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SUMMARY 
We investigate forward models of the gravitational potential spectrum generated by 
ensembles of discrete sources of anomalous mass, having radial distributions with 
different statistical properties. Models with a random distribution of point source 
locations throughout the volume of the mantle produce spectra similar to that of the 
Earth only when the (absolute) source magnitudes increase strongly with depth, at 
least as d'.5. The effects of the geographic (latitude-longitude) distribution of source 
locations are generally unimportant in determining the general degree dependence 
of the potential spectrum. The dimensions of the sources are also of secondary 
importance, at least up to an angular diameter of about 40°, i.e., continent-sized. 
Sources of this size confined to the upper mantle do not appear capable of producing 
the degree dependence of the observed geopotential spectrum; the low harmonics 
(2-4) in particular appear to require lower mantle sources of considerable strength. 
Further, at  least some of these deep sources must be largely monopolar in nature, 
(i.e., uncompensated) due to the stronger depth attenuation of dipole (compens- 
ated) sources. Because topography on the core-mantle boundary must be either 
isostatically or  dynamically compensated, it may contribute little strength to the 
observed potential spectrum. 
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1 INTRODUCTION 

The Earth's non-hydrostatic gravitational potential reflects 
the presence of lateral density contrasts within its interior. 
These contrasts may arise in the mantle as a consequence of 
lateral temperature gradients, compositional heteroge- 
neities, and dynamically maintained topography on internal 
density interfaces. In a number of previous studies (e.g., 
Lambeck 1976; Lowrey 1978; Cook 1980; Bowin 1983, 1986; 
Bowin, Scheer & Smith 1986), it has been suggested that the 
spherical harmonic spectrum of the non-hydrostatic 
gravitational potential contains important general informa- 
tion on the distribution of anomalous mass within the 
mantle. However, the conclusions drawn in these studies 
regarding the distribution of internal mass anomalies have 
been contradictory. 

Lambeck (1976) suggested that the degree-dependence of 
the spectrum over the interval 2 1 n  118 could be 
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accounted for by a random distribution of density anomalies 
in the upper loo0 km of the mantle. Lowrey (1978), on the 
other hand, concluded that anomalous masses increasing (in 
number and/or magnitude) with depth provide a better 
match for the observed spectrum. In the model of Cook 
(1980), the dominant sources of the harmonics up to degree 
9 are located in the lower mantle, whereas higher harmonics 
arise from upper mantle sources. Bowin (1983, 1986) 
concluded that the degree 2 and 3 harmonics are generated 
principally by sources at the core-mantle boundary. 

Because of the correlation of the gravitational potential 
and topography at high degrees, it is likely that these 
harmonics have shallow sources (Phillips & Lambeck 1980). 
Similarly, Hager (1984) has shown that a model geoid 
produced by deep slab penetration and dynamic topography 
on the core-mantle boundary (CMB) exhibits a statistically 
significant correlation with the actual geoid over the 
harmonic range 4 I n  5 9. This leads to the non-unique but 
physically appealing interpretation that the spectral strength 
in that interval derives dominantly from dynamic density 
anomalies associated with subduction. 
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Sutton, Pollack & Jackson (this issue, paper I) present 
analytical tools for forward modelling of the geoid and its 
spectrum using discrete internal sources. In this paper we 
utilize this methodology (see paper I for symbol definitions) 
to explore forward models of the spectrum arising from 
various model distributions of anomalous mass, with special 
emphasis on the radial distribution. 

An important aspect of our approach is that we seek to 
establish important but relatively general properties of the 
distribution of internal mass anomalies. We are not 
concerned with reproducing the actual geographic con- 
figuration of the geoid; we will focus entirely on obtaining 
model distributions of amplitudes and wavelengths com- 
parable to those of the actual geoid. We will show that these 
spectral characteristics are largely insensitive to the 
geographic distribution of anomalous sources, as well as to 
their physical dimensions, at least up to about degree 10 of 
the potential spectrum. Thus we will reach the conclusion 
that the principal control on the degree-dependence of the 
spectrum is the radial distribution of anomalous mass. 

In essence, we attempt to reduce the intrinsic 
non-unqueness of potential field source modelling by 
eliminating a priori one degree of freedom in the source 
models, namely the geographic (latitude-longitude) dis- 
tribution. Although we employ 3-D source distributions, we 
are ultimately interested in obtaining 1-D view of the 
distribution of mass heterogeneities in the mantle: the 
horizontally integrated radial distribution. By examining the 
statistical properties of the ‘successful’ subset of randomly 
generated source ensembles, i.e., those that yield spectra 
similar to that observed for the Earth, we may be able to 
draw general conclusions about the statistical distribution of 
anomalous mass with depth in the mantle. In terms of 
geodynamic processes, such as mantle convection, these 
general properties may be considered to characterize the 
general convective condition, whereas the actual geoid is 
representative of one particular (the present-day) realization 
of that condition. 

We note at the outset that the use of discrete sources of 
anomalous mass as modelling elements involves in inherent 
assumption about the nature of the heterogeneity within the 
Earth, just as smoothly varying anomalous density functions 
do. Discrete source modelling elements, by virtue of the 
density discontinuities on their boundaries, can be 
considered relatively ‘white’ sources, i.e., they are capable 
of generating geoidal variations at all wavelengths or all 
harmonic degrees, depending on their depth. As shown in 
paper I, depth acts as a low-pass filter, through which 
‘white’ sources produce ‘red’ potential spectra at the 
surface. Smoother density models, such as low-degree 
spherical harmonic expansions of anomalous density, 
constitute relatively ‘redder’ sources: they contribute 
strength to the potential spectrum only in the degrees 
represented in the density distribution. 

There are certainly a number of types of internal density 
heterogeneities that are appropriately modelled by discrete 
elements. Plum-pudding models of chemical heterogeneity 
(Davies 1984; Lay 1989) may be considered reasonably 
discrete, as can subducting slabs and hotspots swells. Even 
the density variations arising from the temperature structure 
of mantle convection have discrete characteristics such as 
horizontal boundary layers, rising and descending sheets and 

plumes, and isothermal cores. Thus there is ample 
justification for the use of discrete sources as modelling 
elements. 

The observed potential spectrum for the Earth is 
characteristically reddened, with spectral strength decreas- 
ing as harmonic degree increases (e.g., Lerch et al. 
1985a,b). If mantle heterogeneity can be reasonably 
represented by discrete sources, we will show in this paper 
that the redness of the observed potential spectrum requires 
an increase in the magnitude of these sources with depth. 

2 STATISTICAL DISTRIBUTIONS OF 
INTERNAL MASS HETEROGENEITIES 

2.1 Model distributions 

There are many degrees of freedom in forward models for 
anomalous mass; for example, one might consider discrete 
sources of fixed magnitude, and investigate the dependence 
of the potential spectrum on their radial distribution; 
alternatively, the radial distribution of source locations 
could be held constant while varying the source strength as a 
function of depth. The most realistic approach would 
perhaps be to allow both of these functions to vary; however 
this would clearly give rise to an inexhaustible number of 
models to consider. If the viscosity of the mantle varies 
strongly with depth, as suggested for example by Davies 
(1984), Hager (1984), and Ricard, Vigny & Froidevaux 
(1989), then the capacity for supporting differential stresses 
associated with anomalous mass will also increase with 
depth. For this reason we will begin by following the second 
approach described above, with a fixed radial distribution of 
anomalous mass locations, and allow magnitudes to vary 
with depth. The present discussion will be restricted to mass 
anomalies within the mantle; later we will consider the 
effects of surface and core-mantle boundary topography. 

In all of the following models, we begin by locating 
anomalous masses randomly throughout the volume of the 
mantle, i.e., with the following probability density 
functions: 

f ( r )  a r2 ,  f ( ~ )  sin (G), f(e) = constant, (1) 
and then compute model potential spectra for different 
mass-depth functions. Generation of random variables with 
these prescribed probability functions is accomplished by 
means of a standard random number generating algorithm 
with a uniform probability density, and the following 
transformations: 

rj = R[(R, /R)3(1  - x l i )  + x ~ , ] ~ ’ ~ ,  
(2) @ = C O S - ~ [ ~ ( X , ~  - os)], e = ~ x x , ~ ,  

where x,, x 2 ,  and x3 are random numbers between 0 and 1, 
and i assumes values from 1 to k, where k is the total 
number of anomalous sources. This procedure produces a 
set of random locations for anomalous point masses, with a 
volumetrically uniform probability density throughout the 
mantle (Fig. 1). 

Extension of these point masses into two or three 
dimensions (spherical caps or cones) in general results in a 
change in their centre of mass. For a spherical cap, the 
centre of mass is always located below the cap, i.e., 
rLentre < &,,. For a spherical cone, the centre of mass may 
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k - 1. The second adjustment, to obtain zero-net anomalous 
mass, was accomplished by dividing the mantle into 10 
depth intervals, calculating the scalar mean of the 
anomalous masses in each interval, and subtracting that 
mean from each anomalous source in the interval. This 
approximately preserved both the statistical properties of 
the initial mass-depth function (4) and the zero first 
moment. 

Figure 2 illustrates the mass-depth characteristics of 
source models generated by the procedures above, with 100 
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Figure 1. Distribution of radial location ( r ' )  and colatitude (+) for 
a set of randomly located anomalous sources with volumetrically 
uniform probability density, generated by (1). The plot represents a 
meridional section onto which all locations have been projected by 
rotation about the axis of the spherical coordinate system. 

lie above or below ( r )  (the mean of r, and r,) depending 
upon the height and width of the cone. In order to enable a 
direct comparison of point mass and 2- or 3-D source 
models, we adjust the radial coordinates of spherical caps 
and cones to produce the same centres of mass as those in 
the corresponding point source model. The adjusted radial 
coordinates are 

(for an approximately equant cone, with r, - r, = 2 n ( r ) ) .  
Having generated randomly distributed source models in 

this way, we can assign masses to each anomalous source 
according to various mass-depth relationships. We will 
focus on one particular family of mass-depth laws: 

where x4 is random (- 1 5 x 4  5 l), Mo and MI are constant 
scale factors, and the exponent p is an experimental variable 
in the forward modelling. 

In order to restrict our attention to plausible source 
models, several additional constraints must be applied. 
Because models of the Earth's potential assume the origin at 
the centre of mass, the first moments of the mass 
distribution should be vanishingly small [@(1) = 01. 
Additionally, we require the sum of the positive and 
negative anomalous masses to equal zero. The procedures 
described above for generating anomalous mass distribu- 
tions generally satisfy these criteria when the number of 
anomalous masses is sufficiently large (of the order lo3); for 
smaller numbers of discrete sources, random variations are 
relatively important, and several adjustments were neces- 
sary to approximately satisfy these conditions. First, in order 
to obtain a zero first moment, the geographic coordinates 
(0, 6 )  and mass of the kth (last) source were adjusted to 
exactly cancel the vector sum of the other k - 1 sources: 

where x ,  y, and z are the adjusted Cartesian coordinates of 
the kth source, and the summation interval ranges from 1 to 
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point mass anomalies in the same random locations for each 
model, but having different relative strengths as a function 
of depth. The mass-depth relation (4), with M,=O, 
M,=lO-’M,, and p = l ,  1.5, or 2 (Figs 2a, b and c 
respectively) defines a set of envelopes which generally 
confines the individual sources. However, as a consequence 
of the adjustments for zero first moment and zero total 
anomalous mass, several of the anomalous source lie outside 
of these envelopes. In order to evaluate the effects of such 
deviations, as well as the effects of different random 
geographic source distributions, models were run in sets of 
10, with identical mass-depth parameters but different 
random geographic and radial coordinates. When the 
spectra were computed and plotted, we found that in 
general about seven of the 10 spectra were similar in general 
trend (although different in detail as a consequence of 
variability in source locations), and that the models 
producing deviant spectra invariably had one or more source 
points lying far outside the mass-depth envelopes of (4) and 
Fig. 2, due to particular details of the random source 
locations. Such ill-behaved models were discarded. 

2.2 Model spectra 

We first consider point source models with M , = O  and 
p > O ,  that is, with mass anomalies that increase in 
magnitude with depth from a value of zero at the surface. 
Fig. 3 shows the potential spectra calculated for sets of 
models with k = 100 point masses and different values of p ,  
corresponding to the envelope curves of Fig. 2. The 
individual model spectra are characterized by local maxima 
and minima superimposed on a smooth decay of strength 
with increasing harmonic degree. For each set of model 
spectra (Figs 3a, b and c; p = 1, 1.5, and 2 respectively), the 
general degree-dependent decay of cP(n) is consistent within 
the set, whereas the local variability is unique for each 
model in the set. Examination of the spectra for individual 
models with identical source locations but different values of 
p [compare for example the uppermost curves in Figs 3(a), 
(b) and (c)] shows strong similarities in the local peaks and 
troughs, but fundamental differences in the general degree 
dependence of @. It clearly follows that the general degree 
dependence of CP is determined by the common mass-depth 
relationship for each set of model spectra, whereas the local 
variability reflects the particular geography of the source 
distributions of the individual models. 

Because the potential coefficients for monopole sources in 
equations (5 ) ,  (6), (7), and (9) of paper I depend linearly 
upon (Mj/ME), the spectra can be rescaled by multiplying 
each source mass by a constant factor; on a logarithmic plot 
such as Fig. 3, this corresponds to translating the spectrum 
upward or downward without changing its shape. Therefore 
in Fig. 3 and the figures to follow (unless otherwise noted), 
the spectra have been rescaled so that the mean log value of 
the set of model spectra at n = 2 is equal to the actual value 
of CP(2) determined for the Earth. For models with M I  of 
the order of 10-5ME, the difference between the original 
and rescaled spectra is always relatively small (less than a 
factor of two), but because it facilitates comparison of 
shapes, we show the rescaled spectra, together with the 
observed spectrum of the Earth’s gravitational field 
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Figure 3. Potential spectra calculated for model sets of 100 point 
masses, scaled with depth as in Fig. 2. (a) p = 1; (b) p = 1.5; and (c) 
p =2.  GEM-L2 spectrum is shown with solid symbols for 
comparison; p = 1.5 yields the best match between models and 
GEM-L2. 

represented by the GEM-L2 Earth model (Lerch et al. 
1985a,b). In the degree range we consider (2-20), GEM-L2 
is typical of most recent gravity models. This rescaling will 
enable us to determine an optimum value for the exponent p 
in (4), a parameter which affects only the shape of the 
spectrum. We will then return to the question of the actual 
magnitudes of the mass anomalies, and discuss the 
implications of the best model value of the mass scale factor 
below. 

It is immediately apparent that the model spectra of Fig. 
3(a) have too much relative strength in the higher harmonics 
in comparison with the GEM-L2 spectrum, indicating 
excessive shallow sources of anomalous mass. Higher values 
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of the exponent p result in smaller relative magnitudes for 
the shallow sources; for masses increasing as the square of 
depth (p = 2; Figs 2c, 3c), the model spectra are too red, 
i.e., too strongly diminished at high harmonic degrees. Fig. 
3(b) shows that anomalous masses increasing according to 
d'.' generate model spectra that closely duplicate the 
curvature of the observed GEM-L2 geopotential spectrum. 

The magnitude of the deep anomalies in Fig. 2 is quite 
large, but not unreasonably so. The rescaling described 
above ['pinning' the model spectra to @(2) of GEM-L2] 
decreases these source strengths by about 20 per cent, a 
negligible amount in the present discussion. The scale factor 
MI = lo-' ME represents the upper limit of individual 
source strengths; if a mass anomaly of this magnitude were 
to be produced by CMB topography with a lateral 
dimension of lOOOkm, it would require on the order of 
10 km of relief. The mean (absolute value) of the anomalous 
masses near the CMB in these models is half of this scale 
value, with a proportional reduction of required topog- 
raphy. Thus anomalies of this size are compatible with 
seismologically derived estimates of CMB topography (e.g., 
Creager & Jordan 1986; Morelli & Dziewonski 1987). 
However, we will return to the question of CMB 
topography in a later discussion. 

Next we consider non-zero mass anomalies at the surface 
(M,,>O). As shown in paper I, a surface point mass 
anomaly generates a flat or degree-independent potential 
spectrum. Although any geographic distribution of sources 
at the surface can give rise to a structured spectrum, with 
maxima and minima at particular values of n, the overall 
trend is still essentially flat. Therefore an upper bound on 
the plausible magnitudes of anomalous masses at the surface 
is imposed by the minimum value of @(n) over the degree 
range up to about n = 20, approximately 3 or 4 X lo-' ME. 
Here we will assume a value of 2.5 X lOP7ME and 
investigate the characteristics of the internal mass-depth 
relationship that incorporates non-zero surface anomalies 
while still generating acceptable potential spectra. In a later 
section we will return to a discussion of mass anomalies at 
the surface, in the context of dynamic topography. 

Figure 4(a) summarizes a set of source models with 
M, = 2.5 x lop7 ME, M, = lo-' ME, and p = 2. The cor- 
responding potential spectra are illustrated in Fig. 4(b), 
which shows that a good match to the observed spectrum is 
obtained with p =2, in contrast to the case for M , = O ,  
where p = 1.5 yielded the best fit. Introducing non-zero 
mass anomalies at the surface thus requires even greater 
relative increases in source strength with depth, in order to 
generate spectra with the characteristics degree-dependence 
of the actual potential spectrum of the Earth. 

If the anomalous sources are confined to the upper mantle 
[by replacing R ,  with R - 670 in (2) and dCMB with 670 km in 
(4)], no value of the exponent p is large enough to match 
the observed spectrum. Figs 5 and 6 respectively show upper 
mantle source models and corresponding potential spectra, 
with (a) p = 3, (b) p = 5, and (c) sources confined to 670 km 
depth in order to approximate an infinitely large p. All of 
the spectra have too much relative high-degree strength. 
Even in the limit of infinite p the spectrum remains too 
white. It seems clear that large mass anomalies are required 
in the lower mantle in order to produce the observed 
degree-dependence of the geopotential spectrum. 
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Figure 4. (a) Mass-depth models with bounding values M I M E =  
f [ 2 S  x lo-' + (d/dcMB)p]; p = 2. These differ from the 
models of Fig. 2(c) by allowing non-zero anomalous magnitudes at 
the surface. (b) Corresponding potential spectra. GEM-L2 
spectrum is shown for comparison; p = 2 yields an acceptable 
match. 

The effects of finite-dimensional sources can be explored 
by replacing point masses with 2- and 3-D sources. Some 
model results are illustrated in Fig. 7, which shows the 
potential spectra for three sets of source models, each with 
exactly corresponding random source magnitudes and 
locations of centres of mass, but with different source 
dimensions. The differences in the potential spectra are 
generally most pronounced for n 2 10. For 5" spherical cap 
sources, the concave-downward spectrum characteristic of a 
single cap (see Fig. 5 of paper I) gives rise to a high-degree 
spectral attenuation via the factor (2n + 1)-2 in equation (6) 
of paper I. For n in the interval 2 to 5, however, there is 
little difference between the spectrum of a point mass and 
that of a spherical cap at the same depth; Fig. 7 shows that 
the same is also true for source ensembles. For sources 
expanded into spherical cones of roughly equant shape, the 
centre of anomalous mass is at a radius very close to 
(r,  + r2)/2 (within a fraction of a per cent). Nearly half of 
the anomalous mass of each source is therefore shallower 
than the corresponding point mass source, leading to a slight 
whitening of the spectrum. In general the differences 
between the spectra produced by point masses and 
distributed sources are much smaller than those associated 
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Figure 5. Upper mantle mass-depth models with bounding values 
M I M E =  f10-5 (d/670)P; (a) p =3; (b) p =5;  (c) masses at 
d = 670 km only. Corresponding potential spectra are illustrated in 
Fig. 6. Note that the horizontal scale is different than in preceding 
figures. 

with different mass-depth laws; therefore we conclude that 
the dimensions of anomalous masses in the Earth are less 
important in shaping the geopotential spectrum than the 
distribution of mass with depth, at least over the degree 
range below about 10. 

3 MASS ANOMALIES DUE TO DYNAMIC 
TOPOGRAPHY 

3.1 Introduction 

In the models of the preceding section, anomalous masses 
were assumed to be randomly distributed, with volumetri- 
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Figure 6. Potential spectra calculated for model sets of 100 point 
masses, restricted to the upper mantle and scaled with depth as in 
Fig. 5 .  GEM-LZ spectrum is shown for comparison; models with 
sources confined to 670 km depth yield a slightly better match than 
models with shallower sources, but still generate too much relative 
high-degree strength. 

cally uniform probability, throughout the entire mantle or 
confined to the upper mantle. These models are very 
general and conceptually process-independent . Additional 
constraints can be placed on the distribution of anomalous 
mass in the context of a dynamic Earth, in which negative 
mass anomalies rise buoyantly through the mantle, and 
positive mass anomalies sink. This vertical motion induces 
dynamic deformation of internal density discontinuities, 
with rising and sinking flows causing upward and downward 
deflections of the density interfaces, respectively (Hager 
1984; Richards & Hager 1984; Hager et al. 1985). 
Depression of a horizontal density interface, due to the 
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b 

3.2 Topographic mass anomaly model 

A rigorous analytical treatment of the dynamic deflection of 
density interfaces by isolated bodies in an otherwise uniform 
sphere is a problem beyond the scope of this paper; however 
we may draw upon the analysis of Koch & Ribe (1989) to 
guide us in formulating a simplified approximation. In 
particular, their analysis showed that a viscous spherical 
body of anomalous density, in the vicinity of a density 
interface in a viscous fluid halfspace, produces an 
axisymmetric anomalous topography on the interface, with 
an amplitude that varies directly with the density and 
viscosity contrasts, and inversely with the vertical distance 
separating the anomaly and the interface. The amplitude 
decay as a function of distance from the axis of symmetry is 
governed by the viscosity contrast in such a way that the 
total anomalous mass due to the topography (1) is largely 
independent of the viscosity contrast-the topography is 
broader and flatter for low contrasts, but represents the 
same anomalous mass as that accompanying high viscosity 
ratios; and (2) is equal in magnitude but of opposite sign to 
the anomalous mass, i.e., dynamically compensated, when 
the sphere is close to the interface. 

The anomalous mass due to dynamic topography in such a 
model may be expected to diminish as the separation 
between the spherical anomaly and the density interface 
increases. Koch & Ribe (1989) show that the surface 
topography produced by a spherical anomaly at a depth 
greater than about 2 or 3 sphere radii is independent of the 
viscosity contrast; however the absolute dependence of 
topography on depth is not shown. Richards & Hager (1984) 
derive Green's functions relating surface potential at each 
spectral degree to the strength of internal 'driving' sources 
as a function of r'; these are identically zero at the upper 
and lower boundaries of the mantle, where the driving 
sources are perfectly compensated, and reach maximum 
values at different depths in the mantle for different 
harmonics and viscosity structures. This spectral decomposi- 
tion is not readily applied to discrete sources; therefore we 
model the dependence of a topographic mass anomaly on 
the proximity and magnitude of the driving internal mass 
anomaly by a simple power law: 

Mi,topo = -Mi(dz/Zo)' (6)  
where Mi,topo is the mass anomaly due to the topography 
produced on a density boundary due to the flow driven by a 
mass anomaly Mi at a vertical distance dz from the 
boundary, and zo is a scale factor approximately equal to the 
radius of the mass anomaly; we will use a value of 100 km 
for zo. The exponent Q ( S O )  is related in a general way to 
the viscosity, or to the vertical flow velocity gradients 
associated with the internal anomalies: the value Q = 0 
means that the (integrated) boundary deflection is 
independent of distance from a sinking or rising 
heterogeneity, while large negative values of Q indicate that 
internal anomalies have a negligible effect on the flow field 
at a distance larger than the scalelength of the anomaly. We 
wish to investigate the effects on the potential spectrum of 
varying the value of the exponent Q. 

Because the density contrasts across the free surface and 
across the core-mantle boundary are nearly an order of 
magnitude larger than that of any other discontinuity in the 
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Figure 7. Potential spectra calculated for model sets of 100 discrete 
mass anomalies, scaled with depth as in Fig. 2 with p = 1.5. (a) 
Point masses; (b) spherical caps with 5" generating angle (10" 
diameter); and (c) approximately equant spherical cones with 5" 
generating angle. Source locations (centres of mass) are the same 
for corresponding models with each source geometry. GEM-L2 
spectrum is shown for comparison. Caps generate slightly 'redder' 
spectra; cones slightly 'whiter'. 

viscous flow driven by a dense sinking body, results in a 
negative mass anomaly where the interface is distorted. This 
has two consequences for our source models: first, although 
certain types of mass anomalies such as chemical 
heterogeneities may be approximately randomly located 
throughout the volume of the mantle, the distribution of 
anomalous masses will show concentrations at the depths of 
internal density discontinuities; and secondly, there will be a 
tendency for anomalies of opposite sign to occur in vertical 
alignment. In this section we examine the effects of these 
distribution characteristics on model potential spectra. 
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Earth, we will restrict the dynamic anomalous masses in our 
models to those two interfaces. Each of the internal mass 
anomalies of our model ensemble produces two additional 
anomalies of opposite sign with the same geographic 
coordinates, one at the CMB and one at the surface, with 
magnitudes governed by (25). We will hold the parameters 
of the mass-depth relation (4) fixed at Mo = 2.5 x M E ,  
M ,  = lo-’ M E ,  and p = 2, and consider Q between -1 and 
-4. 

3.3 Potential spectra for dynamic mass models 

Figures 8 and 9 illustrate source models and corresponding 
potential spectra for different values of Q. For large 
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Figure 9. Potential spectra calculated for model sets of 100 point 
masses, with corresponding dynamic mass anomalies as in Fig. 8. 
(a) Q = -4; (b) Q = -2- , ( c) Q = -1. GEM-L2 spectrum is shown 
for comparison; Q = -1 generates too much relative high-degree 
spectral strength, due to excessive surface topographic mass 
anomalies. 

negative values of Q, the topographic mass anomalies are all 
small compared to the internal anomalies, and the potential 
spectrum is indistinguishable from one with no topographic 
anomalies (compare Figs 4b and 9). When the magnitude 
of a topographic mass anomaly decays linearly with distance 
to the internal anomalous source (i.e., Q = l), some of the 
surface anomalies produced by mid- or deep mantle 
heterogeneities become larger than M, , the limiting 
magnitude for anomalies in the upper few hundred 
kilometres of the mantle (Fig. 8 ) ,  resulting in excessive 
high-degree spectral strength (Fig. 9). Strong or moderate 
coupling (Q 2 -1) of surface topography to large deep mass 
anomalies thus results in a radial distribution of anomalous 
mass that is incompatible with the constraint imposed by the 
observed geopotential spectrum. 

As discussed above, an absolute upper bound on the 
anomalous mass associated with non-isostatic long- 
wavelength (up to (Y = 20”) surface topography (or any other 
non-isostatic shallow mass anomalies), approximately 3 to 
4 x M E ,  is imposed by the minimum value of @ ( n )  over 
the internal up to about n =20. Compensated mass 
anomalies may be larger by a factor of r ’ /h  (the inverse of 
the dipole factor discussed in paper I), where h is related to 
the depth of compensation; this factor is of the order of 100 
for isostatic compensation, but only two or three for 
dynamic compensation by lower mantle sources. This gives 
an absolute upper bound of approximately for 
surface mass anomalies maintained dynamically by deep 
mantle driving sources. A tighter but still approximate 
upper bound of roughly 3 x lO-’ME is suggested by Figs 8 
and 9. The Phanerozoic history of marine transgressions 
onto the continents places an upper limit on the amplitude 
of dynamically maintained surface topography of approxim- 
ately 100 to 150 m (Gurnis 1990a,b). For an areally weighted 
average density contrast between the lithosphere, hydro- 
sphere and atmosphere of approximately 2300 kg m-3, and 
a diameter of 3000km, this dynamic topography cor- 
responds to mass anomalies in the neighbourhood of 
2.5 x lo-’ ME. Thus our estimate based on Figs 8 and 9 
appears reasonable. 

Because of the possibility that viscosity increases 



Discrete mass models of the geopotential 91 

h 

v 
C 

r 
0. 
.- 

1 E-07 
2 4 6 8 10 12 14 16 18 20 

harmonic degree n 
Figure 10. Potential spectra calculated for model sets of 100 point 
masses with corresponding dynamic mass anomalies as in Fig. 8, but 
only on the CMB. (a) Q = -1; (b) Q = -0.5; (c) Q = -0.05. 
GEM-L2 spectrum is shown for comparison; as Q approaches zero, 
the sources become radial dipoles and lose low-degree spectral 
strength. 

significantly with depth in the mantle, the production of 
dynamic mass anomalies at the upper and lower boundaries 
may not be symmetric, as it is in our model above; larger 
mass anomalies would be expected at the lower interface 
(e.g., Hager 1984). As a limiting case, we have examined a 
set of models with dynamic deflection of only the lower 
boundary of the mantle. As shown in Fig. 10, there is little 
effect on the potential spectrum, unless the CMB 
topography is strongly linked to flow driven by internal mass 
anomalies (-1 < Q I 0). For Q = 0, every internal heterog- 
eneity produces an equal anomaly of opposite sign on the 
CMB, and the source ensemble takes on the characteristics 
of an ensemble of dipoles. This is reflected in the model 
potential spectra (Fig. lo), where the relative low-degree 
strength is reduced, as shown in paper I for individual dipole 
sources (Fig. 6 of paper I). Note that in Fig. 10 the spectra 
have not been rescaled to match the GEM-L2 value of Q(2). 

This result has an important implication for the 
relationship between the low-degree harmonics of the 
geopotential and CMB topography. Because neither the 
core nor mantle is rigid, it is obvious that distortion of that 
interface must be either isostatically compensated (e.g., by 
anomalously dense material at the base of the mantle), or 
dynamically maintained by mantle flow. In either case, a 
negative topographic mass anomaly on the CMB must be 
overlain by a positive internal anomaly of comparable 
magnitude; together these comprise an essentially dipolar 
source, which may not contribute significantly to the 
low-degree potential at the surface. 

Several types of relatively high-density heterogeneities 
may occur within or at the base of the mantle, such as 
subducted slabs (Silver & Carlson 1988), refractory residue 
from core differentiation (Ruff & Anderson 1980), or 
primitive mantle material (Silver & Carlson 1988). Because 
of the extreme density contrast across the CMB, these 
heterogeneities will collect there, resting upon the core, 
Such a heterogeneity, with a local thickness of 200 km and a 
density anomaly of 3 per cent, would be sufficient to 
generate about 6 km of isostatically compensated core 
topography. The surface potential due to such a mass dipole 

is much less than would be generated by the topography 
alone; the factor h/r‘  (paper I) reduces the dipole 
contribution to about 3 per cent of that of the monopole. 
We have shown above that monopole sources approaching 
lOW5ME in the lower mantle can produce the observed 
low-degree spectrum at the surface; to achieve the same 
low-degree strength, dipole sources must be roughly 30 
times larger. Thus isostatic topography at the CMB, while it 
may be considerable in magnitude, will not necessarily 
produce significant geoid effects at the surface. 

Dynamically maintained topography also constitutes an 
essentially dipolar source, but it may differ significantly from 
isostatic topography in two important ways. First, the pole 
separation h may be significantly increased, and the dipole 
‘reduction factor’ h/r’  concomitantly less extreme. Further, 
as h increases, dynamic compensation is less completely 
maintained: the mass anomaly due to topography becomes 
smaller than the driving anomaly, which thus becomes more 
monopolar and contributes more to the surface potential. 
This effect was considered by Hager (1984) and Richards & 
Hager (1984), and can be seen in their ‘dynamic response’ 
functions. It is important to note that the principal 
contribution to the measured potential comes not from the 
CMB topography, but from the internal partially compens- 
ated mantle heterogeneity; dynamically generated CMB 
topography serves to diminish geoid anomalies, by partial 
compensation, rather than to generate them. This leads to 
two conclusions: (1) the geopotential spectrum only weakly 
constrains the magnitude of CMB topography, if at all; even 
high amplitude compensated topography will produce only 
minor effects on the geoid; and (2) generation of the 
observed low-degree characteristics of the geopotential 
spectrum requires at least some of the large, deep internal 
anomalies to be essentially monopolar, in other words, not 
too strongly coupled dynamically to CMB topography. 
Decoupling could perhaps be accomplished by a low- 
viscosity thermal boundary layer at the base of the mantle 
(e.g., Stacey & Loper 1983); however, our models clearly 
do not require such a layer. In fact we can rule out only the 
strongest coupling ( - l /Q >> l), or nearly complete dynamic 
compensation. 

4 DISCUSSION OF MODELLING RESULTS 

Although the locations and characteristics of the internal 
mass anomalies that generate the Earth’s non-hydrostatic 
gravitational potential can never be uniquely determined 
from measurements of the field at the surface, the spectral 
characteristics of the geopotential do provide general 
information on the statistical distribution of internal density 
heterogeneities. The contribution to the spectrum at the 
surface by sources at depth is attenuated in a degree- 
dependent manner; because of this the upward convexity of 
the observed spectrum can best be explained in terms of 
large deep sources, producing the low-degree strength, and 
smaller shallower sources generating the higher harmonics. 

This is in general agreement with the conclusions drawn 
previously by Lowrey (1978), Cook (1980), and Bowin 
(1983, 1986). However it conflicts with that of Lambeck 
(1976), who suggested that the geopotential spectrum could 
be accounted for by density anomalies with a ‘white noise’ 
distribution in the uppermost lo00 km of the mantle, and 
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that deep mantle anomalies must be relatively small, 
corresponding to 200m or less of uncompensated CMB 
topography. This disagreement may be attributable in part 
to a difference in analytical methods: a truncated harmonic 
expansion employing continuous functions of anomalous 
density inevitably produces smoother source models than 
discrete anomalous sources, and therefore generates less 
relative strength in the high degrees of the potential 
spectrum. Thus discrete source models, such as ours and the 
point mass models of Lowrey (1978), naturally require more 
substantial deep sources than are demanded by continuous 
source models. Perhaps more importantly, Lambeck’s 
model does not fully account for the curvature of the 
spectrum, generating too little strength in the low (n = 2, 3) 
and high (n 2 15) harmonics, and excessive strength in the 
intermediate range. It is precisely this curvature that 
requires increasing source strength with depth. 

It is instructive to compare the geopotential spectrum with 
the geomagnetic spectrum (Merrill & McElhinny 1983). The 
source regions for the non-hydrostatic gravitational and 
magnetic fields are strongly complementary: due to the low 
viscosity of the core, lateral density gradients cannot be 
maintained, so that no sources of the anomalous 
geopotential can be expected within the core; conversely, 
mantle temperature exceed the Curie point of any natural 
magnetic material, and the viscosity and conductivity are 
clearly inappropriate to generate magnetic fields by dynamo 
action. Thus the geopotential spectrum arises entirely from 
sources in the mantle and crust, while the sources of the 
magnetic spectrum are confined to the core and the crust. 
The wide radial separation of the two magnetic source 
regions is clearly reflected in the degree-dependence of the 
geomagnetic spectrum, with two fairly linear segments 
corresponding unambiguously to the source regions: the 
steeply sloping segment from n = 2 to 8 is attributable to 
core sources; the shallow segment for n 2 1 2  derives 
primarily from crustal magnetization (Merrill & McElhinny 
1983). 

In contrast, the gradual change in slope of the 
geopotential spectrum suggests, although it does not 
require, a continuous distribution of sources extending 
through the entire depth range of the mantle. Our modelling 
results indicate that the contribution to the potential 
spectrum of any particular depth interval of the mantle has 
an overall degree-dependence that is determined most 
strongly by depth; the geographic distribution or dimension 
of sources in each interval may produce particular spectral 
peaks or holes, but not the general decay of @(n) with 
increasing n. In order to generate a smoothly curved 
spectrum, there must be contributions from sources at a 
number of different depths, with source amplitudes 
generally increasing with depth. 

This is a general conclusion that does not depend in any 
way upon assumed models of viscous flow or on the nature 
of the mass anomalies. While we have considered only 
continuously varying mass-depth laws (4) and quasi- 
continuous radial distributions of source locations (that is, 
the discrete sources are not confined to discrete ranges of 
r ’ ) ,  it is not difficult to conclude that more discontinuous 
models will still have to satisfy the same basic constraint of 
source strengths increasing with depth, extending into the 
deep mantle. 

The conclusion that source magnitudes increase with 
depth in the mantle does not conflict with the association of 
particular harmonic intervals with specific source distribu- 
tions, as proposed by many investigators. Clearly this idea 
accords with the high-degree harmonics being related to 
surface topography. The degree range 4 to 10 may be 
associated with slab penetration into the lower mantle and 
resultant depression of the CMB, as inferred by Hager 
(1984). However we would suggest that there must be 
additional deep sources as well. If a particular mass anomaly 
due to CMB topography is, as it must be, less than or equal 
to that of the driving source (for example, a slab), then the 
topographic contribution to the geopotential is smaller for 
all positive n than that of the slab, and the total spectral 
contribution of the system is less strongly degree-dependent 
than that of the Earth. This is in fact shown in Fig. 7 of 
Hager (1984). Additionally, as Hager notes, the slab model 
accounts for roughly 40 per cent of the variance in the 
spectrum for degrees 4-9, which is substantial, but which 
still leaves 60 per cent to be accounted for by other sources; 
we would suggest that these are dominantly in the deep 
mantle. 

Thus we suggest that the dominant sources of the degree 
2-4 geopotential are to be found in the lower mantle. If, as 
we argue, dynamic deflection of the CMB is not the 
principal source of the low-degree anomalous potential at 
the Earth’s surface, these harmonics must be related to 
monopolar density anomalies associated with lateral 
temperature gradients or chemical heterogeneities in the 
deep mantle. 

The magnitudes of these monopolar lower mantle mass 
anomalies must be substantial. Because of the general 
insensitivity of our model spectra to the dimensions of the 
anomalous sources, we are able to translate mass anomalies 
into density anomalies only by making assumptions about 
their volumes. Seismological evidence suggests lateral 
heterogeneities in the lower mantle with both short and long 
scalelengths (e.g., Haddon 1982; Snoke & Sacks 1986). 
Snoke & Sacks (1986) conclude that the dominant 
length-scale of lowermost mantle heterogeneity is 200 km, 
but that there is also variability with length-scales of 
1000km. For lower mantle sources with horizontal 
dimensions of the order of 1000 km and a vertical extent of 
100km, a mass anomaly of corresponds to a 
density anomaly of approximately 600 kg m-3, or roughly a 
10 per cent departure from the mantle density at the CMB. 
Clearly this estimate seems large and is highly uncertain, but 
if such density anomalies exist, they are unlikely to be 
entirely of thermal origin. Lateral temperature variations in 
the upper mantle may be as large as 100°C (between the 
interiors of subducted slabs and regions below mid-ocean 
ridges); for a thermal expansion coefficient of the order of 
lop5 K-’, this corresponds to a density variation of about 1 
per cent. In the lower mantle, the magnitude of lateral 
temperature variations is less well constrained, but is 
probably not widely different. Thus it appears, somewhat by 
default, that chemical heterogeneities in the deep mantle 
may be important sources of the degree 2-4 potential. 

Various lines of geochemical and geophysical evidence 
suggest the existence of chemically distinct heterogeneities 
within the mantle. Davies (1984) summarizes some of the 
isotopic and geochemical evidence for the existence of 



Discrete mass models of the geopotential 93 

several distinct reservoirs within the mantle, as well as 
geophysical constraints. Detailed studies of seimsic travel- 
time residuals (e.g., Dziewonski 1984) and of the 
systematics of particular phases (e.g., Young 1990) suggest 
strong lateral heterogeneity, especially in the lowermost 
mantle. Lay (1989) and Young (1990) have suggested a 
‘plum-pudding’ model of chemical heterogeneity within the 
mantle, similar to that of Davies (1984), in order to  explain 
both the existence and lateral discontinuity of a heteroge- 
neous layer at the base of the mantle. The  density contrasts 
associated with chemical heterogeneity may be quite 
variable, and could plausibly exceed those associated with 
temperature. Material with excessively large density 
anomalies will tend t o  collect a t  the top or the base of the 
mantle as a consequence of buoyant forces, and will 
generally tend to  be compensated. However, heteroge- 
neities at some distance above the CMB may be sufficiently 
uncompensated to  generate the low harmonics of the 
potential a t  the Earth’s surface. 

6 CONCLUSIONS 

Our modelling results enable us to  draw several specific 
inferences regarding the radial distribution of anomalous 
mass in the mantle. First, it is clear that the depth 
distribution of anomalous mass is more important in 
controlling the general degree-dependence of the geopoten- 
tial spectrum than either the dimensions of the anomalous 
sources or their geographic (latitude/longitude) distribution. 
The geography of the source distribution produces 
‘structure’ in the spectrum, i.e., local maxima and minima a t  
particular harmonics, but exerts little or n o  control on the 
smoothed degree-dependence. Source dimension, i.e., the 
scale of heterogeneity, does affect the general shape of the 
spectrum; however models with discrete anomalous sources 
of reasonable (less than continental) length scale, confined 
to the upper mantle, are  incapable of producing potential 
spectra with the same degree dependence as that of the real 
Earth. One must therefore conclude that the sources of the 
low harmonics are located principally in the lower mantle. 
The general decay of the spectrum of the Earth can b&t be 
explained in terms of sources a t  a number of different 
depths, with source amplitudes generally increasing with 
depth. 

An additional major conclusion of this study is that the 
geopotential spectrum places only weak constraints on  the 
amplitude of core-mantle boundary topography. Isostati- 
cally and/or dynamically compensated topography repre- 
sents an essentially dipolar source ensemble, which may not 
contribute significantly t o  the low-degree harmonics 
(2 5 n 5 4) at  the surface. Dynamically generated CMB 
topography serves to  diminish geoid anomalies, by partial 
compensation of mobile mantle heterogeneities, rather than 
to generate them. The lower mantle mass anomalies that 
generate the low-degree spectral strength at  the surface 
must be largely monopolar, and are  therefore pr,obably not 
directly associated with CMB topography. 

- 
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