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Abstract

At millimeter wave frequencies a typical leaf is a significant fraction of a wave-
length in thickness, and its nonuniform dielectric profile now affects the scattering.
To provide a simple and efficient method for predicting the scattering, two types
of physical optics approximations are examined. The first approximates the vol-
ume polarization current by the current which would exist in an infinite dielectric
slab with the same profile, while the second (and simpler) one employs the surface
current which, on the infinite slab, produces the known reflected field. It is shown
that the first method is superior, and provided the actual dielectric profile is used,
it predicts the scattered field to an accuracy which is adequate for most practical

purposes.
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1 Introduction

Leaves are a key feature of any vegetation canopy , and in order to model the
scattering from vegetation-covered land, it is necessary to develop an efficient and
effective technique for predicting the scattering from a single leaf. At microwave
frequencies where a typical lea,f is electrically thin with lateral dimensions at least
comparable to the free space wavelength Ao, several methods have been proposed
[e.g. Le Vine et al 1985, Willis et al, 1988] all based on the physical optics approx-
imation applied to a uniform dielectric slab. In particular, if the leaf thickness is
no more than about Ag/50, physical optics in conjunction with a resistive sheet
model predicts the scattering at most angles of incidence [Senior et al, 1987] and
can also handle curved leaves [Sarabandi et al, 1988].

On the other hand, at millimeter wavelengths the thickness can be a significant
fraction of a wavelength, and it is also necessary to take into account the internal
structure of a leaf. At least two different types of cell can be distinguished, and
their differing water content affects the dielectric constant, leading to a nonuni-
form dielectric profile. To compute the scattering at these higher frequencies, two
different physical optics approximations are examined. The first of these employs
the polarization current which would exist in an infinite slab consisting of one, two
or more layers simulating the dielectric profile of the leaf, and this is referred to as
the volume integral physical optics (VIPO) approximation. When there are many
layers, a convenient method of implementation is described in the Appendix. The

second (and simpler) approach postulates a surface current which, for an infinite



slab, produces a plane wave identical to the reflected field, and this is the surface
current physical optics (SCPO) approximation.

For an electrically thin leaf or plate, the two approximations are indistinguish-
able, but as the thickness (or frequency) increases, the predicted scattering differs
in most directions, and by comparison with the results of a moment method solu-
tion of the volume integral equation, it is shown that VIPO is superior. In addition,
for a two layer material, it is no longer adequate to treat the plate as homogeneous
one having an average dielectric constant. Provided the actual dielectric profile of
a leaf is simulated, it appears that VIPO can predict the scattering behavior of
a leaf to an accuracy that is sufficient for most practical purposes at millimeter

wavelengths.

2 Structure of a Leaf

The structure of a typical vegetation leaf is shown in Fig.1. The type and number
density of cells may vary as a function of depth into the leaf which, in turn,
results in a nonuniform dielectric profile. The effect of this nonuniformity becomes
observable at higher frequencies where the thickness of the leaf is comparable to
the wavelength.

Leaves contain two types of photosynthetic cells: palisade parenchyma, consist-
ing of column-shaped cells in which most photosynthesis takes place, and spongy
parenchyma, which consist of irregularly shaped cells with large spaces between

them. Because a large part of the vegetation material is water, its dielectric con-



stant is strongly influenced by the dielectric constant of water and the water con-
tent. For most leaves, the water content is higher in its upper layer (palisade

region) than in the under surface (spongy region).
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Figure 1: The structure of a typical vegetation leaf.

The sensitivity of the dielectric constant to water content is much greater in the
lower part of the millimeter wave spectrum than in the upper, but this is more
than counterbalanced by the thickness to wavelength ratio. The net result is that
the sensitivity to dielectric variations is greater at the higher frequencies.

To examine the effect of the nonuniform dielectric profile on the scattering
properties of the leaf at millimeter wavelengths, we computed the normal incidence
reflection coefficient 'y of a two-layer dielectric slab and compared it with the

reflection coefficient of a uniform dielectric slab whose dielectric constant is the



average. The computation was performed for a leaf thickness of 0.5mm, and the
water content ratio of the two layer was chosen to be 4 to 1, representing a marked
variation between the upper and lower surfaces of the leaf. From the data in Table

1, it is seen that when the two-layer slab is approximated by a uniform slab the

f (GHZ) € €2 | €ayg) = 51_‘15_61 [y I‘O(av_q)

35 204121 | 6+i3 13+i12 0.74/6 | 0.78£—0.16

94 6+15 | 24il 4+i13 0.59/12 0.48£27

140 5+i4 | 2+il 3.5+12.5 0.50£20 | 0.34£26.1

Table 1: Voltage reflection coefficient for a two-layer and é,vera,ge dielectric slab

error in the reflection coefficient increases with increasing frequency, and is as large

as 4 dB at 140 GHz.
3 Physical Optics Approximations

At microwave frequencies where a typical leaf is no more than about \y/50 in
thickness with lateral dimensions comparable to or larger than the wavelength,
the scattering properties can be accurately predicted using the physical optics
approximation applied to a resistive sheet model of a leaf [Sarabandi et al, 1988].
In effect, the leaf is modeled as an infinitesimally thin layer, but as the frequency
increases, it is necessary to take the leaf thickness in to account. There are now two
types of physical optics approximation that can be employed. The standard one is

the surface current (SCPO) approach in which an infinite dielectric slab is replaced
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by an equivalent sheet current that produces a plane wave identical to the reflected
wave of the slab. This current is then used as an approximation to the equivalent
surface current over the upper surface of a finite dielectric plate. Alternatively,
the induced (volume) polarization current in the plate can be approximated by the
current in the infinite dielectric slab, and we shall refer to this as the volume integral
physical optics (VIPO) method. It is more accurate than the SCPO method,
although the latter is more convenient to use for evaluating the scattered field.
To illustrate the two procedures, consider a dielectric plate consisting of a
homogeneous dielectric of thickness d; and relative permittivity ¢, atop a second
material of thickness d; — d; and relative permittivity e;. The plate occupies the
region —2 < y < 7, —% <y< %, and —d; < z < 0 as shown in Fig. 2, and is

illuminated by an E-polarized plane wave whose electric vector is

Ei — yeiko(xsineo—zcosﬂo) (1)

where k¢ is the propagation constant in the free space medium above and below
the plate. When the plate is treated as an infinitely extended slab, the electric
field can be written as

Ey _ (e—ikaz + I‘eikogZ)eiko sinfor S Z)
1

iS5
I

(0
E'y — (Ble—ikuz+Aleik1,z)eikosin00x (_d
(Bze—t'kggz +Azefk2,z)el'kosin90x (_
(2

2
d; £z < —dy)
2

_d)

Ey — Bse—iko,zeiko sinfgz

IN

where

ko, = kg cos g, ki = koy/€; —sin® 6y
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for y =1,2.
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Figure 2: The geometry of the scattering of a plane wave from a two-layer dielectric

slab.

If R, and R; are the reflection coefficients at the upper and lower surfaces where

and

Ci=12%

R,

ke

klz

_ ka - klz
B ka + klz,

ka - k2z

Ry, =
2 kos + k2.

{1 + R232ik’lx(d2—d1)} {1 _ R262"°2:(da—d1)}'1 ,

application of the boundary condition at the three interfaces gives

Bl=

Bz=

Ci(1+R1) — _& 2iky zdy
C4+C_Rie#*1:%) A= C+e ** By (3)
et(k1z—ka;)dy 2 — 2iky 3 d2
1—Rpe2ik2s(d2~dy) ) Cy Bl’ A2 - —Rze : B2 (4)

B3 — e‘.(k2z-k02)d2(1 — RQ)B‘)

6



and
_ CyRy + C_e¥kiss
- Ci 4 C_Rye¥kizdr’ (5)

The corresponding results for a single layer of thickness d; and relative dielectric
constant €; can be obtained by putting d; = d; and k;, = k., implying B; = B,
and A; = A,.

Given a volume distribution of electric (J) and magnetic (J*) current in free

space, the corresponding Hertz vector are

MF) = & IF) S,

7k [
4'y° liko |r|—r'| (6)
H*(F) = i;r-le; fV J*(Fl)c =7 dv7

where Zy(= 1/Yp) is the free space impedance, and the resulting fields are

E(f)= V xV x II(F) + ik ZoV x IT*,

H(F) = —ikoYoV X II(7F) + V x V x IT*.

In the far zone of the current distribution

()~ L [, J(7)em R dy, (7)

I(7) xS [, J%(7)e o 7 do,

and

E(F) & —k2[t x £ x II(F) + Zof x IT*(7)],
H(F)  —k2[t x £ x II*(F) + Yof x II(7)].

In the dielectric slab the volume current J is the polarization current

J = —ikoY(e; — 1)E,3. 9)



where E, has the value appropriate to each layer (j = 1,2), and when this is
inserted into (6) and the integration carried out over the volume occupied by
the plate, we obtain the VIPO approximation. For scattering in the direction 4,

indicated in Fig. 2 the expression for the Hertz vector is

- F 10
TV % 4 X (10)
where
— 1~e—W(k1z—ko cos 65)dy 1—e—t(k1z+kg cos 65)dy
= (61 - 1) { i(k12=ko cos 6,) Al - i(k1z1+ko cos b,) Bl}
+(62 — 1){ c“i(k21°k0 C:l(:;zti:k_;ec-;;(;i;—ko cos 84)dy A2
et(k2z+kg cos8s)dy _ o—i( ko +kq cos 65)do
B i(k2z+ko cos b,) Bz} (1 1)
and
koa , . )
X = T(sm 0, + sin 6). (12)

The far zone scattered field can then be obtained from (7) and written as

eikor
E' =
kor

Sg(0,,60) (13)

where Sg(0,,0,) is the far field amplitude, and for the VIPO approximation the

result 1s

. k2absin X
SEIPO(HMGO) = y—‘(i);l'— X

F. (14)

In terms of the far field amplitude, the bistatic scattering cross section is

AZ
0(05, 00) = ':"rg | 5(95,00) |2 . (15)



The more conventional SCPO approximation can be obtained by noting that

the electric current sheet
J = —2Y, cos fTethosintozg( 2y (16)

produces a plane wave identical to the field reflected from the dielectric slab. As
evident from the impulse function §(z) in (16), the current is located at the upper

surface of the slab, and when (16) is inserted into (6) we find

thor s :
[ISCPO A, yek — . 2 cos 90pabﬂ¥_ (17)
0

s X’

and the far field amplitude is then

. —1k? sin X
SE7PO(6.,00) = § =2 cos fTab - =+ (18)

In the specular (8, = —6) and backscattering (8, = o) directions it can be verified

that (14) and (18) are identical, but in the other directions the two approximations

differ.

In the case of H polarization for which

E' = —Zo(cosfpk + sin fpz)e*(zsinto—zcosbo)
(19)
Hi — S,eiko(a:sinﬂo—zcosao).
the analysis is similar. With H,, represented as shown in (2), the various coefficients
(now indicated by primes) differ from those for E polarization in having k;, replaced

by ky./€; and k,, replaced by k,./e; everywhere except in the exponents. The

induced polarization current then has two components and is given by

9



where E; = (ikoe;) ' Zo0H,/0z and E, = —(ikoe;) ' ZoOH, /O have the values
appropriate to each layer (j = 1,2). The Hertz vector can be computed using (6),

and for the scattered field H?, the far field amplitude is found to be

k3absin X
VIPO — ok
SH70(0,00) = 322082

(cos 0,F] —sin 8, Fy). (21)

where

" _ ky.(e3=1) [1-e—#(k1z—kgcos8s)dy ., 1—ei(F12+Kkg cos 85)dy ,]
P = { koey t(k12—ko cos b,) A+ i(k12+ko cos8,) 1

kz !Cz-—l) e—t(kaz—kgcos 8s)dy _ o—i(kj ;—kq cos 65)dy A,
+ koe2 [ t(k2s—ko cos 8,) 2

+ ei(kg,i—ko cos 85)dy _e—i(kzz«}rko cos 04)dp B,

(k22 +ko cos d,) 2]}’ (22)

and

' _ R (61—1) [l_e—i(klz-ko cos 84)dy r_ l—ei(klz+"0c°'9’)dl ,]
Fy = sinfo{* i(k1s—ko cos8,) ‘11 i(k1s+ko cos8,) D1

(eg—1) [ e—i(k2z—kq cos 8)dy _ g=i(ky ,~kg cos 05)dg ,,
+ € [ t(k2x—ko cosd,) A2

ei(k2z+kp cos 85)dy _ o—i(kp+ko cos 8,5)dy B,]}
—_ 2l 1.

i(k2:+k0 Cosac) (23)

The SCPO approximation can also be obtained by noting that a magnetic

current sheet of the form
J* = —2Z; cos I etro intozg(5)y (24)

generates a plane wave identical to the reflected wave. Using this as the equivalent

surface current on the dielectric plate, the magnetic far field amplitude becomes

—ik2 » sin X
o cos 6ol ab X

SH ' (85,00) = ¥ : (25)

10



As in the case of E polarization, the two approximations are identical in the spec-
ular direction, but (21) and (25) differ in all other directions, including backscat-

tering (0, = ) unless 8y = 0.

4 Combined Sheets Model

When using the VIPO approximation, an efficient way to take into account the
effect of any non-uniformity in the dielectric profile is to model the leaf as a stack of
N combined current sheets. Each sheet simulates a very thin dielectric layer whose
thickness is less than A/15 where A is the wavelength in the material. A combined
sheet consists of coincident resistive and modified conductive sheets that support
electric and magnetic currents respectively, with the conductive sheet accounting
for the electric currents flowing perpendicular to the dielectric layer. The m
layer sheets are characterized by a complex resistivity and conductivity R,, and
R;,, respectively, where

R, = ——n—-—hA‘i —
mitm (26)

R = iYpem
m = kpAm(em-1)°

Here ¢,, and A,, are the relative dielectric constant and thickness of the m*" layer,
and 7 = YN_. A, is the total thickness of the dielectric slab,

The boundary conditions at the m* combined sheet are as follows [Senior and

Volakis; 1987]:

Aix {Aix[Et+E7]}=-2R.JIn (27)

3, =fx[Ht - H] (28)

11



where J,, is the total electric current supported by the resistive sheet, and

fix{fix[H"+H|} - ’kﬁﬁ X %[E* +E7]= -2R;J;, (29)
0
J: =i x[Et - E] (30)

where JZ is the total magnetic current supported by the conductive sheet. The
superscripts T~ refer to the upper (+) and lower (—) sides of the sheet, and 1 is

the unit vector outward normal to the upper side.

5 Scattering by a Stack of N Planar Sheets

Consider a stack of N infinite planar combined sheets that are all parallel to the

z — y plane of a Cartesian coordinate system (z,y, z) as depicted in Fig. 3.

47
. 9,
Region 0 d,=0
Region 1 ) > X
Region 2 dé
T + -
R, K]

'dN

Region N

Figure 3: N layer of combined-sheets simulating infinite' dielectric slab.

The top sheet is in the z = 0 plane and the m** sheet is located at z = —d,,,, where

12



d; = 0. The space between the m* and (m + 1)* sheets is denoted by region

m, and we note that region 0 (z > 0) and region N (z < —d,,) are semi-infinite

free space. A plane wave whose plane of incidence is parallel to the z — z plane

impinges on the stack of sheets from above. From the symmetry of the problem,

all the field vectors are independent of y(i.e., 'e% = 0), as a result of which the

field components in each region can be separated into E— and H—polarized waves

which are the dual of each other. From Maxwell’s equation the field components

in region m for an E-polarized wave must satisfy

L 9,

wpo 0z

Hm:::—

1 0

iwyo oz i

mz — ’

62 82
(57 + g1 T F)Emy =0,

and for a H-polarized wave

E, -0

iwegdz ™Y

1 0

Emz = - A tmy,
tweg 0T

L
(@ + -5;3 + kz)Hmy =0.

(36)

Equations (34)-(39) are the dual of (31)-(33) and each can be obtained from the

other on replacing F,, by H,,, Hy by —F,,, and €(po) by go(€o)-

13



5.1 E-Polarization

For the case of E polarization in which the electric field vector of the incident wave
is perpendicular to the plane of incidence, the incident field is given by (1). From

(33), (31) and (32) the field vector in region m can be expressed as

Emy — [C;’ne-iko cosfoz + C;eiko cos Goz]eiksinoo:z: (37)
me — YO cos OO[C:'ne—iko coebpZ __ C;eiko cosOoz]eiko sinfpz (38)
H,,, = Yysin GO[C;e—iko cosbfpz + C;eiko cos Ooz]eiko‘sinOOx (39)

The coefficients C?, and CT, are the amplitudes of the waves travelling in the —z
and +2z directions, respectively, in region m. In region 0, Cj = 1 and C§ = I'g
(the total reflection coefficient) and in region N, C§y = 0, Cy = Tg (the total
transmission coefficient). Hence, using the boundary conditions (27)-(30), there are
2N unknowns and 2N equations that can be solved simultaneously. The quantities
of primary interest are the total reflection and transmission coefficients which can

be obtained directly as follows. From boundary condition (29) we have

. (.. Yo, O : -
2 x {2 X X[H(n-1)s + Hms]} - fk—o"z X 5= {Bin-tyy + Bmg] = 2R3, (40)

Upon substitution of (37) and (38) into (40) the left hand side of (40) vanishes
resulting in J%, = 0. Thus, the conductive sheet is not excited in this polarization,
as expected since there is no current in the z direction in the dielectric slab. In the

absence of a magnetic source the tangential component of the electric field must

14



be continuous as given by (30)

(Etm-1y = Emy) ls=-dn=0 (41)

Upon inserting the expressions (37) and (38) into (41), (27), and (28) the following

set of equations is obtained

C(im__l)eiko cos 9pdm + C(rm_l)e—iko cos fodm = C:'neiko cos o dm + C:ne—-iko cos fpdm (42)

O} etko cosfodm +Cr ¢~ ko cos Bodm
m m

YO cos goRm[C(im_l)eiko cosfpd __ C{m—l)e—iko cosfodm __ C:'neiko cos Bpdm + C:ne—ikcos Godm]
(43)

By defining the reflection coefficient in region m as

FE A C:n —2ikg cos fpdm41
m= 74; ¢

Ci, ’
the following relations can be obtained:

—1 4 (2Yy co8 BoR 1 ) e%k0 o8 bo(dm41—dm)E

re_ = .
™17 (1 4 2YcosoR,y) + €2iko cosboldmi1—dm)T'E

(44)

1 + Ff&—l i
= 1 + e2ik° c°’0°(d"'+1‘dm)I‘1Eri Cm—l (45)

Cn

The induced electric current in the m** sheet can also be obtained from (28) and

by application of (42) it can be expressed as (excluding the phase factor ' *nf=)
IE = 2% cos 0 [CF, — CF, | e~ Hocontodm (46a)

This induced current may be expressed in terms of the reflection coeflicients of

15



different layers:

JE = $2Y,cos 8y[Ct,_; — Ci |ekocosbodm

—_ iko cos fpd 1402

— y2}/0 cos 906' 0 0 m[l - 1+eﬁk° cos eo(dz-:l‘d'")[‘ﬁ] (46b)
m-—1 1+Ff—1 |

“1le=1 ( 1+82ik0 cos 60(d¢+1—d[)r\£§ )

Now, the total reflection coefficient in region 0 (F'g(6) = I'¥) can be evaluated
from the recursive relation (44) by noting that I'Y = 0 (the region N is semi-
infinite). The total transmission coefficient can also be obtained from (45) and
(44) as follows:

A gf‘l — N 1+ Fﬁ-l 47
- P A 1+e2iko cosoo(d,,ﬂq—dm)rﬁ ( )

m=

5.2 H-Polarization

Unlike the E-polarized case where the magnetic current is zero, an H-polarized inci-
dent wave excites a magnetic current in the y direction and neither of the tangential
electric or magnetic field is continuous across the combined sheets. The tangential
field vectors in region m can be obtained by applying the duality relationships to
equation (37) and (38). Therefore,
Hpy = [B:".e—ikooosﬁoz+ B:neikocos&)z] giko sinfoz (48)
and
Emg = —Zgcos fy [Bi,e o sfor _ B gikocosbos) giko sinfoz (49)
where as before B!, and B, are the amplitudes of the waves travelling in —z and
+2 directions respectively. By applying the boundary conditions (27)-(30) at the

16



m® sheet and resorting to equations (48) and (49) the following relations between

the field amplitudes in region (m — 1) and region m are obtained:

B:n_lezko cosfodm + B;‘n_le—zkocosﬁodm + B;netkocosﬁodm + B;‘ne—tko cosfpdm —

- . . . . .
2R; Zo cosfy | [B:n-le:kocosﬁodm _ B:n_le—zko cosfodm _ B:netko cos fodym + B:ne—tko cosGOdm]

sin? 6o
(50)
B;'n_leiko cosfodm __ B;l_le—iko cos fodm + B:neiko cosbodm __ B;e—iko cosfodm —

2Rm secfp [B:n—leiko cos 9gdm + B;_le—iko cosfodm __ B:'neiko cosfpdm *__ B:ne-iko cosGOdm]

20
(51)
By denoting the reflection coefficient in region m by

I\z é %6—2%0:0590(1,"“ (52)

after some algebraic manipulation of (50) and (51) we obtain
r'd = (Qum - 1) - (1 - Pm)(Qm — 1)115(22“°0 <08 o (dm+1~dm) (53)

LT (14 Po)(1 4 Q) + (1 = QP )T He2iko c08 b0 (dm 41 —dm)
i @n—-1D+(1+Qm)la, i

= T Q) + (1= Q)T Bttty -t (54)

where the parameters Q,, and P,, are

Q _ 3in26p
™ ™ 2R3, Zocosbp

P. = 2Ry, seclo
m = Zo .

Recursive relation (53) gives the total reflection coefficient in region 0 (T'g(6) = T'¥)

noting that I'f = 0 and the total transmission coefficient using (54) is given by

N (Qm—=1)+(1+Q,.)TH_
1= 1L | 5050, ¥ - qureresimr

(35)
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The induced electric and magnetic currents in the m** sheet can be obtained
by inserting equations (48) and (49) into equations (28) and (30). Excluding the
phase factor e'*o¢int® they are given by
JH = _(Bi,_jettocostodm | Br  o=ikocos bodm _ Bi ciko cosdodm _ BT emiko costodm) g

(56)
JH = 7, cos 0g(BE,_ et ostodm_pr =ik coso bodm _Bi giko cosbodm 4 Br o—iks cosdodm ) o

(57)
after using (52) and (54) the induced currents may be expressed in terms of the

reflection coefficients as follows

I = —Refowehinn((1 4+ TIL) + (14 Dfeiixiléns=4o)
) (Q@m-1)+(1+Qm)TE_, 1T (Qe=1)+(1+Qe)T L, ]
(1+Qm)+(1—Qm )Fgeik cos Oo(dm+1—dm) =1 (1+Q[)+(1‘Q[)F?C‘ko cos 90(dl+l-dl)
(58)
and
A = 9Zocosly - eFocosbodm=1[(1 —TH_ )4 (1 — [ Heliko co8 o (dm+1=dm))
. (Qm—1)+(1+Qm)r‘g_L ] . Hm—l[ (Ql‘1)+(1+Ql)F£1 ]
(14+Qm )+ (1-Qm)TE ™ <o 0ldm1 =dm) ] LU=1 L(14.Q,)4(1-Q )T ¢F0 =t foldz41=0)
(59)

Note that here J#(z) = JHekosinboz and JHs(z) = JH+gikosinbor
6 Scattering by a Rectangular Stack

Consider a portion of an N-layered stack of combined sheets in the form of a

rectangle occupying the region —% < z < £, —% <y < -g- as depicted in Fig. 4.

The illumination and observation directions are such that the planes of incidence

and observation are parallel to the z axis.
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Figure 4: The geometry of scattering of a plane wave from a finite N-layer

combined-sheet.

If the induced electric and magnetic currents in the m® sheet are denoted by
J.. and J*, then the scattered field can be attributed to the electric and magnetic

Hertz vector potentials as given in (6) and have the following form:

’lZo _ tko|r—r,,,|
II(7) = 2—:1/J ,)Ir—F' Ids'
2Y0 :kolr—rml
(v I (7
() = mz_l 3 s

where
7 = r(—sin 0,% + cos 632),
o=z X+Y'y — dni.
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The scattered field in terms of the Hertz vector potentials can be obtained from

(8). In the far zone the approximation

| # — 7 |~ r+sinf,z’ + cos0,dm

leads to
etkor ; Zo a/2 b/2
H / / —l zko cos Bsdm \ sko smO,:t:’d ld : 60
kor dm J-aj2J-b/2 ST Je T (60)
ethkor zYo a/2 rb/2
H / / J* =/ sko cos0sdm\ tko sinf z:’d Id 61
k r 4m Joaj2J-b/2 Z )e Ty (61)

Using the physical optics approximation, the currents obtained for the infinite
layered sheets will be substituted in expressions (60) and (61) in order to find the

scattered fields.
6.1 E-polarization

For E-polarization the induced magnetic current J&* is zero which renders IT* = 0,
and upon inserting expression (46b) for JZ(z) in (60) we have

1kor 2Z0
k r 47r

sin X
X

I(7) = ZJE iko cos Badm ) g (62)

where, as before, X = k—;(sin 0, + sinfp) . In this case the far-field amplitude as
defined by (13) has the following form:

sin X

' N
- tko cos
SE(8,,60) = yrwkgabzo( T Fpeikocortadm) ==,

m=1

(63)

from which the bistatic scattering cross section can be obtained as given in (15).

The extinction cross section can also be obtained from the far field amplitude from

2
ooot = ﬁr-zm[swo, 6o+ )]. (64)
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In backscattering (6, = 6o) and in the specular direction (8, = —65) the summation

term in (63) reduces to a telescopic series using equation (49a) for JZ, resulting in

N
Y JEetkeosbodn — 9V, cos 8C) = 2Y; cos 8oL 5(6o),

m=1

and

2 sin?(ka sin ;)

(ab)?
O'E(ao,ao) =4r COos 00 | FE(&Q) (ka sin 90)2

22

The extinction cross section can also be simplified using (46b) as follows

N
> JE g=theosbodm — 9V, cos 8p(1 — Ti(6)),

m=1
and

o5t = 2abcos Oy Re[l — Tg(9)).
6.2 H-polarization

For H-polarization the Hertz vector potentials are of the form

= ‘kor ZZO H _iky cosb,dm,

T(7) = R 23 2o erh)
(= 'kor ZYO He= tkcoca,dm sinX
(1) =55 3ttt

m=1

and the scattered magnetic field is given by

H = ©8,.(0,.0
- kor H( 8 0),
where
Y Al H Hx\ _iko cos 8,dm sz
SH(0,00)=y4—7rk0ab[§ (cos8,d; + YoJ 2" )e |— X

m=1

21
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(66)

(68)



The bistatic cross section can be obtained from (15) and the backscattering

cross section can be simplified using expressions (56) and (57') for JH and JH*:

Zﬁ:l(cosang + Yng*)eiko cosbodm

(69)
—2cos8o YN _ (B _, — B) = —2cos §oB] = —2 cos 6T y(6y),
which leads to
b)? in?(ka sin 0
oa1(60,60) = 47 %L cos? 8y | Ta(6) |2 22 (ka sin 0o) (70)

A2 (kasin 65)%

The extinction cross section also can be simplified by noting that

N
)~ (= cos oJH 4+ YoJHr)gmikeosbodm — 9 cos8o(1 — Tr(8))

m=1

from which we obtain
o5t = 2abcos OpRe[l — Ty(6o)).
7 Numerical Results

To illustrate the difference between the VIPO and SCPO approximations we con-
sider a homogeneous (single layer) plate of thickness d; = Ao/4 with €; = €, =
3 + 10.1. For an E-polarized plane wave incident at 30 degrees, the amplitude
and phase of SY/PO/SSCFO are given in Figs. 5 and 6, and these show that the
difference increases away from the specular and backscattering directions. At a
fixed scattering angle, the difference increases with the electrical thickness of the
plate up to the first resonance and then decreases. To test their accuracy the two

approximations have been compared with the results of a moment method solution
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of the volume integral equation as given in Appendix A. The numerical code is
a two-dimensional one which was extended to three dimensions by assuming that
the induced currents are independent of the y coordinate. Since the dielectric con-
stant of most vegetation materials is high, it is necessary to have the cell sizes very
small, and one consequence of this is the need to compute the matrix elements
extremely accurately, especially for H polarization. For a 2)¢ square plate formed
from the above-mentioned layer and illuminated by an E-polarized plane wave at
normal incidence, the two approximations are compared with the moment method
solution in Fig. 7, and the superiority of VIPO is clear.

In the case of a thin plate the two approximations are indistinguishable. This
is illustrated in Fig. 8 showing the VIPO expression (14) and the moment method
solution for a 2)¢ square plate of thickness d; = Ao/50 for E polarization. The
plate is a homogeneous one having € = 13 + 112 corresponding to the average
permittivity at 35 GHz in Table 1. The SCPO expression (18) yields the same
results, as does a two-layer model having the permittivities listed in Table 1. The
analogous data for H polarization are given in Fig. 9, and over a wide range of
scattering angles, the approximate and moment method solutions are in excellent
agreement.

As the frequency and, hence, the electrical thickness of the plate increase,
the superiority of the VIPO approximation becomes apparent and, in addition, it
becomes necessary to take the layering of the plate into account. In Figs. 10 and 11

the simulated frequency is 140 GHz, but to keep the moment method calculations
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tractable, the plate has been reduced in size to 1.4\g by 2)g. The curves shown are
for a two-layer plate having d; = 2d; = 0.5mm with €; = 5444 and €; = 2+11, and
for a single layer having the average permittivity e,,, = 3.5 + 12.5 (see Table 1).
Since the accuracy of the physical optics approximation increases with the plate
size, the agreement between the two-layer VIPO approximation and the moment
method solution is remarkably good, and significantly better than if a single layer
had been used.

To test the validity of the combined-sheet multilayer model, the reflection co-
efficient I' was computed using (44) for a dielectric slab with a uniform dielectric
profile and then compared with the exact solution given by (5) for the reflection co-
efficient of a uniform dielectric slab. Figure 12, which depicts the amplitude of the
reflection coefficient as a function of slab thickness, contains three plots: (a)| T |
for the uniform slab (exact solution), (b)| I' | for a multilayer slab (combined sheet
model) composed of identical layers each A/100-thick, and (c) | T' | of a single-sheet
slab, included here for comparison. Figure 13 shows similar plots for the phase of
the reflection coefficient. The results indicate that the overall agreement between
(a) and (b) is excellent, and that the single sheet model camr successfully predict
) -

Now the combined-sheet multilayer model when used in conjunction with phys-

the reflection coefficient if the layer thickness is less than ) /50(~ o~
(4

ical optics will be checked against the method of moments. Figure 14 shows a plot
of the bistatic scattering cross section of a 2X x 2X dielectric slab with thick-

ness A/100 computed using the physical optics expression (63) and a second plot
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computed according to the moment method, both for E polarization at 35 GHz.
Similar plots are shown in Fig. 15 using expression (68) for H polarization. The
result of combined-sheet model are in very good agreement with the numerical
data (moment method) over a wide range of the scattering angle 4,.

In order to check the formulation for thick dielectric slabs while keeping the
numerical code tractable, our next example is a 1A x 2) dielectric slab whose
thickness is A/10. Figures 16 and 17 compare the bistatic radar cross section of
the thick slab at 35 GHz computed using a 5-layer and a 1-layer combined-sheet
model with physical optics approximation with the numerical data for E- and H-
polarization, respectively. Keeping in mind that the accuracy of the physical optics
approximation improves as the width of the slab increases, the good agreement of
the 5-layer sheet with the numerical data around the specular region (| 4, |< 7/4

in this case) provides good support for the model proposed in this paper.
8 Conclusions

A typical leaf has at least two dielectric layers whose cells have differing water
content, and this produces a nonuniform dielectric profile which can now affect
the scattering. At microwave frequencies where the leaf is no more than (about)
Ao/50 in thickness, the nonuniformity is not important, and as shown by Senior et
al [1987] the leaf can be modeled as a resistive sheet using an average value for the
permittivity. If the physical optics approximation is then applied, the resulting

scattering is attributed to a surface current, and this method is equivalent to the

25



SCPO approximation. At higher frequencies, however, the thickness and structure
of a leaf are more significant. At iOO GHz and above a leaf is a considerable
fraction of a wavelength in thickness, and in spite of the reduced sensitivity to
water content, the nonuniformity affects the scattering.

For a two-layer model of a leaf, the SCPO approximation has been compared
with the volume integral (VIPO) approximation. When the leaf is thin the two
approximations are identical and in good agreement with data obtained from a
moment method solution of the integral equation, but as the electrical thickness
increases, the two approximations diverge in all directions except the specular and
(for E polarization) backscattering ones. Although the VIPO approximation is
more complicated, its accuracy is greater, and the agreement with the moment
method data is better using a two-layer model than when a single layer of average
permittivity is employed.

For most practical purposes it would appear that VIPO in conjunction with
an accurate dielectric profile of a leaf provides an adéquate approximation to the
scattering at millimeter wavelengths. As our knowledge of the profile increases, it
may be desirable to use a multi-layer model which could even simulate a continuous,
nonuniform profile. We also note that at frequencies for whicﬁ the leaf thickness is
comparable to A,,/2 where A, is the (average) wavelength in the leaf, the scattering
is greatly reduced at some angle of incidence, and because the permittivity is
complex, there is actually a range of angles for which this is true. Since the

reduction is accompanied by an increase in the field transmitted through the leaf,
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this could provide a means for penetration through a vegetation canopy.
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Figure 5: Amplitude of the ratio of the bistatic far field amplitude of VIPO to
SCPO for E polarization of a dielectric plate with d; = Ao/4 and € = & = 3+i0.1

at 0p = 30 degrees.
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Figure 6: Phase of the ratio of the bistatic far field amplitude of VIPO to SCPO

for E polarization of a dielectric plate with d; = A\o/4 and ¢ = ¢ = 3 + :0.1 at

00 =30 degre&s
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Figure 7: The bistatic cross section of a 2\¢ x 2)¢ plate for E polarization with

d; = Ao/4 and ¢, = ¢; = 3 + 10.1 at normal incidence: (—) moment method

solution, (- - -) VIPO, (- -) SCPO.
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Figure 8: The bistatic cross section area of a 2Ao x 2Xo plate for E polarization
with d; = Xo/50 and €,y = 13 + 12 at normal incidence: (—) moment method

solution, (- - -) VIPO or SCPO.
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Figure 9: The bistatic cross section of a 2Xg X 2Aq plate for H polarization with

d; = Xo/50 and €,y = 13 + i12 at normal incidence: (—) moment method

solution, (- - -) VIPO or SCPO.
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model.
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Figure 15: Bistatic scattering cross section of a 2\ x 2) dielectric plate with
7 = A/100 for H-polarization at f=35GHz, 6, = 0, and € = 13 + 12 as function
of scattering angle: (—) moment method, (- - -) single-layered combined-sheet

model.
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Figure 16: Bistatic scattering cross section of a 1A x 2) dielectric plate with
7 = )/10 for E-polarization at f=35GHz, 6, = 0, and € = 13 + 712 as function of
scattering angle: (—) moment method, (- - -) 5-layered combined-sheet model,

(- -) single-sheet.
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Figure 17: Bistatic scattering cross section of a 1\ x 2\ dielectric plate with
7 = A/10 for H-polarization at f=35GHz, , = 0, and € = 13 + 12 as function of
scattering angle: (—) moment method, (- - -) 5-layered combined-sheet model,

(- -) single-sheet.
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Appendix A
Two Dimensional Scattering by Cylindrical Structures with
High Refractive Index

1 Introduction

A numerical solution for the problem of electromagnetic scattering by a lossy in-
homogeneous cylinder of arbitrary cross section is discussed. An integro-differential
equation is employed to obtain the moment method solution using pulse expansion
function and point matching technique. In this method the cross section of the
scatterer is partioned into small cells over which the dielectric constant and the
unknown field quantities can be assumed constant. Then the integral equation
is cast into a linear system of equation that can be solved by various numerical
methods. This technique was developed many years ago [Richmond 1965 & 1966;
Harrington 1968] and has been applied successfully for cylinders with relatively
small refractive indeces. The integral equation operator given by Harrington is
such that in the TE case (the electric field vector perpendicular to the axis of
the cylinder) in using pulse expansion functions numerical computation does not
converge to the exact solution. To obtain accurate results in this case more com-
plicated expansion functions such as linear expansion function [Hill et al. 1983]
or rooftop expansion function [Langan & Willton 1986] must be used. To avoid
using complicated expansion functions and to reduce computation time, we use
an integral equation where the pulse functions are in the domain of the integro-
differential operator for both TE and TM (the magnetic field vector perpendicular

to the axis of the cylinder) cases.



It is known, in principle, that the accuracy of the solution is proportional to
the dimension of the cells relative to' the wavelength, which in turn is governed
by the dielectric constant of cylinder material. The accepted criterion for the cell
dimension is d < 0.1)¢/ \/l_e,_l where ) is the wavelength in free space and e, is
the relative permittivity of the dielectric material.

Biological tissues usually have high percentage of water content, as a result of
which their dielectric constant is very high and lossy. In application of the moment
method to biological scatterers, the cell size must be chosen vety small compared
to the free-space wavelength. Since the argument of Green’s function becomes very
small, contribution of self-cell and adjacent cells must be evaluated very carefully
to avoid anomalous errors.

Unlike the TE case in which approximations on deforming the cell shape can
culminate in substantial error, the solution for the TM case is not very sensitive the
the shape of the cells. When using the moment method with traditional impedance
matrix elements [Richmond 1965 & 1966], as the dimension of the cells gets very
small, the technique becomes vulnerable to two sources of error: (1) error due to
deformation of cell shapes to circles of equivalent area, and (2) errors associated
with the evaluation of mutual impedance of the adjacent cells. The effect of the
latter again is much more significant in the TE case than the TM case because of
higher degree of singularity in the kernel of the integral equation.

For a scatterer with fixed dimensions, as the dielectric constant increases the
impedance matrix becomes laréer and so does the error due to matrix inversion.

This problem is unavoidable in general but the error can be lowered by using

A-2



double-precision variables in the numerical code.

2 Formulation

Let us consider an inhomogeneous infinite cylinder with arbitrary cross section
S as illustrated in Fig. 1. The axis of the cylinder is parallel to the z axis and the
surrounding medium is assumed to be free space. Let relative the permittivity of
the cylinder be ¢,(z, y) and its relative permeability be unity (x4, = 1). Suppose the
electric field in the absence of the cylinder (the incident field) is not dependent upon
z and is represented by E(z,y). Further assume that the incident field is time-
harmonic of the form e™**!, which will be suppressed throughout. The cylinder
perturbs the incident field and the difference between the perturbed (total) and

incident field is known as the scattered field; thus,
E'(p) = E'(p) + E*(p), (A1)

where p is the position vector in cylindrical coordinate. From Maxwell’s equations

it can be shown that a volumetric current density of the form
J(p) = —ikoYole-(p) — 1]E*(p), pES, (A2)

known as the polarization current in free space, can replace the cylinder to repro-

duce the scattered field. Therefore the scattered field, can be obtained from:

E*(p) = —ikoZo / 3(0)-T(5,0)ds, (A3)

where _—f'( p,p) is the two-dimensional dyadic Green’s function and is given by



Here, H((,l) is the Hankel function of the first kind and zeroth-order and p' repre-
sents the source position in cylindrical coordinates. Using (Al), (A2),and (A3) an

integral equation for the unknown polarization current can be obtained,

3(5) = ~ikoYolex(7) — IHE(p) — ikoZo [ 3(5)-T(5,)ds'}.

If the incident field has a uniform polarization, then the problem may be decoupled
into TM and TE problems. For the TM case the incident, scattered, and hence,
the polarization current have only z components and the integral equation is
. . . 2
Ji(z,y) = —ikoYoler(e,y) — 1|Ei(z,y) + iEler(z,y) - 1]

Py

) (A4)
J, (' gV HD (ko | 5 ¢ |)dz'dy'}.

In the TE case both z and y components of the polarization current are induced

and they satisfy the following coupled integro-differential equations

Jo(z,y) = —ikoYole(z,y) — 1]Ei(z,y) + tle-(2,y) — 1]
(& + k) [, o',y ) HO (ko | 7= 4 [)da'dy’
5255 1, (@ g HS (ko | 5= p [)de'dy'}
Jy(z,y) = —tkoYole:(2,y) — 11E}(2,y) + e (2,9) — 1]
{525 [, Je(a', v HS (ko | 7~ ' |)da'dy’
(& + K L ,(= ) B (ko | 5= 4 )dz'dy')

The resultant integro-differential operators obtained for the polarization current
do not impose any restriction on the functional form of the current, in particular
pulse function is in the domain of the operators. It should be noted here that the
kernel of the integral equation (Green’s function) for the TE case is more singular

(;12-) than for the TM case (In(p)).



There is no known solution for these integral equations in general, but their

forms are amenable to numerical solution.

3 Numerical Analysis

An approximate numerical solution for the integral equations that were devel-
oped in the previous Section is given using the method of moment in conjunction
with the pulse expansion function and the point-matching technique. The cross
section of the scatterer is divided into N rectangular cells that are small enough
so that the polarization current and relative permittivity can be assumed to be

constant. The unknown current can be approximated by

N
Jp(z,y) = E JmP(:): —Tmy Y — ym)1 p=2xY,0rz (A6)
m=1

where J,,, are the unknown coefficients to be determined and P(z — z,,,y — yy,) is

the pulse function defined by

1 |x"xm|<'A'§m1 |y_ym|<A_¥m

P(l‘ —TmyY — ym) = (A7)

0 otherwise

By inserting the current as expanded in (A6) into integral equations (A4) and (A5)
and then setting the observation point in the center of the m'® cell a linear set of
equation is formed. In matrix notation, these linear equations can be represented
by

[Z™M]17.] = [€:] (A8)

for the TM case, where [Z7M] is the impedance matrix, [J,] is the unknown vector,

and [£,] is the excitation vector. Similarly for the TE case the coupled integral
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equation (A5) in matrix form becomes

ZlTEJz'FZZTEJy= g:z:

(A9)

where as before ZTE,... ZTE are N x N impedance matrices and &, and &, are
the excitation vectors. The above coupled matrix equation can be represented by
a 2N X 2N matrix equation similar to (A8).

Although the variation of the polarization current and dielectric constant is
assumed constant, this might not be true for the Green’s function. Actually for
cells close to the observation point, the Green’s function varies considerably and
its contribution must be evaluated more precisely. Let us denote the function

representing the Green’s function contribution by

zn+""‘“¥ yn+—“A¥

L(z,y) = HP(ko/(z — 2)2 + (y — y')?)da’dy’  (Al0)

A AY,
-"-‘n—_QEE yn— =32

where 1 <n < N. If the observation point (z,y) is different from (z,,, y,) , then the
integrand in (A10) is not singular and since | 2’/ — z, |< %2 and | y' -y, |< &,

its Taylor series expansion may be substituted. By retaining up to the cubic terms

in the expansion of Hankel function, the function (A10) is found to be:

I(2,y) = AX AY{H{ (koy/(z — ©0)2 + (3 — yn)?) + L8Z2L A(z — 2,y — ya)+
2
(lol¥o) B(z — 2,y — ¥n)},
(A11)

where

HO (kor,)

Az —zn,y —yn) = A(rn,0,) = — él)(korn) cos® 8, + -
0l'n

(cos? 6, —sin?4,,),
(A12)
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HO (kor,)

B(z — 2n,y —yn) = B(ry,0,) = — él)(korn) sin? 0, + (sin? 6, — cos?6,,)

korn
(A13)
with the following definition for a pair of local polar coordinates:
= (& —zn)?+ (y — yn)?
VI )2+ ( ) (AL4)
8, = arctan(;"_—y)

The second order derivatives of I,(z,y) are also needed for calculation of the

impedance matrix elements for the TE case, and are given by

(&x + k) (z,y) = AX,AY,kI{H (kory)sin® 6, + 1'—"(&%'—"1(«”;2 0, — sin?#9,,)
+AZ2 (&5 + kD) Alrn, 0a) 85 (& + k3)B(rn, 6n)}

(&x + k) Ia(z,y) = AX,AY,k3{H{ (kor,) cos? 6, + -*;‘M'l(smza — cos?4,)
S (B + k) A(ra, 0.) 80 (£ + k3)B(rn, 60)}

(A15)
where
%A(rman) = kz{H( )(kory)[cos? 8 (2 cos? 6, + §sin4,,)
+-";—,:’0-’$;§§‘(3 cos® 8, — sin®4,,)]
+H (1)(kor$)[% cos? 62 sin® 62 — ‘:Z:" 2 (3 cos? 8, — sin” 0,)]

+HO (kor,)[- —1 cos? 0, —f-(,co ),( —9 cos? 8, +sin®4,))

H(l)(korn)[-g- cos? 0, (cos? 0, —sin?4,)]},
(A16)
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L5 A(ra,0n) = K{HS (kor)[sin’ 0, (3 cos? 0, + § sin? )
+%‘-‘:—)egl(cos2 6, — 3sin’8,)]
+H1(1)(korn)[—-—— cos? 0, sin? 4, + %(3 sin® 6, — cos? §,)]
+H§1)(k0rn)[-—— sin? @, cos? 6,, + L)'5-(9 sin® §,, — cos?6,)]

+H{ (kor,)[1 sin? 0, (cos? 0, — sin? 6,)]},
(A17)
= = B(rn,0,) = kz{H(l)(korn)[cos2 0,(2 sin® 6, + % cos? 6,)
+%Z;’: ;’2 (sin? 8, — 3 cos? 8,,)]
+HM (ko rn)[&ﬂ( 4 cos? 0, +sin?4,) + 5,:%%9(3 cos? 8, —sin?4,)]
+H§1)(korn)[—— sin? 0, cos? 0, + -(%’c—“r—fz-(g cos? 9, —sin%4,)]
+H (kor,.,)[g cos? 0,,(sin® 8, — cos? 4,,)]},
(A18)
& B(rn,0,) = k2{HS (korn)[sin? b, (2 sin? 6, + 1 cos? 6,)
+2(-;—Z§—)Q§~(3 sin @, — cos?4,)]
+H1(1)(korn)[— sin? 6,, cos? 6, ‘(f‘::%?(li sin 6, — cos?4,)]

+Hy (kora) [~ sin* 6, — 22285 (9sin? 6, — cos? 6,)]
+H{P(kora)[§ sin® 0, (sin? 6, — cos? 6,,)]}.

(A19)
We also note that an exact analytical expression for 5—2%;[,1(.7:,3;) can be obtained

without using the Taylor expansion and is given by

(@ y) = B (ko ~ 20~ 5 ) Hy- -0
(l)ko\/x—x — +(y y+ :}’f)

0" (koy/(z = an + —z"‘)’ + (¥ —ya — 42
)

HE (koy/(z — o + 258 )2 4 (y — yn + 212)?

A-8



When the observation point is in the center of the cell itself, the Taylor series ex-
pansion cannot be used. In this case we can employ the small argument expansion

of the Hankel function, i.e.

$2 , 2 2

B ()~ (1 -5+ 2+ -5

Then at the center of the cell (self-cell contribution)

i4 [ KRAXnAYn i kor/(AX )2 +(AYp)?
In(@n,a) = S{HATRETR [y _ it 4 (2B ETD) (A22)
+(£“%&‘)2 arctan(f%(":) + (bdln)2(z arctan(-ﬁ)x(:-))}.
Using the same expansion we can also get
i4 (R2AXnAYn ir ko/(AXn)2+(AYn)?
(G + ) n(ansga) = HEARER — iy (WS
+2arctan(£%) + (8412)2(Z — arctan(23*))},
i4 [ BAXAAYn i ko1/(AX ) +(AYn)2
(B + ) n(enyn) = ${ANPRRY - B L (RIS

+2(§ — arctan(£5*)) + (84%)? arctan(£3*)}.
The evaluation of the second order derivatives of I,(z,y) (expressions in (Al5))

gives accurate results when r, > \/60. For smaller values of r,, the small argument

expression for the Hankel function can be used. In such cases we have

(&r + k) In(z,y) = Fi(z,y) - Fa(z,y)

(A25)
(&5 + k)(z,y) = Gi(z,y) = Ga(z,y)
where
Fi(z,y) = kg%‘-“bn;(% - Zfl —1) + (tan $2 — tan —b’:})(2 - J—‘k?"‘)
ot B0 o

. . ‘L2, .
Gi(z,y) = kg%“ang(%} - _2%1 -1+ (tan%':: — tan %:f)(%f — Hgani :"')

ian; k3 b2 2 b2 a2,
iy 1n Pt g 1 Vi
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with

Ani = (A27)

bui = ? (A28)
y_yn+A_;/'L 1 =2

Now we are in a position to express the impedance matrix elements in terms
of I.(z,y). The off-diagonal entries of the impedance matrix for the TM case are
given by

k2
Zgjr‘z/! —2 [er(xm,ym) I]In(mm, ym) (AZQ)

and the diagonal entries are

k2
ZZZW = -To'[ef(zﬂ’yn) - l]In(xn,yn) - 1 (A30)

For TE polarization, where the impedance matrix is composed of four sub-impedance

matrices, the off-diagonal elements of each matrix are

Z{";fn: i[er(xm’ym) 1][( +k2) 2 (Zms Ym)]

Zg‘rfn= i[er(xm’ym)" ][azayI (Tms Ym)]

(A31)
Zsmn = Zimn
Zimn = i—[e,(zm,ym) - 1][(5%21' + k3) In(Tm; Ym)]
and the diagonal elements are given by
ZTE = ile(@nryn) — Ul(Zz + k) n(2a,¥a)] - 1
Z2nn =0
(A32)
Z3nn =0

Zim = i[c,(wn,yn) - ][(a,ﬁ + k) a(2n, yn)] — 1
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The excitation vector elements for the TM and TE cases, respectively, are given

by

eTM = ikoYoler(€m, Ym) — 1B (Zm, Ym), (A33)
and

eﬁE = iko%[er(mm,ym) - I]E;:(xm,ym)’ (A34)

eiziN = z.]‘701/()[‘57'(:L'm7ym) - 1]E;(mm’ym) (A35)

Once the matrix equation is solved for the polarization current, the scattered
field can be computed at any point. The primary interest is the far field expressions
which can be obtained by employing the large argument expansion of the Hankel
functions. The scattered field, in far zone, is in the Z and <2$ directions for TM and

TE polarization, respectively. If the polar coordinate of the scattering direction is

denoted by (p, #,), in far zone we have

Tn & p— Tp COS P, — Ynsin @, (A36)
and the far field amplitude for TM and TE are

PTM = =k YN T2, 20) AXLAY,[1 - -(E%%'-‘ﬁ cos? ¢, — -@%ﬁ sin? ¢,)
-e—"ko(co"ﬁlzﬁ""in ¢ayn),

(A37)
PTE = §hl gl AX,AY,[l - &4%aL cos? ¢, — tedlal5in? ¢, (A38)

e~ ko(cos buzntaindevn) [ ] (1, 2,) cOs ¢y — Ju(Tn, 24) sin B,).
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4 Extension to Three-Dimensional Scattering

In this Section we obtain a connection between two- and three-dimensional
radar cross section of a cylinder of infinite and finite length. The finite cylinder is
just a section of the infinite cylinder and if the length is large compared with the
wavelength we can assume the polarization current is identical with that of the
infinite cylinder.

If the observation point is in zy plane and its direction is denoted by k:,, the

scattered field in the far zone of the cylinder is

s
~

eikor ’l,k2Z0 /2 —ikoksr! 3031
— /1/2/k x Ky x J(r')e*oker g5l d . (A39)

But J is independent of the axial variable z and the z integration can be carried

out, in which case the expression for the far field amplitude reduces to

S = —-Zk2Zo

l / £, x K, x 3(p')e~okee' 4 (A40)

For an infinitely long cylinder the electric field in far zone is approximated by

2

Wkop

E’~

e‘<'°°p-"/4)—--k°f° / ko x By x 3(p)eRoRe?'dg', (A41)
which results in the two-dimensional far field amplitude
P-= ki?ﬁ / ky x Fy x J(p')emikoRen' g, (A42)

Now a comparison of equations (A40) and (A42) shows that

= —'-2-’£P (A43)
A
and the relationship of the Two- and three-dimensional radar cross section is:
2
o3 = %a’g. (A44)
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