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NOMENCLATURE

Note: Certain symbols which have very limited scope and whose

definition is clearly indicated in the text will not be mentioned here.

Symbol Usage
[A)] Amplification matrix which describes growth rate of the

&, B component of T and ¢

a,b,c,d Components of the amplification matrix [A]

cp Heat capacity at constant pressure, BTU/(1b.)(°F)
£(x,y) Initial velocity conditions for integration of momentum equation
F(X,Y) Initial conditions for integration of the dimensionless

momentum or vorticity equation

g Acceleration of gravity
Gr Grashof number based on 1/2 temperature difference
Gr = 1/2 féﬂgé@
\Z
h Local heat transfer coefficient, BTU/(hr)(ftg)(°F)
H Cell height such that 0 < y < H
k Thermal conductivity, BTU/(hr)(ft)(°F)
K Thermal diffusivity, XK = k/cpp
L Cell length such that 0 < x <L
fu Nusselt number, Nu = QH/IkA®
NX Number of vertical grid spaces
NY Number of horizontal grid spaces
js) Pressure
P Dimensionless pressure, P = pH?/povo
Pr Prandtl number, Pr = cpp/k
q Heat flux demsity, BTU/(hr)(ftg)
Q Total heat transferred/Unit of cavity depth, BTU/(hr)(ft)

ix






Symbol Usage

r NGING
Ra Rayleigh number basgd on 1/2 temperature differences =
c
GI‘XPI‘:'}_ PP' ngﬁAg
2 k Ve
Ra, Critical Rayleigh number
Re Reynolds number
t Time
T Dimensionless temperature
u x direction velocity
. ) i . . uH _ oV
U Dimensionless X direction velocity, U === S§
v v direction velocity
v Dimersionless Y direction velocity, V = %; = - %E
X
X Horizontal coordinate
X x/H
y Vertical coordinate
Y y/H
Z & , p camponent in the Fourier expansion for ¢
GREEK LETTERS
a,B X and Y component frequencies in a double Fourier expansion
X X direction grid spacing = L/NX/H
AY Y direction grid spacing = 1/NY
Ja¥e) Temperature difference between upper and lower surfaces
of cavity
AT Dimersionless time step size
5 32 32
Y Laplacian operator, —= t+ —=
P 5 P S G G
6X FDA to &"






Usage

FDA t o2
0 —
dx2

Dimensionless vorticity = - Vew

Temperature

Q,p component in the Fourier expansion for T
Eigenvalues of the amplification matrix [A]

General dependent variable--function of X, Y, and
Kinematic viscosity

Amplification factor of the «o,B component of ¢
Density

Dimensionless time = tv/H2

a,B component of the Fourier expansion for

Dimensionless stream function

SUBSCRIPTS
central
High
ith grid point
jth grid point
Low

Evaluated at the mean temperature (6 + 6;)/2

SUPERSCRIPTS
nth time step

Variation from conditions at mean temperature
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Symbol Usage
* Intermediate value

Mean value

ABBREVIATIONS
ADI Alternating direction implicit
DA Finite difference approximation
FDE Finite difference equation
PDE Partial differential equation
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STABILITY OF A FLUID IN A LONG HORIZONTAL
RECTANGULAR CYLINDER HEATED FROM BELOW
Michael Robert Samuels

ABSTRACT

If a fluid, initially at rest within an enclosure, is heated
from below and cooled from above, it will remain at rest as long as it
i1s not disturbed. If the fluld is sufficiently disturbed, it will
either return to its quiescent state or undergo a complete transition
to a convective regime, depending on the temperature difference, A0 ,
across the fluld, the physical properties of the fluid, and the geo-
metry of the container. The critical temperature difference, A6, ,
is defined as that temperature difference above which convection will
appear, and below which the gquiescent fluid i1s stable.

The objective of this study was to demonstrate the applica-
bility of numerical techniques for the determination of AQC for
various shaped containers, and different fluids.

Numerical integration of the Navier-Stokes equations was
used to compute the two-dimensional natural convection in a long, en-
closed horizontal channel of rectangular cross section which is heated
from below and cooled from above. Fields of temperature and stream
function V¥ (where V is defined such that 2 = oy , L= - o and

v dy v
u and v are the x and y velocity components and v 1is
the kinematlic viscosity of the fluid.) were calculated for a number
of cases in which the length-height ratio, L/H , was varied from
Cph

1/2 to 3/1 ; the Prandtl number (Pr = -i— , where c is



the specific heat, u 1s the viscosity, and k is the thermal con-

ductivity) was varied from 0.0l to 25.0; and the Grashof number (Gr =

1 gPAGHD
2

2
v

perature coefficient of volumetric expansion and v 1is the kiner-:tic

, where g 1is the acceleration of gravity, B 1s the tem-

viscosity of the fluid) was varied from 60 to 4.0 x 100 . The steady
state mean Nusselt numbers (Nu = QH/KAGL where Q is the total heat
flux), the streamlines and the isotherms were determined for each case
studied. For a given L/H and Pr, the Rayleigh number, Ra = Gr x Pr,
corresponding to A6, was determined by extrapolating a plot of Nu
versus Ra to Nu = 1.0. The values of the critical Rayleigh number,
Ra,. , so determined, were compared with the values predicted by Kurzweg
from the simplified equations of motion which have been linearized by
neglecting all second-order convection terms. The agreement was with-
in 8 per cent for Pr > 1.0. Although Kurzweg's linear analysis pre-
dicted Ra. to be independent of Pr , this was found to be true only
when Pr > 1.0. For Pr < 1.0 a significant variation of Ra. with
Pr was observed, and taken to indicate that the assumptions made in
linearizing the equations are not valid for Pr < 1.0.
Y=H/2

The strength of convection, as measured by df UdY, was found
to vary in proportion to (Ra-Rac)l/E, confirming tﬁe theoretical pre-
dictions of Landau and Chandrasekhar.

Wnen convection was studied in rectangles with L/H >1.0, it
was found that several different convective patterns may exist at the

same L/H, Pr, and Gr, depending on the initial conditions. This

multiplicity of solutions was investigated. It was found that for

xiv



arbitrary unsymmetrical initial conditions the preferred mode of con-

vection was that mode in which the number of cells was equal to L/H
(for the integral values of L/H used in this work). Other symmetric
patterns were forced to exist by using symmetrical initial conditionms,
but these patterns changed to the preferred mode when subjected to a
non-symmetric disturbance of sufficient magnitude. 1In all cases where
unsymmetrical starting conditions, or unsymmetrical disturbances were
imposed on the same cavity and working fluid, identical Nu , stream-
lines and isotherms were found at steady state.

To check the assumption of two-dimensional flow, an experi-
mental program was undertaken to obtain a qualitative description of
the natural convection in the channel. Unfortunately, it turned out
that the choice of stable, or preferred, mode was extremely sensitive
to minor perturbations in the boundary conditions such as the il-
lumination, heet leakage, etc., and the equipment did not have ade-
quate control for the desired experiments. Although interesting ob-
servations were made, they did not provide the hoped-for critical test

of the two-dimensional assumption.






I. INTRODUCTION

Many situations are known to exist in nature where a small per-
turbation of a system under consideration will cause complete rearrangement
of the system. These situations are termed unstable, and are of great in-
terest to both scientists and engineers, since the presence of an unstable
system may cause serious difficulties in the design and operation of pro-
cess equipment.

It is known that an unstable system may remain in an unstable
condition for long periods of time, if it is not disturbed. However, a
slight disturbance may cause the system to change completely into a more
stable form. Thus, laminar flow may be maintained in smooth pipes up to

Re = uo,ooo(u6>

- much greater than the critical value of 2100. How-
ever, if the laminar flow at Re = L0,000 1is sufficiently disturbed
(such as by a vibration of the pipe), the flow will undergo transition
to a turbulent regime, and a considerable increase in the pressure

drop will be necessary to maintain the same flow rate.

Since the difference in pressure drop between laminar and
turbulent flows i1s significant, the stable form must be known for design
purposes. Many of the unstable situations which the engineer is most
likely to encounter can be described by the equations of fluid mechanics
-- i.e., the equations of motion, energy, and continuity. Since these
equations are, 1in general, non-linear, coupled, partial differential

equations, analytic solutions are difficult, it not impossible, except

for very special cases. Therefore, other techniques have been developed



to solve these equations. In particular, the use of finite difference
techniques has led to many extremely interesting and useful solutions
(2,7,12,&&,56). The purpose of this dissertation 1s to show how

finite difference techniques may be utilized in the study and charac-
terization of unstable systems. In particular, natural convection

in a long enclosed horizontal chamnel of rectangular cross section

which is heated from below and.cooled from above was studied.

It is known both éxperimentally and theoretically that pure con-
duction with no motion will be the stable condition for a region heated
from below and cooled from above, provided the dimensionless temperature
difference, or Rayleigh number (Ra) , is below a critical value Ra, .
However, for Ra > Ra, pure conduction is unstable and a disturbance may
produce convection with a significant increase in heat transfer.

The effect of the L/H ratio of the enclosed region, and the
Prandtl number (Pr) of the enclosed fluid on the critical Rayleigh number
are determined herein. In addition, heat transfer rates, isotherms, and

streamline shapes are determined as a function of L/H, Pr, and Ra for

Ra > Rac .



IT. HISTORICAL BACKGROUND AND LITERATURE SURVEY

This section is divided into three parts:

1) In the first part the Benard problem of natural convection
between infinite horizontal plates which are heated from below and cooled
from above is discussed. Although many of the references are only in-
directly related to the problem of convection in an enclosed region, the
Benard problem is the classical problem from which other studies have
been extended.

2) In the second part, references on convection in an enclosed
region are reviewed.

3) In the last part, other numerical solutionsof the Navier-
Stokes equations are reviewed.

References dealing with numerical techniques and the problem
of the preferred mode of convection will be discussed in a later section.

2.1. Natural Convection Between Flat Plates of Infinite Extent

The first known reference to the existence of natural convec-
tion between horizontal plates of large extent which were heated from
below, or cooled from above, appears to be a paper by J. Thomson,(55)
who noted the presence of a cellular pattern in soapy water whose mean
temperature was somewhat above the ambient temperature. Thomson sug-

gested that these cellular patterns were caused by "convection circulation"



and thereby opened the whole field of convective instability. (There is
modern evidence that the cells which Thomson observed were caused by
surface tension gradients rather than thermal gradients.) The next
reference to cellular convection appears to be that of Benard,(3 who in
1900 published photographs taken with a beam of parallel light that had
passed through a layer of liquid paraffin which was heated from below.
In 1916, Lord Rayleigh(ue) set forth the basic approach to
the analytical treatment for the problem of convective instability in a
region heated from below. Rayleigh linearized the equations of motion
and energy by assuming that all second order perturbations of the pure
conduction solution could be discarded. A sclution for the temperature
and velocity perturbations was then expressed in terms of a Fourier
Series whose components were given by elkx eily . In this manner,
Rayleigh accounted for the cellular behavior observed by Benard, and
was able to prove the existence of a critical Rayleigh number below which
no motion could exist, and above which pure conduction would be unstable.
For the unrealistic boundary condition of no slip along the upper and
lower surfaces, Lord Rayleigh was able to predict a critical Ra of 65&/:2.
However, he could not determine the critical Ra for the case of fixed,
or no slip, boundary conditions. Several refinements of Lord Rayleigh's
(ko)

work appeared.(21’22’26’27) Finally, in 1940 Pellew and Southwell

developed a complete solution for the stability of the linearized equations
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of motion with either free or fixed boundary conditions on either the
upper or lower surface. As with Lord Rayleigh's work, Pellew and
Southwell based their studies on an assumed cellular behavior which they
characterized by the quantity "a". For a given "a", the critical Ra
could be found. It was then a simple matter to find the value of "a"
which corresponded to the lowest Rac . For any given cellular con-
figuration, this value of "a" served to fix the cell diameter to height
ratio, and therefore, for any given cellular pattern, a preferred cell
size could be found. Owing to the linearization of the equations of
motion, the hexagonal pattern photographed by Benard could not be ex-
plained.

In 1935, Schmidt and Milverton(MB) performed the first experi-
mental verification of earlier theoretically predicted stability crite-
rion. Agreement with the predictions of Jeffreys(gl) was obtained with-
in experimental uncertainty using liquid water as the working fluid. No
attempts were made to visualize the flow patterns. In 1938, Schmidt
and Saunders(u9) used a modification of the equipment of Schmidt and
Milverton(u8> to study the critical Ra for both water and air. The
critical Ra was determined by noting the discontinuity which occurred
in the heat flux vs. 4@ curve as convection set in. Schmidt and
Saunders also used a shadowgraph technique to determine the Ra at

which laminar cellular motion broke down to turbulent motion.
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In 1938, Chandra.(5 performed flow visualization as well as
critical Ra number experiments. He found that for air between plates
with a separation greater than ten millimeters, regular polygons seemed
to be the preferred mode, while for spaces less than ten millimeters
transverse rolls and irregular configurations predominated.

Between 1940 and 1954, interest in regions heated from below

(53)

was limited. In 1947, Stommell presented a general summary of the
thecretical work that had been performed to that time, and in 1950 Sutton(5u)
presented an attempt to explain the results of Chandra(5> for fluid depths
less than ten millimeters.

In 1946, Jakob(2o) reviewed the data of Mull and Reiher,(3h)
who apparently were the first investigators to obtain precise and useful
heat transfer data for air contained between infinite horizontal plates
heated from below. In 195k, Malkus(28) extended the experimental work
of Mull and Reiher to Ra = 10° , and found six discrete discontinuities
in the plot of Tu vs. Ra in the region 1700 < Ra < lOlO « In a later

(29)

paper Malkus attempted to explain the results of these turbulent
experiments on the basis of a minimum eddy size which is effective in
thermal transport in turbulent flow. He reported that experimental heat

transfer rates were within ten percent of those calculated in this fashion,

while the predicted transitions were within the experimental uncertainty.
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In 1957, Ostrach(37) presented a thorough review of the
literature dealing with natural convection in regions heated from below.
An exhausting review of natural convection in general is provided by
schmiat. (*7)

The first attempt to predict the heat transfer rates in the
region of the critical Ra was made by Malkus and Veronis.(3o) The non-
linear equations of motion were expanded in a series of non-homogeneous
linear equations which were dependent on the solutions of the linear
stability problem. An infinite number of formal, finite-amplitude solu-
tions which satisfy the basic equations were found to exist. The solution
which maximized the heat flux was chosen as the most likely solution.
Using these assumptions, the authors postulated the heat transfer rate as:

Rag

M = 1+k(1- -ﬁ?) (2.1-1)

where k was estimated to be:
k = 1.51
In 1959, Schmidt and Silveston(So) published the results of
an extensive experimental study of natural convection between two flat
horizontal plates of great extent which were heated from below. Heat
transfer rates for various Ra were presented for five different fluids
and compared with the air data of Mull and Reiher. The heat transfer

results for all six fluids appeared to fall on the same curve of
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N vs. Ra . Shadowgraphs of the motion existing between the two plates
were made by shining a bright light through the upper plate (lucite for
the experiments) and reflecting it off the lower plate (a polished chrome
surface). The reflected light was then photographed. Dark areas were
interpreted as regions of downflow and light areas as regions of upflow.
In this way the authors were able to distinguish between several dif-
ferent flow patterns that existed at different times and different Ra .
In 1960, Nakagawa(35) used the exact solution of Reid and

43)

Harris( for the velocity and temperature field at the point of

instability to evaluate the k of Equations (2.1-1). He determined a
value of 0.86, which did not compare well with the theoretical results
of Malkus and Veronis<3o) or the experimental data of Schmidt and
Silveston.(50> In 1965, K.G.T. Hollands(l9) recalculated k from
Reid and Harris' solution and obtained k = 1.44 , which agreed well
with the results of Malkus and Veronis, and of Schmidt and Saunders.

In 1961, Kuo(23) presented a solution of the non-linear equa-
tions of motion for convection between infinite horizontal plates with
free surface boundary conditions. The solutions were obtained in terms
of orthogonal function series whose ccefficlents were determined by
power series expansions. Once the expansions were obtained Kuo was
able to predict temperature profiles, and hence heat transfer coefficients.
| More recently Herring(l7’l8) has attempted to predict heat
transfer rates, and velocity and temperature fluctuations for turbulent

convection between horizontal plates. In these papers Herring investi-

gated only those non-linearities which had the form of an interaction



between a fluctuating component and the mean temperature field. Both
free and fixed boundary conditions were considered, and fluctuating

velocity and temperature fields were characterized by a series of hori-

zontal wave numbers o .

2.2. Natural Convection in Enclosed Finite Regions

In 1959, Globe and Dropkin(lh) presented data for a circular
region heated from below and cooled from above, but with such a high
Ra that the motion must have been turbulent.

The first investigation of two-dimensional convection in a
region with H/L near unity appears to be the numerical work by
Deardorff(7) in 196k4.

Deardorff used finite difference techniques to integrate the
unsteady Navier-Stokes equations for an enclosed rectangular region
heated below with fixed boundaries on all four walls. Length-height
ratios of 1:1 and 2:1 were studied. The final solution was
found to be Independent of the initial conditions for the six cases
studied. Steady state streamlines and isotherms were presented for the
six cases investigated. Since Deardorff was attempting to describe
turbulent convection, the lowest Ra he investigated was 6.75 X 105.
The assumption of two-dimensional flow was found to suppress the appear-
ance of random turbulent fluctuations, and in most cases a steady state
solution was obtaind.

In 1965 Kurzweg(eu) developed a stability criterion for
natural convection in an enclosed region, heated from below, with rigid

sidewalls. The two-dimensional Boussinesq approximations to the
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Navier-Stokes equations were linearized and a solution was assumed for
the temperatures and stream functions in the form of two infinite
series of orthogonal functions. A modified Fourier technique, as out-
lined by Poots,(ul) was used to evaluate the coefficients of the expan-
sions. In order that these coefficients be non-trivial it was found
that an infinite secular determinant (whose only unknown parameter was
the Ra ) must equal zero. By terminating the series for T and

at a finite number of terms, (N=3) the determinant reduces to an 18x18
matrix whose solutions give the various values of Ra for which a non-
trivial solution exists. The lowest of these values is then taken to
be Rae . Kurzweg presents values of the critical Ra as a function
of the L/H for L/H between O and 4:1 . Plots of the reduced

stream function V/ and reduced temperature perturbation /6

Wmax max

were presented for L/H =1l., 2., and 3. Absolute values were not avail-
able because of the linearization of the equations.

More recently, Fromm . has presented the results of sev-
eral numerical solutions of the two-dimensional, Boussinesq approxima-
tions to the Navier-Stokes equations for natural convection in an en-
closed region heated from below, and subject to either free or rigid
boundary conditions on the horizontal boundaries. Cyclic boundary con-
ditions were used on the vertical boundaries in an effort to simulate
the cellular behavior found experimentally between infinite flat plates.
The results of Fromm's calculations for free horizontal surface boundary
conditions agreed well with the theoretical predictions of Kuo,(23)

Fromm also presents results for rigid boundaries in a cell seven
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units long by three units high. Various cellular patterns were attempted,
and results were given for two-, three-, and four-celled patterns. It
was noted that a five-celled arrangement was unstable and broke down to
a three-celled pattern. Approximately equal heat fluxes were found for
the two-, three-, and four-celled patterns at steady state.

Aziz(l) has recently presented the results of a numerical study

of natural convection in a two-dimensional square region, and in a cube.

Results are presented for Pr = 1.0 and Pr = 7.0 at various Ra > Ra,.
The three dimensional equations of motion were simplified by use of a
three component vector potential stream function and a three component
vorticity vector. The equation of motion and continuity then reduce to
three equations--one for each component of the vorticity. The three
equations were solved by standard numerical techniques.

In 1961, Sorokin(sg) presented the results of an experimental
study of natural convection in a horizontal cylinder heated from below.
Sorokin's experimental apparatus consisted of a long lucite block of
square cross-section in which a circular hole had been drilled. The
hole was filled with water, and some aluminum dust and sealed. Thermo-
couples were located in and around the hole. The whole block was
heated from below and cooled from above, and heat transfer rates (as
measured by d6/dR in the lucite block) were determined as a function
of A© across the hole.

The critical A© was determined by plotting the heat trans-
fer rate versus 2O . Photographs of the dust patters show that the
fluid may have either of two basic modes: 1) a two-dimensional circular

rotation or; 2) a three-dimensional cellular motion.
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2.3. Other Numerical Solutions

One of the first successful numerical solutions of the Navier-

(15)

Stokes equations was by Hellums and Churchill who investigated free
convection near an isothermal, vertical plate, and natural convection
within a horizontal cylinder whose two vertical halves were at different
temperatures. The computed results for the hollow cylinder agreed

(31)

satisfactorily with the experimental results of Churchill and Martini.

(12)

Fromm investigated the unsteady wake behind a small

rectangular body placed parallel to the flow between two moving flat

plates. He was able to predict the fully developed vortex street behind

the blunt obstacle, and by the use of an extremely fine mesh size was

able to describe the behavior of the wake region in great detail.
Richards(uu) studied the effect of a point sink located at

the center of an infinite rotating horizontal disc. Streamline patterns

were calculated as a function both of sink strength and rotational

speed of the disc.

(56)

Wilkes studied two-dimensional natural convection in an
enclosed rectangle with side walls at different temperatures, and

either a linear temperature gradient or no heat flux at the horizontal
surfaces. Results were presented for a series of different L/H

ratios and Prandtl numbers.

Barakat and Clark(g) have studied transient natural convection

of liquids in closed containers with a gaseous layer above the liquid.
In particular the effect of various surface heat flux and temperature

boundary conditions on the transient natural convection in the liquid

were determined.



ITI. DEVELOPMENT AND DESCRIPTION
OF THE MATHEMATICAL MODEL

During his experiments with natural convection in a horizontal
cylinder heated from below, Sorokin(52) discovered the presence of two
distinct modes of natural convection. As the temperature difference was
increased beyond the critical A © , the first pattern,in which the fluid
was observed to undergo a planar rotation in the % plane, developed.
No component of velocity was noted in the third dimension. As the temper-
ature difference was further increased, this planar motion broke down, and
& three-dimensional cellular motion evolved. Similarly, in the shadow
graph pictures presented by Schmidt and Silveston(5o) of natural convection
between infinite horizontal plates, a two-dimensional roll pattern appeared
to be the preferred mode of convection for Ra slightly greater than Rac .

The question of the preferred mode of natural convection has re-
cently come under intense study. In 1960, Palm(39) presented an analysis
of the non-linear equations of motion in an attempt to account for the effect
of the variation of physical properties with temperature. He concluded that
hexagonal cells should be the preferred mode of convection if the variation
of kinematic viscosity was of a sufficient magnitude., 1In 1963, Segel and
Stuart(5l) extended and corrected the work of Palm, By assuming a partic-
ular form of viscosity variation with temperature, they demonstrated that
hexagonal cells should be the preferred mode provided the kinematic viscos-
ity variation is great enough. They also showed that two-dimensional rolls
could be the preferred mode of convection if there was a sufficiently small
variation of kinematic viscosity, or if the conditions during the onset of
convection were just right.

-13-
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It is apparent that the a priori prediction of the mode of con-
vection for a given set of conditions is difficult, and not yet resolved.
Fortunately, it appears that the various modes of convection all result
in approximately the same heat fluxes. Thus, for the predictions of heat
transfer rates almost any stable mode of convection may be assumed. (This
point is well demonstrated in the results of Fromm(l3>, in which two-,
three-, and four-celled two-dimensional patterns were found to yield approx-
imately equal heat fluxes.)

In the calculations presented herein it is assumed that the
motion is two-dimensional. This mode is known to be physically stable,
and therefore the calculated results should have physical significance
in so far as the other assumptions are valid. Whether or not the two-
dimensional motion is more preferred than three-dimensional motion is
unknown. Fortunately, the lumped parameterssuch as the total heat flux
are essentially the same for the two- and three-dimensional modes near
the critlical Ra . Hence, the values of these lumped parameters for the
two-dimensional case are good approximations for the three-dimensional
case as well. It is indeed the similarity between the properties of
the various modes which makes thelr relative stability so difficult to
determine.

Three-dimensional calculations are theoretically feasible by
an extension of the methods presented herein, but will require several
orders of magnitude more computer time. It should also be noted that
in three dimensions the complication arises that the most preferred
dimensions of the circulation are not known unless the length, height,

and width of the region are approximately equal.



-15-

Under the assumption of two-dimensional flow, the physical problem

may be stated as follows:

A fluid of mean temperature O, 1is at rest within the enclosed

rectangular region 0<x <L, and O<y<H . (See Figure 1). The
fluid initially has a linear temperature gradient with © = 6, at the lower
plate y=H, and © = @l at the upper plate y =0 . It is assumed
that Oh > @1 . A small circulation is introduced into the central region
and allowed to develop subject to the boundary cohditions:

0 = Gh on the lower surface;

0 =90 on the upper surface;

Insulated walls on both sides;

and u=v =0 on all walls.

X - 91 x=L
y
o =@h+@l
¥ _, e % _,
3 = Ox
y=H
°h

With the initial conditions wu(x,y,0) , v(x,y,0) f(x,y)

"

where f(x,y) represents the initial velocity fields.

Figure 1. The Physical Problem
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The temperatures, velocities, and heat transfer rates were calcu-
lated as a function of the time until steady state was approached. Since
only the steady state solutions are of interest, the starting conditions
may be changed to speed the approach to steady state. For the purpose of
simplicity, the fluid properties will be assumed to be independent of tem-
perature except for the buoyancy term. In particular, the fluid viscosity,
thermal conductivity, and specific heat are assumed to have constant values
By » kg, and C J these being the actual property at the mean temperature

o, = % (@h + @l) Density variations due to pressure are neglected,

and the density at any temperature 6 1is related to its value at @O by

the equation of state:

e = oo /(1 +8le-6,]) (3-1)
where P is a constant. To a first approximation, £ = %%/V and has the

value of l/@o for gases at low pressure.

3.1. Equations Governing The Problem

For the geometry under consideration, the equations of motion,

energy, and continuity may be written as:

Su, S, u -1 (Fu  ul; (3.1-1)
ot X oy Poox ox oy
ov ov ov 1 OP v 3%y

+uT +v T =g - —+tv | To5 +T o (3.1-2)
ot ox oy o Oy ox oy



2 2
ég.q_u__a.@..i. Q@_K a_@_+ é._@ (31_3)
ot Ox dy ox2 oy
S, % % Su . ov|_
A L e (3.2-4)

However, the equation of continuity, Equation (3.1-L), is simplified since
constant density has been assumed except in the gravitational term of the

equation of motion. Therefore:

ou ov
—_— + = = 0 .1-5)
ox dy 3
Now assume that:
p = p, + pl (3.1-6)

where p = actual pressure at any. point, and
Py = the pressure which would exist at any point if there were no motion
and all of the fluid was at temperature @o' Therefore, equation (3.1-2)

yields:
0o = g-1 9 (3.1-7)

Equation (3.1-6) yields:

SR - %El (3.1-8)
X X

and therefore,

(3.1-9)
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g - %5- - gp(e-e ) - L ii@'%)) g’; (3.1-10)
If the assumption is made that:
B(e-6,) <<1
Equation (3.1-10) becomes:
e-L1% - glewg,) - L X2 (3.1-11)
e oy Po dy

Substitution of Equations (3.1-11) and (3.1-8) into (3.1-2) and

(3.1-1) respectively yields the equations:

1 2 2
il.l. +u§2+v.a_u:_l -a£+va——l-l-+ a_}i) (3.]__12)
ot ox dy 0o Ox \x° 3y
v v v 1 Opl 2y J2y
T iuZr v = gp(e-6p) -= R4 X 4 V) (3,1-13)
3%  ox oy S PR

which, along with Equations (3.1-1) and (3.1-4) and subject to the initial

and boundary conditions:

u(x,y,0) , v(x,y,0) = f(x,y) 5 9<X;YJO) = 01 +% (Qh-Ql)
o(x,0,t) = 91
o(x,H,t) = @,
(3.1-1k)
u=v =0 on all surfaces
§9_(O)Y:t) 0
ox
@.Q(L:y;t) -0

ox
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constitute a complete statement of the problem.

3.2. Dimensionless Form of the Equations

Following the precedure developed by Hellums and Churchill(l6)

dimensionless variables of the following form are postulated:

T = L ; T = 2(@-@0) ; X = X..._. ; Y = L
to @h-@l X, Xo
(3.2-1)
1
p=E ; u= 2 ; v I
p! u v
o o) o

where 9 = (@h+ @1) /2. These are substituted into Equations (3.1-3),

(3.1-4), (3.1-12) and (3.1-13) to yield:

2
BN, %[y T v_ B_Pw_ug 2y (3.2-2)
t, 3T x, | X X x
32 <. ES(U éﬂ + ?Z gﬁ(@h'@1> ) Pg P
1o oT X oX oY 2 Po¥o ox
Voo _
+ _;g_ v (3.2-3)

_ K@p-0y) PT (3.2-4)

(6y-61) oT . u,(6,,-61) ( 59T, VaT
2 xg

2t or 2 % x
(@] (@]

X o

—_— i — = 0 (32‘5)
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with dimensionless initial and boundary conditions:

Equations

Therefore:

U(X;Y;O) ’ V(X)Y)O) = F(X:Y)

X
T(X,Y,0) = -1 +2 oy

H
T(X,O,T) = -1
T(X; ‘S{I;Ia ,T) = +1

U=V =0 on all walls

-aE(O)Y)T) = O
oX

ar( L ,v,7) = 0

ox Fo
(3.2-2) to (3.2-5) may be rearranged to:
U AU U [ 3P
X_O_ — HJe— + V — = -&2_+v_o ey
tou, oT oX oY AT oX X U

1
*o §Z + U ?Y +V ?K = fQ%ESEEZEi) . Po éﬁ
tols oT oX oY 2 ug poug oY
+ 14 VEV
XU
or + Lou U or +V or|_ E;SQ 2T
oT X, oxX oY <
UYV,T = [XQ , B0 Yo %o@B(ey-6)
touo Doug XoUq 2 ug

(3.2-6)

(3.2-7)

(3.2-8)

(3.2-9)

(3.2-10)
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Which is simplified by setting certain groups equal to unity.

let gg = 1 Xo = H
let Yo = 1 _

(3.2-11)

let S = 1 t, = H2/v

P - | - PV
let Q = 1 Py, = =

Substitution of these relations in Equation (3.2-10) yields the

relation:
uv,T = ¢ [pr,or,l/H] (3.2-12)
where
K = %} 5 H3€B(@h'@1> -~ Cr
v 2 v2
Thus the dimensionless form of the equations of motion are writ-
ten as:
W,y By T . £, oy (3.2-13)
oT ). JY oX
v oV ov oP )
—+U —=+V —==0Gr T - =+ VYV 2-14
oT T X oY oY (3 )
oT oT oT 1 2
—+ U —=+V == = T 2-1
ot oX oY Pr (3 )

Wiy + Vay = o (3.2-16)
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These together with the dimensionless initial and boundary con-
ditions:

U(X,Y,0) V(X,Y,0) = F(XY)

)

T(X,Y,0) =--1+ 2,0Y

|
]
—

7(X,0,T) Yot =0 (3.2-17)

or(0,v,1) _
X

0 on all surfaces

IT(2,Y,T) _

_H))

)¢

constitute a formal statement of the problem.

3.3. Evaluation of Nu

The local heat flux is evaluated from:

q = - k -a-; (3-3'1)

while the local heat transfer coefficient is defined by:

h o= —3% (3.3-2)
(6-67)

and the local Nusselt Number, Nu, is defined as:
, (3.3-3)

Nu = —2  vhere x, = a convenient reference length.
k .

Therefore:

X 3
Nu = P i (3-3'14')

in terms of the dimensionless variables Equation (3.3-4) becomes:
1 oT

(3.3-5)
Ty 9lyog

Nu =

but T, = +1, Ty = - L
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Therefore, the local Nu is:

1 OT
Nu = - = (3.3-6)
2
5? Y=0
The overall Nu is defined as:
Nu == [ Nudx
L o
which becomes: L
No=-LH g oT ax
2L ° oYy

3.4. Elimination of Pressure From The Equations of Motion and Introduction

of Stream Functions and Vorticites

The pressure terms in the equations of motion may be eliminated
as follows:

1) take Equation (3.2-13)

9
Y

2) take 9 Equation (3.2-1%4)
X

3) subtract 2) from 1)

Rearrangement of the results of 3), followed by elimination of certain terms

through use of the continuity equation, gives the following relation.

2 {@z -_ag}w_a[_az a_U] v 2 [a_v _ay_]

oT oX oy X | X oY oY | X 3Y
car LRl N (3.4-1)
X X oY
For simplicity, the term él - QH‘ is defined as the vorticity
oX oY
and given the symbol € = §! - ég . The equation of motion is then

oX oY
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written as:

Ly Ly Lo Lo Ly ;
R xTE (3.4-2)

A new variable, the stream function ¥, is introduced so the continuity

equation is always satisfied. V¥ is defined such that:

N Loy
oY
and (3.4-3)
LA
ox

which always satisfies the continulty equation.

The vorticity is expressed in terms of stream function as fol-

lows:

oV U

LN 2 e
% "o TV (34-1)

and the equations of motion and energy are now expressed as:

§§_+U é§‘+V§§-=-Grgi +V2C (3.4-2)
ST X oY aX

oT oT oT _ 1 -
aT-{-U aX+VaY = Prva (3.4-5)

The initial and boundary conditions for Equations (3.4-2) to (3.4-7) are

given by:
¥(X,¥,0) , t(X,Y,0) = F(XY)
T(X,Y,0) = - 1. +2.%Y
T(X,0,T) = -1 (3.4-6)
T(X,1,7) = + 1
37(0,Y,7) = A(EY,r) = 0
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The stream function boundary conditions on the four surfaces may be derived
from the condition U =V =0 on any surface. For example, examine the

surface X =0. U=V =0 implies éi = éi = 0. éﬂ = 0 can be inte-
Y X oY

grated to W(O,Y) = constant. This constant may have any value as long as
the same value is used on all four surfaces. For simplicity v(0,Y) =0

1s chosen. Therefore, the stream function boundary conditions become:

¥ X (3.4-7)

on any surface, where n represents the direction normal to the
surface.

The boundary conditions (3.4-6) and (3.4-7), combined with
Equations (3.4-2) to (3.4-5) constitutes the formal statement of the pro-
blem in terms of stream functions and vorticities.

In Equations (3.4-2) and (3.4-5) the terms U and V have been
included. These terms could just as well have been replaced by their
equivalent expressions in derivatives of V . However, the computational
effort will be slightly reduced if U and V are evaluated once for each
set of V¥ , rather than evaluating the respective derivatives.

Physical significance can be attributed to both &orticity and
stream function as follows:(jg)

The vorticity ¢ represents twice the rate of rotation of a
fluid element, while the stream function is usually represented by plots
of constant V¥ , or streamlines. The streamlines are tangent to the ve-

locity vectors, and at steady state represent the path of a particle

"floating along with the fluid."
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3.5. General Logic of the Numerical Solution

A basic approach to the numerical solution of equations may be
visualized as follows:

1) Initial conditions in the form of ¥ and T are read into
the computer.

2) Suitable finite difference approximations (FDA) to Equation
(3.4-4) are used to calculate the vorticity field.

3) Suitable FDA to Equation (3.4-3) are used to calculate the
U and V fields.

4) Using the U, and V fields previously calculated, a finite
difference approximation to Equation (3.4-5) is used to advance the values
of T,

5) With the new T , a FDA is used to advance the values of the
vorticity.

6) With the new vorticities an iterative technique is used to
solve the simultaneous FDA to Equation (3.4-L) and thereby advance the
value of V¥ .

7) The program returns to step 3), and steps 3-7 ére repeated

until the desired number of time steps have been attained.



IV. FINITE DIFFERENCE APPROXIMATIONS AND THEIR STABILITY

L.1 Formulation of Finite Difference Approximations

In the numerical solution of a differential equation the de-
pendent variables are assumed to exist at a finite number of regularly
spaced values of the independent variables known as grid points. The
derivatives are then replaced by finite differences and the differen-
tial equations are replaced by a series of algebraic equations which
are then solved by conventional means.

Before attempting to derive FDA to the various derivatives
that will be used, it is necessary to define the values of the inde-
pendent variables at which the dependent variables will be specified.

Therefore, the following grid is defined:

. where:
i=0 1 2 3 NX=-2 NX-1 i=NX
0 f Y<1
L 0<x <=
- —H
2 AX = LZE
o
5 A= wr
X = iAX
M = space
AY
Ny -2 + between vertical
Ny -1 grid lines
AY = space
J=NY
—>| AV |<-— between horizon-

Figure 2. The Numerical Grid. tal grid lines
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The intersection of two grid lines serves to fix the locations
of the grid points. The following notation will be used to represent

the value of a dependent variable:
n . .
(bj_,j ~ ¢(1AX) JAY DAT) = (D(X; Y, T)

Once a grid system is established Taylor's Series Expansions
about any grid point may be used to approximate derivatives with finite
differences as follows:

Suppose ¢i,j is known for all 1i,j and it is wished to

approximate é@ ; etec. The Taylor's series in ¢ may be written

52
3%’ 32
as:

3; 2 30
& ¢1’J ¢ & ¢5Li + 0(A%2) (4.1-1)

01,5 = 01,9 *

1! ox 2. 3x2
s s Ay 320; .
01-1,5 = 04,5 - %% ;ﬁJ + 2% g;éJ - o(ax>)  (k.1-2)

Where O(AXB) represents the remainder term of the series, and is read
as "Order of A" .
If M is small so that AX° << 1 we may terminate Equa-

tions (4.1-1) and (%.1-2) at the second terms to yield:

39,

¢i+l,j = q)i,j + X -q)—lLJ- + O(sz) (4.1-3)
30-

051,35 = 04,5 - -gi‘i + 0(ax®) (L.1-4)

which can be rearranged to yield:

§¢i,j _ 0i41,5-01 4
dx Ax

+ 0o(ax) (4.1-5)
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Ny,5 _ 91,5-01-1

2J 4 o(AX) (k.1-6)
oX DX,

Equation (L4.1-5) is termed a forward difference approximation, while
Equation (L4.1-6) is termed a backward difference approximetion. If
greater accuracy then 0(AX) 1is desired, Equation (4.1-2) may be sub-
tracted from Equatioa (4.1-1) to yield:

M5 001,3051,3 , o(ad) (4.1-7)
oxX 2AX

which is termed a central difference approximation.

2
In a similar manner a FDA to é_Q may be derived by addition

%2
of Equations (4.1-1) and (4.1-2) to yield:
2 - 3 1] . .
01,5 _ 91-1,5720, 5001, 5 (4.1-8)
NG ING

A forward difference approximation to '%Q is given by:

.
05,3 - (g2 L @ L )/ar (4.1-9)
dT 1,J 1,d

Tn a similar manner approximations of higher order accuracy
could be derived by including more grid points, and more equations.
However, in practice it is found desirable to avoid the use of higher
order approxima?ions for two reasons: 1) FDA which use only three
adjacent grid points generate a special set of equations whose solution
can be obtained by non-iterative techniques. 2) High order FDA are
often plagued by numerical instability, a condition in which small er-
rors become magnified to unreasonable proportions. Therefore, only
those FDA which have already been presented will be used for the form-

ulation of FDA to differential equations. However, when evaluating
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coefficients for these equations, suchas U and V , it is advan-
tageous to use higher order approximations.

Once suitable FDA to the various derivatives have been form-
ulated is 1s possible to convert the partial differential equations
(PDE) of Vorticity and Energy into a series of algebraic equations.
Several different methods have been proposed for this conversion, and
may be broadly classed as:

1) Explicit

2) Implicit, and

3) Alternating Direction Implicit (ADI),
depending on whether the non-time derivatives are evaluated at +:= nAT
or T = (n+l)At . Examples of each class can be demonstrated by use

of the heat conduction equation:

g% = §EQ + éEQ (4.1-10)

X2 Yl
Explicit:
n 24N 240
EURRL UN R UW
1
where 5% = 911,35 - 201,35 + 0is1,j and 5rd® |, = 0175915
1,3 AT

AXE

In the explicit formulation @71

1,3 can be calculated directly
)

for each grid point once the ¢?,j are known.

Implicit:

n 2 4in+l 2yn+l
5T¢i,j =93 + 6Y¢i;j

2 o5t (4.1-11)
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In the implicit formulation it is not possible to calculate

n+l
the ¢i,j directly since each equation involves five unknowns. There-

fore, a system of simultaneous equations must be solved for ¢?t§

The solution of this set of simultaneous equations is usually performed
by an iterative technique such as the Gauss-Seidel, or successive Over-
Relaxation iteration. These methods, however, usually require a signif-

icant number of iterations for satisfactory convergence, and therefore

require a great amount of machine time.

Alternating Direction Implicit:

In order to overcome the necessity of an iterative procedure
Douglas (8), Peaceman and Rachford (39), and Douglas and Peaceman (9)
proposed the ADI procedure. This method requires the line-by-line
solution of small sets of simultaneous equations which can be solved
by non-iterative techniques, rather than the iterative solution required
by the simple implicit formulations.

In the ADI procedure the time step is broken into two equal
segments. In the first segment all the derivatives in, say, the X
direction are taken as implicit, while those in the Y direction are
taken as explicit. 1In the second half step the process is reversed,
and all X derivatives are explicit while all Y derivatives are im-
plicit. 1In this manner the systems of simultaneous equations formed
are of a special type known as "tri-diagonal', and have a solution

which can be expressed in closed form (See Appendix 1).
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The ADI procedure is illustrated by the following two steps:

(93,5 - 07 )/be/2 = 8% 6F | + 88 ¢
(k.1-12)

n+l * * n+l

(q)i,j - d)i,j)/AT/z = 6}2( (bi;J Si (bi)j

where ¢§,j is an intermediate whose value is meaningless without the
second step.

Unfortunately, this ADI scheme cannot be directly extended
to three dimensions without encountering stability limitations. To
overcome this weakness, Douglas and Rachford (10) developed a three-
dimensional version of the ADI procedure. In an effort to increase the
accuracy (lower the truncation error) of Douglas and Rachford's three
dimensional ADI procedure, P. L. T. Brian (4) developed a three-dim-
ensional ADI version of the Crank-Nicholson procedure. It can be
shown that Brian's three-dimensional procedure will reduce to Equations
(4.1-12) when used in only two dimensions. Douglas and Rachford's
three-dimensional scheme may also be used for two dimensions but in-
volves a higher truncation error than (4.1-12).

For completeness the three-dimensional procedures of Douglas
and Rachford and P. L. T. Brian are given below:

Rachford and Peaceman:

1 * n 2 % 2 .n 2 4n
i 104,5703, 5] = 8% 05 5 + 8y 05 5 + 87 0y

1 *¥% n 2 ¥ ‘2 *% 2 .n
~= [01,5-01,5] = 8% 01,5 + 8Y 03 5 + 87 03 ; (4.1-13)

1L .n+tl n 2 ¥ 2 p¥* 2 an+l
o (01,570,530 = 8% 01,5 + 87 03,5 + 87 01,
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P. L. T. Brian:

* n 2 * 2 n 2 .n
= [01,5-01,5] = 8x 01,5+ By 01,5+ 87 05,5 a)

2 *¥ n 2 % 2 ¥ 2 .n
7 [04,5-05,5] = 8% 05,5 + 8% 05,5+ 82 5,5 b)
AR o ¥ D W% PR (4.1-1%)
2 n B
= [01,5-01,5] = Bx 01,5 + 8y 03,5 + 87 03,5 ©)

2 [¥¥ D OXkR

1 n+tl n 2 ¥
ox 01,5 * Br Op,5 % 02 0y

A 1045705 5]

1

a

KX¥
¢i 3 can be eliminated from Equations c) and d) so that only
)

. * KX n+l
evaluation of ¢ s ¢ , and ¢ are necessary.

L.2, Stability Considerations

At first glance it appears that explicit formulations would
be preferred since they require the smallest number of computations per
time step. However, it can be demonstrated that, in general, explicit
FDA suffer from numerical instability if a critical time step 1s ex-
ceeded. This time step is often quite small and therefore a large num-
ber of time steps is required.

Implicit methods, including ADI, on the other hand, require
a greater number of calculations per time step, but usually do not
have stability imposed limitations on the size of the time step.
Thereforg, a lesser number of time steps is required to reach the
same value of time. A balance between the number of time steps, and

the calculations per time step must be struck.
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However, before this decision can be made, it is necessary
to develop a rigorous definition of stability, and a criterion for

determining the maximum allowable time step.

L.3. Definition of Stability

Richtmeyer (52) introduces the concepts of convergence and
stability as follows:

a) convergence. Let ¢(X,Y,T) be the exact solution to a
differential equation, and ¢?,j be the approximate numerical sol-
ution to the differential equation. Convergence of a numerical approx-
imation is taken to mean ¢?,j —>¢(X,Y,T) as n - o , A theorem by
Lax (53) is introduced which guarantees the convergence of a FDA to
the true solution provided the approximation is both consistent and
stable. The consistency condition requires that the truncafion error
of a FDA must approach zero as AX, AY, At —» 0. (A condition which
is automatically satisfied by all FDA used in this work.) If the con-
sistency condition is satisfied then stability is the necessary and
sufficient requirement for convergence of the approximate solution
to the true solution as AX, AY, AT -» 0 .

b) stability. If the difference between ¢?,j and ¢(X,Y,T)
is called the error of the approximation two pertinent questions about
the value of this error may be asked:

1) what is its behavior as n — » for fixed
X, AY, AT

2) what is its behavior at fixed 1 if AX,AY,AT - O.
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In many cases that the answer to Question 2 depends on the
relative rates with which AX, AY, At - 0 . This question will be re-
garded as the more significant of the two since it is hoped, in the
limit, to reduce this error to zero by letting AX, AY, AT - 0.

For both questions it is seen that an increasingly large
number of time steps are required, and therefore the possibility ex-
ists for unlimited amplification of errors. If this occurs the final
numerical approximation to ¢(X,Y,T) will be completely meaningless,
and therefore, Richtmeyer states the desired stability criterion as
follows:

A FDA is stable if, in the limit as n - « , the error ¢?,j-
O(X,Y,t) remains bounded.

Since, in general, &(X,Y,t) is bounded, the stability crit-
erion can be rewritten as:

A FDA is stable if in the limit as n — o the approximation

n
¢. . remains bounded.
1,J

L.k, Determination of the Stability of a Finite Difference Approximation

Two methods for determining the stability of a FDA will be
established. It should be noted in particular that these stability
criteria are sufficient, rather than necessary. That is, the FDA must
be stable if the conditions are met¥, however, if the conditions are
not met one cannot definitely state that the FDA will be unstable,

Specific examples can be sited of a stable FDA which does not satisfy

*¥ This analysis does not take into account the effect of boundary con-
ditions which often introduce instabilities of their own.



-36-

one or the other of the stability criteria. In cases where the two
procedures yield different results the less severe criterion is used
since 1t guarantees stability. Experimental calculations have shown,
however, that when neither of the criteria is satisfied, the FDA will
generally be unstable.

The stability criteria will first be applied to the simple
heat conduction equation for explicit, implicit, and ADI formulations,
and the results of the two tests will be compared. Then the concept
of explicit, implicit, and ADI formulations will be extended for the
vorticity and energy equations. The stability of the three formula-
tions will be examined and the advantages and disadvantages of each
formulation will be discussed. Next the FDA to the stream function
equation, Equation (3.4-6) will be given, and finally the various FDA

to U, V, and Nu will be derived.

4.5, The Method of Positive-Type Equations

The simplest form of stability test makes use of the positive-
type FDA as follows:
An explicit finite difference equation of the form
¢)§_1j3- = oy 3055+ 2nen s0en, g e, 001, B, 50, 5en 2,500, 50
(4.k-1)
is termed positive-type if all the coefficients 81,3 2 Bi4l,j...2T€ NON-

negative, that is, if

a: + >0 for all i,
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Similarly, an implicit finite difference equation of the form:

n+l n n+l n+1l n+1l n+l
‘Pi,j = bi,j¢i,j +biy1, 50441, F bi-l,jq)i-l,j + b3 52103 5.1 F bi 54101 541
(b.k-2)

is termed positive-type if

bi,j >0 for all 1i,]

(any simple conduction or convection equation can be put in these forms

where or b may, or may not, be >0 .)

81,3 1,3
Barakat and Clark (2) have shown that explicit, positive-

type FDA are stable. Similarly, Forsythe and Wasow (11) have demon-

strated the stability of positive-type implicit FDA.

Let us examine the stability of the explicit form of the heat

conduction equation:

which can be put in the form of Equation (L4.L4-1) as:

n+l , 2 n n n n n
. -:r - ~2é; AX___ Na o _él—_ AT
170 ot T 00,07 5 0u 5+ 0 g S0 5070 y0)
(b.4-3)
For a positive-type equation:
. 2
2A" AX
&2 (L+ 38 1. (b.bol)

In a similar manner the implicit formulation can be put in

the form:
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n+l 1 n A n+1 n+1 AXC, il n+l
¢i,j =3 ¢i,j * 5 [¢i+1,j * ¢i—l,j + £§§(¢i,j+l + ¢i,j—l)

NG
(4.4-5)
where
2
p=1+ 2L (1 + é§-—)
NG AY2

Since all the coefficients are > 0 irrespective of At ,

the implicit formulation is unconditionally stable.

4.¢. The von Neumann Stability Criterion

Unfortunately, the concept of positive-type FDA does not yield
the most useful results when applied to multi-level approximations
such as those of Crank-Nicholson, Dufort-Frankel, etc. For the study
of these formulations a more general procedure than provided by the
positive-type equations is needed. Therefore attention is turned to
the von Neumann Stability test, as first reported by O'Brien, Hyman,
and Kaplan (36).

The method of von Neumann is strictly applicable only to
linear equations with constant coefficients. Following von Neumann
the difficulty of non-linearities, or non-constant coefficients can
be circumvented by successively applying the procedure to a series of
small overlapping regions. FEach region is assumed so small that the
coefficients can be assumed to be constant within it. Such a pro-
cedure, while it has worked well in practice, is, of course, open to

serious question.
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The method of von Neumann is applied by assuming that a
solution of the form O(X,Y,7) = g % " ei(aK+ﬁY) exists for the
finite difference equations. (y is a function of o and B and
may be complex). One term of the solution is then expressed in the

n ‘ n :
form ¢a,B(X,Y,T) = (ga}ﬁ)el(ax+BY) where = e”AT  is the ampli-

f,p
fication factor for the «,p component, and may also be given by

b o= O /R The term is th bstituted into the finit

a,8 = Oo,p/0y g - e term is then substituted into the finite
difference equations and éa,B is determined as a function of

X, AY, AT, ¢ and B . Since it is required that O(X,Y,T) must be
bounded as n — ® , then Q&)B(X,Y,T) must be bounded for all a,PB
as n — * , and the von Nuemann stability criterion is expressed as
Iéa,s‘ <1 forall Q,B .

If simultaneous PDE are being considered, the method is al-

most analogous. If the variébles under consideration are Z and T

1(0X+BY)

n
for instance, general terms of the form Za,B = ga,ﬁ e and

ei(aX+BY)

N . s T
Td,ﬁ = Q%,B are assume@ and then substituted into the origi

nal simultaneous FDE and a relation of the form:

g n+1 a b é n . g n

- ={A] (4.5-1)

q) a,B c d (b a,B @
is derived. The matrix [A] is called the amplification matrix.
The von Nuemann stability criterion for this case may now be simply
expressed as | A | <1 . This condition may be reduced to A, 2o <1
where A7 and k2 are the eigenvalues of the amplification matrix.

For a proof see Wilkes (56) .
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The von Nuemann stability procedure will now be used to study

the stability of the heat conduction equation:

22y, )

G G

Explicit Form:

The explicit FDA to the heat conduction equation may be

writtem as:

n+1 n ,
Ty - 015 - 8(9he1, 5208 5r0T0, 5+ r(0F 5e1-205, 5407, 5o1))  (4.5-2)

- 2
5 = AT r = X .

where = H = Assume that the general term in @g’ﬁ
NG ING
can be expressed as:
- n ioX _ipY
= e )_}.n =

Substitution of Equation (/+.5-3) into (L4.5-2) and division by elCX1pY

yields
gé:é - 5395 = 8‘}iaﬁxm2+e_iaﬁx+r(eiBY-2+emiBY%gn 5 (k.5-k)

Therefore:

n+l, n

by, B = ga}ﬁ/ga’s =1+ 25 [cl-r) + (cos aAX + r cos ﬁAY)] (k.5-5)
and the condition for stability becomes:
-1 <1+ 28 [ei-r) + (cos aAX + r cos BAX)] <1

The right hand inequality is always satisfied; the left hand inequality
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will be satisfied for all q,f if, and only if:

2
2 955 1+ <
N

Implicit Form:

Substitution of the general term

¢3;5 - gg o 10X eiBY
into
n+l n n+l n+l n+l n+l n+l
i, - ¢i,3 = ¢i+l,3 - 2¢ + 5. -,3t ¢1,J 12955
¢ 07 L) ] (%.5-7)
yields:
n+l/ n _ _ 1
a P a Bl = ga’B - 1-28[cos(aAX) - 1 + r(cos(RAY) - 1)]

Since the largest positive value of (cos(0AX) - 1) + r(cos(BAY) - 1)
is 0, the greatest value of }ga,a\ <1, for all Ag, and hence the
implicit formulation is unconditionally stable.

It should be noted that the stability criteris predicted by
the von Neumenn and positive-type methods are identical for these one-

level approximations,

ADTI Formulation

* * * * n- n n
04 4 = ¢?,J 8 [¢i+l,J -20; 5+ G314+ r(¢1,3+1'2¢1,3+¢1,3-1)]
(4.5-8)
*

n+l * * * +1 +1 n+l
R D R R
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g* 5 be amplification of step 1, ¢*/¢n 5 §QB is the overall
)

amplification ¢n+l/¢3 5 - The stability criterion is !Ea,s\ < 1.

Let

£ e1(QX+BY) a)

*
Assume: ¢i,j

h.5-
ol o gotl o1(aX+pY) b) (4:5-9)

Substitution of ) into step 1 and divicion by the common

Ji{ax+8Y)

factor yields:

g¥/gh - g% 1% L8r(cos(pAY) - 1)
%GB 1 _ her(cos(aaX) - 1)

(4.5-10)
Substitution of b) into step 2 and division by the common
factor yields:

4or(cos(oAX) -1) o
§n+l §* = L )-l-fl -4l
/ 1 - 48r(cos(BAY) ~1) ( )

The overall amplification factor is then:

|t 8] =

1 - 4or(cos(pay) ~1)) "

‘§n+l/§n 1 + 48r(cos(aAx) -1)
| 1 - 4dr(cos(anx) -1)

1+ h&r(cos(ﬁAX)-—l))‘

which is always less than . for all AX, AY, AT, o, and PR. Therefore

the ADI formulation is unconditicnally stable.

L,7. TFinite Difference Approximations to Equation of Motion and Energy

and Their Stability

The following FDA may be applied to the vorticity and energy
equations:

1) Explicit:
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Vorticity:

+1
Q?,J C?,J n+l 2 n 2 n n n
S = - GrdyTy g+ By (4 5+ By Li,5 -Udx £33 - VBy 84y
Temperature:
Tn+ln o

1,4 :J__l_ oo _1_2n . -
— =2l - =By Ty, + oo By i,y - Uy T3, -Voy T3,

where &y could represent either a forward, backward, or central
difference derivative. As will be seen, &y and 8y Wwill have to
be either a forward or backward difference, depending on the sign of

U and V , if a stable formulation is to be obtained.

2) Implicit:

Vorticity:

Cn+l Cn

i,j751,] - - n+l 2 n+l 2 n+l - n+l n+1l
——l—Z;—L— Gr 8y Ty gt 5% &3 3+ 8¢ (3 Uy £373 - Vdy ¢,

(4.6-2)

Energy:
Tn+l Tn l 5 l ]

i,j=+1, n+l 2 nt n+l n+l
————sz—— = Pr Oy Ti SY Ts 5" Uoy T4 )3 - Voy Ty

Where ®y and &y have the same significance as in the explicit case.

ADI* (P.L.T. Brian Version)

The vorticity equation will be discussed first:
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il

n+1 x 2 ¢n * o
-Gr oy T + By Qi,j + by Ci,j - Udy Ci,j - Voy gi,j 2)

2 n
v | 51,3700,
2 *% n | n+l S 2 ¥ * *¥

AT {Ci,j'gi,J S Or By T By by y By Ly m Uy Ly - By Ly P

1 n+l .n | _ n+1 2 ¥ 2 *% * *¥%
A {Qi,j‘ci,j o O Oy TR+ By by g v 0% Lyyy - Wy by g - oy Gy e)
(4.6-3)

Subtraction of ¢ from b and rearrangement yields:

Cljl .+CI.1+]: )
63,5 =~ (4.6-4)

Equation g) is the first half step for all ADI methods. The

*
second half step is obtained by eliminating Ci;i from Equations a

and b followed by substitution of Equation (4.6-4) to give:

n+l
S
= | ;- -iLiggiLi»} = Lo5(e8 -t h) - vey(d - (h6s)
for the second step.

This formulation has the advantage of requiring slightly less

calculations per time step than the normal ADI. The ADI equations

are then:
Step 1:
o3 . n
51,3 Ci,j n+l | a2 o 2 .0 * n
—Lo—=2e = - Gr OyT T + 8% f1,5 + 8% Ci,5 - Udx (3,5 - Voy (i,;
/.\'r/g
(4.6-6)
Step 2:
* n+l n 2
C i, gl 5 J Cl,J _ éz (§ §n+l) _ V (C Cn+l)
AT I 1,751, 1,3751,3

In an identical manner the temperature equations can be

derived as:
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Step 1:
* n 2 2
Ti s=Ti. 5 B 5
37T, %, x 8  n * n
Doz = Br (Ta,y) *r (T45) - Wox Tyyy - Voy T (k.6-7)
Step 2:
*
oy R opitl .
1, 4,d d,J 1 52 (7% ._Tr_1+]._) - V—._SY (TR ._TIZH'l)
At 2Pr ~Y V41,5771, 2 i,37°1,4

where ©®y and &y represent central difference derivatives,

Since both the explicit and implicit formulations involve

single level approximations to V2 and &% » By , the method of positive

type equations will be used to predict their stability criterion (the

same results can be derived using the von Neumann method).

Explicit:

For purposes of example we will use a forward difference
approximation to &y { , a backward difference for &y ¢ , and cen-
tral difference for ©y T . With these approximations the explicit

form becomes:

@+l_§@ G n+1 1 1
i,37%1, _ r : n+ n n n
— =t [T1+l,j'Ti-l,j] e [§i+l,j"2gi,j+§i-l,j]

L 1%, o D U] n n R %

* @[CI,J_l gii:fﬂ-ml] - AX[ Ci+l,j'§i,j]‘ AT |51,5781-1,
(4.6-8)

therefore:
n+l At .1 2AT1 2Ar  UAT VAT, .n
Goy=-er by v U555 g T st
AT UAT n AT VAT n AT L0
(= - =) Gir, g + (o =) G50+ =5 L,y (h.6-9)
pxe X N N A e N B

where a 1is a number.
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For a positive-type equation the coefficients of each term
in t% must be >0 .

The coefficient of the Litl, ) term is examined first:

[Az_yéz
ESCS:

If U<0, this is >0, and the coefficient is positive.

If U >0, then

UAT

W or >U (4.6-10)

L
X

v

At
N

Since U > lO5 is not unlikely, AX would have to be
< 0.001 which would require too many grid points. Thus for a for-

ward difference for &y , U must be <O .

AT VAT
AY AY

Ci,j-l term: ["—2

It V>0 or é? >V , which will again require many
grid points.

A general statement can be made concerning the convective
term: 1if U <0 a forward difference must be used for 6X . If
U >0 a backward difference must be used. (A central difference
will not work in either case.)

Now assuming U and V have the desired sign, the coef-

ficient of the term becomes:

n
€1,
opr _ear _ fuar| o lvad

1 - .
INGENG AX AY
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which must then satisfy the condition:

NI 1 VR P (4.6-11)
AX2 AYZ AX oAy | T

which serves to set the upper limit on At . Identical conclusions

can be obtained by studying the energy equation.

Implicit:
As before, using forward differences for 8X and backward
differences for ®y , the implicit formulation may be rearranged as:

gi,j 1+ —+

n+l AT | 24T | _ (2
AX2  AY2 +2d

GrAT |0+l n+l At n+l
-— [Ti+l,j'Ti-l,j] + <2 €i-1,3

r n+l r n+l n+l
AT ATIU 'AT ATV e AT LT -
' Lm-*%}§1*1’3*1m+ ] i g i e

where U and V are assumed positive or negative depending on the
form of difference used for the convective term. A check of this
ecuation shows that all coefficients are positive, irrespective at
At and hence this formulation is stable for all time steps. (The
von Neumann analysis may be used to show that central differences
for 5y and Sy should yield a stable system with the implicit
formulation.) Again, identical conclusions are obtained from con-

sidering the energy equation.

ADI:

The von Neumann procedure is applied to the ADI formulation

n+1l

to determine its stability. Solutions for (%, ¢*, ¢ —, T4, ™, i+l

of the form
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. . . . % % .
gu,ﬁ = £0 10X iBY ; Ca,B = & elQX c1BY
l’l i 1 Y .x. * . . Y
T%B = gt 10X 1P 5 To,p = © X if

are assumed to exist, and an expression of the form:

yw
o

<»]

a,p

will be sought. The stability criterion is that A; and Xy , the

eigenvalues of the matrix [a b] , must be < 1.
c d

The two steps will be coasidered separately:

Step 1:

Substitution of the relations for fn, C*, ™, and T"  into the

equations of motion and energy, followed by division with the con-

stant factor eio‘X e1BY yields:

Vorticity Equation:

A AR LAY T 1
where
p=- gg;r i sin oAX = %%g (cos pAY-1)
AT VAT | .
q = - cos oN\X -1 t=— i sin RAY
a2 ) exi
UAT

r = — 1 sin aAX
2AX

(4.6-13)
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Therefore:
g o= |E=tleny | B | ot (b.6-1k)
1l-g+r 1l-g+r
Energy equation:
e R N T S R~ -
) e = o r6” + o e t0 (4.6-15)
or:
- 5 = 8
ot = 25t on where Pr (4.6-16)
l-g-r 7= a

Second half time step:

A similar treatment for the second half of the vorticity

equation yields:
n n+l n n+l
26 -t -t C=s(e - ) -t(E - ET) (4.6-17)

Substitution of Equation (4.6-1L4) for &* yields upon rearrangement:

nel _ (L45-t)(leg-r) opeitt

oy 4.6-18
g (1-5+t)(1-g+r) : (L-g+r)(1-s+t) ( )
Similarly, the second half step of the energy equation yields:
* —
oo - @n _ Qn+l _ s(gn _ Gn+l) _ t(@n _ 9n+l) (4.6-19)
Substitution of Equation (4.6-16) for 6% yields:
n+1l  (Ms-t)(1-g-r) .
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Therefore, the overall system may be written as:

(4.6-21)

o
I
(o] o
(&3] o’
© uve
s
1]
=4
—
(D) [
o]

S - - 2
where a = (1+s-t)(1+q-r) ; b = D

(1-g+r)(l-s+t)

_ (14¢-t)(1+g-r)
(1-g+r)(1-5+t)

and the matrix [a b] is the amplitude matrix whose eigenvalues must
a ¢
be < 1 for a stable solution.

Since ¢ = O the two eigenvectors are identical to (a)
and (a) , and [N = |a]; M| = |d| . Therefore, the stability
criterion requires that |a| < ]; ]dl <1 . By expanding the terms
for a and b in the definirg relations for p, q, r, s, and ,
it is possible to prove that both Ia[ and |d| <1l for all AT,
AX , and AY . (See Wilkes (2) p. 67) Therefore it can be con-

cluded that the ADI formulation for the equations of motion and

energy should be unconditionally stable.

4.8. Boundary Conditions and Stability.

The stability analysis just presented applies only to the
interior region of the grid where no boundary points are used in the
FDE. Unfortunately, it is often found that a boundary formulation
is unstable, while the FDE for the interior points is stable. This

problem occurs frequently when higher order approximations are used
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for the boundary conditions, or when the boundary conditions are
non-linear. There appears to be no general procedure for deter-
mining the stability of a given boundary condition formulation.
When the boundary condition formulation is unstable spurious values
soon appear at the boundary grid points. As these errors become
magnified they are carried into the central region and instability
occurs. When this problem arises either a different formulation
of the boundary conditions, or a shorter time step should be at-

tempted.

4.9. Advantages and Disadvantages of Explicit, Implicit, and

Alternating Direction Implicit Finite Difference Formulations.

The explicit formulation has the advantage of requiring
the fewest calculations per time step. However, stability con-

siderations limit the maximum time step to

e, 2, o, [yl :
At < l,O/(Axg + N + e + e ) (h.0-1)

If, for example, V =U = 100 and AX = AY = 0.1 the maximum AT
is AT < 1/600 . If, as seems likely, U and V > 100 then AT
would have to be smaller yet. These exceedingly small values of AT
require an unacceptably large number of time steps to reach steady
state,

The implicit formulation has none of the stability re-
strictions of the explicit formulation, but requires the solution

of a large set of simultaneous equations in §n+l and Tn+l for
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each time step. The solution of these equations requires an
iterative technique which can demand an unreasonably large number
of iterations. Therefore, it is doubtful that the implicit form-
ulation will offer any advantage over the explicit scheme.

The ADI formulation requires neither a limitation on
AT, nor an unduly large number of calculations per time step, and
combines the advantages of both the explicit and implicit formu-
lations while suffering from none of their disadvantages. There-

fore the ADI formulation was used.

4.10. Boundary Conditions.

The thermal boundary conditions will be considered first:
Two types of thermal boundary conditions were used: constant
(and known) temperatures on the horizontal surfaces; and insulated
surfzaces on the vertical walls.
The temperatures are known at all times along the con-
stant temperature boundaries, and hence no further consideration
of the case is required.
The insulated surfaces are treated as follows:
A Taylor's series expansion is assumed for the point next

to the boundary:

2
T: « = T . 4+ g aTo’j AXQ a To"j + (lL 70-7)
Bd T 7o) T X 2 X2 T
¥rom the insulated surface condition %% =0, Equation (4 10-1)

becomes:
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52T _ Q(Tl;j-To:j)
NG NG

( L"i 1-0-2)

Equation (4.10-2) is then substituted into the FDE of energy
applied at the boundary. When these substitutions are made it is
found that the FDE of the ADI procedure yield a series of simul-
taneous equations with tri-diagonal coefficient matrices. These
equations can be solved by the recursion formulae presented in Ap-
pendix 1.

The boundary conditions for the vorticity equation cannot
be expressed in a simple form since the no-slip velocity requirements
cannot be expressed in terms of vorticity, but must be expressed in
terms of stream functions (i.e., V¥ = %% = 0 on all surfaces.)
Therefore, no actual boundary conditions exist for the vorticity
equation., Wilkes (56) and Fromm (12) have suggested the following
scheme to circumvent this difficulty:

1) The initial vorticities are calculated throughout the
grid using the initial stream functions.

2) The vorticity is assumed to remain constant at the
old value ¢" along the four boundaries while the internal vort-

icities are advanced,

3) Once C?T% are known a new set of W?+§ can be cal-
)

culated (see next section).

4) From the V1 boundary vorticities can be evaluated

from Equation (4.10-5),
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5) With the new wall vorticities steps 2-5 may be re-
peated as often as desired.

Although this procedure suffers from the drawback that
the boundary vorticities are always one full step behind the interior
vorticities, it is hoped that the boundary vorticities will not
vary rapidly so this approximation will not introduce excessive
errors. If only steady state values are desired, then this approx-

Cn+l

imation should not affect the results since t" at steady

il

state,
The wall vorticity may be calculated from the stream

function as follows:

1,5 = = 7, (4.20-2)

For simplicity, let us consider the wall at X = 0 . The V¥

_ a\lfo,j

boundary conditions are = = 0 . Therefore 6§w=0 and

111’O)J'

2
dxV may be calculated from a Taylor's series expansion:

_ AX Y NG 2y
"’s,j *\lfo“j +—'a'§(—+-2—~ S;(E (4, 10-k)
but VYo 5 = éggii = 0 . Therefore,
>2 2V
SET TR o (4 20-5)

Similar relations can be derived for the other three boundaries,

Wilkes (56) suggested the use of a higher order approxi-

2
mation to %ig which included Vo,5 . However, when this author
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used the higher order approximation the vorticity equation exhibited
a boundary induced instability at relatively low ATt , and therefore

2y

the higher order approximation to 52 was abandoned.

i, 11. Determination of Y1 When §n+l Are Known.

The stream function equation is written as:

Vay = -t (k.11-1)

or Ve + £ =0 (k.11-2)
and in finite difference form:

2
§X \lfl’J + 5% \[fi’j + gi,j =0 (Ll-.ll-5)

with boundary conditions ¥ = O on all boundaries.

Equation (4.11-3) may be written for each grid point not
on the boundaries. If the usual three point formulae are used for
8§ and 6% a series of simultaneous equations in V¥j 4 are obtained.
Since there may be as many as four hundred Wi,j an iterative tech-
nigue must be used. Several techniques have been proposed for the
solution of these equations. In the Gauss-Seidel and Successive Over

Relaxation (SOR) methods the FDE are expressed in the form:

n+1 n n n n
Vi3 = i,y 7 w[‘l’i-l,j SO T ZPS O

2f a2 n 2 L,n+ls
JAV /AY ('lb't]l_)j_l + 2\[)’1,3 + .4,1,‘]'*'1) + AX Cl,j (ll-.ll-u)

where W 1is a constant called the relaxation parameter. For W =1,
n
SOR reduces to the Gauss-Seidell iterations Wi,j is the last

approximation to V; 5 , while W?t% is the new approximation.
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The iteration scheme is extremely simple, but suffers
from relatively slow convergence, especially if the initial values
are not good approximations to Wi,j

To avoid this difficulty Peaceman and Rachford (39) sug-

gested a different formulation. FEquation (4.11-3) is rewritten as:

BR U+ BT W+ L = %% (4.11-5)

That is, the problem is converted to an unsteady problem, and numer-
ical integration is performed in time until the Wi,j field ceases
to vary. The ADI formulation is chosen as the most desireable pro-
cedure for integrating Equation (4.11-5), and the two half time steps

are represented as:

\lll j -*4;1.1 j 2 ¥ o
Jd Tl,J _ n
2) ,AT 2, = 8% ¥i,5 * By Vi, * Ciy (k.11-6)
, 1l .n
¥ ~¢»n+ . _w. . 1
Pl,J=-¥i,5°Vi, 3 _ L 2 v o+l
®) AT T2 oy (Wﬁ,g W?,J)

with boundary conditions ¥ = O on all boundaries. Since the boundary
values of ¥ are known, Equations (4.11-6) need be applied only for
the interior region.

Peaceman and Rachford (39) suggested using a varying time
step with values of %%z - 0.25, 0.5, 1.0, 2,0. Each time step was
used for a full time step in ascending order of At . After using

AT/AX2 = 2.0, At was returned to its smallest value and the whole

process repeated. A program was written to determine which sequence
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of AT required the least number of iterations to converge for the
problem at hand. For a grid size of AX = AY = 0.1 it was found
that a constant value of At = 0.04-0.06 produced the most rapid
convergence, Similarly, for AX = AY = 0.05 a value of At = 0.04-.06
produced the most rapid convergence. Therefore, At = 0.04-0.06
gave satisfactory results irrespective of the grid size. It should
be noted that this result is not general, and applies only to the
problem and boundary conditions considered here.

Once a time step size has been established a rapid check
of the convergence of Equations (4.11-6) is most desireable. The most

common test for the convergence of an iteration scheme involves cal-
ntl n |2

L (v 5m¥y )

1,J

certain value the method is considered to have converged. This test,

culations of the sum €= . When € drops below a

“owever, has two drawbacks: the evaluation of € requires a rather
large amount of useless calculation, and some values of { may vary
slowly in a given range and the iteration might be ceased before con-
vergence is attained.

The convergence test used in this work avoids both of
these disadvantages. During early calculations it was noted that
the stream functions near the center approached their steady state
values quite rapidly, while the corner stream functions required

longer. Therefore, the convergence test was applied only at the

grid point i =1, j =1 as follows:
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1) At the end of each iteration the vorticity 2, ; 1is
J
calculated from the current values of the stream function using Equation
(h.11-1).
2) The difference (7, ,-t371) 1is calculated
1,17¢1,1 :
’ n+1 . .
3) If Ikzl,lﬂcl,l) / Cl,l' is less than a predetermined
constant EPS1l, the iteration is said to have converged. If not, a
new set of Yy j are calculated and the test is applied again.
J
Five to ten iterations were required for convergence of
the stream function shortly after new initial conditions had been
applied. However, the values of T?+% and Cg+%
»d 1,J
ically as the calculations proceeded, and for the major portion of

changed less rad-

the calculations one iteration was required when EPS1 = 0.001.

L,12. Evaluation of the Coefficients U, V, Tu

The vorticity and energy equations have been simplified by
assuming that U and V are constants over any given time step.

The question —rises whether to evaluate U and V at the old values

of W? . , the new values of ¢9+% , Oor some intermediate value of
i, 1,J

1

§n+l and T T are

¢?+%/2 . Since only the W? j are known before
J J

determined we are forced to use the old values of w? j in the deter-
J

mination of U and V , unless iteration for the values of wn+l)

UIl+l and VPl ig performed around each time step. However, since
only steady state values are desired, the lag of U and V one

. n+1 n+l R,
cycle behind ¢ and T should cause no difficulty, and the

extra machine time needed to iterate around each time step could not

be justified.
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During the solution of PDE it is desirable to use only two-
and three-point approximations for 8y or Oy . However, when
evaluating coefficients of the PDE there is no advantage in using
these lower order approximations. Thus, in the evaluation of U,

V, and M it is desirable to use higher order approximations to

o v oT
X 5 2 oI

Wilkes (56) studied the effect of using second- or fourth-
order approximations on the numerical solution for natural convection
between vertical surfaces at different temperatures. By comparing
his numerical solutions which used second- and fourth-order approxi-
mations to U and V with an analytic solution to the problem Wilkes
found significantly better results were obtained with the fourth-order
approximution. Therefore fourth-order central differences were used
in determination of U and V .

For points not adjacent to a boundary the fourth order
approximation to ég%;i can be obtained by writing Taylor's series

for the points i+l1, i+2, i-1, i-2 in terms of the point at i .

32y , By, dhy, Dy
NCEEES CHER G &

Terms in are eliminated from the equations to

yield:

OVi, 5 Vi-p,5=0Vi-1, 590 ¥i41, 3-Vis2, 5
oX - 12AX

(k.12-1)

A third-order FDA to g% may be derived for a point adjacent to the

boundary in a similar fashion, and is given by:
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Uy
7 (-2¥o, 530y, 56z, 5V, 5) O (b.12-2)

Similar expressions were used for the other boundaries.

The mean Nusselt Number Nu has been derived as:

_1g My ax
=2 ° [ <
2 L oY
(@] Y=0
where S; is evaluated by numerical means. Three different ap-
'Y=0

proximations to JF of first-, second-, and third-order accuracy
were attempted. For Nu < 2.5 the second-order approximation gave
the highest values for Nu, while for Nu > 3 , the third-order ap-
proximation gave the highest values. For Nu < 2.5 the second-and
third-order approximations varied by less than 5 per cent, while at
Nu > b , the variation was less than ten per cent. The third-order
approximation was chosen as probably yielding more accurate results
at high'ﬁa, while at low Nu the difference between the approximations
was negligible. The derivative was expressed as:

OTio _  HTy #1815 1-9T5 54214 5 (k.12-3)
Ea oAY

4.13. Sequence of Operations for Integration of the Vorticity and

Energy Equations.

A complete sketch of the logical sequence in the numerical
integration of the vorticity and energy equations can now be pre-

sented:
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1) Parameters Pr, Gr, NX, NY, DTAU, and TAUMAX are read
into the computer.
2) Initial conditions of T and V¥ are read.

3) The initial velocities are calculated.

L) The initial vorticity field is calculated.

5) The temperature field is advanced over both half time steps.
6) The vorticity field is advanced over both half time steps
T) The new field of stream functions are calculated.

8) The new wall vorticities are calculated.

9) The mean heat transfer rate is determined.
10) If desired, U, V, T, ¥, and ¢ fields and Nu are printed.

11) If TAU > TAUMAX the program returns to step 1 and a new
set of data are read, otherwise the program returns to step 5, and

steps 5-11 repeated.



V. EXPERIMENTAL WORK
5.1. Apparatus

In an attempt to prove the assumption of two-dimensional motion,
an experimental program was undertaken to determine the mode of natural
convection in a long rectangular channel which is heated from below, cooled
from above, and sealed on both ends. The channel was formed by placing
two parallel, vertical insulating strips between horizontal surfaces as
illustrated in Figure 3.

Glycerol and air were used as working fluids, with channel
dimensions of 1" x 1" x 20". The twenty inch channel length was chosen
to minimize the effect of the end walls, while the one inch channel height
gave a Ra near Rac for a temperature difference of two degrees
Fahrenheit with both glycerol and air at room.temperature. During the
experiments with air 1" x 1" balsa wood strips were used as side walls,
while 1" x 1/4" strips of lucite were used for the glycerine experiments.

The upper cooling surface consisfed of two 1/2" x 6" x 20"
copper plates which were bolted together. A 3/16" semi-circular channel
was milled in the lower surface of the upper plate to allow passage of a
stream of cooling water between the plates. Holes drilled at the ends of
the channel served as an inlet and outlet for the cooling water stream.

See Figures 3 and 4 for details. Thermocouples were located within l/l6”
of the cooling surface at seven positions on the plate to provide a check
on the constancy of the plate temperature.

Cooling water at a constant temperature was provided by circulat-

ing water from a constant temperature bath. After passage through the

-62-
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cooling plates the water was returned to the bath whose temperature was
held constant to within + 0.01°F by a mercury temperature controller,
and high sensitivity relay. The relay activated a 250W-120V infrared

lamp which was operated at approximately 75V to increase the bulb life.

The lower heating surfaces consisted of two 1/2" x 3" x 20"
copper plates between which a resistance heater was placed. Heat was
supplied by passing an electric current through the resistance heater.
Low voltage direct current for the heater was supplied by full wave recti-
fication and filtering of a low voltage AC obtained from a "Powerstat"
variable transformer operating on line voltage. A "Solar" voltage regu-
lator was used to reduce major variations in line voltage. In this manner
a low ripple, low drift source of power was available for heating of the
lower plate.

A schematic diagram of the heater power supply is given in
Figure 5.

Three Co-Cu thermocouples were located within 1/16 inch of the
lower plate surface and used to measure the lower plate temperature which
was raised or lowered by increasing or decreasing the power supplied to
the heater. (See Figure 6.) Heater power was measured by measuring the
voltage drop across a standard resistance placed in series with the
heater. The thermocouple and resistor voltages>were measured with an
L and N type 8662 portable potentiometer.

Levelling for the lower surface was provided by four adjustable
shims which could raise or lower any corner of the lower surface. Once
the lower surface was levelled four height adjusting srews were used to

level the upper plate.
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5.2. Discussion of Experimental Observation

In the earliest experiments, air was used as the working
medium, and flow visualization was accomplished by blowing cigar or
cigarette smoke into the working region. Lighting was provided
by shining a 60 W incadescent bulb through a lucite window which had
replaced a small portion of one side wall.

The low intensity of the illumination, coupled with the high
smoke density, made observation of the smoke particle paths difficult.
To increase the contrast between the smoke particles and their sur-
roundings, the side walls and copper surfaces of the channel were
coated with flat black actylic laquer and the experiments repeated.
However, the low intensity of illumination still prevented visual ob-
servation of the flow pattern. To increase the strength of illumina-
tion, the 60 W bulb was replaced by a 100 W and then 200 W bulb.- With
the higher illumination produced by the 200 W bulb it was possible to
distinguish the flow patterns. However, with the larger bulbs a
distinct change in the convection pattern was observed to occur shortly
after the bulb was turned on. At first the particles in a particular
plane along the Z(20") axis appeared to be rising or falling. This
necessitates a return flow at some other plane, and hence a three-
dimensional, cellular pattern. However, this pattern soon changed into
a planar rotation with fluid always rising on the wall opposite the
source of illumination. Apparently the radiant energy from the bulb
had heated the black wall sufficiently to produce a two dimensional

flow. The 100 W bulb produced the same effect.
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A section of the black wall opposite the illuminating slit was
replaced by a section of transparent lucite in order to reduce the
absorption of radiant energy on that wall. Although absorption of radia-
tion on the wall opposite the illumination was no longer a serious problem,
the illumination slit itself absorbed enough radiant energy to cause a
two~-dimensional flow similar to that which had occured on the black wall.

After these experiments with air, glycerine was used as the
working fluid. Flow visualization was accomplished by dropping aluminum
dust particles through a small hole in the cooling plates into the working
fluid. By watching the traces formed by the Al dust particles it was
possible to determine the flow patterns of the glycerine.

To minimize the effect of conduction from the surroundings into
or out of the working region, the cooling plate temperature was set at
77°F, and the whole apparatus covered with two layers of rock-wool insula-
tion.

The first experiments were run at temperature differences of
10-12°F (corresponding to Raa 5-6000) between the upper and lower
plates. The flow patterns detected in these early experiments exhibited

a three-dimensional pattern as illustrated in Figure 7.

Al dust intro-
ducedghere

-

Front view Side view

Figure 7. Sketch of Flow Patterns Seen in Liquid Glycerine
at Ra a 3000.
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In the front view of Figure 7 a series of darker and lighter
regions were noticed. These regions apparently were the result of
variations in the refractive index of the glycerine caused by temperature
gradients in the liquid. The general shape of the refractive index
lines appears to indicate the presence of two '"cellular regions" in the
X-Y plane. This conclusion was substantiated by the random presence
of the Al dust particles only in the left "cell", indicating that no
transfer of fluid occurred between the left and right "cells", but did
occur within each "cell". These cellular regions appeared to be
the result of secondary flows caused by a raising or lowering of the
side wall temperature because of conduction into or out of the side
walls.

In the side view of Figure 7 a cellular pattern was observed
in the Z direction. The vertical lines between the cells were well
defined by Al dust particles that were trapped between the two cells,
but could also be seen as a refractive index line when no Al dust was
present. This three-dimensional pattern appeared to be similar in
nature to the pattern observed with air in the short instant before radia-
tion initiated the two-dimensional flow. In most cases the cells were
approximately 1-1/k to 1-1/2 times as long (Z direction) as they were
high.

As the temperature difference between the plates was lowered,
the variation in room temperature (as much as 15°F between 9:00AM and
3:00PM) prevented the attainment of steady state since a heater power

which caused a 2°F temperature difference in the morning might cause
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an 8°F difference in the afternoon. At times a temperature difference
was established by conduction from the room even though no power was
supplied to the heater. Because of the extremely slow convective motion
(on the order of one to two millimeters/minute) there was no chance to
obtain any steady, or pseudo-steady, state results for the low tempera-

ture differences.

5.3. Conclusions and Recommendations

The numerical calculations performed in this work have been
based on the assumption of two-dimensional flow. If this assumption
can be proven then there will be little doubt that the numerical calcu-
lations are a true representation of the natural convection within a
long rectangular channel which is heated from below and cooled from
above. Therefore, the preceding experiments were intended to yield a
qualitative description of the natural convection which existed in the
channel. The equipment was not expected to provide precise quantitative
heat transfer rates, or temperature profiles (the numerical calculations
would provide these), and therefore a minimum of temperature control and
regulation was provided.

Tt turned out that the stable, or preferred, mode was extremely
sensitive to minor perturbations in the boundary conditions such as the
illumination, heat leakage, etc. The equipment thus did not prove to
have adequate control for the desired experiments. Although interesting
observations were made, they did not provide the hoped for critical

test of the two-dimensional assumption.
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From the results of the experimental work the following recom-
mendations are made for future experimentation:

1) The equipment should be built in a room with close tempera-
ture control to eliminate the problem of varying ambient temperature.

2) Good thermal control of all boundaries is necessary.

3) The working fluid should allow a critical temperature dif-
ference of about 5°F for a two inch cell height. The 5°F A0 will
prevent minor variations in the temperature of the heating or cooling
plate from causing major secondary flows, while the two inch cell height

would allow simpler and more precise optical visualization.



VI. RESULTS

6.1. Introduction

A computer program for the numerical integration of the
equations of vorticity and energy for natural convection in an en-
closed rectangle which is heated from below, and cooled from above,
was developed using the "MAD" computer language. The programmed
calculations were performed on the IBM 7090 digital computer at the
University of Michigan Computing Center.

Approximately sixty different combinations of Gr, Pr, and
L/H were studied. 1In each case a set of arbitrary initial conditions
were fed to the computer and calculations were performed until a
prechosen number of time steps was exceeded. The current values of
T and ¥ were then punched on cards and the calculations halted.

A check of the behavior of the mean Nusselt number served to indicate
whether or not the calculations had approached steady state. If the
Nu was still changing rapidly with time the punched values of T and
¥ were used as input conditions for the next run and the procedure
was repeated. In almost all cases two such returns were sufficient
to yield nearly steady state behavior. (For high Pr near Rao

more calculations were required unless the initial conditions were
very close to the steady state values.) In the majority of the cases
steady state was reached on the initial sequence of calculations.

The condition of no motion and a linear temperature gradient

is a valid solution to the equations of vorticity and energy for all

-T3-
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Gr, Pr, and L/H . Therefore, if a linear temperature gradient
with no motion were used as initial conditions, no motion would be
expected to develop until roundoff error had produced a sufficient
disturbance to initiate a motion, which would then develop to its
steady state. It seems plausible that sufficient roundoff error

to initiate motion might not occur for a considerable amount of
computer time, and therefore it was desirable to supply some form

of disturbance in the initial conditions. By doing so, the unsteady
calculations lose their significance except when applied to the
specific disturbance used to initiate the flow. Since this investi-
gation was primarily interested in the steady state flow patterns,
this was not a serious drawback, and computational effort was mini-
mized by using a distrubance which closely resembled the steady state

convection pattern, or in most cases the final results of the cal-
culation with the closest values of Pr, Gr, and L/H .

A summary of the cases studied is presented below:

TABIE I

SUMMARY OF CASES STUDIED

L/H Pr Gr
1/2 1.0 3000., 5000., 6000., 7000., 8000., 10000., 20000.,
1.0 0.01 150000., 170000., 200000., 300000., 500000.,

1000000., 2000000., 4000000

1.0 0.03 50000., 56670., 66670., 100000., 167000., 333000.,
666700.
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TABLE I CONT'D

SUMMARY OF CASES STUDIED

L/H Pr Gr

1/1 0.1 13000., 14000., 15000., 17000., 200000., 30000.,
50000., 100000., 200000.

1/1 1.0 1300., 1400., 1500., 1700., 2000., 3000., 5000.,
10000., 20000., 40000.

1/1 5.8 180., 230., 260., 360., 500., 860., 1720.

1/1 25.0 60., T5., 100., 200., 400.

2/1 1.0 1000., 1100., 1300., 1500., 2000., 3000., 5000.,
10, 000.

3/1 1.0 3000.

For each case a plot of Nu versus time was prepared, and
in those cases where steady state had been closely approached, but
not attained, the Nu curve was extrapolated to obtain a reasonable
estimate of the steady state Nu. In no cases did the uncertainty
of this extrapolation exceed + 0.2 when Nu >4.0 . For Tu < 4.0
the uncertainty was in the order of + 0.05 .

In addition to steady state Nu, plots of the streamlines
and isotherms which existed after the last time step were prepared
by an interpolating and plotting program. (See Wilkes (6) p. 93.)
These plots were prepared with approximately equal increments of
T and { to give a rapid estimate of the velocity and heat flux
magnitudes. The program uses a linear interpolation to locate the

position of an isotherm or streamline that does not fall directly
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on a grid line. The coordinates of the various points on the stream-
line or isotherm are stored in column vectors, and plotted by the
University of Michigan Executive System plotting subroutines. Al-
though it is impractical to present every isotherm and streamline plot,
an effort has been made to present those plots which best represent
the various flow regimes encountered in this work.

Plots of the steady state Nu versus Ra for various L/H
and Pr are presented and compared with the numerical calculations

of Aziz (1) and the experimental work of Schmidt and Silverton (50).

6.2, Discussion of Results

a. Grid Size and Numerical Stability.

To check the effect of grid size on the steady state results,
grid sizes of AX = AY = 0.05, 0.10, and 0.20 were used with a square
cavity for Gr = 3000., and Pr = 1.0. The results of these calculations

are presented below:

TABIE TII

EFFECT OF GRID SIZE ON COMPUTATIONS IN A SQUARE CAVITY
FOR Gr 3000., AND Pr 1.0.

X Nu ¥ cent Computing time, min.
0.05 1.8k L.T72 25.
0.10 1.92 h.o2 6.

0.20 2.77 6. 1.
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By extrapolating a plot of Nu and V¥ cent versus AX to
AX = O (see Figure 8) the values of Wu = 1.81 and V cent = 4.60
were determined and represent the estimated solution of the differential
equations. The values of Nu and ¥ cent for AX = 0.05 agreed
within 2 per cent with the extrapolated values for AX = O , while
the values for AX = 0.1 agreed within 6 per cent with those extra-
polated for XX = 0 .

It is noted that the computer time increases almost as the
cube of number of grid spaces, and therefore AX = 0.10 was chosen
as a reasonable compromise between accuracy and computer time. All
figures and results are based on calculations for AX = 0.10.

In the early calculations for Pr = 1.0, AT = 0.005 was
used. However, at higher Pr the steady state was approached more
slowly, and an attempt was made to find the maximum stable At . It
was found that At > 0,01 produced a boundary-generated instability.
Therefore, At = 0.01 was used for the remainder of the high Pr
cases, For lower Pr where steady state was approached more rapidly
a lower Ar was used in most cases, For those runs where Gr =
1000000, (Pr = 0.01) it was necessary to restrict Ar to AT <
0.0002. For Gr = 4000000, AT was restricted to Ar < 0.0001.

In the high Gr, low Pr, cases the steady state was approached very

rapidly so that 100-150 time steps were needed to reach steady state.
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Figure 8. Effect of Grid Size on Steady State Nu and chnt

for a Square Cavity with Pr =1, Gr = 3000
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In general, 50 to 150 time steps were required to reach steady
state in any given calculation. The program performed 100 time steps
and the associated print out in approximately 2 to 2 1/2 minutes.

For cases in which the starting values of T and V¥ were
poor approximations to their steady state values, a non-numerical
instability in which the Nu oscillated in a bounded, but non-converging
fashion was encountered. Decreasing the time step size had no effect
on the oscillations. Conceivably the oscillations might have dampened
out if the calculations had been continued. This was not attempted,
however, since the difficulty could be circumvented by using better
starting values for ¢ and T .

b. Nusselt Number Variation With L/H, Gr, and Pr .

Both Kursweg (24), and Pellow and Southwell (L40) found that
the dedimensionalized, linearized equations of motion could be re-
duced to the form Nu = f(Ra) . That is, Tu was found to be a func-
tion only of Ra , and not an independent function of Gr and Pr .
Morgan and Warner (33) indicate that linearization is justifiable for
all fluids with high Pr . To check the validity of Morgan and Warner's
conclusion, and to define the range of Pr described as "large," a
plot of Nuvs Ra for L/H=1. and Pr = 0.0l, 0.03, 0.1, 1.0,
5.8, and 25. is presented in Figure 9. It is apparent from Figure 9
that for Pr > 1. the assumption of linearization is well justified
except possibly in the region of the critical Ra , where minute vari-

ations between Pr =1 and Pr = 5.8 or 25.0 may be noted. Therefore,
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for all fluids with Pr > 1.0, Nu = ﬁE(Ra). Since almost all liquids
and gases (except for liquid metals) meet the condition Pr > 1.0,
this is a very widely applicable result.

For comparison, the results of Aziz's (1) numerical calcul-
ations for two-dimensional natural convection within a square region
heated from below and cooled from above have been presented in Figure
10. It should be noted that Aziz's calculations yielded significantly
higher heat transfer rates, and a greater variation of Nu with Pr,
than the present calculations. When Aziz's results for natural con-
vection in an enclosed cavity were compared with the experimental data
of Schmidt and Silveston (50), it was found that the critical Ra
extrapolated from Aziz's calculations was lower than the experimental
value for convectiocn between two infinite plates. This situation does
not appear to be physically realistic, since one would expect the intro-
duction of sidewalls to increase rather than decrease the critical Ra
because of the increased viscous drag. This apparent inconsistency
in Aziz's calculations does not occur in the results present herein,
or the analytical solution for Ra. presented by Kurzweg.

The dimensionless quantity (Pr ¥) as well as Tu , was found
to be only a function of Ra when Pr > 1 . Since ¥ 1is the integral
fudy or [vax , (Pr ¥) can be expressed in terms of dimensional

quantities as:
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That 1s, wu is independent of p for a given Ra , and the
interesting conclusion 1s reached that all fluids with Pr > 1, and
equal thermal diffusivities will have identical dimensional velocities
independent of physical properties and cell size for the same Ra .

For those cases with Pr < 0.1 the Nusselt number exhibits
a noticeable dependence on Pr as well as on Ra . At low Ra , a
decrease in Pr produces a decrease in T . However, as Ra in-
creases, this monotonic behavior ceases and decreasing Pr first
causes a decrease and then an increase in Nu . In order to check
the consistency of this result againét the total convective circula-

/2

H
tion in each case, the dimensionless circulation (V¥ ePr = Pr[ ' UdY)
o

cent
was calculated for various Pr at Ra = 10,000, and the results are

presented below:

TABLE III

VARIATION OF CENTRAL (y*Pr) AND Nu
WITH Pr at Rea = 10,000, AND L/H = 1.0.

Pr Nu V*Pr
0.01 2.92 10.3
0.03 2.87 10.25
0.1 2.76 10.0
1.0 3.025 10.8
5.8 3.03 10.8

25.0 3.03 10.8
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From these results it is seen that the minimum in heat trans-
fer rate corresponds to a minimum in the circulation rate. When Nu
is plotted against Gr at the various Pr studied, as shown in Figure
11, a series of monotonic functions which increase with increasing Gr

is obtained.

¢, Determination of the Critical Ra , and Comparison with

Theoretical Solution of Kurzweg (24) and Numerical Solution

of Aziz (1)

In keeping with commonly accepted practice, critical conditions
for the onset of convection will be stated in terms of Ra, L/H and
Pr. The critical Rayleigh number, Ra, , is defined as that Ra above
which convective motion is stable, and below which conduction is stable.
The critical Rayleigh number was determined herein by extrapolating the
curve of Nu vs Ra until it intersected the line of Nu = 1 , re-
presenting pure conduction.(see Figure 12) At this point a decrease
in Ra no longer causes a decrease in Nu . The results are presented
in Table IV,

In 1965, Kurzweg (24) published a study on the stability of
fluid in an enclosed rectangle heated from below. He used the linear-
ized equations of energy and motion to predict the critical Ra as
a function of L/H , but could not predict the variation of Ra,
with Pr. However, a comparison of Kurzweg's results and those of
this work indicates good agreement for Pr >1. For Pr <1 a sig-

nificant variation of Rac with Pr was found which indicated that
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the assumptions needed to linearize the equations of motion and energy
are not valid. The variation in Ra, does not become great until

Pr < 0.1, and would probably become quite large for Pr < 0.00L.

TABLE IV

CRITICAL Ra AS A FUNCTION OF L/H AND Pr

L/H Pr Ra, Kurzweg Aziz's
Rae Rae

1/2 1,0 920 1008

1. 0.01 1500

1. 0.03% 1380

1. 0.10 1270

1. 1.0 1240 1290 850

1. 5.8 1230

1. 7.0 750

1. 25.0 1230

2.0 1.0 5800 6060

For comparison, the values of Rag obtained by extrapolating
Aziz's (1) results have been included in Table IV. The inconsistency
with the values of Kurzweg and of this investigation are apparent.

In 1961 Chandrasekhar (6) presented a work by Iandau in
which an attempt was made to predict the "strength of convection" as
a function of (Ra—Rac). Landau's results were developed by combining
the various solutions of the linearized stability problem in such a

way as to satisfy the non-linearized equations of motion. From his
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results, ILandau predicted that the "strength of convection" should
increase in proporticn to (Ra—Rac)l/2 . In an effort to check the
validity of this result, (Nu-1), and total circulation Veent
(hopefully both measures of the "strength of circulation") were plotted
Vs (RamRaC) on logarithmic coordinates. A sample of these plots is
presented in Figure 13. It was found that V..nt I1ncreases as (Ra-
Ra.)l/2 over the whole range of the investigation, while (Nu-1)
increased in proportion to (Ra-RaC)l for Ra ~ Ra,, and then in pro-
portion to (Ra-RaC)l/2 as Ra >> Ra, . Thus, the prediction of ILandau
that the strength of convection should increase in proportion to

(RamRac)l/g appears to be valid, even in regions where the validity

of the assumptions used in its derivation is doubtful.

d. Streamline and Isotherm Plots:

In Figures 14 to 24, streamlines and isotherms are plotted
for various L/H, Pr, and Gr . In Figures 14 to 18 the build-up
of convective strength can be observed as the Ra increases in a
square cavity with Pr = 1 . At low Ra the isotherms are almost
straight, equally spaced, horizontal lines, while the streamlines
are nearly circular. As Ra increases the isotherms become increasing-
ly distorted as a nearly isothermal core with -0.2 < T > +0.2 deve-
lops. In this core region conduction is almost negligible and con-
vection produces the major portion of the heat transfer. As Ra in-
creases, the size of the core region increases. The streamlines, on

the other hand, have distorted slightly from their circular shape into
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an oblong shape, but their main character has remained unchanged. It
may be noted in several cases that a region of separated flow has
developed at the two blunt corners of the oblong. Unfortunately, the
coarseness of the numerical grid has prevented any quantitative des-
cription of this separated region which does not, however, appear to
have any marked effect on the heat transfer rate. The separated

region exists only in certain restricted ranges of Ra which vary with
Pr . The existence or non-existence of a separated region was not a
function of starting conditions, since non-separated initial conditions
at times produced a separated final solution and vice versa.

In Figures 19 to 22 streamlines and isotherms are plotted
for a cavity with L/H = 0.5 , and a fluid with Pr = 1.0 . At low
Ra the isotherms are nearly straight horizontal lines, while the
streamlines are oblong and nearly vertical over a large region. As
Ra increases, the isotherms become more distorted until at high Ra
the isotherms in the central region are almost vertical and parallel;
the streamlines in this region are also nearly vertical. This sug-
gests a possible form of thermal boundary layer in which all resis-
tance to heat transfer is confined to a thin layer along the upper
and lower surfaces while convection transfers heat between the two
layers. The appearance of this thermal boundary layer could be ex-
pected to decrease the rate of increase of Nu with Ra since in-
creasing Nu can be accomplished only by decreasing the thickness of
the thermal boundary layer. Figure 12 shows that Nu increases quite

slowly with increasing Ra for Ra > 10,000. From this postulated
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thermal boundary layer one might expect the heat transfer rate to be
independent of L(for L/H ‘s 0.5) for those Ra at which the thermal
boundary layer has developed, provided that L is much greater than
the thickness of the viscous boundary layers on the side walls. How-
ever, no numerical, or experimental, data are available to confirm
this hypoticsis.

In Figures 23 and 24 streamline and isotherm patterns are
presented for L/H = 2,0 and 3.0, with Pr = 1.0. The existence of
multi-celled patterns in these plots should be noted. The problem
of determining the most stable number of cells for any L/H is
rather complex, and will be discussed in the next section. It is suf-
ficient to say that the most stable number of cells for a given cavity
was found to be equal to IL/H , for the integral values of L/H used
in this study.

The effect of Ra was studied in a cavity with L/H = 2.0
and Pr = 1.0 . The Nu for these cases are presented in Figure 12,
an examination of which indicates the similarity, in the critical
region, between the two dimensional calculations for L/H = 2.0, and
the experimental work of Schmidt and Silveston (50). This close a-
greement may indicate the presence of two-dimensional rolls in the

experimental work for Ra ®~ Ra The divergence of the two curves

c -
for Ra >> Ra, may be traced to two factors:

1) Two-dimensional rolls have been replaced by cells in the
experimental work, or

2) The effect of coarse grid spacing has become significant

as the Ra 1is increased.
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e. Preferred Mode of Natural Convection:

In Figures 14 to 24, it is noted that the number of con-
vective cells is equal to L/H , for the integral values of L/H
used in this study. That these are not the only convective patterns
which can exist is clearly indicated by the work of Fromm(1l3) who
found with L/H = 7/3 that two-, three-, or four-celled patterns
could exist, depending on the type of symmetrical disturbance intro-
duced as initial conditions. This was a highly artificial initial
condition, since any physical problem would probably be subjected to
some form of unsymmetrical initial conditions, or unsymmetrical dis-
turbance. Therefore, it was desirable to determine which cellular
configuration was the preferred mode; that is, what configuration
would result if the one-, two-, or three-celled patterns were sub-
Jected to non-symmetrical initial conditions or to non-symmetrical
disturbances. To test the effect of initial conditions an unsym-
metrical two-celled configuration was used as a starting pattern in
a cavity with L/H = 1 . 1In a short time the stronger of the two
cells engulfed the weaker cell, and the single celled pattern pro-
ceeded to the same steady state conditions as were found when a one-
celled pattern was used as a starting condition.

In the second test, the same two celled unsymmetrical pat-
tern was used in a rectangular cavity with L/H = 2.0 . This time
the two cells became symmetrical, and the final steady state was i-
dentical to that obtained when two symmetrical cells were used as a

starting condition.
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In the last test of the effect of initial conditions a small
one-celled disturbance was placed in the upper left hand corner of a
rectangular cavity with L/H = 3.0. As time progressed the one cell
became two, three, and then four cells. After a time the fourth cell
was engulfed and the final pattern consisted of three cells which were
symmetrical about the center line of the cavity, as illustrated in
Figure 2L.

Finally, one-, two-, and three-celled patterns were generated
in & rectangular cavity with L/H = 2.0 by use of symmetrical initial
conditions. The three patterns were then subjected to a non-symmetrica.
disturbance of the temperature field. The one-celled pattern soon
split into two cells. The two-celled pattern simply returned to its
symmetrical condition, and the three-celled pattern was soon converted
into a two celled arrangement. In all cases the final steady state
conditions were identical to those which occurred when a symmetrical,
or non-symmetrical, two-celled pattern was used as the starting con-
dition.

These tests are not absolutely conclusive, since little
effort was made to study the effect of various disturbances, or to
determine the minimum disturbance that will cause the shift from one
configuration to another. However, they do suggest that, although

many cellular arrangements can be forced to occur in any given cavity,

only that arrangement in which the number of cells are equal to L/H
(for an integral value of L/H) will be stable to a general non-sym-

metrical disturbance, and therefore is the preferred mode of convection.
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APPENDIX A

SOLUTION OF A SYSTEM OF LINEAR EQUATIONS
HAVING A TRI-DIAGONAL COEFFICIENT MATRIX

Application of the implicit formulation to one-dimensional
problems, or the ADI formulation to two- and three-dimensionel problems
produces & system of linear equations which have a tri-diagonal coeffi-

cient matrix as follows:

byvoteaVy = d,
AERLAA A = 9

an— an_E'*'bn_an_l‘*‘Cn_an = dn—]_
apnvp-1 * byvy = d,

where the a,b,c, and d's are known constants, and the v's are the

unknowns.

It can be shown that the solution of this system of equations

may be quickly determined from the recursion formulae:

-109-
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APPENDIX B

DESCRIPTION OF THE PROGRAMS AND VARIABLES
USED IN THE NUMERICAL STUDY

1. Programs

The program used for the numerical integration of the vorticity
and energy equations consisted of one main program and ten subroutines.

The function of each of these was as follows:

MATN - reads in the initial conditions, sets the necessary
constants, and calls on the various subroutines to advance
t, T, ¥, U, V, and Nu one time step. After each time
step the program decides whether or not to print ¢, T, v,
U, V, and ﬁE , and then either advances another time step
or punches the T and V¥ fields and reads another set of
initial conditions.

PRTOUT - does the actual printing and labeling of the fields.

INSUL - advances the temperature field through both halves of
the time step.

VORTIC - advances the vorticity field through both half time steps.

STRMFN - calculate the new field of stream function from the new

vorticity field.

ZWALL - calculates the new wall vorticity from the new stream
functions.
VEL - evaluates U and V velocity fields from the stream

functions.
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THOM and TOM - solve the tridiagonal matrices generated by VORTIC, INSUL,
and STRMFN.

DELY - evaluates 6y , and Bi of T and ¢ as used by INSUL,
VORTIC, and STRMFN.

GRADY - evaluates ﬁﬂ from the temperature field.

In addition to the main program and various subroutines used
for the numerical integration, various other programs were used to
determine the optimum time step for the stream function iteration; plot
the streamlines and isotherms; and prepare initial conditions for non-

square cavities. These programs are discussed below:

CHCK - used to determine the optimum sequence of time step sizes
for the stream function iteration.

PLOT - locates and plots the streamlines and isotherms from the
T and ¢ fields punched at the end of each calculation.

SPLIT - used to convert an 11x11 field into an 11x21, 21x11, or
21x21 field to simplify punching the initial conditions
for L/H= 2.0 and 0.5 cases.

SETUP - used to simplify punching the initial conditions for the
L/H = 3.0 case. Several stream functions at specified
grid points were read as data. Zeros were then placed
in the remainder of the grid points. A linear temperature
gradient is assumed for the temperature field, and the T
and { were punched on cards to provide the desired initial

conditions.
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2. Variables
A description of the variables used in the numerical integra-

tion of the vorticity and energy equations is given below:

Name Physical Description
Interpre-
tation
CARD whenever CARD=1B the final T and V¥

fields are punched on cards.

DT AT time step size for { and T fields

DX DX X increment between vertical grid lines.
DY AY Y increment between horizontal grid lines.
EPS1 used in testing the convergence of the

stream function iteration

FPCH ¥ and T fields are punched after every
FPCH time steps

FREQ U, V, T, t, ¥, and Nu are printed after

every FREQ time steps.

GR Gr Grashoff number.
HEIGHT Height Height of cell--usually 1.0.
INTPRT whenever INTPRT=1B the intermediate values

TSTAR, ZSTAR, and PHI are printed.
ITER number of time steps already performed
ITMAX maximum number of iterations allowed in
determining new stream functions. When
ITMAX is not sufficient, program assumes

error has occurred and calculations are ceased.
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Name Physical Description
Interpre-
tation
L At/ (Ax) dimensionless times step size for stream

function iteration.

LENGTH Length length of cell.

NDATA when NDATA=1B , new T and V¥ fields are
read into the computer. Otherwise the last
set of T and V¥ are used as initial con-

ditions again.

NX NX number of X grid spaces.
NY NY number of Y grid spaces.
PHI intermediate values of ¥ for the stream

function iteration.
PR Pr Prandtl number.
PRT whenever ITER is less than PRT ¢, V¥,

T, U, V, and Nu are printed.

PSIT ¥ stream functions
T T temperature
TAUMAX Thax maximum values of time the

calculations are to be carried.

TAUZER T ero value of time before the first time step.
TSTAR T* intermediate values of T Dbetween time steps.
U U X velocity

\% v Y velocity

Z ¢ vorticity

ZSTAR {* intermediate value of € between time steps.
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3. Program Listings

The main program and various subroutines associated with the
numerical integration of the vorticity and energy equations are presented

in the following pages.
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$ COMPILE MAD» PRINT OBJECTs PUNCH OBJECT MAINO0OO

START

SETW

SET

SET2

R PRQOGRAM TQO NUMERICALLY SOLVE THE EQUATIONS OF MOTION AND
R ENERGY AS APPLYED TO A TWO DIMENSIONAL CAVITY WALL HEATED
R. FROM BELOW AND COOLED FROM ABOVE

R

BOOLEAN CARD » LOOK » NDATA» INTPRT

INTEGER FREQe ITERs ITMAXy SWITCHs NXs NY o I J
1y PRT » FPCH » Wse WIy WIJ
2 s ITERMX » SWITCHs ITEs NN » IT

PROGRAM COMMON WsUsVsPSIs Zs» T 9 NXs» NYs ITERs DXsDYs LX»
ILYs D2Ys L2Xs L2Ys L2X29 L2Y29 Rs R2y D2X» DSQXs L2XPRs L2YPR
29L2X2PRy L2Y2PRs LY2GRs LX2PRs» LY2PRs LY4 sDIMsLOOKs DX2s DY2
39 A9 Cy Dy AJy CJs DJ s LY2 9 LX2y EPS1s L
4y INTPRT s DY6s DX6s DY12s DX12

DIMENSION U(500sDIM)s VI(500sDIM)}s PSI(500s DIM)s Z2(500sDIM)
ls T(500+sDIM)sA(50)s C(50)s D(50)s AJ(50)s CJ(50)y DJI(50)
1y W(30) » TD(500sDIM)}s NPSI(500s DIM)

VECTOR VALUES DIM = 2y 0y O

EXECUTE FTRAP.
ITMAX = O
L=0

Reees s READ AND PRINT INPUT VARIABLES

PRINT COMMENT $1%

READ AND PRINT DATA HEIGHTs LENGTHs NYs NXs GRs PRy DT»ITMAX
1 ITERMX » FREG s TAUZERs TAUMAXs FPCH

READ AND PRINT DATAs EPSls Lo PRTs NDATA»
1 INTPRT » CARD

DIM(1) = NY + 2

DIM(2) = NY + 1

THROUGH SETWs FOR I=09s1s IeGe NX

WiI) = ( NY +1 )*]

EXECUTE ZEROs ( U{0)eeeU(500)s VIO)eeeVI(500)s PSI(0)eeePSIH
1500)y Z(0)eeeZ{500)s T(O)eeeT(500)s ITERs TAU )
WHENEVER «NOTe NDATA» TRANSFER TO SET

READ FORMAT DATAs (J=0391sJeGeNYs(I=091s1eGeNXsTD(W(II+J)))
READ FORMAT DATAs (J=0913JeGeNYs (I=0919IeGeNXs NPSI(W(I)

1 +J)))

VECTOR VALUES DATA =3$5E16.8 *$

THROUGH SET2» FOR I = 0sls IeGeNX

Wl = W(I)

THROUGH SET2s FOR J = Qsls JeGe NY

WIJ = WI + J

T(WIJ) = TD(WIJ)

PSI(WIJ) = NPSI(WIJ)

PRINT COMMENT 30 AT TAU ZERO THE FOLLOWING CONDITIONS
1EXIST $

RA = PR%GR

PRINT RESULTS TAUZER » RA

ReseosSET CONSTANTS TO BE USED LATER



-117-

NN = NY + 1

DX = LENGTH/ NX

DY = HEIGHT / NY

NU = GRADYe ( Ts NXs DY )
DX2 = 045/ DX

DY2 = 045/ DY

DX6 = 640%DX

DX12 12,0%DX

DY12 = 12.0%DY
DY6 = 640%DY

LX = DT/DX
LY = DT/DY
LX2 = LX/ 240
LY2 = LY/2e
L2X = DT/DX/DX
L2y = DT/DY/DY

L2X2 = L2X/ 2.

L2Y2 = L2Y/ 2.

R = DX/ DY

R2 = R¥*R

D2X = 140/DX/DX

DSQAX = 240%( 140 + R2)
D2Y = 140/DY/DY

L2XPR = L2X/PR
L2YPR = L2Y/PR
L2X2PR = L2X2/ PR
L2Y2PR = L2Y2/PR
LY2GR = LY2#GR
LX2PR = LX2/PR
LY2PR = LY2/PR
LY4 = LY/4.

Reeooes CALCULATE INITIAL VORTICITIES AND VELOCITIES
EXECUTE VELOC.
THROUGH ONEs FOR J=1slsJeGeNY~-1
THROUGH ONEs FOR I = 1slsleGe NX-1
WIJ = W((I) + J
ONE ZIWIJ) = = D2X#({(PSI(WIJ+NN) + PSI( WIJ=NN))+ R2*(PST(WIJ+1)
1 + PSI  (WIJ - 1))= DSQX* PSI( WIJ))
EXECUTE ZWALL.
EXECUTE PRTOUTe ( TsZs PSIs Us Vs We NXs NY )

Reeess ADVANCE VORTICITIES AND TEMPERATURES

TAUZER = TAUZER + DT

THROUGH OUTls FOR TAU = TAUZERs DT»s TAUeGs TAUMAX

LOOK = 0B

ITE = ITER +1

WHENEVERITEReL ¢PRTeORe((ITE /FREQ)*FREQ-ITE )eEeO» LOOK = 18
EXECUTE INSUL.

EXECUTE VORTICe

Reees s CALCULATE NEW STREAM FUNCTIONS
EXECUTE STRMFNe( ITERMXs IT )

Reess e CALCULATE NEW WALL VORTICITIES
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EXECUTE ZWALLe

Reeeoe e CALCULATE NEW VELOCITIES

EXECUTE VELOC.
ITER = ITER + 1

R PUNCH RESULTS WHEN DESIRED

WHENEVER ({ ITER/FPCH)*FPCH = ITER) eEe0

PUNCH FORMAT DATAs(J=0919JeGeNYs(I=0s1s1eGeNXsT(IsJ)))
PUNCH FORMAT DATA»(J=0915JeGeNYs(I=09191eGeNXsPSI(IyJ)))
END OF CONDITIONAL

Reeee s PRINT RESULTS WHEN DESIRED

WHENEVER «NOTe LOOKs TRANSFER TO OUT1

PRINT COMMENT $4%

PRINT RESULTS TAU » GRs PR o IT

EXECUTE PRTOUTe ( TsZs PSIs Us Vs Ws NXs NY )

NU = GRADYe ( TsNXs DY )

PRINT RESULTS Nu
ouT1 CONTINUE

WHENEVER « NOTs CARDs TRANSFER TO END

PUNCH FORMAT DATA»(J=0919JeGeNYo(I1=0919IeGeNXsT(I9J)})))

PUNCH FORMAT DATAs(J=0s19JeGeNYs(I=0s191eGeNXsPSI(19J)))
END TRANSFER TO START

END OF PROGRAM

$ COMPILE MADs PRINT OBJECTs PUNCH OBJECT PRTOUTOO0O
EXTERNALFUNCTION (Ts ZsPSIs Us Vs Ws NXs NY )
ENTRY TO PRTOUT.
INTEGER N
INTEGER NXs NYs Wo I» J
WHENEVER NX «Ge 10s TRANSFER TO BIG
PRINT COMMENT $0 VORTICITY FIELD IS GIVEN BY §
PRINT FORMAT OUTs (J=0s19JeGeNYs (I=0s1l9leGeNXs Z(W(I)+J)})
PRINT COMMENT $0 NEW FIELD OF TEMPERATURE 1S GIVEN BY $
PRINT FORMAT OUTs (J=0919JeGeNYs(I=0s191eGeNXsy T(W(I)+J)))
PRINT COMMENT $0 NEW FIELD OF STREAM FUNCTICN IS GIVEN BY $
PRINT FORMAT OUTs (J=0313JeGeNYs (I=09191eGaNXsPSI(W(I)+J)]))
PRINT COMMENT $0 THE U COMPONENT IS $
PRINT FORMAT OQOUTs (J=0s19JeGeNYs (I=09lsleGeNXs UW(I)I+J)))
PRINT COMMENT $ THE V COMPONENT IS $
PRINT FORMAT OUTs (J=0919JeGeNY9(I=0919slaGeNXs VI(W(I}+J}))
VECTOR VALUES OUT = % 1HO/( 1H » 11Elle4)*$
VECTOR VALUES OUT1= % 1HO/( 1H » 10Elle4)*$%
FUNCTION RETURN
BIG PRINT COMMENT $0 VORTICITY FIELD IS GIVEN BY %

PRINT FORMAT OUTy (J=0919JeGeNYs (I=09191eGel0s Z(W(I)+J)))
THROUGH P1 s FOR N=11s 10s NeGe NX

P1 PRINT FORMAT OUT19(J=0919JeGeNYs(I=NslsleGeN+I sZ(W(I)+J)))
PRINT COMMENT $0 NEW FIELD OF TEMPERATURE 1S GIVEN BY $
PRINT FORMAT QUTs (J=0919JeGeNYs(I=09191eGelOs TI(W(I}+J)))
THROUGH P2 » FOR N=11s 10s NeGe NX
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P3
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PRINT FORMAT OQUT1s(J=0919JeGeNY s (I=NslsIleGeN+9 »T(W(II+J)))
PRINT COMMENT $0 NEW FIELD OF STREAM FUNCTION IS GIVEN BY $
PRINT FORMAT OUTs (J=0919JeGeNY»(I=0s191eGel0sPSI(W(II+J)))
THROUGH P3 ¢ FOR N=11s 10s NeGe NX

PRINT FORMAT OUT19(J=0s19JeGeNYs(I=Ns1lsIlaGeN+9 » PSI(IsJ)))
FUNCTION RETURN

END OF FUNCTION

$ COMPILE MADs PRINT OBJECTs PUNCH OBJECT INSULOOO

NEXT

SET
GO

SET1

EXTERNAL FUNCTION
ENTRY TO INSUL.

BOOLEAN LOOK s INTPRT
INTEGER IsJsNXs NY o ITER » We WIs WIJ

PROGRAM COMMON WeUsVePSIs Zs T » NXs NYs ITERs DXsDY» LX»
1LYs D2Ys L2Xs L2Ys L2X2s L2Y2s Rs R2s D2Xs DSQXs L2XPRs L2YPR
29sL2X2PRs L2Y2PRs LY2GRs LX2PRy LY2PRs LY4 +DIMsLOOKs DX2»s DY2
39 A9 Co» Ds AJs CJs DJ » LY2 s LX29 EPS1s L
49 INTPRT s DY6s DX6s DY12» DX12

DIMENSION U(500sDIM)s V(500sDIM)s PSI(500s DIM)s Z(500+DIM)
1s T(500sDIM)sA(50)s C{50)s D(50)s AJ(50)s CJ(50)s DJ(50)
2 sTSTAR(500s DIM) » B(50)s BJ(50)s DIM(2)s W(30)

WHENEVER ITER eNEe Os TRANSFER TO GO
CX = =240% ( L2XPR + 1e0 )

CY = = ( 140 + L2YPR )

EXECUTE ZEROe ( TSTAR{(O)eeeTSTAR(5001))
THROUGH NEXTs FOR I = Os 1ls IeGe NX
TSTARC( Is0) T(I+0)

TSTAR(IsNY) TCIsNY)

ReseseSET COEFF TO ADVANCE TEMPSs X DIRECTION

A(O)
B(0O)
cco
A(NX)
BINX) B(0O)

CINX) 0e0

THROUGH SETs FOR I = 1s 1ls I «Ge NX-1
B(I) = CX

THROUGH HALF,s FOR J
THROUGH SET1s FOR 1
WIJ = wll) +J

ACT) L2XPR + LX2¥U(WIJ)

(I L2XPR = LX2*U(WIJ)

D(I) VIWIJ)*LY2%DELYe (TolsJ) ~L2YPR¥DELSQYe( ToelsJ) = 2%
1T(WID)

D(0) = =L2YPR* DELSQYe ( Ts0sJ) = 24%¥T( J)

D(NX) = =L2YPR*DELSQYe( ToNXsJ) = 260*¥T(WINX)+J)

Oe
~2e¢%( L2XPR + 1l¢ )
= 2+ * L2XPR

c(0)

[ 1]

oo~

1sly JeGeNY-1
191ls1eGe NX=-1

Hn

ReeoesCALCULATE. TSTAR BY THOMAS ELIMINATION



HALF

NO

SET3
GOo2

SET2

DONE

NO2
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EXECUTE THOMs ( TSTARs 1Bs AsBs Cs Do NXs OsJs W )
WHENEVER «NOTe LOOK»s TRANSFER TO NO

WHENEVER oNOTe INTPRTs TRANSFER TO NO

PRINT COMMENT $0 INTERMEDIATE TEMPS GIVEN BY $

PRINT FORMAT OUTys (J=0919JeGeNYs(I=0s191eGeNXsTSTAR(IvJ)))

VECTOR VALUES OUT = $ 1HO/( 1H s 11E1le4)*$%
CONTINUE
WHENEVER ITER eNEe 0s TRANSFER TO GO2

Rees oo NOW BEGIN SECOND STEP IN TEMP,.

THROUGH SET3s FOR J=1lsls JeGe NY
BJ(J) = QY

THROUGH DONEs FOR I = 0Os 1ls leGeNX
WI = W(l)

Reeees SET COEFF MATRICES SECOND STEP

THROUGH SET2s FOR J = 19 1y JeGe NY-1
WIJ = WI + J

AJ(J) =L2Y2PR + LY&4*V(WIJ)

CJtJy= L2Y2PR = LY4*VIWIJ)

DJ(J)= TIWIJ) — 260*¥TSTAR(WIJ) +L2Y2PR*DELSQYe(TslsJ) = VI(WIJ

1)*¥LY4 *DELYe(Toelsd)

DJ(1) = DJ(1) = AJ(LI#T(WI )

DJINY=1) = DJINY=1) = CIINY=-1)*T(WI + NY )

EXECUTE THOMe( Ty OBs AJs BJs CJs DJs NY=1s 1y Iy W )
WHENEVER o«NOTe LOOKs TRANSFER TO NO2

WHENEVER oNOTe INTPRTs TRANSFER TO NO2

PRINT COMMENT $0 FINAL TEMPS ARE GINEN BY %

PRINT FORMAT OUTs (J=0919JeGeNYs(I=091lsleGeNXsT ( IsJ)))
FUNCTION RETURN

END OF FUNCTION

$ COMPILE MADs PRINT OBJECTs PUNCH OBJECT VORTI000

EXTERNAL FUNCTION
ENTRY TO VORTIC.

BOOLEAN LOOK » INTPRT
INTEGER Iy Js NXs NYs ITER » We WIs WIJsNN

PROGRAM COMMON WsUsVePSIs Zs T » NXs NYs ITERs DXsDYs LXs

1LYs D2Yy L2Xs L2Ys L2X2s L2Y2s Rs R2s D2Xs DSQGXs L2XPRs L2YPR

29L2X2PRs L2Y2PRs LY2GRy LX2PRs LYZ2PRs LY4 +sDIMeLOOKs DX2
39y Ay Cy Dy AJy CJsy DJ 9 LY2 9 LX2s EPS1y L
49 INTPRT s DY6s DX6s DY12s DX12

DYZ2

DIMENSION U(500sDIM)s V(500sDIM)s PSI(500s DIM)s Z(500sDIM)

1y T(500+sDIM)sA(50)s C(50)s DI(50)s AJ(50)s CJ(50)s DJ(50)
2 » DIM(2)y ZSTAR(500s DIM)s B(50)s BJ(50) s W(30)

WHENEVER ITER eNEe Os TRANSFER TO GO
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BX = = 240% ( 1o +0L2X)
BY = = ( le +L2Y )

Reeee s SET COEFF TO ADVANCE VORTICITIES ONE STEP

THROUGH SETs FOR I=1sls IeGe NX-1
SET B(I) = BX
GO THROUGH HALFs FOR J=1919JeGeNY~1
THROUGH SETl1s FOR I = 1lsls TeGeNX-1
WIJ = W(I) +J
A(l) =L2X + U(WIJ)*LX2
ClLI) =L2X = UIWIJ)*LX2
SET1 DI} = VIWIJ)*LY2%¥DELYe(Zs19sJ) =L2Y*¥DELSQYe(ZslsJ) - 240%2(
IWIJ) + LY2GR¥*DELXe( TolsJ)
D(1) = D(1) = A(L)I*Z( J)
DINX-=1)= D(NX=1) = CINX=1)*Z(W{NX) + J)

Reeees e ADVANCE FIRST VORTICITY STEP

HALF EXECUTE THOMe ( ZSTARs 1Bs AsBsCoeDsNX=1s 19 Jy W )
WHENEVER oNOTe LOOKs TRANSFER TO NO
WHENEVER oNOTe INTPRTs» TRANSFER TO NO
PRINT COMMENT $0 INTERMEDIATE VORTICITIES ARE GIVEN BY §$
PRINT FORMAT OUTs (J=09s1sJeGeNYs(I=09191eGeNXsZSTAR(I»J))}
VECTOR VALUES OUT = % 1HO/( 1H 9 11E1le4)*$%

ReeeeeSET COEFFS FOR SECOND STEP
NO CONTINUE

WHENEVER ITER oNEe Os TRANSFER TO GO2
THROUGH SET3s FOR J = 1sls JeGe NY-1

SET3 BJ(J) = BY
GO2 THROUGH DONEs FOR I = 19 19 TaeGe NX-1
WI = W(I)

THROUGH SET2s FOR J=1sls JeGe NY-1
WIJ = WI + J
AJ(J)=L2Y2 + VIWIJ)*LY4
CJUJ) = L2Y2 = VIWIJ) * 1Y4
SET2 DJ(J)= ZAWIJ) = 260%ZSTAR(WIJ) +L2Y2*DELSQYe(ZslsJ) =~ VIWIJ)
1¥LY4 #*¥DELYe( ZolsJ)
DJ(1) = DJ(1) =~AJ(L1)*Z(WI)
DJINY=1) = DJINY=1) = CJINY-1)*Z(WI + NY)

Reeesee ADVANCE SECOND STEP IN VORTICITY

DONE EXECUTE THOMe ( Zs O0Bs AJs BJs CJs DJs NY=1s 19 I o W)
WHENEVER o«NOTe LOOKs TRANSFER TO NO2
WHENEVER oNOTe INTPRTs TRANSFER TO NOZ2
PRINT COMMENT $0 FINAL VORTICITIES ARE $
PRINT FORMAT OUTs (J=0s19JeGeNYs(I=0s191eGeNXsZ (Isd)))
NO2 FUNCTION RETURN
END OF FUNCTION

$ COMPILE MADs PRINT OBJECTs PUNCH OBJECT STRMFO000
EXTERNAL FUNCTION (ITERMXs IT )



SETB
OUTER

SETD

SETG
HALF

SETBB
ouTs

SETDD
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ENTRY TO STRMFNe
BOOLEAN LOOK » BOOL » INTPRT

INTEGER ITs ITERs I» Js My NXs NY » We WIs WIJsXs Y s ITERMX
19sPTMXs PTFQ

PROGRAM COMMON WsUsVePSIs Zs T o NXs NYs» ITERs DXsDYs LX»s
1QYs D2Ys L2Xs L2Ys L2X2s L2Y2s R» R2s D2Xs» DSQXs L2XPRy L2YPR
29L2X2PRs L2Y2PRs LY2GRs LX2PRs LY2PRy» LY4s DIMs LOOKs DX2sDY?2
39 Ay Co Dy AJy CJsy DJ » LY2 s LX2s EPS1y L
4y INTPRT 4 DY6s DXés DY1l2s DX12

DIMENSION U(5009DIM)s V(500sDIM)s PSI(500s DIM})s Z(500sDIM)
ly T(500+DIM)sA(50)s C(50)s DI(50)s AJ(50)s CJUI50)s DJ(50)
29DIM(2), PHI(500sDIM) sW(30)s D(30)» DD(30)

3 G(30)s GG(30)s BETA(50)s BETB(50)

BOOL = 0B
WHENEVER ITER «Ge Os BOOL = 1B

R L = DT/ (DX)2

PTMX
PTFQ
IT =
EXECUTE ZERO. ( PHI(0)eesPHI(500))
WHENEVER BOOL » TRANSFER TO OUTER
LY = L * R2
DT = L *DX * DX
A= L
A2 = A¥A
BETA(L1) = =2,0%( 140 + L )

THROUGH SETBs FOR I1=2s1sI1eGe NX-1

BETA( 1 ) = BETA(1) - A2 / BETA ( I-1)

CONT INUE

THROUGH HALFs FOR J=1s1sJeGeNY-1

THROUGH SETDs FOR I=191sI1eGeNX-1

WIJ = W(I) +J

D(I) =-2,0%PSI(WIJ) - LY *DELSQY ¢ (PSTs1sJ)

1 - Z(WIJ) * DT

G(1) = D(1) / BETA( 1)

THROUGH SETGs FOR 1=2s1y IeGeNX-1

G(I) = ( D(I) = A *G(I-1))/ BETA( I)
EXECUTE TOMe( PHIs A»GsBETAs 1BsNX=1sJs W )

2
10

o

Reeee s PERFORM SECOND STEP

WHENEVER BOOL s TRANSFER TO ouTB

AA = L¥R2/ 240

AA2 = AA*AA

BETB(1) = —(R2%L + 140)

THROUGH SETBBs FOR = 2 1ls JeGe NY-1

BETB( J) = BETB( 1) - AA2 / BETB( J-1)
THROUGH DONEs FOR I = 131y leGeNX-1

Wl = W(I)

THROUGH SETDDs FOR J = 1sls JeGe NY-1
WIJ = Wl + J
DD(J) = PSI(WIJ) + AA *DELSQYe (PSIsleJ)= 24*PHI(WIY)
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GG(1) = DD(1) / BETBI(1)
THROUGH SETGGs FOR J = 291y JeGeNY-1
SETGG GG(J) =( DD(J) = AA *GG(J-1)) /BETB(J)
DONE EXECUTE TOMe ( PSI» AAs GGy BETBs OBsNY=1sls W )
IT = IT + 1
WHENEVER «NOTe INTPRTs TRANSFER TO RESET
WHENEVER «NOTe LOOKs TRANSFER TO RESET
WHENEVER IT ¢GePTMX +ANDe ((IT/PTFQ)*PTFQ = IT) oNEeO»
1 TRANSFER TO RESET
PRINT RESULTS 1IT
PRINT COMMENT $OINTERMEDIATE STREAM FUNCTIONS ARE GIVEN BY $
PRINT FORMAT OUTs (J=0919JeGeNYy(I=0919I1eGeNXs PHI(I9J)))
PRINT COMMENT 3ONEW STREAM FUNCTIONS ARE GIVEN BY &
PRINT FORMAT OUTs (J=0519JeGeNYs(1=0s19IeGeNXs PSI(IsJ}))
VECTOR VALUES OUT = $ 1HO/( 1H » 11Elle4)*$

RESET CONTINUE
BOOL = 1B
INTERNAL FUNCTION VORe(XsY) ==(PSI(X+1sY) + PSI(X=1»Y) +R2¥(
1IPSI(XsY+1l) + PSI( Xs Y=1)) = DSQX*¥PSI{XsY))*D2X

WHENEVER oABSe (VORe(192) = Z(192))ele oABSe( EPS1¥Z(142))s
1 FUNCTION RETURN

WHENEVER IT sLe ITERMXs TRANSFER TO OUTER

EXECUTE ERRORe

FUNCTION RETURN

END OF FUNCTION

$ COMPILE MADs PRINT OBJECTs PUNCH OBUECT VELOCO000
EXTERNAL FUNCTION
ENTRY TO VELOC.

INTEGER NXs NYs Is Js ITER » Wse WIs WIJs NN

PROGRAM COMMON WsUsVsPSIs Zs T s NXs NYs ITER» DXsDYs LX»
1LYs D2Ys L2Xs L2Yy L2X2s L2Y2s Rs R2s D2X» DSQXs L2XPRy L2YPR
2,L2X2PRy L2Y2PRs LY2GRs LX2PRs LY2PRs LY4 »sDIMsLOOKs DX2» Dy2
3y As Cs» Ds AJs CJs DJ » LY2 o LX2s EPS1s L
49 INTPRT » DY6s DX6s DY1l2s DX12

DIMENSION U(500sDIM)s V(500sDIM)s PSI(500s DIM)y Z(500+DIM)
1y T(5009DIM)sA(5C)s C(50)s D(50)s AJ(50)s CJ(50)s DJ(50)
2 » DIM(2) » W(30)

ReeeeeCALCULATE U VELOCITIESeees
THROUGH ONEs FOR I = 1lsls IeGse NX-1
Wl = W(I)
UIWI+1) = (=3,0%PSI(WI+1)+ 640*PSI(WI+2)= PSI(WI+3))/DY6
UWI+NY=1)=(3e*¥PST(WI+NY=1)=-64*PSI(WI+NY=2)+PSI(WI+NY=3))/DY6
THROUGH ONEs FOR J=2sls JeGaNY=2
WIJ = WI +J
ONE UIWIJ) = ( 8e*(PSI(WIJ+1) = PSI(WI J-1)) + PSIl WI J=2)
1 = PSI( wlJ+2))/ DY12

Reesse CALCULATE V VELOCITIESeses
THROUGH TwOs FOR J= 1lsls JeGe NY-1
VIW(1)+J)=(3e¥PST(W(1)+J) —6e¥PSI(W(2)+J) + PSLIW(3)+J))/DX6
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VIWINX=1)+J)= (=PSI(WINX=3)+J)+6e*¥PSI(W(NX~2)4+J)=3,%*PS]
1 (W(NX-1)+J))/DX6
THROUGH TWOs FOR 1=241y leGe NX=2
WIJ = W(I) +J
TWO VIWIJ) =(8e*(PSI(W(I-1)+J)=PSI(W(I+1)+J))=PSI{W(I-2)+J) +
IPST{W(I+2)4J))/DX12
FUNCTION RETURN
END OF FUNCTION

$ COMPILE MADs PRINT OBJUECTs PUNCH OBJECT DELY.000
EXTERNAL FUNCTION ( Ay Iy J)
PROGRAM COMMON W
DIMENSION W(30)
INTEGER IsJ sW o WIJ
ENTRY TO DELYs
WIJ = W(I) +J
FUNCTION RETURN( A(WIJ+1) = A(WIJ=-1))
ENTRY TO DELSQYs
WIJ = W(I) +J

FUNCTION RETURN ( A(WIJ+1) + A(WIJ=1) = 2¢%A(WIJ))
ENTRY TO DELXe
FUNCTION RETURN ( A(W(I+1)+J) = A(W(I=-1)+J))

END OF FUNCTION

$ COMPILE MADs PRINT OBJECTs PUNCH OBJECT TOM«0000
EXTERNAL FUNCTION(PHIsAs Gs BETAs BOOLs Ny Ky W)
ENTRY TO TOM,

BOOLEAN BOOL

INTEGER IsJds No M sK 9 W 9 WIy WIJ
WHENEVER BOOL
PHI(W(N)+K) = GI(N)
THROUGH NEXT1ls FOR I=N-1s =13 IeLel
WIJ = W(Iy + K
NEXT1 PHI(WIJ) = G(I ) - A * PHI(W(I+1)+K)/ BETA(I)
OTHERWISE
WI = W(K)
PHI(WI +N) = G(N)
THROUGH NEXT2s FOR J = N-1s =1y JelLe 1
WIJ = WI + J
NEXT2 PHI( WIJ ) = G(J) = A¥PHI( WIJ + 1) / BETA(J)
END OF CONDITIONAL
FUNCTION RETURN
END OF FUNCTION
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$ COMPILE MADs PRINT OBJECTs PUNCH OBJUECT ZWALLOOO
EXTERNAL FUNCTION
ENTRY TO ZWALLe
PROGRAM COMMON WsUsVsPSIs Zs T » NXs NYs ITERs DXsDYs LX»
1LYs D2Ys L2Xs L2Ys L2X2s L2Y2s Rs R2s D2X» DSQXs L2XPRs L2YPR
24L2X2PRy L2Y2PRs LY2GRy LX2PRs LY2PRs LY4 sDIM»LOOKs DX2s DY2
35 As Cs Ds AJs CJy DJ » LY2

DIMENSION U(500sDIM)s V(500sDIM)s PSI(500s DIM}s Z(500+DIM)
1s T(5005sDIM)sA(50)s CI50)s D(50)s AJ(50}s CJ(50)s DJI(50)
2 s W(30) » DIM(2)

INTEGER IsJsNXsNY » ITERs We WIs WIJ s NN

NN = NY+1
THROUGH SETXs FOR I=191sI «Ge NX- 1
WI = W(I)
Z(WI) = =240%PSI( WI+1)*D2Y
WIJ = WI + NY

SETX Z(WIJ) = —2.0% PSI(WIJ -1) * D2Y
THROUGH SETYs FOR J=1slsJeGeNY-1
Z(J) = =2,0% PSI( NN+J) ¥ D2X
WIJ = WINX) +J

SETY Z( WIJ ) = =240%PSI( WIJ = NN) * D2X

FUNCTION RETURN
END OF FUNCTION

$ COMPILE MADs PRINT OBJUECTs PUNCH OBJECT THOM.000
EXTERNAL FUNCTION ( Py BOOLs AsBsCsDs NsMs Ls W )
ENTRY TO THOM.
BOOLEAN BOOL
INTEGER Is Ns My J L sWoeWls WIJ

DIMENSION BETA(50)s GAM(50) s VI(50)
BETA (M) = B(M)

GAM(M) = D(M) / B(M)
THROUGH SETls FOR I = M+lsls I eGe N

BETA( I ) = B(I) - A(I) * C(I-1)/ BETA(I-1)
SET1 GAM(I) = ( D(I) = A(I)*GAM(I-1))/ BETA(I)
WHENEVER BOOL
PIW(N) + L) = GAM(N)
THROUGH SET2 s FOR I= N=1s -1y IelLeM
SET2 P(W(I)I+L) = GAM(I) - C(IV* P ( W(I+l) + L) / BETA(I)
OTHERWISE
P(W(L) + N) = GAMI(N)

THROUGH SET3 s FOR J= N-1s -1y JelLeM
WIJ = W(L) + J
SET3 P(WIJ) = GAM(J) — C{J) *P{WIJ+1)/ BETA(J)
END OF CONDITIONAL
FUNCTION RETURN
END OF FUNCTION



APPENDIX C

TYPICAL COMPUTER OUTPUT

Two sets of typical computer output are presented below.
In the first set new initial conditions have just been introduced
and the computer has reproduced these initial conditions. In the

second set typical T, Z, PSI, U, and V fields and Nu are

presented.
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HEIGHT = 1.y LENGTH = 1., NX=10,

0T= 0.002

FPCH = 350

+ ITERMX = 10,

EPS1 = 1.0€~-03,

L = 6.0,

PRT = 0y

AT TAU ZERO THE FOLLOWING CONDITIONS

TAUZER =

«000000,

STARTING TEMPERATURES ARE

-+ 1000E
-+ 8620E
-« T366E
-+ 6297E
-+ 5388E
-« 4481E
-« 3261E
-«1307E
+1674E
«5586E
«10C0E

STARTING STREAM FUNCTIONS ARE

. 0000E
«0000E

«00C0OE ©

. 0000E
«0000E
«06O0E
« 00L0E
«0000E
«00U0E
«0000E
«0000E

ol
00
0
00
GO
00
[olo]
00
00
00
o1

<]

~.1000E
-.8558E
- T274E
-+6216E
-+.5387E
~.4639E
-+3627E
~.1820E

«1208E

«5334E

+1000E

0l
00
00
Q0
00
00
00
00
00
Qo0
01

+0000E 00
~+5054E 00
=+2907E 01
-.6150E 01
-.8355E 01
~+8292€E 01
-.6142E 01
-.3235€ 01
-+.1026E 01
-.1939€-01

.00C0E 00

Ny =

THE U COMPONENT IS

«0000E
«00UGO0E
+0000E
«0000E
«0000E
+0000E
»0000E

+0000E
«0000E
«0000E
«0000E

+0000E
+0000E
«0000E
« 0000E
+0000E
«000VE
«0000E
«0000E
+0000E
«0000E
«0000E

00
00
00
00
00
co
co

00
00
00
00

-009CE 00
-.1629€ 02
~«3067€ 02
=+2983E 02
-.1158E 02

«1232E 02

«2761E 02

22721t 02
«1632E 02
«4T69E 01
.0000E 00
THE V COMPONENT IS

.0000E 00
.8723E 01
«3653€ 02
«6995E 02
«9596E 02
«1053E 03
«9361E 02
+6411E 02
«3160E 02
+9490E 01
.0000E 00

-+1000¢
-.8248E
-.6639E
-+5383E
~«4595E
-+4109¢
-+3503E
-.2116E

«6953E~

«4946E
«1000E

+GO00E
~«1796E
-.7257¢
-.1387€
-.1878E
~+2006E
-.1728E
~«1158E
-.5672E
-.1737¢t

«U000E

NY = 10y

NDATA

E

= 18y
XIST

RA =
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GR = 1.0€ 05 4 PR=0.03,

FREQ = 5, TAUZER =.000, TAUMAX = (.200,

INTPRT=08y CARD = 1B »

26554999969

0l -.1000E 01 -.1000E ¢l -.100CE O1
00 -.76T1E CO -.6871E 00 -.5981E 00
00 -.5486E 00 -.4000E 00 -.2506E OC
00 -.3911E 00 -.2132E 00
00 -.3150E 00 -.1441E 00
00 ~.2947€ 00 -.1491E CO
00 ~.2752E 00 -.1585E 00
00 -.1800E 00 -.907CE~-01

0l
00
ol

1.792045

-LO0O0E
-.4048E
-.6482¢
-.6157t
-43292E

«BO94E

+4558E

«6209E
«5123E
«2874E
.0000E

«-0000E
«1805E
«5198E
«8628E
«1126E
«1256E
«1214E
+«9656E
+5882E
«2503E
.0000E

02

02
00

THE VORTICITY FIELD IS GIVEN BY

+0000E
«1011E
+5813E
«1230E
«1671E
»1658E
+1228E
< 64TPE
«2051E
+3877E
- 0000E

«1011E
+2681E
«2286E
«5267E
-+2012E
«1384E
«4236E
+5809E
+4B24E
«2685E
«3877E

03
03
03
02
02
03
03
03
03
03
1]

+3591E
«4604E
«2445E
-+5062E
-.2814E
-+3600E
-«2263E
+1177€
«3654E
«3414E
«3474E

«6859E-01
«4847E 00
<1000 01

.0000E 00
«4024E 01
«1291E 02
«2277E 02
«3001€ 02
+3228t 02
«2906E 02
21328 02
«1200€ 02
4670E Ol
+0000E 00

«0000E 00
. 7098E 02
+9999E 02
«9049E 02
«4991E 02
«5124€ 01
«5807C 02

«9073E 02
8677 02
«6111E 02
+0002E 00

.0000E 00
«2519E 02
«5541E 02
«8266E 02
+1020€ 03
«1105€ 03
+1073E 03
9103 02
«6168E 02
«2972E 02
.0000E 00

«8048E 03
«5099E 03
«4933E 01
+4852E 03
+8065€ 03
+8856E 03
+7646E 03
«3836E 03
.8701E 02
+2230E 03
+9340€ 03

«1325E
«5226E
«1000€

+0CCOE
«6493E
«1762E
«2946E
+3815E
«4114E
«3772E
+2880F
«1721E
«T174E
«CCO0E

«00COE
«9460E
«1213E
+1080E
+6107E
+23C5E
«6481E

«1085E
. 1127E
+8821E
«000CE

+0000E
«2104E
«3429E
+4729E
«5T46E
«6294E
+6219E
+5453E
«3867E
«1725E
+0000E

+1299€
«3522E
«2313E
«T572E
«11C0E
«1204E
+1090E
«T207E
«1567E
«1034E
«1435€

00
co
Cl

00
ol
c2
02
02
02
ce
02
c2
[
00

00
02
a3
Q3
02
o1
02

03
03
02
00

00
02
02
02
02
02
02
02
02
02
00

04
03
03
03
04
04
04
03
03
03
04

-.4436E-01
«1763E-01
-+1525€E-07
-.1763€E-01
«4436E-Cl
+2506E 0OC
«5981E 0C
+1000E 01

+0000E 0OC
-.7853E C1
-.1929c 02
-«3173E 02
-.4100E G2
~.4436E€ 02
-.4100E C2
-«3173E C2
-.1929€ 02
-.7853E 01

«0GCCE 0C

+CO0CE OC
-.1008E 03
~.1250€ 03
-.1143E 03
-.6606t 02
«T7749€-05
«6606E 02

«1143€ 03
.1250E 03
.1008E 03
+0000E 0C

«0000E 0C
+4004E 01
-.1971E Ol
-.3218E 0Ol
-.2067¢ 01
+0000E 00
«2067€ O1
«3218€ 01
«1971€ 01
-+4004E 01
.0000€ 00

«1571€ 04
«1549E 03
-.2T60E 03
-.8383E 03
~.1203E 04
~.1315€ 04
-.1203€ 04
-.8383E 03
-+2760E 03
+1549E 03
.1571E 04

-+.1000E 01
~.5226€ 00
-«1325E 00
«9070€-01
«1585€ 00
«1491E 00
+1441E 00
.2132€ 00
«4000E 00
«6871E 00
«1000E 01

+000CE 00
-.7174E 01
-«1721€ 02
-+¢88B0E 02
-.3772€ 02
-s4114E 02
-.3815L 02
“+2946E G2
-«1762E 02
~+6493t 01

+G00CE 00

-(Q0CE 00
-.8821€ 02
-.1127€ 03
-.1085c 03
-.648lE 02
-.2305€E 01

«6107€ 02

+«1080E 03
.1213€ 03
«9460E 02
+0000E 00

-0U000E 00
-.1725€ 02
~«3867E 02
~+5453E 02
-.6219E 02
-.6294E 02
-.5746€ 02
~.4T29E 02
~«3429€ 02
~-.2104E 02

+«0000€ 00

+1435E 04
+1034E 03
-.1567E 03
-.7207€ 03
-.1090€ 04
-+.1204E 04
-.1100E 04
-.7572E 03
-.2313E 03
«3522€ 03
«1299€ 04

-+.1000€ 01 -.1000E 01

+4B47TE 00
«6859E-01
«1800€ 00
«2752E 00
«2947E 00
«3150€ 00
«3911E 00
«5486E 00
.76T1E 00
«1300E 01

«GO00E 00
«46T70E 01
+1200E 02
+2132E 02
+2906E 02
+3228E 02
«3001E 02
«2277E 02
«1291E 02
«4024E 01
.0000€ 00

+0000E 00
«6111E G2
+867TE 02
+9073E 02
+5807E 02
«5124E 01
+4991€ 02

«9049E 02
«9999E 02
. 7098E 02
+0000€ 00

+0000E 00
.29T2€E 02
+6168E 02
«9103E 02
«1073€ 03
«1105E 03
-1020E 03
+8266E 02
+5541E 02
2519 02
.0000E Q0

+9340€ 03
«2230E 03
«8701€ 02
+3836E 03
«T646E 03
+«8856E 03
+8065E 03
«4852€ 03
+4933E 01
+5099¢€ 03
+B048BE 03

~«4946E

~e6953E~

«2116E
«3503E
+«4109€
+4595E
«5383E
«6639E
+8248E
«1000E

.0000E
-.1737¢
~.5672E
~«1158E
-.1728E
-+2006E
~.1878E
~-.1387E
-.T257E
~.1796E

.0000E

+-0000E
-.2874E
-.5123¢E
~+6209E
-«4558E
~+8094E

«3292¢

«6157E
+6482E
«4048E
+0000E

+0000E
-+2503E
-.5882E
-e9656E
~e1214E
-«1256€E
-.1126E
-.8628E
-.5198E
-+1805E

+0000E

+3474E
«3414E
«3654E
«1177€
-.2263E
-+3600€E
~e2814E
-+5062E
«2445E
«4604E
«3591E

00
[+
00

-.1000E 01 -.1000€
-«5334E 00 -.5586L
-.1208E 00 -.1674t

«1820E
«3627E
«4639E
.5387E
«6216E
«T274E
+8558E
. 1000E

.0000E

«1939€-

«1026E
«3235¢€
«6142E
«8292E
«8355E
+6150€
«2907E
«5054E
«0000E

.0000E
«4T69E
. 1632
#+2721E
«2T61E
. 1232€
+1158¢

+2983E
+3067E
«1629E
<0000t

-0000E
+9490E
«3160E
«6411E
«9361E
«1053E
«9596E
«6995E
«3653€E
+8723E
«0000E

+3877€
+2685E
«4824E
+5809E
«4236E
«1384E
+2012E
«5267E
«2286E
«2681E
«1011E

Co
00
00
co
00
00
00
0l

00
ol
01
0l
ol
0l
ol
0l
ol
vo
00

co
0l
02
02
02
2
02

02
02
02
00

00
01
02
02
02
03
02
02
02
01
00

01
03
03
03
03
03
02
02
03
03
03

+1307F
«3261F
4481t
+5388L
«6297E
+ 1366E
+8620L
» 1000€

«G000t
»0000E
.C000CL
«CQ00E
« 0000t
«0000E
«C00CE
+«GO00E
«0000E
.C000¢E
«CO0CE

. 0000t
«C000E
. 0000t
«0000E
+0000E
.C000t
«CO00E

«C000CE
«0000E
.C000L
«0000€

« 0000k
. 0000t
+-0000E
.0000E
+0000E
«0000t
«0000E
«0000E
«CO000E
. C000E
+C000E

+C000E
+387TE
«2051F
«6470E
.1228E
- 1658E
16T1E
«1230E
+5813E
«1011E
«0000E



TAU =

«010000,

VORTICITY FIELE IS GIVEN BY

« 0000E
+1852E
«9453E
« 1958E
«2662E
«2686E
«2063E
«1167€

«4464E
- 8502E
. 0000€

00
03
03
04
04
04
04
04

03
02
00

NEW FIELD

~« LUOOE
-« 8652E
-« T1355E
-« 6067E
~e4121E
-«3210E
-.1370E

«9282€~

«3674E
«6742E
«1000E

ol
00
00
00
00
00
00
21
00
[#]¢]
o1

NEW FIELD

+« 00UQE
«0000E
«0000E
«0000E
«0000E
« 0000E
«00VOE
. 0000E
«J0C0OE
+«00COE
«00C0E

«1852E
«4145E
«3192€
«3423E
~«1547E
«4519E
«4T62E
«7815E

«T056E
«4118BE
+8502€

03
03
03
01
03
02
03
03

03
03
02

«6246E
+6729E
«3694E
«2799E
+3392E
+4592E
«3182E
«1219€

+5000E
«4333E
«T176E

03
03
03
02
03
a3
03
03

03
03
03

-1383E

+6T68E
—«2154E
-«T217E
~+1187€
-+.1307€
~+1115E
~+6255E

+8987E
«1500E
+1706E

OF TEMPERATURE IS GIVEN BY

-.1000€
-.8641€
~.7353E
~+6097E
-+4809E
-+3376E
-.1605€

«6808E~

«3486E
«664TE
«1000€

17 =

01
00
[]¢]
00
00
00
00
0l
00
00
01

.1000E
«8531E
«T132E
«5805€
«4526E
«3184E
+1552¢

+6067E~

«3363E
+6559E
«1000E

OF STREAM FUNCTION

«0000E
-+9260E
~+4727E
~.9792E
-+1331E
~«1343E
-.1031E
-+5833E
-+2232E
-«4251E

.0000E

THE U COMPONENT IS

+0000E
« 0000E
+0000E
«0000E
«0000E
«0000E
«0000E
+«0000€
«0000E
- 0000E
«0000E

00
00
00
00
00
00
00
00
00
00
00

+0000E
-«2632E
~.4801E
~+4680E
~+1960E
«1666E
+4142E
«4305€
+2T45E
«1047E
«0000E

THE V COMPONENT IS

«0000E
+ 0000E
«0000E
+0000E
»0000E
«0000E
- 0000E

. 0000E
+0000E
. 0booE
- 0000E

-00C0E
«1507€
+5650E
+1048E
«1424E
+1568E
«1420E

«1013E
«5362E
«1953€
«0000E

NU =

[oJ¢]
00
01
o1
02
02
02
01
01
00
00

1

«0000E
+3123E
.1138E
«2117E
+2847E
+3055E
«2676E
+1860E
+9T27E
+3588E
+0000E

«0000E
«6290E
«9656E
«9107E
<49T4E
<9270
+6406E
«9106E
«TTTTE
«4833E
-0000E

«0000E
«3068E
+8019E
«1289E
«1661E
+1B48E
+1793E

«1460E
«9230E
«4358E
+0000€

01
00
00
00
00
00
00
(1}
00
00
[

7

IS

00
ol
92
02
02
02
02
02
0L
ol
00

1.251920

-«1000E
-.8285¢
~«6635E
-+5125€
-+3786E
-<2506E
-.1019E

«9606E-

+3559E
+6643E
+1000CE

GIVEN BY

«0000E
~«6917E
-.2020E
~+3475E
= +4545E
~.4895¢€
~+4438E
-3329€
=-+1949¢E
-.8531E

+-0C00E

+0000E
~.1095E
-e1476E
-«1334F
=« T454E
«5927¢
«8273E
«1323E
<1281E
-9675E
-0000€

+0000E
+4281¢E
+8634E
+1261E
«1546E
«1670E
+1608E

«1366E
«9381E
«4883E
«0000E

02
04

a1
00
00
o1
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GR = 1.000000E 05,

«2223E 04
+3475€E 03
«3553E 03
«1104E 04
«1607E 04
+1T794E 04
«1602E 04
«1112E 04

«2443E 03
+8540E 02
«2509E 04

«1000E 01
- 7896€E 00
«5871E 00
«4092€ 00
«2636E 00
-1379€ GO
«1643E-02
+1772€ 00
+4134E CO
-6955E 0GC
-1C00E 01

-0000E 00
«1112€ 02
+2753E 02
+4495E 02
+5778E 02
«6234E 02
+5738E 02
«4445E 02
«2730E 02
«1255E 02
+-0000E 00

+0CCOE 00
«1448E 03
«1774E 03
+.1590E 03
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