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1 Introduction

Dynamic sequential decision problems are an important class of optimization prob-
lems. Applications include production and inventory control, capacity expansion, and
equipment replacement. In some cases the decision variables are continuous, allowing a
mathematical programming formulation with a continuous solution space. Often, how-
ever, the situation calls for a model with discrete decisions as, for example, in the choice
between the various pieces of equipment available to replace one currently in use. A
great majority of these problems share the characteristic of an indefinite horizon. The
economy, firm, or government involved has no predetermined moment of extinction. To
appropriately model these problems, it is necessary to assume that the problem may
continue indefinitely.

The traditional and most commonly used solution approach for such problems is to
assume some finite horizon, T, and simply proceed as if the world ended there. The hope

is that information beyond T will have little or no effect on the optimal solution, for at

tThis material is based on work supported by the National Science Foundation under Grant No. ECS-
8409682.



Cost-Based Means for Resolving Degeneracy in Infinite
Horizon Optimization !

Sarah S. McAllister
James C. Bean

December 2, 1986

1 Introduction

Dynamic sequential decision problems are an important class of optimization prob-
lems. Applications include production and inventory control, capacity expansion, and
equipment replacement. In some cases the decision variables are continuous, allowing a
mathematical programming formulation with a continuous solution space. Often, how-
ever, the situation calls for a model with discrete decisions as, for example, in the choice
between the various pieces of equipment available to replace one currently in use. A
great majority of these problems share the characteristic of an indefinite horizon. The
economy, firm, or government involved has no predetermined moment of extinction. To
appropriately model these problems, it is necessary to assume that the problem may
continue indefinitely.

The traditional and most commonly used solution approach for such problems is to
assume some finite horizon, T', and simply proceed as if the world ended there. The hope

is that information beyond T will have little or no effect on the optimal solution, for at

tThis material is based on work supported by the National Science Foundation under Grant No. ECS-
8409682.



least the first few decisions, since those first decisions will be implemented immediately.
A finite horizon with this guarantee is known as a forecast horizon. This solution method
is known as a planning or forecast horizon approach (Lundin and Morton [1975]; Charnes,
Dreze and Miller [1966]; Modigliani and Hohn [1955]).

We define degeneracy as the absence of any forecast horizon. Bean and Smith [1984]
showed that forecast horizons exist when every optimal sequence of decisions includes the
same initial decision. Recently, Bés and Sethi [1986] found an algorithm for the case of
discrete time and discrete decision sets that is guaranteed to identify a forecast horizon
when the optimal initial decision is unique. Schochetman and Smith [1986] extended
their results to the case of continuous time and continuous decision sets. In this paper,
we adapt the Beés and Sethi algorithm to the context of continuous time and discrete
decision sets. More important, we present a scheme for perturbing time zero costs which
guarantees that the optimal initial decision is unique. We also calculate, for any ¢, a
horizon that yields an initial decision that is part of a strategy with cost within € of the

optimal cost.

2 Problem Definition and Assumptions

Suppose we are faced with making a sequence of decisions over a continuous or
discrete time frame. Each individual decision, denoted x;, may also be called a policy,
and a sequence 7 = (my,7y,...) of policies constitutes a strategy. Il, is the set of
decisions available after n — 1 decisions have been made. IT = x5 ,II, is the set of all
feasible strategies. Associated with each strategy, =, is a cumulative net cost function

Cr(t). In order to compare costs incurred over time, we continuously discount them to



time zero. Cy(r) = [{° e "*dCy(t) is the resulting infinite horizon discounted cost as a
function of the discount rate, r. Cy(r,T) = f0T e~ "dC,(t) is the discounted cost over the
finite horizon T. Bean and Smith ([1984]) showed that infinite horizon discounted costs

converge if r is larger than

4 = sup limsup
x€ll t—o0

In G (t)]
t

The set {r|r > 4} is called the range of convergence for discount rates.

Given a discount rate, r, the problem we wish to solve is:

mig Cx(r).

As shown by Bean and Smith [1984], the minimum exists since II is compact and Cy(r) is

continuous in x. The forecast horizon approach involves solving finite horizon problems:
mig Cr(r,T).

We define C*(T) to be the minimum finite horizon value and C* to be the minimum
infinite horizon value. A strategy # is termed infinite horizon optimal if it minimizes
Cx(r) and finite horizon optimal if it minimizes Cy(r,T) for some T. II* and II*(T)
are the sets of optimal strategies for the infinite horizon and finite horizon problems,
respectively. An optimal initial decision is an initial decision included in some optimal
strategy. The sets of optimal initial decisions for the infinite and finite horizon problems,
respectively, are denoted and II} and IT}(T').

We keep the assumptions of Bean and Smith [1984]; in particular:



C(t) = the cumulative net cost for strategy x up to time ¢
= Kx(t) - Ra(t),
0<K.(t)<Me™
where Vt > To, M,~,T, independent of =,
0< R, (t) <Me

K.(t), Ry(t) nondecreasing.
Without loss of generality, we can assume T = 0 (if not, replace M by MeT0).

We also assume that II, is finite for all n. Bés and Sethi ([1986]) proved that this
assumption is necessary for Il to be compact. Compactness allows the existence of an
optimal strategy (Bean and Smith [1984]).

As in Bean and Smith [1984] we define the metric

p(m,x") =Y da(m,2")27",
n=1

where

1 if the n*® policies in 7,7’ are different,
¢n(7": 7"') =

0 if the n*® policies in 7,7’ are the same.

This metric has the property that, for any L, any two strategies which agree in the first
L decisions are closer than any two strategies which do not.

A forecast horizon is a point in time such that if the time horizon is truncated at
or beyond this time, an optimal initial policy for the truncated problem will be optimal
for the infinite horizon problem as well. Forecast horizon approaches consist of solving
successively longer finite horizon problems until a forecast horizon is discovered. Bean
and Smith [1984] showed that uniqueness of the optimal initial decision is sufficient for
a forecast horizon to exist. Schochetman and Smith [1986] found a stronger result in the

case of continuous decision sets. They define an algorithmically optimal (AO) strategy to
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be an optimal strategy that is the limit of optimal strategies for finite horizon problems.
This concept was originally introduced by Hopp, Bean, and Smith [1984] for discrete
time and finite decision sets. There such strategies were called periodic forecast horizon
optimal strategies. Schochetman and Smith demonstrated that the set of AO strategies
can be considerably smaller than the set of all optimal strategies. An AO initial decision
is an initial decision included in an AO strategy. Schochetman and Smith showed that
uniqueness of the AO initial decision is necessary and sufficient for the existence of
forecast horizons.

We define degeneracy in infinite horizon optimization as the presence of multiple AO

initial decisions, i.e., the absence of any forecast horizon.

3 Cost Function Characteristics

Using the exponential bound on cumulative costs, we can derive bounds on discounted

costs. Define

Note that a(t) — 0 as t — oo.

The following theorem is proved in Schochetman and Smith [1986]:
Theorem 1 Forx€Il,r>~,and T >0,
(1) 0< Kelr) - Ku(r,T) < a(T)

(1) 0< Eer) - Relr,T) < o(T)

(iit) [Ce(r) - Ca(r,T)| < o(T)



In particular, it follows that as T — oo,

Cr(r) — Cx(r, T)l — 0 uniformly with respect

tor ell.
Corollary 2 For § > T, |Ca(r,5) - Cx(r,T)| < a(T).
Proof: From Theorem 1,
0 < Ki(r,S) — Kx(r,T) < Ke(r) — Ke(r,T) < a(T),

0 < Re(r,5) = Re(r,T) < Re(r) — Re(r,T) < o(T).
Now,
éar(r)s) - éx(r’T) = f{r(') S) - f{f("aT) - (Rf(f) S) - Rx(r’T))'

Thus
=4(T) < ~(Re(r,8) = Be(r,T)) < Cy(r,8) = Cu(r,T) < Ke(r,S) ~ K (r,T) < o(T). m
Theorem 3 |C*(r) - C*(r,T)| < o(T).
Proof: From Theorem 1,
Cr(r) < Ce(r,T) + a(T), Vrell
Taking the infimum on the left, we get
C*(r) < C(r,T) +a(T), Vrell
Taking the infimum on the right yields

C*(r) - C*(r,T) < o(T)
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Similarly, from Theorem 1,
Cr(r) > Cx(r,T) — a(T), Vr eIl
Taking the infimum on the right and then the left yields
C*'(r)-C*'(r,T) > —a(T). w

4 Continuity Results

In order to demonstrate the existence of forecast horizons and develop an algorithm
for finding them, we will require discounted costs to be continuous. Schochetman and

Smith [1986] prove the following lemma:

Lemma 4 Fiz T > 0. Suppose the real sequence {r;} converges to r monotonically from
the left or right. Then the sequence of functions {e™"¥*} of t converges uniformly to the

function e~ on [0,T).

Schochetman and Smith [1986] prove the following theorem for continuous strategy
spaces subject to an additional assumption on the cost functions. We extend it to the

discrete case.
Theorem 5 The functions Cy(r, T), f{,(r,T), R,(r,T) of (x,r) are continuous.

Proof: Suppose #” — «x in IT and r, — r in (0,7). Suppose the theorem is false.

Then Je¢ > 0 and a subsequence {(r™,rm)} of {(x",rn)} such that

Kem(rm,T) - I?,(r,T)t >e, m=1,2,...



Since r,, — r, 3 a subsequence that converges from either the left or the right. There
exists a subsequence of this that converges monotonically to r from either the left or the

right. Call this subsequence {ry}. Then we have {(x*,r;)} = {(=,r)} and

~

Kr"(rhT) - kﬂ'(',T)I >e¢ k=1,2,...

Since r* — r monotonically, we have e™"f — ¢~ uniformly on [0,T] by Lemma 4.
Hence

oréxtaé)gr le"“ —e ™ 5 0ask— co.
Then

- - T T
Ky (re, T) - K,(r,T)I = |/; e "dK . (t) —-/0 e "dK,(t)

<

T
/; (e T _e ')dK,g(t)

T T
+ /0 MK (1) - /0 e, (2)

Let Var(f(-), [a,}]) denote the total variation of the function f on the interval [a, b].

Then

/; g (e""t - e"‘) dK,.(t)

~rit _ —rt .
< max (7 ~ ™) Var (K (),[0,7]) = 0

since

max (e""‘t - e"‘) -0
o<t<T

and

Var (Kw"(')7[01 T]) < Meqt’ Vk.

k

For the second term, note that since ¥ — x, #* and 7 agree over an ever increasing

time frame. Let T} be the time covered by the decisions on which they agree. T} — oo



as k — oo. Then T > T for k > Kr. Hence

=0, k> Kr.

T T
/ e K (1) - / K (1)
0 0

Thus

Ko(r,T) - ff,(r,T)l —0as k — oo.
This is a contradiction. The claim for R,(t) is proved similarly and thus follows for
Crlt). m

The next two theorems are proved as in Schochetman and Smith [1986] using Theo-
rems 1 and 5.

Theorem 8 The functions Cy(r), K. (r), Re(r) of (x,r) are continuous.

Theorem 7 Suppose ™ — x, r, — r, and T, — 00 a8 n — 00. Then Cyn (rn,Th) —

~

Cx(r) as n — co. The same is true for K and R.

The following lemma is proved in Bean and Smith [1984], but is not stated explicitly

there. We prove it here for the sake of completeness.

Lemma 8 Let {T,} be a sequence of positive times such that T, — oo as n — oo.
For each n = 1,2,3,..., let x™ € II*(T,). Then 3 a subsequence {x*} of {x"} and an
element x* € II* with the property that x* — x* as k — co. This property holds for any

convergent subsequence of {x"}.

Proof: Since I is compact, 3 a convergent subsequence {r*} of {z"}. Let n' =

lim_, o 7. By definition, C,&(T}) < Cye (T%). Taking limits of both sides,
lim Cp(Tk) < lim Cpe(T)) = Cye.
k—00 k—o00
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By Theorem 7,
lim é’,rk (T}) = Cp.
k—o00

But r* € II* = 6',: = é‘,a. Hence ' € IT*. m

Theorem 9 C*(r) = limg_.o C*(r, T).

Proof: Follows from Theorem 7 and Lemma 8 as proved in Schochetman and Smith

[1986]. m

5 Forecast Horizon Results

The existence of a forecast horizon and the algorithm for identifying it are based
on the bounds on the discounted costs derived in Section 3. Lemma 10 allows us to
restrict the set of potentially optimal initial decisions based on their minimum cost up
to a finite time horizon. Theorem 11 expresses a stopping criterion for identifying a
forecast horizon. Theorems 12 and 13 state that the stopping criterion will be satisfied
if the optimal initial decision is unique. For the remainder of the paper we assume r > 4
is fixed.

Define:

:C*(T) = min{C,(T)|x € I, m; = xi}.

iC* = min{Cy|r € I,x; = xi}. These minima exist since {r € Iljr; = =i} is

compact.

C(T) = min{;C*(T)}i : =} ¢ TI;(T)}.

¢ = min{;C*|i : x} ¢ I1}}.
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Lemma 10 If for any strategy #, C3(T) — é’*(T) > 2a(T) then &y & II3(S) for all

S>T.
Proof: For each S > T, and Vx €11,
Cr(S) < Cx(T) + a(T), by Corollary 2.
Then by taking infimums on the right and then the left,
C*(S) < C*(T) + o(T).

We also have

C3(S) > C4(T) - a(T) by Corollary 2.

Then, by subtracting,
C3(S) - C*(8) > C4(T) - C*(T) - 2a(T) > 0. m
We generalize two theorems of Bés and Sethi [1985] to continuous time.

Theorem 11 If C(T) — C*(T) > 2a(T) and TI}(T) = {x}(T)} then II}(S) = {x}(T)}

forallS>T.

Proof: Suppose for § > T, 3x% € II with x¥ # x}(T). By definition, C,s(T) >

C(T). Therefore,

C,s(T) - C*(T) > 24(T).

Then by Lemma 10, x§ ¢ IT}(S). Hence IT}(S) C IT}(T). m

Theorem 12 IfI1} = {x}} then 3T such that VS > T, II;(S) = {}}.
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Proof: Suppose not. Then 3 a sequence {T,} such that T, — oo and one can
find #™ € II*(T,) with 7} # x}. By Lemma 8, 3 a subsequence {r*} of {7"} such
that 7% — # € II*. Then, for k sufficiently large, 7t = #;. But #; = ], which is a
contradiction. m

Now let b(t) be any function satisfying b(t) > 0, fort > 1, and b(t) — O ast — oco. Bés
and Sethi [1986] prove the following result for discrete time and discrete decision sets.
Schochetman and Smith [1986] extend it to continuous time and continuous decision

spaces. The version here applies to continuous time and discrete decision sets.

Theorem 13 If |TIj| = 1, then there ezists a positive integer N satisfying C(N) —
C*(N) > b(N).

Proof: Since |IIj| =1, 3x* € II* and Ty such that I} = {x}} and »}(T) = =},T >
Ty (by Theorem 12). Suppose C(T) — C*(T) < b(T), VT > Tp (in particular, for all
integers N > Tp). For each N, 3x¥ such that C,» = C(N) and x¥ # x}. Then

0< Cpn —C*(N) < b(N) V integers N > To.

Since II is compact, we can extract from {x"} a subsequence {7""} such that #" — .
Then dng sufficiently large such that n > ng implies N,, > Ty so that
0 S é’“(Nn) - é*(Nn) S b(Nn)-

But b(N,) — 0, Cprva(Nn) — Cx by Theorem 7, and C*(N,) — C* by Theorem 9.
Then é,r = C*. Hence 7 € II* and 71 = 7. Since limy o0 7N = 7, 3n; such that
Vn > ny, p(xle 1) < % Thus x{v" = x; = x}, which is a contradiction. m

We can sum up our results so far:
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Theorem 14 IfII] is a singleton then 3T > O such that T s a forecast horizon.

Proof: Follows from Theorems 11, 12, 13, with b(t) = a(t). m

Theorem 14 was also proved by Bean and Smith [1984]. But from Theorems 11, 12, and 13

we also get an algorithm guaranteed to find a forecast horizon whenever |IIj| = 1:

Algorithm
(1) SetT 1.
(2) Solve the T—horizon problem to get T}(T),C*(T), and C(T).

(3) If|M(T)| =1 and &(T) - C*(T) > 2a(T) then STOP: T is a forecast horizon. Else

set T« T +1 and go to (1).

Theorem 15 If II] is a singleton then the Algorithm will terminate with an infinite-

horizon optimal initial decision for finite T

Proof: Follows from Theorems 11, 12, 13. m

6 Degeneracy Resolution

The results in Section 5 show that we can find a forecast horizon if the optimal
initial decision is unique. Degeneracy can occur if there is more than one optimal initial
decision. In this section we present two approaches to resolving degeneracy that follow
from the results of the previous section. One is an exact algorithm for finding an optimal
initial decision by perturbing costs. Together with the algorithm in Section 5, this

constitutes the first method guaranteed to terminate in finite time when solving any of
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a general class of infinite horizon problems. The second approach is the calculation of
a forecast horizon with the guarantee that any finite horizon optimal first decision has
infinite horizon discounted cost nearly as small as that of the infinite horizon optimal
first decision.

We make some additional definitions:

G={l:x e}

€ = (e1,€,...,€) is a perturbation vector.

Let C(t) = Cx(t) + €, t > 0, if ;; = x; that is, add an instantaneous, discrete cost
of ¢; for % at time 0.

Ci(r), C=*, ;C=*, C¢ are defined as for C,(t).

II** = {r : x = argminyen C5(r)} = the set of optimal strategies for the perturbed
problem.

I1§* = the set of initial decisions corresponding to = € II¢*.

Ge = {I: =} e I}

¢ = C¢ — C** = the minimum penalty for choosing a suboptimal initial decision in
the perturbed problem.

Adjust M if necessary so that
Kx(t)<(M + &)et
Re(t)<(M +€)e™, fort>0.
Lemma 16 Let € be such that ¢; < &€ Vi, and ¢; # ¢; for + # j. Then G C G and

G| = 1.
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Proof: Suppose j ¢ G. Then for any i € G, C*(j) - C*(i) > & Then
C () -0 =C"() - C*()+¢j- a2 e+e &

But 0 < ¢ < & Vi = |¢; — | < & Hence, C¢*(j) — C**(s) > 0. Therefore, j & G. Thus
G CQG.
Now suppose ¢ € G. Suppose j € G¢ also. Then ¢ € G and j € G. Hence é*(i) =

é*(j)- But ¢ # ¢; = é"(i) # C®(5). This is a contradiction. m

Theorem 17 Let costs be perturbed as in Lemma 16. Then the Algorithm will terminate

in finite time.

Proof: After the perturbation, II{* is a singleton. The result follows from Theo-

rem15. =

Because calculating € requires all the data over the infinite horizon, this perturbation
scheme cannot be implemented. We are currently working on an algorithm to implement
these ideas without calculating ¢ directly. But a consequence of Lemma 10, we can find
a near-optimal forecast horizon.

Let P(T) = {il;C*(T) — C*(T) < 2a(T)} be the set of potentially optimal initial
decisions. By Lemma 10, if for any T, 5 ¢ P(T), then x{ is not an optimal initial
decision for the infinite horizon problem.

We say that T as an e-forecast horizon if é’,.(s) ~C*<eforall S > T and all

7*(S) € I*(S).

Theorem 18 If T, > ﬁlog 64:_)}1{)? then T, 18 an e-forecast horizon.

15



Proof: For any =,
Cr < Cx(T) + a(T) by Theorem 1.

Also,

~

C* > C*(T) - a(T) by Theorem 3.

For any S > T, let 75 € II*(S). Then #f = «% for some § € P(T) by Lemma 10.

Then

Cr — C* < Ce(T) + a(T) - C*(T) + a(T) < 4a(T)

<eiff T > 1 log irM .m
r—q = (r—7)e

Note that by Theorem 3, C* < a(0). Let p= —(—5 = 5('—3)- be the error expressed as
a proportion of the maximum possible total discounted cost. Then T, = =~ log o . Thus
the e-forecast horizon length grows proportionally to the log of the accuracy desired and
inversely proportionally to the discount rate used. These properties are consistent with
those of the e-forecast horizon found by Bean and Smith [1985] for capacity expansion

problems.
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