.002662 (4.182)
LIl
() °
and
€ = .002662
€ = =.002662
€5 = .002662
& = -.002662 .
By Eq. (4.28),
.1922r, + .3408r; + .4187 - .002662 = 0
-1922r5 + .3408r, + .4187r; + .k2l9 + .002662 = O
.u219r3 + .3679r2 + .28u3rl + .1973 - .002662 = O . (4.183)
Hence, L = 2176675, r, = 1.694968, rj = -.k72597 . (4.184)
The errors in Eqs. (4.160) are:
€, = .002662
€, = -.002662
€5 = -.001817
€, = .000732
€5 = .002661
€ = .002253
€; = .001k03
€g = -.000649
& = -.002662
€o = ---000621
€, = .001382
€ = -.004k253
€,, = .000580 . (4.185)
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since |ej,| > |e|, one of the equations in Egs. (4.179) must
be replaced.
Now, x,, = (.0138, .0051, .0030) . (4.186)

Hence, by Eq. (4.37),

.1922u, + .u219u5 + .1237u9 + .0158 = 0
1922y, + .3408u, + .3769u5 + .o7o6u9 +.0051 = O
'3”08“1 + .u187p2 + .2843p5 + .o366u9 + .0030 = 0 . (4.187)

Let ug = O, then p) = -.343950, u, = 431783, and pg = -.234152.

Since sgn e0 = -sgn xc and € < 0, from Table II, the equation
M
which is designated by the number given by Min Xg must be replaced.
o}
Now,
N - 777570 ’ N 1.078037
M5 -.2k3lse b9 0o
N -.78L306 7 A, 1
5 784306 9
“0 52
Since Min 5= = 3%, the ninth equation in Egs. (4.160) must
g 9

be replaced.

‘The new equations are:

.19221'2 + .3ho8rl + 4187 = O

:1922r; + .3408r, + .418Tr; + .4219 = O
h2l9r3 + .36"(9r2 + .28h3rl + .1973 = O
.0158r3 +.0051r, + .003r; + .001l = O . (4.188)
Then
X, = (0, .1922, .3408)
X, = (.1922, 3408, .4187)

5 (.4219, .3679, .2843)
(.0158, .0051, .0030) . (%.189)

e
]

e
i
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The equations for A are, therefore:

.1922}\2 + .4219%5 + .Ol58klg = 0

.l922hl +-.3h08k2 + .3679%.5 + .0051}\12 = 0

.3408xl + .h187x2 + .28u3x5 + .0030N, = 0.
Let M, = 1, then A = -.343950, A, = .431783, A, = -.234152 .
Consequently,
(Z;lxcl = 2.009885
I
and
t
(E)xchc+3 = -.006940807 .
Hence, '
L >\'cxhcr+3
€ = &) ~ - -.003453
L In
() ¢
and
€ = .003453
€, = -.003453
€5 = .003453
€, = -.003453 .
By Eq. (4.28),
.l922r2 + .3&08rl + 4187 - .003453 = 0O
.19221'3 + .314081'2 + .1&1871'l + 4219 + .003453 = O
.4219r3 + .3679r2 + .28u3rl + .1973 - .003453 =
Hence,

r, = -2.072670, r, = 1.51L4667,

O.

(4.190)

(k.191)

(4.192)

ry = -.383583.(4.193)
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The errors in Egs. (4.160) are found to be:

€ = .003453
€, = =-.003453
€5 = -.003093
€, = .000197
€5 = .003452
€, = .004262
€, = 004002
eg = .001953
€g = =--000573
€ = -000708
€, = -002322
€p = --00345k
€15 = 000608 . (4.294)

Since |e6l > |e|, the replacement process must again be

undertaken.

Now, xe = (.3679, .2843, .1973) . (4.195)

Hence, by Eq. (4.37),,

1922u, + .u219u5 + .0158u,, + 3679 = O
19224, + .3408u, + .3679u5 + .0051up, + 2843 = 0
.3uoaul + .h187u2 + .28u3p5 + .0030u;, + <1973 = 0 . (4.196)

Iet u, = 0, then ) = 107547, pg = -.80364k, u, = -1.825459.

Since sgn € 4= -s8n A.oand €; > 0, from Table II, the

i

equation which is designated by the number given by Max XE must be
o

replaced.
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Now,
o oaopshr o Yo o
~ -.3439507° M To.h31783
H5 -.8036Lk4 M2  -1.825459
= e = .
K5 -.234152 KlE 1
By by _
Max R hence the fifth equation in Egs. (4.160) must be replaced.
g o)
The new equations are:
.19221'2 + .3408rl + 4187 = O
.l922r3 + .3ho8r2 + .h187rl + .4219 = 0
.3679r3 + .2843r2 + .l973rl +.1237 = O
.Ol58r3 + .0051r, + .0030r; + .0011 = O. (4.197)
then
X, = (0, .1922, .3408)
Xy = (.1922, .3408, .4187)
X6 = (-3679} .2843, '1973)
X, = (.0158, .0051, .0030) (4.198)
The equations for A\ are, therefore:
. .1922%2 + .3679%6 + .0158A12 = 0
.1922hl + .3&08x2 + .28h3x6 + .Oo5lx12 = 0
.3&08xl + .h187x2 + .1973x6 + .0030N, = O . (4.199)
Let A, =1, then A, = -.2L4985, A, = .281867, Ag = -.190201.
Consequently, .
L In = 1.717053
(k)
and
t
LNh = -.006083 .

() © 0+3
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1
Hence (E)Kohc+3
€ = ~~—~t—m — = .,003543 . (%.200)

Z' ,
(u)l%l

The errors for the reference are:

€ = .003543
&, = -.003543
€g = .003543
€15 = -.003543 .

By Eq. (4.28),

.l922r2 + .3&081‘l + 4187 - .003543 = O
.l922r3 + .3&08r2 + .M187rl + .4219 + .003543 = 0
.3679r3 + .28u3r2 + .1973r) + .1237 - .003543 = 0  (L4.201)
Hence,
r, = -2.080391 r, = 1.528826 r., = =-.392337. (k.202)

1 2 3

The errors in Egs. (4.160) are now:

€ = .003543
€, = -.003543
€3 = -.003406
€, = -.000336
€5 = 002773
€& = .003543
€; = 003352
€g = .001432
€y = --000939
€ = -000486
€., = .002186
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-.003543

€10

€4 .000597

since |e | < le| (v =1, ..., 13),

= -2.080391, =, = 1.528826, r_ = -.392337,

r, 3

are the desired solutions.

From Eq. (k.42)

P(y) = y° - 2.08039Ly° + 1.528826y - .392337 = O  (k.204)

is the equation for y, (k = 1, 2, 3).
Prior to solving Eq. (4.204) it may be of value to best it

using Eq. (4.48) to determine whether all Vi lie inside the unit circle.
By Eq. (L.48),

. j -k
L3 S ke, [ 205 Gmem ]} = 0. eeos)
k=0

j:o m=
Expanding,
3(1 - - -
wo (1 r, +7T, r3) + w2(3 -r -1, + 3r3) +
w(3 + r =T, - 3r3) + (1 + T+, 4 r3) = 0.
Therefore,

P(w) = 5.001554 w3 4 2.374554 N SO6TTO4 w + 056098 = O.
(4.206)
Application of the Routh's test to P(w) shows that the

roots are in the left-hand plane; hence, the roots of P(y) are inside
the unit circle, as required.

Solving for the roots of P(y), one obtains:
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y, = 683177
Y, = 698607 + J .29365L
y3 = 698607 - § .293651 . (4.207)

The poles from Table III are:

1
1 () 1n (.683177) = =-1.905

[&]
i

5, = TFy ln (.5T4283) + § {5y eve ten e

= -1.3866 + J 1.98959

n

5. -13866 - j 1.98959 . (4.208)

With the poles determined, one can now determine the

residues. From Eq. (4.54) one can determine the coefficients b

1m’
1 !
a2m and b2m from ot
b = e ilm
1m
ast
! _ 2°m
a2m = 2e cos Bgtm
a.t
! = 2m .
b} = -2e sin Byt (4.209)

(m=1,2, ..., 16).

The values of b b}

om are computed and are listed in

1’ Zpp’
Table VIII.
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TABLE VIII
VALUES OF b, , aém AND bém AT INTERVAL POINTS
1 t

m tm blm a2m me

1 0 1.0000 2.0000 |0
2 .2 .6832 1.3972 |-.5873
3 - L4667 .8036 | -~.8206
L .6 .3189 .3205 | -.8093
5 .8 2178 -.0138 |=-.6594
6 1.0 .1488 -.2033 | =-.4566
T 1.2 .1017 -.2761 |-.2593
8 1.4 L0695 -.2784 [-.1036
9 1.6 0475 -.2173 | .0091
10 1.8 .0324 -.1492 | .0702
11 2.0 .0221 -.0836 | .0928
12 2.2 .0151 -.0311 | .0894
13 2.4 .0103 L0045 | 0716
14 2.6 L0071 0242 | o487
15 2.8 .0048 .0312 | .0269
16 3.0 .0033 .0297 | .0097

From Eq. (4.53) one obtains the relationship

- t t
h = b A +ay a+ bl b (4.210)

(m=1,2, ..., 16).
Subsituting values for hm from Table VII, and values for blm’ aém

and b'm from Table VIII, one obtalns:

2
0 = Al + 28
1922 = .6832Al + 1.3972a - .5873b
3408 = .l+667Al + .8036a - .8206b

4187 = .3189A, + .320% - .8093b
.0138a - .659h4b

J2lg = .2178A,

3679 = .1488Al .2033a - .4566Db

.2843 .lOl'ZAl .276la - .2593b



-1973
.1237
.0706
.0366
.0158
.0051
.0030
.0011

.0003

= 06954
= .OLT5A
= .0324A
= .0221A
= .0151A
= .0103A
= .00T1A
= .00k3A

= .,0033A
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1" 2784k -
1" .2173a +
1" .1492a +
1 - .0836ba +
1" .031la +
L+ -004%a +
1+ .0242a +
1 + 03128 +
1t .0297a +

.1036b
.0091b
.0702b
.0928b
.089kb
.0716b
.0k8Tb
.0269b

00970 .

(k.211)

Choosing the first, fourth, sixth, and eleventh equations as reference,

one obtains:

.31891—\l
.14884
.0221A

Then,

The equations

1

+ 2a =
+ .3205%a - .8093b - .4187 =
- .2033a - 145660 - 3679 =
- .0836a - .0928b - .0366 =
= (1, 2, 0)

= (.3189, .3205, -.8093)

= (.1488, -.2033, -.L4566)
= (.0221, -.0836, .0928) .

for N are:

N+ .3189A4 +

2Kl + .3205ku -

- .8093Xh - .

.1488x6 + .0221IN

.2033%6 + .0836A

11

11l

USE6N + .0928M)

(k.212)
(k.213)
0
0
0 .« (4.214)

et Nyp =1, then ) = -.OTh5KL, N, = .4O2hU6, A = -.51007k.

1
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Then, Z'agl = 1.987061
(%)
and
S'N (-h ) = -.0LThkT9 .
(b) 7 °
Hence, Z'K (-h )
L ag g
€ = B - . -.008781 . (k.215)
Z x|
(4)
Since
e, = (sen ),
therefore,
€ = .008781
€, = =-.008781
€& = .008781
€, = -.00878L .
Consequently,
Al + 28 - .008781 = O
.3189Al + .3205a - .8093b - .4187 + .008781 = O
.lh88Al - .2033a - .4566b - .3679 - 008781 = 0, (4.216)
yielding
Al = .913966, a = -.452592, b = -.325604 . (4.217)

The errors in Egs. (4.211) are:

€, = .008782
€, = -.008913
€5 = -.010764
€l+ = -, 008781.
€5 = -.001889
66 = .008781
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.018040

.025955
.015099
.003682

.008761
017032
.021036

.023320

019593

.013684 .

(4.218)

Since |eg| > |e|, the replacement process must be under-

taken.
Now,
Xg = (.0695, -.2784, -.1036) , (4.219)
and, by Eg. (4.37), the equations for u are:
Wy + '3189“h + .1M88u6 + .OEQlull + 0695 =
2uy + .3205u) - .2033ug - .0836ull - 2784 =
- .8093uu - .h566p6 + '0928“11 - 1036 = (4.220)
Let Wyp = 0, then By = -.065105, My = .532L06, bg = -1.170558.
Since sgn €, = -s&n Ko and €; > 0, hence from Table II, the

equation which is designated by the number given by Max

replaced.
Now,

L -.065105

A -.074s541 "’

by
Ny

.532L06
LLo2kLe

oY
g must be
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6 -1.170558 Fi1 0
A T -.51007h Mip Tl
Hg Mg
Max — = — , thus the sixth equation in Eq. (4.211) must be replaced.
Kc Mg
The new equations are:
Al + 2a = 0
.3189Al + .320% - .8093b - 4187 = O
.O695Al - .2784a - .,1036b - .1973 = O
.02214, - .0836a + .0928b - .0366 = O (4.221)
Then,
X, = (1, 2, 0)
x, = (.3189, .3205, -.8093)
xg = (.0695, -.2784, -.1036)
X, = (.0221, -.0836, .0928) . (4.222)
The N\ are determined from
Ao+ .3189xu + .o695x8 + 0221, = O
2N + .3205M, - .278ux8 - .o836xll = 0
- .8093>\br - .1036x8 + .0928xll = 0. (4.223)
Let N, =1, then xl = -.046171, N, = .170449, Ag = -.435753.
Then '
LoIn | = 1.652373
(%)
and
Z'x(—ho) = -.0219929 .
(4)
Consequently, .
L xc(-hd)
€ = G - - . .013310 . (4.224)
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Since
e, = € (sen r)),
therefore,
€, = .013310
€, = -.013310
eg = 013310
€, = -.013310 .
By Eq. (4.28),
A +2a - .013310 = ©
.3189Al + .3205%a - .8093b - .4187 + .013310 = O
.0695Al - .2784a - .1036b - .1973 - .013310 = 0 . (4.225)
Hence,
A, = .853762, a = -.420226, b = -.330914. (L4.226)

1

The errors in Eq. (4.211) are:

e, = .013310
€, = -.00170k
63 = -.008495
€, = -.013309
e5 = =-.01194T
e, = -.004333
€7 = .004358

€8 = .013310

€g = 005157

€p = --00347L
€17 = -.013309
€,, = =-.019423
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€)q = --02189L
€, = -.023223
€15 = --019015
€ = --013173 . (4.227)

Since Ielh' > |e|, the replacement process must take place.

Now, xy, = (.0071, .02k2, .0M87) , (4.228)

and, by Eq. (4.37), the p are determined from

by + .3189plL + -0695H8 + -OQQlHll + .007L = O
2uy + .3205u), - .278uu8 - '0836“11 + .0242 = 0O
- '8093“u - '1036“8 + '0928“11 + .0487 = 0 (4.229)
Let u,, =0, then My = -.027440, by, = 055043, g = .040093 .
Since sgn €, = ~sen Kc and €; <0, hence from Table II, the
4
equation which is designated by the number given by Min XE must be
of
replaced.
Now,
M1 -.o27kko ML 055043
A - -.okel7L N, ~ .01T70kkg
8 _.0h0093 Fi o
x8 -.435753 Kll 1
Ho Mg
Min N hence, the eighth equation in Egs. (4.211) must be
g 8
replaced.

The new equations are:
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A, + 2a = 0

+
!
o

.3189Al .320% - .8093b - .Lk187

.0221A .0836a + .0928b - .0366

i
C

]
O

:00T1A, + .0242a + .0L8TL - .0030 (4.230)

Then,

<
]

(1, 2, 0)

(.3189, .3205, -.8093)

>
=
i

(.0221, -.0636, .0926)

>
1

(.0071, .02k2, .0L&T) . (4.231)

»
l—l
=

i

The equations for A are:
~ ‘-_: 1 YT - !
Kl + .jlé))s.J+ + .OEELkll + .Jv{LKLL Q)
2xl + 23205\, - .o&séxll + .oeuexlu = 0
- .5093xu + .o925xll + .oh57xlu = 0 . (4.232)

Let xlh = 1, then Kl = -.023041, hh = .053823, Kll = -.055387.

Then,
Z']x | = 1.130253
(4) °

and

“a(-h) = -.023509k .
(e ! o
Z:xc(-ho)
c = W~ -.020763 . (4.233)
PN
<L’»>| d

Hence,

Since

therefore,
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e, = .020763
€, = =-.020763
€, = .020763
€)) = -.020763 .
By Eq. (4.28),
A, +2a = 0

1
.3189Al + .3205%a - .8093b - 4187 + .020763 = O

[}

.0221A. - .0836a + .0928b - .0366 - .020763

1 0 . (4.234)

Hence,

Al = 1.260533, a = =-.619885, b = -.240487. (4.235)

The errors in Egs. (4.211) are:

€, = .020763
€, = -.055869
€y = -.053305
€, = -.020763
€5 = 019776
€, = .055496
€; = 077405
€g = 087797
& = .068688
€1 = ..0458L46
€1 = .020763
€, = -001013
€3 = -.012125
€, = --020763



-.020859

m
b
it

-.01688k4 . (4.236)

m
[
(&2

1]

Since legi > |e], the replacement process must proceed.

Now,

xg = (.0695, - 2784, -.1036) , (4.237)

and, by Eq. (4.37), the equations for u are:

y o+ '3189“u + .OZlell + 007l + 0695 = 0
2uy ¥ .3203u,, - '0636“11 + '02”2“14 - 2784 = O
- .8093u), + ‘0928“11 + .04c7plh - .1036 = 0. (4.238)
Let p,) =0, then p; = .105957, u) = -.391159, uyy = -2.294879.
Since sgn €4 = ~sgn Kc and € > 0, hence, from Table II, the

u
equation which is designated by the number given by Max Xg must be

o
replaced.
Now,
“1_ .105957 B -.3911%9
hl -.023041 Ku -053825
"1 -2.294879 Mk o
Xll -.055387 Xlu 1
o M11
Since Max 3= = 5==, the eleventh equation in Egs. (4.211)
o} 11

must be replaced.

The new equations for the reference are:

Al +2a = 0
.3189A, + .3205a - .8093b - .4187 = O
06954, - .278ka - .1036b - .1973 = O
.0071A, + .02k2a + .OL8Tb - .0030 = O . (4.239)

1



Then,
X = (1, 2, 0)
x, = (.3189, .3205, -.8093)
Xg = (.0695, -.2784, -.1036)
X)), = (.0071, .02k2, .048T) .
The equations for A are:
N ot -3189N, + .o695x8 + .00TINy), = O
2h + .3205\, - .2784x8 + .02k2N;) = O
- .8093>\A - .1036x8 + .ou87xlu = 0
Let Ny, =1, then A, = -.025598, A, = .063265, Ag = -.024135.
Then,
Z'|K0[ = 1.112998
(4)
and
RN (-h ) = -.02k7272 .
(Ll-) g g
Consequently,
t
2 xU(-hc)
€ = (G R -.022217 .
2|
(W) ¢
53
tace €, = ¢ (sgn xo) s
therefore,
€, = .022217
1
€, = -.022217
€, = -.022217

By Eq. (4.28):

121

(4.240)

(k.241)

(4.242)
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Al +ea - 022217 = O
.3189A, + .3205a - .8093b - .L16T + .022217 = O
.O695Al - .278ka - .,1036b - .1973 - .022217 = O (4.243)
Hence,
Al = .914645, a = -.hkue21h, b = =-.306209 .(4.2kkL)
The errors in Egs. (4.211) are:

€, = .022217

e, = -.010928

€y = -.021238

€, = -.022216

€5 = -.014618

€ = -.001270

€, = .OLL319

€g = .0222l7

g = 013921

€0 = L00k11L

€1 = --007k99

€p = -.015487

€3 = -.019612

€y, = -.022217

€5 = -.018869

€1g = -.013504 . (4.245)

Since leml < lel (m=1, ..., 16) Ay, 8, b, are the desired

values, and the three-term approximation is:
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h*(t) = .oLh6ks e 1 900t
+ (-.hh6olk - 35.306209) el-1:30866 + J1.96959)t
+ (-.hh621h + 3.306209) e("1:3866 - J1.98959)t
(4.246)
or
nx(t) = .o1k6hs e 1909 L (L nueo1l) (2e 13000 o 1 g850t)
+ (-306209)(-2e'l'3866t sin 1.98959t). (4.247)

The Tschebyscheff error is .022217.

The Laplace transform of Eq. (4.224) is:

H*(s) = (.022217) (s® + 36.7901s + 239.8606)

. (4.248)
(s + 1.905)(s° + 2.7732s + 5.866458)

A network realizing H¥*(s) as a transfer impedance is shown in

Fig. 4.10. ., 006805 fd
I iy
o—n ’ . + AN 3:996626 0 + . . o
AN rE
013092 N .614626h 546666 fd
s I L.
546666fd T §-96024811 A? T
960248 Ez
(o) L - 9- L -0
E 2 e
2 02221 6.79C1s + 239.8806
B*(s) = z,(s) = 1= = N 7)(s” + 36.7901s + 239

1 (s + 1.905)(s® + 2.7732s + 5.866458)

FIG. 4.10 NETWORK REALIZING THE h*(t) OF EQ. (L4.2L4T7)
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Plots of h(t) and h*(t) vs. t are shown in Fig. 4.11. The
Tschebyscheff error is, in accordance with Eq. (L4.242), .022217. The

plot of [h*(t) - h(t)] vs. t is shown in Fig. k.l2.

L.6 Conclusion and Summary

In the preceding sections of this chapter, the problem of
approximation of the impulse response h(t) by a function h*(t), whose
laplace transform is a network function has been solved. The process
developed yields such a function that Max |h(t) - h*(t)| is minimized
at the interval points. Since the terms of the approximating function
are well-behaved functions themselves, with exponentially-decaying
envelopes, it can be argued that for sufficiently small intervals a
good approximation at the interval points will yield a good approximation
between the interval points. The application of this method has shown
that good apprbximations are to be expected and that the Tschebyscheff
error for the residues is a meaningful indicator of the overall maximum
error to be expected.

The amount of ﬁumerical work involved in obtaining h*(t) is
governed by two numbers, q and n. q is the number of equispaced
points [at which h (m=1, 2, ..., q) is known] considered, and n
is the number of terms in h*(t). It has been observed that the amount
of computational work varies roughly linearly with g, but goes up
roughly with the square of n (i.e., for a given g, the amount of work
for n = 4 is roughly %?times the amount for n = 3). This rough estimate
of computational work to be expected should enable one to decide at
which point it is advisable to utilize automatic computers for the

calculation of h*(t).
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h(t) AND h(t)
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FIG. 4.1l PLOT OF h'(t) AND h(t)
(EXAMPLE OF SEC. 4.5.2)
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L 022217
O02H—
Ol
=
=
I o] ]L 1 = [l 1 1[
E 0.5 | 1.5 3.5
t P t
-0l |—
—.022217

FIG. 4.12 PLOT OF [At) —h(t)] (EXAMPLE OF SEC. 45.2)
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The choice of a number for q is dictated by two consider-
ations. These are: (1) the length of the time interval of interest,
and (2) the behavior of h(t). If h(t) decays slowly, many points must
be considered and g will be large. Similarly, if h(t) displays wild
variations (i.e., the derivative of h(t) changes sign often) then g
will also be large. Of course, if h(t) varies rather wildly, one may
"smooth" h(t) first, and then approximate. Fortunately, the impulse
responses demanded in practice from R-L-C networks are relatively well
behaved. However, it may be of theoretical interest to consider an
approximation to a wildly varying function by the proposed method.
Such a function will demand a choice of a large number for g. The
number chosen for g should be no less than the time interval in
which approximation takes place divided by the smallest time interval
between a relative maximum and a relative minimum of h(t). A good
choice for g is a matter of judgement.

The choice of a number for n is dictated by two conflicting
requirements. These are: (1) the magnitude of the approximation error
and (2) the complexity of the resulting network. An increase in n
reduces the error but does increase the complexity of the network
(i.e., increases the number of network élements). Therefore, the
choice of n will be determined either by the maximum error that can
be tolerated, or by the maximum allowable complexity of the desired
network, or both. Hence, the choice of n is a matter of engineering
Judgement and should not be prescribed without the knowledge of
specific requirements.

In many application, it is desired to solve one of two

possible problems: (1) the maximum allowable error is prescribed,
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and one wants the simplest network function which will satisfy the
requirements on the error, and (2) the maximum number of elements
in the network is prescribed, and one desirs a network which mimimizes
the error.

The first problem requires the determination of the minimum
n which will satisfy the error reqguirements. This requires a selection
of n, and by the methods of Section 4.4, after some computational
work, one can determine the magnitude of the expected final error.
However, the precise value of the final error is determined with nearly
the final computation. Hence, it is certainly conceivable that at the
end of the computational process one may discover that either (1) the
allowable error has been exceeded, or (2) the final error is sufficiently
below the allowable error to question whether a choice of a smaller
numper for n would have been more appropriate. In both these cases
one may have to repeat the computational process with a different
choice for n. A remedy for these two possibilities would be a straight-
forward relationship between the final error and n. Unfortunately,
such a relationship is not apparent. Fortunately, however, rarely if
ever does one have to carry the process to near completion before
discovering that a better choice for n was indicated. The Tschebyscheff
error of every cycle conveys a more precise knowledge of the expected
final error than the knowledge available at a previous cycle.

The second problem can be solved in a straightforward manner.
n is approximately equal to twice the number of elements. Hence, n is

prescribed and one can solve the approximation problem.
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The approximation procedure will be now summarized. Prior
to approximation, the preseribed impulse response h(t) should be
subjected to a preliminary simplificetion. If h(t) has exponential
terms, these terms can be subtracted from h(t) and the remainder
approximated. The subtracted terms are then added to the approximated
function obtained. Also, a replacement of t by a linear function of t
[if t is replaced by a(t+b), then b represents a delay, and a represents
change of time scale] may give rise to simplifications. The approxima-
tion obtained is then modified accordingly.

In some instances, it is simpler to approximate the differential
or the integral of h(t) rather than h(t) itself. (The system function
obtained is then multiplied or divided by s). Of course, then, h*(t)
will not approximate h(t) in the Tschebyscheff sense.

As a result of the preliminary simplifications, the prescribed
h(t) is at the start of the approximation process in its simplest form.
The interval of approximation is now selected. After the choice of the
numbers n and g has been made p and d are computed and the values for
h (m=1, 2,..., q) are determined. The remaining steps of the process

m

are outlined below:

n
1. Obtain p equations from kéb ook S 0)(v=121,2, ..., P)
2. Select [EU].

3. Find the n+l x _from: x_ = (hc’ h 1o +oes hc+n-l)'

!
4, Find hc from X hcxc = O (one of the A\ is arbitrary, but A # 0).

n+l
o'\ n
5. Compute n41)9 o0
€ = -
x|

(n+1) °©



8.

10.

11.

12.

13.

1k,

15.

16.

17.
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Find the n+l e  from € =€ (sgn kc) .

Find r, (k =1, 2, ..., n) from n equations

n
L h

- ¢ (sgn kg) = 0.
k=0

o+k Tn-k
Compute € (v=12, ..., p) from

n
(eV for v = o were already computed in 6).

= L h r
v k=0 v+K n-k

Is |e,|< leU[ ? If Yes, next step is 17. If No, next step is 10.

Find i from |e, | = lelpax (v =1, 2, <oy ). (If more than one max,
choose any max).
Find x3 = (B, By gy «oer by ).

ot
Find p_ from 2 pX o+ % =0 (one of the u is arbitrary).
(n+l)
Compute

9
M

Find from Table III the hyper-plane E, which is to be replaced by Ei'

£

Replace E, by Ei’ forming a new reference.

)

Repeat from step 3.

Apply Routh's test to:

3 wn’J{ 3 (-l)krk [gl (ﬁ)(?:ﬁ)(-l)m]} = 0
j=0 k=0 =0 |
1).

(rg
Are all roots in the left-hand plane? If Yes next step is 20.

If No next step is 18.



18.

21.

22.

23.

2k,

25.

26.

27.
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Increase the interval of approximation, choosing a new g

(qnew > 9518} Ppev ~ old)'
Repeat from step 1.

a k
Solve 2, r ¥ =0 (r =1).
k=0

Compute poles from Table III.

Find bkm’ azm, b}m from
Sktm
b = € (k =1, 2, ..., n-2w)
altm
a}m = 2e cos Bt (k =1, 2, vuu, W)
altm .
b}m = =2e sin Bltm s

where s, are real poles, S, = Q, + jaz are complex poles.

2w is the number of complex poles.

Obtain g equations from

n-2w

Y
L b A o+ 2, (at a, + b'mb1> - hm (m=1,2, ..., q).

kn 'k

k=1 1=1 Im g £

Select [EG].

Find the n+l1 xU from

x = (b

o lo’ b

1 1 14 bR | t
2qg’ """’ b(n-2w)o’ 8107 B¢’ " Byg P1g 7 b

1 4
Find A from 2 A, =0
(n+1) o

(one of the A\ is arbitrary, but A # O).

1 1
Compute ingl)ho(-ho)
€ = =
Lo Inl

(n+l)

24q’

1
* s ,bwg—) -



n
(e

30.

31.
32.
33.
34,
35.
36.

37.

38.

39.

Lo.
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Find the n+l ¢ _frome =€ (sgn xc) .

Find A, (k =1, 2, ..., n-2w), a

K b, (£ =1, 2, «.oy W)

z!

from n equations

n-2w \
' 1 ' - - . =
)} bkcAk + 0 (azaaz + bngl) h e (sgn %.0) 0
k=1 =1
Compute € (m=1, 2, ..., q) from
n-2w W
€ = 2 b A + 2 (a'a, +b'b,) -h
k=1 km 'k 1=1 im £ Iim £ m

Is |e | < lel? If Yes next step is 39. If No next step is 32.

Find i from leil - ‘emlmax (m=1,2, ..., q).
s — t ! ] !t
Flnd Xi -— (bli, vy b(n—gW)i, ali, o0y awi’ bli’ s 0y bwi)o
1
Find p _ from L wg X, + % = 0. (One of the p is arbitrary).
(n+1)

o
Compute x .

o
Find from Table III the hyper-plane El which is to be replaced by Ei.
Replace E, by E;, forming a new reference [Ec]

Repeat from step 25.

n-2w s, t W
From h*(t) = 2 Ae L Y (Eeaztcos B.t) + D (-2ea£t
) ) )
k=1 1=1
Find H¥(s) = L [b*(t)] .

H*(s) is the system function of the desired network N.

sin 6£t).
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This outline summarizes the process of approximation of h(t)
by h*(t), from which H¥(s) can be obtained. H*{s) can now be synthesiz-
ed as the desired transfer function, thus yielding the desired network

N. The last € (computed in 27), is the Tschebyscheff error of the

approximation.



CHEAPTER V

CONCLUSION

The goal of the preceeding chapters has been to develop a
theory of synthesizing R-L-C networks meeting to a Tschebyscheff
approximation in the.time domain, prescribed input - ocutput require-
ments. The method which is developed is a numerical one, and, hence,
permits a prescription of the input - output relationship in either
the form of an equation or in the form of data. The approximation
process is discussed in detail for a prescribed impulse response.
Consideration is given to the more general problem of obtaining a
network with a prescribed response to an arbitrary input. It is
shown in Appendix B that this problem can be reduced to an equivalent
problem of obtaining a network having a prescribed impulse response.

The approximation process developed in this dissertation
yields an impulse response function approximating the prescribed one.
The approximating impulse response is the inverse lLaplace transform
of an R-L-C network function. In this way one may determine the
impulse response of a realizable network which approximates the
prescribed impulse response in the Tschebyscheff sense.

In the opinion of the author, the chief contributions of
this investigation are as follows:

1. Application of the discrete Tschebyscheff approximation

theory to network problems.

2. Development of a general solution to the problem of

network approximation in the time domain.
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3. Development of a general numerical method of approxi-~
mation of a prescribed impulse response by the impulse
response of a realizable R-L-C network. The exrror
of the approximation of the realizable impulse response
is minimized through optimization of both its pole
locations and its residues.

L, A detailed investigation of the effect on the approxi-
mation of both the error in the pole determination and
the error in the residue determination.

The above results are encouraging. However, it is noted that
the calculations tend to become lengthy when the number of terms in
the approximating function is large. In addition, as might be expected,
a large number of points must be considered when the prescribed time
response varies wildly (i.e., when the derivative of the time response
changes sign often). Consequently, occasions may arise when the
numerical calculations can advantageously be programmed on a digital
computer.

A number of topics meriting further study has arisen during
this investigation. In particular, it would be desirable to extend
the method developed so as to permit a Tschebyscheff approximation
with certain constraints. Such constraints might, for example,
involve a restriction of the poles to the negative real axis (thus
yielding an R-C network), or a restriction of the poles to the jw
axis (thus yielding a lossless network). Many other constraints

dictated by practical considerations might be considered.
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The method of discrete Tschebyscheff approximations can be
employed advantageously whenever a problem can be reduced to an
overdetermined system of linear equations. It is believed that some
network problems in the frequency domain also show promise of solution

by this approach.



APPENDIX A

Step Input Problem

In many applications a network N is desired which will provide
a prescribed response k(t) to a unit step input. This problem can be
reduced to the one discussed in Chapter IV, i.e., the synthesis of a
network with prescribed impulse response, through differentiation of
k(t) and equating it to h(t). Hence,

h(t) = k'(t) . (A1)

With h(t) determined, the methods of Chapter IV can be
applied, producing the desired network N. However, in cases where k(t)
is not differentiable without an error [for example, when k(t) is given
as numerical data], it is more accurate to approximate k(t) by k*(t) and
then to differentiate to obtain h*(t). Such an approach will be outlined
in this appendix.

The requirement of stability demands h(t) to approach zero for
sufficiently large t. This requires k(t) to approach a constant for large

t. Hence, if k*(t), an approximation to k(t), is represented as

n skt
k¥(t) = Bj + 2 Be (A2)
k=1
(Re 5, < 0) ,
then
n skt n skt
* = *' = =
h*(t) k*'(t) kg‘.L (skBk)e k-zél Ace (A3)
(Re 5. < 0)
where Ak = skBk’ has the required form.
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Ir BO is known (which is the usual case) one can form
1%(t) = kx(t) - B_; then,
n s, t

1*¥(t) = L Be k (Re s
k=1

< 0) . (AL)

£*(t) can now be determined by the methods of Chapter IV, yilelding
h*(t) given by:

h*(i) = 2*'(t) = % Ace (A5)

(Re 5,<0),

k
from which the desired network can be synthesized.

I BO is not known in advance to sufficient accuracy, and
can not be subtracted, one can form a set of equations at equally-

spaced intervals in a manner similar to Eq. (4.5) and Eq. (4.7). If

the interval spacing is d, and if there are q points of data, then

n sktm
k= k(tm) = B+ kél B, e o(mo= 1,2, ..., q) (86)
By Eq. (4.8),
skd
e = ¥ (AT)
and by Eq. (4.9)
sktv
B, © = 2, (A8)
Then,
n
k, = B +k§ 2,
n
kv+l = BO + 0 Zkvyk

k=1
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a 2
k B +. 2
V42 o "2 kv k

Cerecesrssasssnnernene (A9)

=
]

n .
i
%}+szﬁk (v#¢i =1, 2, ..., Q)
k=1

If one takes the difference of two subsequently following

equations, one obtains:

n
Keyp =% = kglzkv(yk"l)
n

R kglzkv(yk-l)yk

n

2
kv+3 -kv+2 - kglzkv(yk'l)yk

|

® 02 000N OO PIOELEOIOLIEPRLEOLEEBIOIEOEEEOIONEECEDPEDS

n .
i-1

kv+i -kv+i-l= k;lzkv(yk-l)yk . (A10)
Iet
vim T Foamal T om0 (AL1)
then,
n n
= Z N Z Z
R k=1 KVE ) KV
Yo g2 ¥ ( )
= Z - z V+i = l’ 2, '-n,q"l
N1 o e T 2 P
n+l 2
Nu-1l T k§ “kvk 'k‘z “kv’k (A12)

Introducing the functions r (k =0, 1, «.., n) defined in
Egs. (4.11), one obtains:
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+ eee O = I, -1, (A13)

rnéﬁ+rn-lAV+l V+n 3 2

where
n

n n
- n
I = 2 (e g (L (2 v oot &y (2 Dy (A1K)

and

n n n
el
I, = Tl 2ol et 0 T G (A15)

But it was shown in the proof of Theorem 1 that

13 = I, = 0. (A16)
Hence,
n
kgb Tk Ak 0 (v#k = 1, 2, ..., g-1). (A17)

Therefore, Egs. (Al7) form an overdetermined system which can be solved
by the methods of Chapter IV, yielding h*(t), and thus the desired
network N. It should be noted that now the system has only p-1
equations rather than p (p=q-n) equations, since the number of equations

was reduced by one through the difference-taking process.



APPENDIX B

Arbitrary Input Problem

It was pointed out in Chapter II that most problems for
prescribed time-responsé include specifications of a particular input
ei(t) and of the corresponding response eo(t), rather than the impulse
response h(t). A number of techniques are availaeble, however, for the
reduction of such input conditions to the equivalent h(t) desired. One
technique, a slight modification of an approach advanced by E. A.
Guillemin[8] will be presented in this appendix.

The general relationship between ei(t), eo(t) and h(t) is

given by %

eo(t) = Of ei(x)h(t-x)dx = oftei(t-x)h(x) dx . (Bl)
If ei(t) or h(t) is replaced by its kth derivative, then
eo(t) becomes replaced by its kth derivative. If ei(t) is differentiated
kK times and h(t) integrated k times, then eo(t) is unaffected. It follows
that if ei(t) is differentiated k times and h(t) is differentiated m
times, then eo(t) becomes replaced by its (k+m)th derivative. This

relationship can be stated as

t
() = fel on™ () ax (82)

o)

e(()k+m)

Equation (B2) can be considered to be a generalization of
Eq. (Bl1). In particular, if only ei(t) is differentiated k times

(i.e., m = 0),

t
= 1 eMonex) ax . (83)
0]

) (4)

O
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If eo(t) is approximated by Eg(t), which is a sequence of g
curves, each of which is given by a (k-1)-degree polynomial, then
Eék)(t) can be represented by a sequence of impulses. If a uniform
time increment d is chosen between approximating curves, then all

impulses are uniformly spaced. Then Eék)(t) can be represented as

Eﬁk)(t) = %B cma(t -md) , (BL)
me=t

where 8(t) is the unit impulse.

From Eq. (B3) one obtains:

s (2) T cn(t) + epn(t-a) + ... + e (6-aa) . (85)
Since
e h(t) = O for t <0,
therefore,
Egk)(o) ¢ n(0)
Eﬁk)(d) = e h(da) + c¢;n(0)
5 06 05 0600 0 e BB LS SEOLELRIOEOEBSLEESTEODN (B6)
e (qa) T e nlad) +ejhl(a-1)als ...con(o).

Since eo(t) is known, €<k)(md) (m=0,1, ..., q) can be
determined. The coefficients c_ (m=0,1, ..., q) can be determined
from Eq. (B4). Thus one has in Eq. (B6) a set of q+l equations for the
g+l unknowns, h(0), h(d), ..., h(gd). The solutions of Egs. (B6) yield,
therefore, the values of the impulse response at the interval points,
thus providing a starting point for the impulse-response approximation

problem.,
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