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INTRODUCTION 

In the psychological literature, there are traditionally three types of conflict: 
approach/approach, approach/avoid, and avoid/avoid (see e.g., [2]). The first of 
these, approach/approach, involves two very desirable alternatives a, and a2 such 
that the subject cannot fully attain both of them. (In fairy tales the handsome 
young prince is having trouble deciding whether to take the ugly, but rich, 
princess or the beautiful servant girl to the ball.) The second case entails a goal 
a, which is sought and some evil, horrible alternative a2 which the subject wishes to 
avoid while approaching ol, but must at least partially confront in order to do so. 
(The prince must slay the dragon before he can try to woo the princess.) Finally, 
the avoid/avoid conflict forces the subject to choose one of two evils, hopefully the 
lesser. (Most presidential elections come to mind.) 

In graph theoretic terms a similar sort of tension can be created by attempting 
to achieve simultaneous extreme values of two different parameters. It is natural in 
this context to identify the approach to a goal with the maximization of a para- 
meter, while avoidance becomes minimization. The questions which suggest 
themselves are: 

1. What are the simultaneous extreme values of the parameters? 
2. What are the extremal graphs attaining these values? 
3. When is there a unique extremal graph? 

DEFINITIONS A N D  NOTATION 

We begin by making precise the notion of the simultaneous extremum of two 
different graphical parameters al and a 2 .  It is clearly insufficient to combine the 
individual extrema, as, in general, they may be expected to occur under different 
conditions ; hence we are led to consider various possible expressions combining the 
two. The simplest of these are of course a, + a 2 ,  a ,a2,  a, - a2 and al/a2. The first 
two suggest themselves naturally in those cases where the desired extrema are of the 
same type, i.e., both maxima or both minima. While both possibilities have much 
to recommend them, the second is more sensitive to variations of the smaller para- 
meter. Therefore we choose to define the simultaneous maximum (or minimum) of 
al and a2 as the maximum (or minimum) of their product. Note that this is also in 
accordance with the ancient dictum: “Go forth and multiply.” When the extrema 
desired are of opposite types (one maximum, one minimum) we are naturally drawn 
to consider either the difference or the quotient. By the same rationale, we opt for 
the quotient, with the parameter to be maximized appearing as the numerator, that 
is, we shall take the simultaneous maximum of al and the minimum of a2 to be the 
maximum of the quotient a l l o t .  Bowing, however, to the XIth Commandment, 
“Thou shalt not divide by zero!,” we require a2 # 0. 
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Henceforth we will use the following notation to  indicate various types of 
extremal problems. Given a parameter a, and constraints cl, c 2 ,  . . . , c,, we denote 
the maximum (or minimum of al subject to  n given constraints ci by 
max(al: cl,  c 2 ,  .. ., c,) or min 1 o l :  cl ,  c 2 ,  . .., cn). For the simultaneous maximum 
of al and u2 we write max(alaZ: c,, c2, . . ., cn) and similarly for the simultaneous 
minimum. Finally, for the maximum of al and minimum of a 2 ,  we consider 
max(a,/a, : c,, c 2 ,  . . . , c.). One additional piece of notation which we find useful in 
describing some of the extremal graphs is K(p/t) for the equipartite graph dividing p 
points into t parts. Thus this is the complete t-partite graph in which each part has 
either { p / t }  or [p/t] points. All other definitions and notations follow [5]. 

POINT- AND LINE-INDEPENDENCE AND COVERING 

We begin by considering four related parameters-the point and line covering 
numbers (ao and a , )  and the point and line independence numbers (Po and /I1). 
Obviously max(fl,: p )  = p and max(bl : p )  = [p/2]. As a first result we establish the 
following analog of an approach/approach conflict. 

THEOREM 1. max(flo P ,  : p )  = [p2/4]. 

Proof: If we begin with the complete graph K, and select any maximal inde- 
pendent set of lines L, we have fll = [p/2] and Po = 1. It is clear that deleting any 
line not in L will not affect P1 and will not decrease P o .  Thus if we remove all the 
lines other than those of L we obtain the graph G = [p/2]Kz u ({p/2} - [p/2])Kl, for 
which /I1 = [p/2] and Po = {p/Z), giving Po P1 = [p2/4]. To see that this is indeed the 
maximum possible value, we need only observe that Po I p - /I1 and therefore 
B O P 1  B o b  - Po).  

COROLLARY la. For any extremal graph with maximum Bofll, Po = {p/2} and 
81 = [P/21. 

The graph G we have constructed here is not unique; the path P ,  has precisely 
the same value of /lo and /I1, as does the cycle C,, for even p. In fact, if we 
selected a maximal independent set of points Vo in G, any graph constructed from G 
by adding any collection of lines none of which joins two points of Vo, will be an 
extremal graph, and, in view of COROLLARY la, every extremal graph may be con- 
structed in this way. Thus it is clear that in the class of extremal graphs, the unique 
graph for which q is also minimized is G. 

Since the independence numbers Po and P1 and the covering number a. and zl 
are related by the well-known result of Gallai [3] that a. + Po = a l  + P1 = p, it 
might be expected that THEOREM 1 would lead to  a number of immediate corollaries 
relating them in pairs. This is not the case, however! We note, of course, that 
max(ao Po: p )  = max(a,b, : p )  = {(p' - 1)/4} (both realized by C,) and 
min(aoflo:p)= min(a,P,:p)= p - 1 (withextremalgraphsK, u K,-'and Kl ,p- l ,  
respectively), but these follow directly from Gallai's result, independently of 
THEOREM 1. The other combinations prove not so tractable. In the case of a o a l ,  
for example, the complete graph K, yields a value of (p' - p ) / 2  if p is even or 
(p' - 1)/2 if p is odd, and the star K1,,-] gives aoal  = p - 1. 

We originally conjectured these to  be the maximum and minimum. At this 
interesting and stimulating conference, Chung, Erdos, and Graham [ 13 showed that 
the minimum is indeed given uniquely by K l ,  ,- , and, when p is odd, the maximum 
by K,. When p is even, they proved that max(aoa,: p)  = (p' - 4)/2 with extremal 



Harary & Kabell: Graphical Conflict I 267 

graph K ,  if p = 4 and K, u K ,  with r, s > 1, odd, and r + s = p when p > 4. The 
original conjecture is true however if the graph is additionally required to be 
connected. 

CONNECTIVITY AND COLORING 

The concepts of connectivity and colorability of a graph provide us with two 
further groups of related invariants, whose mutual interaction is rather interesting. 
As an example we consider first the (point) connectivity K and the (point) chromatic 
number x. 

THEOREM 2. max(rc/x: p)  = [p/2]/2. 

Proof: For a given value of x, it is evident that the maximum connectivity 
(hence also the maximum value of K/X) will occur in the case of the equipartite 
graph K(p/x). This gives K = p - {p/x}, or K / X  = (p  - {p/x}) /x .  It is readily established 
that this expression is decreasing for x 2 2, hence its maximum occurs at x = 2. It 
is also clear that the unique extremal graph in this case is K(p/2) = K([p/2], 
{P/2}). 0 

Looking at the same problem in the opposite direction, we see immediately that 
max{,y/rc: p} = p - 1 (with the unique extremal graph K,- . K2 in the notation of 
[5, p. 231). In addition we should note thatmax{q : p} = p2 - p (this is immediately 
clear if we consider K,), and min{rcx: p, G connected} = 2 (the path P ,  is one of 
many possible graphs realizing this limit). In each of the cases the proofs proceed 
identically if we replace K by 1 wherever it occurs. 

COVERING AND CONNECTIVITY 

As an example of the type of interaction which may be expected between para- 

THEOREM 3. max(rc/lo: p )  = [p2/4]. 

Proof: Since any member of a set of independent points is adjacent to at least 6 
points (which therefore cannot belong to that set), we see that Po I p - 6. But it is 
well known that K I 6, so that ~ / 3 ~  I 6 ( p  - 6); hence s [p2/4]. To verify that 
this bound can actually be attained, consider again the graph K([p/2], {p/2}). 

It is clear, of course, that min(h-b,,: p) = 2 (simply consider the graph K, . K,, 
where r, s > 0 and r + s = p + 1). 

One is immediately struck by the fact that both the bound and the extremal 
graph of THEOREM 3 are the same as those of Turan’s theorem [7], but we hasten to 
point out that the extremal graph is not unique. In fact, any graph G = H + K{p,2)r 
where H has [p/2] points, will serve equally well. 

meters of these families, we consider K and Po.  

0 

UNSOLVED PROBLEMS 

Clearly we have been able to address only a minute proportion of the potential 
questions in this fertile new field. Our object here is to open this fascinating new 
topic within extremal graph theory, not to exhaust it. Many other readily accessible 
results could be mentioned here, e.g., min(xpo: p )  = p (rp is one of many graphs 
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realizing this bound) and max(X’/X: p )  = ( p  - 1)/2 (again the star K l ,  p -  is an ex- 
tremal example). 

Also deserving of mention are some genuinely formidable problems. Foremost 
among these, perhaps, are those involving the various topological invariants, such 
as max(y/v: p), or max(8/[: p), where, as usual, the notation y, v, 8, t; stand for the 
genus, crossing number, thickness, and coarseness of a graph, respectively. For the 
products, it appears certain that max(yv: p )  and max(85: p )  will be realized by K , ,  
and we conjecture that this can be proved without having to explicitly determine 
v(Kp) or [ ( K p ) ,  which have proved to be very difficult problems indeed. Some work 
has been done which indicates a possibility of success in this area (see, for example, 
the result of Harary et a/. [6] that there exist graphs of genus 1 with arbitrarily 
high crossing number), but this has, in general, dealt only with basically uncon- 
strained situations. There are also the previously mentioned combinations of cover- 
ing and independence numbers, although these are probably not of the same order of 
magnitude of difficulty. Beyond these, both [4] and the Index of Symbols in [5 ]  give 
a wide selection of graphical parameters, any pair of which may be considered in 
each of the four ways we have indicated. 

It might also be interesting to investigate the combinations of two graphical 
parameters under the sum and difference operations. Of course, it becomes much 
more complex, but sometimes feasible to consider both p and q as constraints. One 
can also propose other conditions such as prescribed girth, diameter, connectivity, 
and so forth. Another variation on these problems would be analogous to a conflict 
situation where more than two positive or negative alternatives are involved. Of 
course, this is far more complex than the two-alternative situation, but it appears 
likely that some of the resulting problems will be tractable. We plan to investigate 
several of these variations in future communications in this series. 

SUMMARY 

Inspired by the analogy with the three traditional types of conflict in psychology 
(approach/approach, approach/avoid, and avoid/avoid), we consider corresponding 
types of extremal problems in graph theory. These are translated into the determina- 
tion of extremal values of the product or quotient of two graphical parameters, 
subject to given constraints. For purposes of exemplification, we study and deter- 
mine both the exact solution and the extremal graphs for several products and 
quotients which include confrontations of (a) point- and line-independence and 
covering, (b) connectivity and coloring, (c) covering and connectivity. We conclude 
with an indication of several unsolved problems for future research. 
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