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ABSTRACT

We characterize the dynamics of the US short-term interest rate using a Markov
regime-switching model. Using a test developed by Garcia, we show that there
are two regimes in the data: In one regime, the short rate behaves like a random
walk with low volatility; in another regime, it exhibits strong mean reversion and
high volatility. In our model, the sensitivity of interest rate volatility to the level
of interest rate is much lower than what is commonly found in the literature. We
also show that the findings of nonlinear drift in Aı̈t-Sahalia and Stanton, using
nonparametric methods, are consistent with our regime-switching model.

I. INTRODUCTION

Modeling the dynamics of the short-term interest rate is one of the most
important topics in asset pricing studies. The instantaneous risk-free interest
rate or the so-called short rate is the state variable that determines the evolution
of the yield curve in an important class of term structure models, such as
Vasicek (1977) and Cox et al. (1985) (hereafter CIR). Therefore, it is of
fundamental importance for pricing fixed-income securities. Many theoretical
models for the short rate have been developed in the literature, and as many
empirical studies have been conducted using these models.1

In the theoretical term structure literature, the short rate is typically modeled
as a time-homogeneous diffusion process

drt ¼ mðrt ; yÞdt þ sðrt ; yÞdBt ð1Þ

n We thank Yacine Aı̈t-Sahalia, Warren Bailey, Yongmiao Hong, Jonathan Ingersoll, Robert
Jarrow, and seminar participants at Cornell University and the American Finance Association
Meeting for helpful comments. We are especially grateful to the editor, Henry Cao, and an
associate editor for insightful comments and suggestions. We also thank Yacine Aı̈t-Sahalia for
providing the Eurodollar interest rate data. We are responsible for any remaining errors.

1 Other theoretical models include Beaglehole and Tenney (1992), Brennan and Schwartz (1979),

Constantinides (1992), Courtadon (1982), Cox et al. (1980), Dothan (1978), Duffie and Kan (1996),

Longstaff and Schwartz (1992), Marsh and Rosenfeld (1983) and Merton (1973). Empirical studies

on the short rate include Aı̈t-Sahalia (1996a,b), Andersen and Lund (1997), Ang and Bekaert (1998),

Brenner et al. (1996), Brown and Dybvig (1986), Chan et al. (1992), Chapman and Pearson (1999),

Chapman et al. (1999), Conley et al. (1997), Gray (1996), and Stanton (1997), among others.
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where fBt, t�0g is a standard Brownian motion and y represents model
parameters. The drift and diffusion functions m( � ) and s2( � ) determine the
dynamics of the short rate. Most existing models assume that the interest rate
exhibits mean-reversion and that the drift is a linear function of the level of the
interest rate. They also assume that the diffusion function takes the form of
ðsrgÞ2; where g measures the sensitivity of interest rate volatility to the level of
interest rate. With g50 and 0.5, we obtain the famous Vasicek and CIR models,
respectively. Despite many empirical studies using the short rate, the evidence
on the functional forms of the drift and diffusion is still not conclusive.

Aı̈t-Sahalia (1996b) and Stanton (1997), using nonparametric methods,
overwhelmingly reject almost all existing models for the short rate: They find
that the drift term is a nonlinear function of the short rate, contrary to the
assumption in most models. Both studies show that for the lower and middle
ranges of the interest rate, the drift is almost zero but becomes significantly
negative when the interest rate is high. These findings lead to the development
of nonlinear term structure models, such as that of Ahn and Gao (1999).

However, the evidence of nonlinear drift has been challenged by Pritsker
(1998) and Chapman and Pearson (1999), who find that the nonparametric
methods of Aı̈t-Sahalia (1996b) and Stanton (1997) have severe small sample
problems, especially near extreme observations. This bias can cause one to find
nonlinearity in the drift when it is in fact linear.

Controversies about the diffusion term also exist in the literature. On one
hand, there seems to be some consensus that g is somewhere between 1 and 2.
For example, Chan et al. (1992) (hereafter CKLS) show that in a single factor
model of the short rate, g roughly equals 1.5, and all the models with g�1 are
rejected. (In this paper, we refer to the model in which g is a free parameter as
the CKLS model). The findings in Aı̈t-Sahalia (1996b), Stanton (1997), and
Conley et al. (1997) are largely consistent with CKLS’s results.

On the other hand, there are questions about the robustness of this result.
For example, the g51.5 model dictates that interest rate volatility is very
sensitive to the level of interest rate: Increase in the interest rate necessarily
leads to increased volatility, while decrease in the interest rate necessarily leads
to decreased volatility. However, as pointed out by Brenner et al. (1996)
(hereafter BHK), ‘in several historical periods (such as 1983–1984), rates were
high but stable, and in several periods (such as late 1992 and early 1993), rates
were low but volatility was high.’ While this phenomenon can hardly be
captured by the traditional models, it could be modeled by a GARCH process or
a stochastic volatility model. BHK (1996) and Andersen and Lund (1997) show
that a model with g50.5 fits the short rate quite well if s2

t follows a GARCH (1,1)
process or a stochastic volatility model. Campbell et al. (1997) also suggest that
some regime changes might be needed to fit the data over a longer sample
period, and that ‘it may be that a model with g50 or g50.5 is adequate once
regime changes are allowed.’ Given these considerations, it is reasonable to
conclude that there is no strong consensus in the current literature about what
is a good model for the short rate.
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While most of the existing studies model the short rate as a time
homogeneous diffusion, it is conceivable that its stochastic behavior might
change over time due to changes in monetary policy, business cycle and other
macroeconomic factors. Therefore, explicitly modeling the time changing
behavior of the short rate might reveal important features of the data that
cannot be obtained by studying a time homogeneous model. So in this paper,
we study the short rate dynamics from the perspective of a Markov regime-
switching model. Specifically, we focus on the following regime-switching
model for the short rate:

drt ¼ ½aðStÞ þ bðStÞrt �dt þ sðStÞrgt dBt ð2Þ

where St is an unobserved state variable, which follows a continuous time
Markov chain with a finite number of states. In this model, interest rate exhibits
different behaviors in different regimes. If g equals 0 and 0.5, we obtain the
multi-regime Vasicek and CIR models, respectively. If we allow g to be estimated
from the data, we obtain the multi-regime CKLS model.

Since the pioneering work of Hamilton (1989), regime-switching models
have been widely used to model the time series behavior of many important
economic variables. For applications to the short rate data, see, for example,
Gray (1996), Bekaert et al. (1997), and Ang and Bekaert (1998). However, three
unique features of our research distinguish it from these studies.

First, whereas the justification of a second regime in the data has been
primarily based on economic intuition, we formally test this hypothesis using
the likelihood ratio test developed by Garcia (1998), which is extended in this
paper to cover a two-regime CKLS model. This is probably one of the first
applications of Garcia’s results to the short rate data. We are only aware of one
other paper that conducts this kind of test; namely, Ang and Bekaert (1998)
which uses a test developed by Hansen (1992). However, Hansen’s method only
provides a bound on the distribution, while Garcia’s results provide the exact
asymptotic distribution. Hansen’s test is also computationally more challenging
to implement than Garcia’s.

Second, unlike most existing regime-switching models of the short rate,
which assume that g equals either 0 or 0.5, we estimate g as a free parameter
from the data in order to examine the effects of regime shifts on such an
important parameter.

Finally, unlike most existing studies which focus on the sample period
from the late 1960s to the early 1990s (a period in which g51.5 works well),
we consider the entire post-World War II era (from January 1946 to
December 1998). This allows us to examine the robustness of the findings of
CKLS (1992).

We perform our analysis using the daily 7-day Eurodollar rate of Aı̈t-Sahalia
(1996a, b) and the monthly 3-month US T-bill rate from CRSP. Our empirical
evidence shows that the short rate can be described as a Markov regime-
switching model with two different regimes: In one regime, interest rate
exhibits strong mean-reversion and high volatility; in another regime, it
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behaves like a random walk with low volatility. Our results provide supporting
evidence of term structure models that explicitly model regime shifts in the
spot rate, such as Bansal and Zhou (2002) and Dai et al. (2007).

These findings have important implications for both the drift and diffusion
functions, and thus the dynamics of the short rate. First, we confirm
the intuition of Campbell et al. (1997): a regime-switching CIR model
can fit the short rate data quite well. We find that in the two-regime CKLS
model, g is about 0.5 when estimated using Aı̈t-Sahalia’s Eurodollar rate from
1973 to 1995, and g is about 0.79 using the 3-month T-bill rate from 1946 to
1998.2

Second, our regime-switching model is more flexible than the traditional
models in describing the conditional volatility of the interest rate. Unlike
traditional models in which volatility solely depends on the level of the
interest rate, our model allows the volatility to be low while the interest rate is
high, and the volatility to be high while the interest rate is low. BHK (1996)
specifically points out two historical episodes as challenges to the traditional
model: 1983–1984 and 1992–1993. Our model clearly identifies the 1983–1984
period as a low volatility regime and the 1992–1993 period as a high volatility
regime.

Finally, our regime-switching model provides evidence of nonlinearity in the
drift of the short rate. We apply the nonparametric methods of Aı̈t-Sahalia
(1996b) and Stanton (1997) to data simulated from our two-regime model. The
nonparametric estimates of the drift using simulated data are very similar to
those found by Aı̈t-Sahalia and Stanton using actual interest rate data.
Therefore, we show that the nonlinear drift documented in the nonparametric
literature could be consistent with an underlying process of the short rate,
which has a true nonlinear drift.

The rest of this paper is organized as follows. In Section II, we discuss the
estimation and testing of Markov switching models for the short rate. In Section
III, we present the empirical findings. In Section IV, we re-examine the evidence
of nonlinear drift documented in the nonparametric literature. In Section V,
we conclude the paper.

II. ESTIMATION AND TESTING OF REGIME-SWITCHING MODELS

In this section, we first discuss the maximum likelihood estimation of regime-
switching models, and then introduce the likelihood ratio test of Garcia (1998)
for the number of regimes. We also derive the covariance function for a two-
regime CKLS model, which serves as an input to Garcia’s test.

2 Bliss and Smith (1998) reach similar conclusions by allowing structural breaks in the time

period of Federal Reserve Experiment of October 1979 through September 1982. However, their

model does not allow regime shifts outside that period. They do not address the nonlinear drift

issue either.
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A. Maximum likelihood estimation of regime-switching models

We assume that the dynamics of the short rate are given in equation (2). Let R
be the rate matrix of the continuous time Markov chain that St follows. A matrix
R is a rate matrix if all of its off-diagonal elements are nonnegative and the sum
of the elements in every row is zero. With two regimes where St equals 0 in the
first regime and 1 in the second regime, the rate matrix R is

R ¼ �kð0Þ kð0Þ
kð1Þ �kð1Þ

� �
:

The elements of R determine the probability of transition from one state to
another. Thus the transition matrix of S(t) in a time interval of Dt is I1RDt1o(Dt)
Moreover, the stationary distribution of a Markov chain with the above matrix
is given by p1ð0Þ ¼ kð1Þ

kð0Þþkð1Þ and p1ð1Þ ¼ kð0Þ
kð0Þþkð1Þ; where p1ðiÞ denotes the long-

run probability that St equals 0 and 1, respectively.
In the analysis of this paper, we consider the discretized version of the above

continuous-time diffusion process. As shown by Stanton (1997), the discretiza-
tion bias is largely inconsequential for the daily, weekly and monthly sampling
frequencies used in this paper.

Consider the two-regime-switching model for the short rate:

Drt ¼ aðStÞ þ bðStÞrt�1 þ sðStÞrgt�1et ð3Þ

where St takes two different values, 0 and 1, and et has a standard normal
distribution. We call the regime in which St50 the first regime, and the regime
in which St51, the second regime. The transition probabilities of the Markov
chain are

P St ¼ 1jSt�1 ¼ 1ð Þ ¼ p;

P St ¼ 0jSt�1 ¼ 0ð Þ ¼ q:

As shown by Hamilton (1989, 1994) and Gray (1996), the above regime-
switching model can be estimated using the maximum likelihood method. Let y
be the model parameters to be estimated, and n, the total number of
observations. Then the log likelihood function equals

LðyÞ ¼
Xn

t¼1

½logff ðDrt jFt�1Þg�

¼
Xn

t¼1

log
X1

i¼0

f ðDrt jSt ¼ i;Ft�1ÞPrðSt ¼ ijFt�1Þ
( )" #

where f ðDrt jSt ¼ i;Ft�1Þ � NðaðStÞ þ bðStÞrt�1; s2ðStÞr2g
t�1Þ; and Ft�1 represents the

information set available at t�1, which we assume contains only the past
interest rates. The density of Drt given Ft�1 f ðDrt jFt�1Þ is a weighted average of
f ðDrt jSt ¼ i;Ft�1Þ; the conditional density of Drt given that Drt would be
generated from regime i at t. The weight is PrðSt ¼ ijFt�1Þ; the ex ante probability
that the data would be generated from regime i at t given Ft�1.
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The likelihood function can be constructed recursively from the following
procedure. For each time t, given the probability that the data is from regime j at
t�1, and the transition probability, the ex ante probability that the data would
be generated from regime i equals

PrðSt ¼ ijFt�1Þ ¼
X1

j¼0

PrðSt ¼ ijSt�1 ¼ j;Ft�1ÞPrðSt�1 ¼ jjFt�1Þ

¼
X1

j¼0

PrðSt ¼ ijSt�1 ¼ jÞPrðSt�1 ¼ jjFt�1Þ:

Given this ex ante probability, the conditional density at t is

f ðDrt jFt�1Þ ¼
X1

i¼0

f ðDrt jSt ¼ i;Ft�1ÞPrðSt ¼ ijFt�1Þ:

Finally, the probability that the data is from regime i at time t based on F can
be obtained from the following equation using Bayes rule:

PrðSt ¼ ijFtÞ ¼PrðSt ¼ ijDrt ;Ft�1Þ

¼ f ðDrt jSt ¼ i;Ft�1ÞPrðSt ¼ ijFt�1ÞP1
i¼0 f ðDrt jSt ¼ i;Ft�1ÞPrðSt�1 ¼ ijFt�1Þ

:

If we start the above procedure with PrðS0 ¼ 0jF0Þ ¼ 1�p
2�p�q and PrðS0 ¼ 1jF0Þ ¼

1�q
2�p�q ; and repeat it from t50 to n, we obtain the log-likelihood function.

B. Likelihood ratio test of number of regimes

While the estimation of regime-switching models is straightforward, testing the
number of regimes in the data is much more complicated. This is because the
standard regularity conditions required by the classical asymptotic theory break
down in regime-switching models, and the likelihood ratio statistic no longer
follows a Chi-square distribution. Specifically, when testing the null of a single-
regime model versus the alternative of a two-regime model, under the null
hypothesis, some parameters of interest are not identified, and the Fisher
information matrix is singular.

Given the above difficulties, most empirical studies in the literature simply
do not conduct any formal statistical test. Instead, they justify the importance
of the second regime mainly on economic intuition. This practice increases the
danger of model misspecification in many empirical applications. Therefore
Hamilton (1994) emphasizes that ‘one of the most important hypotheses one
would want to test for regime-switch models concerns the number of regimes in
the data.’ Several attempts have been made to address this challenging problem
in the literature.

Hansen (1992) considers the likelihood as a function of unknown parameters
and uses the empirical process theory to bound the asymptotic distribution of
a standardized likelihood ratio test for regime-switching models. However,
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as Garcia (1998) points out, Hansen’s method is very difficult to implement in
practice because it involves evaluating the likelihood across a grid of different
values for the parameters of interest in the model. For each set of values,
the constrained likelihood function must be optimized with respect to the
nuisance parameters of the model. Since the computational burden on even the
simplest models can be heavy if the grid search over the parameter space is
extensive, this method does not appear very promising for the more
complicated models. Moreover, Hansen’s method provides a bound for the
likelihood ratio statistic instead of a critical value, which means that the test
may be conservative.

Garcia (1998) avoids this computational burden by treating the transition
probability parameters as nuisance parameters and setting the null hypothesis
solely in terms of the parameters governed by the Markov state variable. After
reformulating the problem in this way, Garcia assumes that the distribution
theory proposed by Davies (1977, 1987), Andrews and Ploberger (1994) and
Hansen (1996) for inference in the presence of nuisance parameters under the
null hypothesis is applicable to regime-switching models. Based on this
assumption, he derives analytically the asymptotic null distribution of the
likelihood ratio test and related covariance functions of various two-regime
models. Through Monte Carlo simulation, Garcia shows that the derived
asymptotic distribution offers a very good approximation to the empirical
distribution.

Given the apparent success achieved by Garcia’s test, we apply his results
to a two-regime CKLS model. To do so, we derive the input to the asymptotic
distribution, the covariance function for a two-regime CKLS model.
This is probably one of the first applications of Garcia’s results to the short
rate data.

It is convenient for our derivation if the model in equation (3) is re-written as

rt ¼ aðStÞ þ bðStÞ þ 1½ �rt�1 þ sðStÞrgt�1et ð4Þ

where

aðStÞ ¼ a1 þ a2St ; bðStÞ þ 1 ¼ b1 þ b2St ; and sðStÞ ¼ s1 þ s2St :

After making substitutions, we get

rt � ða1 þ b1rt�1Þ � ða2St þ b2rt�1StÞ ¼ ðs1 þ s2StÞrgt�1et : ð5Þ

For ease of exposition, let x5(a1, b1,s1, g), x5(a2,b2, s2), Z5(p, q), and
y5(x, z, Z). We assume that the parameters W5(x, z) belong to an open set X
with compact support in R7. Hence, the whole parameter space for equation (5)
is Y ¼ X� ½0;1�2 : The conditional density of rt is given by

pðrt jSt ;Ct�1Þ ¼
1ffiffiffiffiffiffi

2p
p
ðs1 þ s2StÞrgt�1

exp � ½rt � ða1 þ b1rt�1Þ � ða2St þ b2rt�1StÞ�2

2 ðs1 þ s2StÞ2 r2g
t�1

( )
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where Ct�1 ¼ rt�1; . . . ; r1; st�1; . . . ; s1f g: This allows us to derive the joint
likelihood as

pðrn; . . . ; r1; sn; . . . ; s1; yÞ ¼
Yn
t¼1

pðrt jSt ;Ct�1Þ

and the marginal likelihood of the observed interest rate as

pðrn; . . . ; r1; yÞ ¼
Yn
t¼1

X1

St¼0

pðrt jSt ;Ct�1ÞPrðSt jFt�1Þ:

We are interested in testing the null hypothesis

H0 : A single regime CKLS model

against the alternative

H1 : A nondegenerate two� regime CKLS model:

The likelihood ratio statistic can be defined as

LRT ¼ log
supðyÞ2H1

pðrn; . . . ; r1; yÞ
supðyÞ2H0

pðrn; . . . ; r1; yÞ
¼ sup

y2H1

LðyÞ � sup
y2H0

LðyÞ

where L(y) denotes the log likelihood

L yð Þ ¼ logpðrn; . . . ; r1; yÞ:

Following Garcia, we represent the null as z5(0, 0, 0). It is important to notice
that under H0, Z is unidentified. Garcia’s approach to circumvent this difficulty
is to obtain first a stochastic representation of the log likelihood ratio process
for fixed p and q. This can be done because for fixed p and q in (0, 1), the testing
problem is regular and can be handled by the classical techniques. Then he
maximizes the representation over p and q to obtain the limiting distribution of
the likelihood ratio statistic, i.e.

sup
y2H1

LðyÞ ¼ sup
Z2ð0;1Þ2

½sup
W2X

LðW; ZÞ�:

We denote the maximum likelihood estimator (hereafter MLE) of x under the
null hypothesis by ~x, and the MLE of W under the alternative while holding Z
fixed by ŴZ:

~x ¼ arg max
x

Lðx; z0; ZÞ; ŴðZÞ ¼ arg max
W

LðW; ZÞ

where z05(0, 0, 0). We can then represent the likelihood ratio statistic as

LRT ¼ sup
Z2ð0;1Þ2

LRTðZÞ
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where

LRTðZÞ ¼ ½LðŴðZÞ; ZÞ � Lð~x; z0; ZÞ�:

Before presenting the asymptotic distribution of the likelihood ratio statistic,
we introduce the following definitions. The (normalized) score function for
fixed Z is

ZWðW; ZÞ ¼ n�1 @

@W
LðW; ZÞ ð6Þ

the limit of the covariance matrix of the score functions is

LðZ; Z0Þ ¼ lim
n!1

nE ZWðW; ZÞZW ðW; Z0ÞT
h i

ð7Þ

and the Fisher information matrix for fixed Z is I(Z)5[L(Z, Z)]�1.

Theorem 1. The likelihood ratio statistic is distributed asymptotically as

LRT � 1

2
sup

Z2 0;1ð Þ2
GðZÞ½ �2

where G(Z) is a Gaussian process with a covariance matrix K( , ). This kernel is
given by KðZ; Z0Þ ¼ GT

ZLðZ; Z0ÞGZ0 ; where GT
Z ¼ I

�1=2
22 ðI21; I22Þ; and I12, I22, and I22 are

the submatrices (partitioned according to W5(x, z)) of the Fisher information
matrix I:

I Zð Þ ¼ I11 I12

I21 I22

� �
¼ L Z; Zð Þ�1 ¼ L11 L12

L21 L22

� ��1

:

Proof. See Garcia (1998) and the reference therein. &

The above theorem shows that the likelihood ratio statistic is distributed
asymptotically as the supremum of a functional of a Gaussian process with a
certain covariance structure. This result provides a criterion for testing the
existence of a second regime in Markov switching models.

To implement this test in practice, the critical values must first be obtai-
ned by simulating the Gaussian process with the particular covariance
kernel. In what follows, we explicitly calculate the elements of L(Z, Z 0) for a
two-regime CKLS model. First, we derive a representation of the score
function.

Lemma 1. The scores evaluated at y05(x0, z0, Z) for a particular given
ZA(0, 1)�(0, 1) of the nuisance parameters are given by:
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Za1
jy0
¼n�1

Xn

t¼1

et

s0rgt�1

; Zb1
jy0
¼ n�1

Xn

t¼1

et

s0rg�1
t�1

;

Zs1
jy0
¼n�1

Xn

t¼1

1

s0
e2
t � 1

� �
; Zgjy0

¼ n�1
Xn

t¼1

lnrt�1 e2
t � 1

� �
;

Za2
jy0
¼n�1

Xn

t¼1

X
St

etSt

s0rgt�1

pt ; Zb2
jy0
¼ n�1

Xn

t¼1

X
St

etSt

s0rg�1
t�1

pt ;

Zs2
jy0
¼n�1

Xn

t¼1

X
St

St

s0
e2
t � 1

� �
pt

where x0 ¼ ða0; b0; s0; g0Þ; z0 ¼ ð0;0;0Þ; and pt ¼ Pr St ¼ st jrn . . . ; r1; W; Zð Þ:

Proof. See Appendix A. &

The next lemma provides an explicit evaluation of the covariance kernel
using the scores derived in Lemma 1.

Lemma 2. For any Z5(p, q) and Z05(p0, q0), the matrix L(Z, Z0) is given by

L Z; Z0ð Þ

¼

1
s2

0

Er�2g
1

1
s2

0

Er�2gþ1
1 0 0 p0

s2
0

Er�2g
1

p0

s2
0

Er�2gþ1
1 0

1
s2

0

Er�2gþ1
1

1
s2

0

Er�2g�2
1 0 0 p0

s2
0

Er�2gþ1
1

p0
s2

0

Er�2g
1 0

0 0 2
s2

0

2
s2

0

E ln r1 0 0 2p0

s2
0

0 0 2
s2

0

E ln r1
2
s2

0

E ½ln r1�2 0 0 2p0

s2
0

E ln r1

p
s2

0

Er�2g
1

p
s2

0

Er�2gþ1
1 0 0 l

s2
0

Er�2g
1

l
s2

0

Er�2gþ1
1 0

p
s2

0

Er�2gþ1
1

p
s2

0

Er�2g
1 0 0 l

s2
0

Er�2gþ1
1

l
s2

0

Er�2gþ2
1 0

0 0 2p
s2

0

2p
s2

0

E ln r1 0 0 2l
s2

0

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

where l5min(p,p0), p ¼ 1�q
2�p�q; and p0 ¼ 1�q0

2�p0�q0:
3

Proof. See Appendix A. &

This covariance matrix can be used to simulate the Gaussian process in order
to obtain the critical values of the asymptotic distribution. A general procedure
for simulating the Gaussian process is given by Garcia (1998).

3 It is interesting to note that if we rearrange the parameter vector as (a1; a2;b1;b2; s1; s2; g), the

matrix becomes a diagonal block matrix.
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III. EMPIRICAL RESULTS

In this section, we estimate and test Markov regime-switching models for the US
short rate data. The maximum likelihood estimates of model parameters are
obtained by minimizing the negative of the log-likelihood function that was
constructed in the previous section using numerical optimization. For a
detailed description of our numerical optimization algorithm, see Gay (1983).

A. The data

We use two different data sets in our empirical study. The first is the daily 7-day
Eurodollar rate of Aı̈t-Sahalia (1996a, b), with a sample period from June 1,
1973, to February 25, 1995. The second is the monthly 3-month T-bill rate from
CRSP with a sample period from January 1946 to December 1998. We use the
first data set for empirical estimation of our models as well as for comparison
with previous findings in the nonparametric literature. We use the second data
set to check the robustness of our results and to study the behavior of the short
rate over a longer historical period. Figure 1 plots the two interest rate series,
and Table 1 reports the summary statistics of the two data sets.

B. Regime shifts in the short rate: evidence from eurodollar rate

In this section, we first estimate the single-regime Vasicek, CIR and CKLS
models using the Eurodollar rate. Then we estimate the two-regime versions of
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Figure 1 Time Series of Short-Term Interest Rate.
The top panel plots the time series of the daily annualized 7-day Eurodollar rate from
June 1, 1973 to February 25, 1995. The bottom panel plots the time series of the

monthly 3-month US T-bill rate from January 1946 to December 1998.
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these models. Finally, we provide a formal statistical test for the two-regime
CKLS model.

The estimates of the single-regime Vasicek, CIR and CKLS models are,
respectively, contained in Columns 2–4 of Table 2. Most of our estimates using
the Eurodollar rate are similar to those obtained by CKLS (1992) using the T-bill
rate, with the exception of the drift terms. While CKLS (1992) find that the drift
parameters of all three models are not statistically significant, we find that they
are significant for the Vasicek and CIR models. But we agree with CKLS (1992) in
that the speed of mean reversion is not significant for their model. Importantly,
we find that g is about 1.3, very close to the value of 1.5 found by CKLS (1992).
Our results confirm those of CKLS (1992): There is no strong evidence for mean
reversion for the short rate, but g is high and close to 1.5.

The maximum likelihood estimates of the two-regime models using the
Eurodollar rate are contained in Table 3. These estimates reveal some interesting

Table 1 Summary statistics

Mean SD r1 r2 r3 r4 r5 r6

Panel A. Bank of America daily 7-day Eurodollar rate from 1973.6 to 1995.2n

rt 0.08362 0.03591 0.9389 0.8785 0.8300 0.8014 0.7783 0.7715
Drt �0.0000035 0.004063 0.0214 �0.0069 �0.0166 �0.0024 0.0086 0.0157

Panel B. CRSP monthly 3-month T-bill rate from 1946.1 to 1998.12. Total 636 observationsw

rt 0.04943 0.031 0.9849 0.9669 0.9506 0.9350 0.9217 0.9078
Drt 0.0064 0.0051 0.1111 �0.0669 �0.0256 �0.0844 0.0234 �0.1348

nTotal 5505 observations. ri are monthly autocorrelations of the series at lag i. The interest rate is
annualized, continuously compounded and expressed in decimal points.
wThe interest rate is annualized, continuously compounded and expressed in decimal points.

Table 2 Single regime models for eurodollar rate 1973.6–1995.2

Vasicek CIR CKLS

a
(t-stat)

0.053 0.030 0.014
(3.75) (2.90) (1.97)

b
(t-stat)

�0.0064 �0.0036 �0.0012
(�4.22) (�2.67) (�0.95)

s
(t-stat)

0.41 0.12 0.02
(104.35) (105.34) (31.91)

g
(t-stat)

0 0.5 1.31
(87.69)

Log likelihood �2843.24 �1752.55 �1028.97

Maximum likelihood estimation of single regime models for daily 7-day Eurodollar rate from June
1, 1973, to February 25, 1995. The models being estimated are given by the following equation:
Drt5a1brt�11s rgt�1et, where et are i.i.d. standard normal. For the Vasicek and CIR models, g equals
0 and 0.5, respectively, and for the CKLS model, g is estimated from the data. These parameter
values correspond to a spot rate that is annualized, continuously compounded, and expressed in
percentage terms.
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features of the short rate process which are disguised by the single-regime
model.

First, we find that the behavior of the short rate is quite different in the two
different regimes. In the first regime, the short rate behaves almost like a
random walk because all parameters of the drift are close to zero and statistically
insignificant. In this regime, �a(0)/b(0) ranges from 0.6% for the Vasicek model
to 2% for the CIR and CKLS models. Since all the data in our sample are above
2%, the drift in the first regime is always positive.4 In the second regime, the
interest rate has a higher long-run mean, with �a(1)/b(1) ranging from 10.8% to
11.5% for the three models. It also exhibits strong mean reversion as b(1) is
negative and statistically significant. The interest rate also has a higher volatility
in the second regime, almost eight to 10 times greater than its volatility in the
first regime. Our results paint an interesting picture of the dynamics of the short
rate: When the interest rate is low, it typically behaves like a random walk with

Table 3 Regime switch models for eurodollar rate

Vasicek CIR CKLS

a(0)
(t-stat)

0.000051 �0.000055 �0.000057
(0.18) (�0.16) (�0.17)

a(1)
(t-stat)

0.23 0.18 0.18
(3.23) (3.24) (3.10)

b(0)
(t-stat)

�0.000079 0.000027 0.000030
(�0.15) (0.055) (0.063)

b(1)
(t-stat)

�0.020 �0.017 �0.017
(�3.48) (�3.00) (�2.91)

s(0)
(t-stat)

0.075 0.030 0.029
(58.02) (61.60) (13.29)

s(1)
(t-stat)

0.83 0.26 0.26
(44.05) (41.29) (10.84)

g
(t-stat)

0 0.5 0.51
(13.30)

q
(t-stat)

0.95 0.94 0.94
(210.36) (192.99) (195.36)

p
(t-stat)

0.82 0.77 0.76
(53.02) (40.80) (39.45)

Log likelihood 2327.79 2434.51 2434.52

Maximum likelihood estimation of two-regime models for daily 7-day Eurodollar rate from June
1, 1973, to February 25, 1995. The model being estimated is given by the following equations:
Drt5a(0)1b(0)rt�11s(0)rgt�1et, if St50; Drt5a(1)1b(1)rt�11s(1)rgt�1et if St51, where et are i.i.d.
standard normal and St follows a first-order Markov chain whose transition probabilities are given
by p5Pr(St51|St�151) and q5Pr(St50|St�150). We call the regime in which St50 the first regime,
and the regime in which St51 is the second. For the Vasicek and CIR models, g equals 0 and 0.5,
respectively, and for the CKLS model, g is estimated from the data. These parameter values
correspond to a spot rate that is annualized, continuously compounded, and expressed in
percentage terms.

4 These interpretations have to be taken with caution, given that all the parameters of the drift in

the first regime are not statistically significant.
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low volatility, and when the rate is high, both the speed of mean-reversion and
volatility increase. The persistence of the low volatility regime is higher than
that of the high volatility regime, given that q equals 0.94 while p ranges from
75% to 82% for the three different models.

Second, unlike what has been found in the single-regime model, our estimate
of g for the two-regime CKLS model is very close to 0.5. This suggests that once
the effects of regime switching are taken into account, the sensitivity of interest
rate volatility to the level of interest rate is greatly reduced, and that a two-
regime CIR model provides a good description of the data. This confirms the
intuition of Campbell et al. (1997), who argue that in a regime-switching
model, ‘if regimes with high mean parameters are also with high volatility
parameters, then such a model may also explain the apparent sensitivity of
interest rate volatility to the level of interest rate without invoking a high value
of g00.

We apply the likelihood ratio statistic developed in the previous section to
test the statistical significance of the second regime in the data. Since Z and Z0

enter the covariance matrix L(Z, Z0) only through the function p ¼ 1�q
2�p�q; it is

sufficient to set a grid for p that is {p1, . . ., pN}. Table 4 shows the critical values
of the asymptotic distribution obtained from simulating the supremum of the
functional of the Gaussian process for pA(0.01, 0.99) with an increment of 0.01.
The test overwhelmingly rejects the null hypothesis of a single-regime model in
favor of a two-regime model.5

Many economic arguments have been given for why the regime-switching
model proposed here is a reasonable data generating processes for the short rate.
For example, Bekaert et al. (1997) interpret the low volatility regime as the
‘desired’ regime for the monetary authority, since expected inflation is low and
real interest rates are at the long-run levels. In such a regime, the interest rate
behaves like a random walk, as the monetary authority smooths the shocks that
buffet the monetary and real sectors of the economy. In the higher volatility
regime, the economy has evolved such that there is now higher expected
inflation or possibly higher real interest rates. Aggregate demand may be
surging and real growth may be accelerating. As interest rate rises, future short
rates are expected to be higher if the monetary authority is unsuccessful at

Table 4 Critical values for the asymptotic distribution of the likelihood ratio
statistic

% of Distribution 99 95 90 80 70 50 10

Critical values 22.36 18.01 15.81 13.51 12.06 9.78 5.43

The critical values are simulated from the asymptotic distribution given in Theorem 1. p is chosen
from (0.01, 0.99) with 0.01 increment, and we simulate the distribution 10,000 times.

5 Numerical simulations show that empirical critical values of the likelihood ratio test are close to

the asymptotic critical values. See also Figure 1 of Ang and Bekaert (1998).
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bringing inflation down. To curb inflation, the monetary authority must now
eschew smoothing interest rates. Interest rates may display greater mean
reversion as the monetary authority attempts to reduce inflation from its
current level, and they will display greater conditional variance with less
smoothing. The macroeconomic shocks hitting asset markets may also have
greater variance in these uncertain times.6

C. Regime shifts in the short rate: a longer perspective

To check the robustness of the results obtained from the Eurodollar rate and to
study the behavior of the US short rate over a longer historical period, we apply
the analysis for the Eurodollar rates to the 3-month US T-bill rate from CRSP for
the sample period between January 1946 and December 1998. Table 5 contains
our estimates of the single-regime models. We find that, over the entire post-
World War II period, g is only about 0.62, a value that is much lower than 1.5
but very close to 0.5.

Table 6 contains the estimates of the three two-regime models for the short
rate using the monthly data of the 3-month T-bill rate from January 1946 to
December 1998. These results are consistent with our previous findings using
the Eurodollar rate. For example, we find that the behavior of the interest rate in
the two different regimes is very similar to that of the Eurodollar rate. The first
regime is also characterized by low volatility, which is about a quarter of that of
the second regime. Given that both a(0) and b(0) are positive, the drift in the
first regime is always positive. Therefore, the interest rate behaves like a
Brownian motion with weakly positive drift in the first regime. In the second

Table 5 Single-regime model for 3-month T-bill rate

Vasicek CIR CKLS

a
(t-stat)

0.081 0.044 0.042
(2.12) (2.50) (2.85)

ba
(t-stat)

�0.015 �0.0077 �0.0069
(�2.29) (�1.56) (�1.42)

sa
(t-stat)

0.50 0.19 0.16
(35.69) (35.57) (21.88)

ga
(t-stat)

0 0.5 0.62
(23.34)

Log likelihood �466.13 �277.18 �267.88

Maximum likelihood estimation of single regime models for the monthly 3-month T-Bill rate
between January 1946 and December 1998. The models being estimated are given by the
following equation: Drt5a1brt�11s rgt�1et, where et are i.i.d. standard normal. For the Vasicek and
CIR models, g equals 0 and 0.5, respectively, and for the CKLS model, g is estimated from the data.
These parameter values correspond to a spot rate that is annualized, continuously compounded,
and expressed in percentage terms.

6 This paragraph borrows heavily from Bekaert et al. (1997).
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regime, the interest rate has a strong mean-reversion and a high volatility. The
long-run mean of the interest rate estimated using T-bill data in this regime is
much lower than that estimated using the Eurodollar rates, ranging from 3.7%
to 5.3% for the three different models. The difference is probably caused by the
low T-bill rates in the early part of the sample.

Most importantly, we find that in the two-regime CKLS model, g is roughly
0.76, substantially lower than the value of 1.5 which was found by CKLS (1992).
This confirms the intuition of Campbell et al. (1997) that over a longer sample
period, a regime-switching CIR model can fit the data well.

In summary, both the T-bill rate and the Eurodollar rate reveal similar time
series behaviors of the short rate. In the two-regime model, we find that g is
close to 0.5, and that the interest rate typically wanders around like a random
walk with low volatility; when the interest rate becomes high, volatility
increases and mean-reversion becomes strong.

Our regime-switching model provides an alternative to the traditional
models in describing the conditional volatility of the interest rate. Although
generally a high interest rate has a high volatility, our model allows the data to

Table 6 Regime switching models for 3-month T-bill rate

Vasicek CIR CKLS

a(0)f
(t-stat)

0.016 0.014 0.0046
(0.88) (1.19) (0.68)

a(1)
(t-stat)

0.15 0.11 0.15
(0.90) (1.70) (3.15)

b(0)
(t-stat)

0.0044 0.0051 0.007
(0.96) (1.18) (2.21)

b(1)
(t-stat)

�0.028 �0.028 �0.042
(�1.41) (�1.97) (�2.37)

s(0)
(t-stat)

0.18 0.089 0.062
(15.35) (6.52) (11.57)

s(1)
(t-stat)

0.90 0.32 0.24
(14.88) (9.29) (12.38)

g
(t-stat)

0 0.5 0.76
(14.75)

q
(t-stat)

0.95 0.95 0.95
(61.80) (27.24) (15.65)

p
(t-stat)

0.88 0.87 0.85
(21.72) (16.45) (15.65)

Log likelihood �176.18 �105.90 �92.627

Maximum likelihood estimation of two-regime models for the monthly 3-month T-Bill rate from
1946.1–1998.12. The models being estimated are given by the following equations:
Drt5a(0)1b(0)rt�11s(0)rgt�1et, if St50, and Drt5a(1)1b(1)rt�11s(1)rgt�1et, if St51, where et are i.i.d.
standard normal and St follows a first-order Markov chain whose transition probabilities are given
by p5Pr(St51|St�151) and q5Pr(St50|St�150). We call the regime in which St50 the first regime,
and the regime in which St51 is the second regime. For the Vasicek and CIR models, g equals 0
and 0.5, respectively, and for the CKLS model, g is estimated from the data. These parameter
values correspond to a spot rate that is annualized, continuously compounded, and expressed in
percentage terms.
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be generated from the low volatility regime when the rate is high, and from the
high volatility regime when the rate is low. This feature of our model can be
seen in Figure 2, which contains the plots of PrðSt ¼ ijFt�1Þ and PrðSt ¼ ijFtÞ;
respectively, the ex ante and the ex post probability that the world is in regime i
at time t. We look at the two important episodes in recent history which are
specifically pointed out by BHK (1996) as challenges to the traditional models:
1983–1984 and 1992–1993. In the first period, the rate is quite high and grows
steadily; in the second period, the rate is low, but volatility is relatively high.
Both probability plots clearly identify 1983–1984 as a low volatility regime and
1992–1993 as a high volatility regime. It is hard for the traditional models to
match the flexibility of our regime-switching model.7
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Figure 2 Ex Ante and Ex Post Probability of High Volatility Regime.
The top panel plots the time series of the monthly 3-month US T-bill rate from January
1946 to December 1998. The middle panel plots the ex ante probability that the data is
generated from the second regime, i.e., the regime with high volatility and strong mean-
reversion. The bottom panel plots the ex post probability that the data is generated from

the second regime.

7 Of course, this comparison may not be fair, as our regime switching model is basically a two-

factor model. The comparison of the performance of our regime-switching model with the

existing two-factor interest rate models would be an interesting topic for future research.
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Following the same simulation procedure as before, we apply the likelihood
ratio test to the monthly data. The critical values for the asymptotic distribution
are found in Table 7. Again the test overwhelmingly rejects the null hypothesis
of a single-regime model.

IV. IS THE SHORT RATE DRIFT NONLINEAR?

Using nonparametric methods, Aı̈t-Sahalia (1996b) and Stanton (1997) find
significant nonlinearity in the drift of the short rate. However, their findings
have been challenged by Pritsker (1998) and Chapman and Pearson (1999), who
show that the small sample problems in those nonparametric methods could
make one find nonlinear drift when the true drift is actually linear. Therefore,
the question of whether the drift of the short rate is linear or not has still not
been resolved.

Our regime-switching model shows that the drift of the short rate is
indeed nonlinear: When the interest rate is low, the short rate typically behaves
like a random walk, and when the interest rate is high, the short rate exhibits
strong mean-reversion. In this section, we show that the empirical findings of
Aı̈t-Sahalia (1996b) and Stanton (1997) are consistent with a true data
generating process which follows our regime-switching model. Specifically, we
show that when the nonparametric methods are applied to the data simulated
from our two-regime model, the estimates of the drift are very similar to those
found by Aı̈t-Sahalia (1996b) and Stanton (1997), who use actual US interest
rate data.

We simulate data using a two-regime model for the short rate. In each
regime, the short rate follows the CIR process:

drt ¼ ðaðStÞ þ bðStÞrtÞdt þ sðStÞ
ffiffiffiffi
rt
p

dBt :

Given the initial regime St�1, we simulate St according to the transition
probability of the Markov chain. Then within each regime, given the initial
value rt�1, we draw successive observations of rt from the transition density of
the CIR process, which is noncentral chi-square.

Table 7 Critical values for the asymptotic distribution of the likelihood ratio
statistic

% of distribution 99 95 90 80 70 50 10

Critical values 22.55 19.97 15.86 13.56 12.12 9.86 5.57

The critical values are simulated from the asymptotic distribution given in Theorem 1. p is chosen
from (0.01, 0.99) with 0.01 increment, and we simulate the distribution 10,000 times.
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A. Drift estimated using Aı̈t-Sahalia’s method

We first introduce the estimator used by Aı̈t-Sahalia (1996b), then apply it to the
data simulated from our regime-switching model. For the diffusion process
given by equation (1), the stationary density of the process equals

pðr; yÞ ¼ xðyÞ
s2ðr; yÞ exp

Z r 2mðu; yÞ
s2ðu; yÞ du

	 

where the lower limit of the integration is arbitrary, and x(y) is a constant
that ensures that p(r; y) integrates to one. The main idea of Aı̈t-Sahalia’s
estimation method is that if some parametric forms for m(rt; y) and s(rt; y)
represent the true data generating process, then the stationary density
implied by the above equation should be close to that estimated nonparame-
trically from the data. Aı̈t-Sahalia (1996b) selects the following flexible
forms:

mðrt ; yÞ ¼ a0 þ a1rt þ a2r2
t þ a3r�1

t

and

s2ðrt ; yÞ ¼ b0 þ b1rt þ b2rb3
t

where y 	 ða0; a1; a2; a3; b0; b1; b2; b3Þ: Aı̈t-Sahalia (1996a, b) proposes a mini-
mum mean square distance measure. In particular, he chooses

y
 	 arg min
y2Y

E½ðpðr; yÞ � pðrÞÞ2�

where the expectation is taken with respect to the true stationary density p(r).
The estimation is actually performed using

by
 	 arg min
y2Y

1

n

Xn

t¼1

ðpðrt ; yÞ � bpðrtÞÞ2:

We simulate a two-regime-switching CIR model and apply Aı̈t-Sahalia’s
procedure to the simulated data. To simplify the task of estimation, we assume
that s15s2, and that both are known to the econometrician. Under these
assumptions, Chapman and Pearson (1999) show thatZ r

r

2m u; yð Þ
s2 u; yð Þ du ¼2a0

s2
ln r � ln rð Þ þ 2a1

s2
r � rð Þ

þ a2

s2
r2 � r2
� �

� 2a3

s2

1

r
� 1

r

� �
:

Therefore, with an estimate of the stationary density, Aı̈t-Sahalia’s estimator
reduces to a simple ordinary least square problem in a transformation of bpðziÞ;
where zi is the equally spaced grid points over the support of the stationary
density. Specifically, the dependent variable is yi ¼ 1

2 s
2logðbpðziÞs2ziÞ; which is

regressed on a constant, ln zi, zi,
z2

i

2 , and � 1
zi
. The coefficients of the last four

terms are a0 through a3, respectively.
To match Aı̈t-Sahalia’s sample size, we simulate a time series with 5000

observations for 5000 times, and each time we estimate a0; a1; a2 and a3 using
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the above OLS procedure. In our nonparametric estimation of the stationary
density, we choose the IID bandwidth similar to that used by Aı̈t-Sahalia
(1996b), h ¼ ŝn�0:2; where ŝ is the sample standard deviation of the data and n is
the sample size. The parameters used in our simulation are shown in panel A of
Table 8.

The estimates of a0 through a3 averaged over 5000 simulations are shown in
column 2 of Table 9, along with the estimates by Aı̈t-Sahalia (1996b) which
use the Eurodollar rate. In Figure 3, the solid line represents the drift m(rt; y)
based on our estimates of a0 through a3, and the dashed line represents the
drift based on Aı̈t-Sahalia’s estimates. The two drifts are very similar to
each other. Both show significant mean-reversion for very low and very high
interest rates, and zero drift in the middle range. Aı̈t-Sahalia’s estimates display
stronger nonlinearity at both ends of the range of the data than ours do. One
possible reason for this divergence is that the bias of the nonparametric method
tends to make the nonlinearity stronger at the boundaries of the data. Since our

Table 8 Parameters used in simulation studies of nonparametric estimators

a(Si) b(Si) s (Si) P(StSt�1)

Panel A. Parameters used in simulation for Aı̈t-Sahalia (1996a, b) estimator
St50 0.000167 �0.000027 0.02585 0.94
St51 0.0018376 �0.0167 0.02585 0.76

Panel B. Parameters used in simulation for Stanton (1997) estimator
St50 0.000000045 �0.000027 0.0003 0.94
St51 0.0018376 �0.0167 0.02585 0.76

The following parameters are used to simulate a two-regime CIR model which is described by
the following continuous time model: drt5(a(0)1b(0)rt)dt1s(0)rt

0.5dBt, if St50, and drt5(a(1)1
b(1)rt)dt1s(1)rt

0.5dBt, if St51, where Bt is a standard Brownian motion and St follows a first-order
Markov chain with transition probabilities, p5Pr(St51|St�151) and q5Pr(St50|St�150). The
simulated data are expressed in percentage terms and converted into decimal numbers before the
methods of Stanton and Aı̈t-Sahalia are applied.

Table 9 Estimates of nonlinear drift using Aı̈t-Sahalia’s estimator

Estimates from simulated data Estimates in Aı̈t-Sahalia (1996a, b)

a0 �0.002189 �0.004643
a1 0.02186 0.04333
a2 �0.06330 �0.1143
a3 0.00003149 0.0001108

The parameters of the drift of a diffusion process are estimated using the nonparametric estimator
of Aı̈t-Sahalia (1996a, b). The diffusion process is given by the following equation: drt5(a01a1rt1
a2rt

21a3/rt)dt1s rt
0.5dBt. The simulated data used in the estimation is drawn from a two-regime

CIR model with the parameters from Panel A of Table 8. Column 2 contains the average estimates
of the parameters over 5000 simulations, and Column 3 contains estimates from Aı̈t-Sahalia
(1996a, b) using the daily 7-day Eurodollar rate.
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estimates are averaged over 5000 simulations, that bias might have been
reduced.

B. Drift estimated using Stanton’s method and local linear estimator

We first introduce the nonparametric estimator of Stanton (1997), then apply it
to the data simulated from the above regime-switching model. For robustness
check, we repeat the analysis using the local polynomial estimator of Fan and
Zhang (2003), which has superior finite sample performances than Stanton’s
method. For other advantages of the local polynomial approach, see Fan and
Gijbels (1996).

Recall the time-homogeneous diffusion process in equation (1). In discrete
time, we have

E½rtþ1 � rt jrt � ¼ mðrtÞDþ oðDÞ

where D is the discrete time step in a sequence of observations of the process rt,
and o(D) denotes a function x such that limD!0

xðDÞ
D ¼ 0:

Let frtgnt¼1 be a sample of size n from the continuous-time process rt, observed
at the discrete interval D. Furthermore, let fzigNi be a set of N points defining an
equally spaced partition of a subset of the support of the stationary density.
If the stationary density of rt is represented by p(r), a kernel estimator takes
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Figure 3 Drift Estimated Using Aı̈t-Sahalia’s Nonparametric Estimator.
The solid line represents the average drift estimated using Aı̈t-Sahalia’s nonparametric
estimator based on data simulated from a two-regime CIR model over 5000 simulations.
The parameters used to simulate the data are given in panel A of Table 8. The dashed
line represents the drift estimated using Aı̈t-Sahalia’s method based on the 7-day

Eurodollar rate.
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the form

bp zið Þ 	
1

n

Xn

t¼1

1

h
K

rt � zi

h


 �
	 1

n

Xn

t¼1

Khðrt � ziÞ

for i51, 2, . . ., N where K is a kernel function satisfying the conditionZ þ1
�1

K yð Þdy ¼ 1:

The kernel function provides a method of weighting ‘nearby’ observations in
order to construct a smoothed histogram. Stanton (1997) uses a Gaussian
kernel:

KðuÞ ¼ 1ffiffiffiffiffiffi
2p
p exp �1

2
u2

� �
; u 2 ð�1;þ1Þ:

The estimators in Stanton (1997) are based directly on the discretized version
of the diffusion equation, i.e.

mðrtÞ ¼
1

D
E½rtþ1 � rt jrt � þ

oðDÞ
D

:

The essence of Stanton’s approach is to apply the Nadaraya–Watson (NW)
kernel regression estimator to construct nonparametric estimators of the
conditional expectations in the above equation:

bmðziÞ ¼
1

D

Pn�1
t¼1 ðrtþ1 � rtÞKhðrt � ziÞPn�1

t¼1 Khðrt � ziÞ
:

While the NW estimator approximates the drift function by a constant in the
neighborhood of zi, the local polynomial approach approximates it by a
polynomial. That is,

mðrtÞ �mðziÞ þ m0ðziÞðrt � ziÞ þ . . .þ mðpÞðziÞ
p!

ðrt � ziÞp

¼
Xp

k¼0

bkðziÞÞ � ðrt � ziÞk

where bkðziÞ ¼ mðkÞðziÞ=k! and mðkÞðziÞ ¼ @mkðzÞ
@zk jz¼zi

:
In our analysis, we estimate m( � ) using a locally linear estimator by solving

the following weighted least square problem for each zi:

min
b0ðziÞ;b1ðziÞ

Xn�1

t¼1

fðrtþ1 � rtÞ � b̂0ðziÞ � b̂1ðziÞðrt � ziÞg
2

Khðrt � ziÞ:

From the above setup, it is obvious that the NW estimator is a special case of
the local polynomial method with p50.

To match the size of Stanton’s sample, we simulate a time series with 7500
observations for 5000 times. For each series, we estimate the drift using the
simulated data. We use the same bandwidth as that used by Stanton (1997),
h ¼ 4� ŝn�0:2; where ŝ is the sample standard deviation of the data and n is the
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sample size. The parameters used in our simulation are mainly based on our
estimates of the regime-switching model using Aı̈t-Sahalia’s data and are shown
in panel B of Table 8.8

Figure 4 plots the averaged estimate of the drift over the 5000 simulations.
The two solid lines represent the drift of the short rate in two different regimes,
while the two dashed lines represent the drift estimated using Stanton’s
estimator and the local linear estimator. From the graph, we can clearly see that
if the data generated from our regime-switching model is treated as a single-
regime model and estimated using either Stanton’s method or the local linear
estimator, nonlinear drift will appear exactly as found by Stanton who uses
actual interest rate data in his analysis.

One difference between the drift in Figure 4 and that found by Stanton
(1997) is that Stanton’s drift becomes negative when the interest rate is about
15%; our drift becomes negative at an interest rate of 20%. The highest rate in
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Drift under the high volatility regime

Drift estimated using Stanton's method

Figure4 Drift Estimated Using Stanton’s Method and Local Linear Estimator.
The two dashed lines represent the average drift estimated using Stanton’s method and
local linear estimator based on data simulated from a two-regime CIR model over 5000
simulations. The two solid lines represent the drift in the two different regimes. The

parameters used to simulate the data are given in panel B of Table 8.

8 Notice that the parameters for the second regime are almost the same as those estimated from

Aı̈t-Sahalia’s data. Since we simulate noncentral Chi-square distribution by taking the

summation of independent IID standard normal random variables, we adjust a(1) in order to

make the degree of freedom of the Chi-square distribution an integer. The parameters for the

first regime are quite different from the estimated values. Since our focus is to estimate the

speed of mean-reversion, b(0) is chosen to be the same as that estimated from the data.

However, we adjust a(0) and s(0) so that the degree of freedom of the Chi-square distribution is

an integer, and the long-run mean – a(0)/b(0) is relatively low.
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Stanton’s sample is 18%, but it is 24% in Aı̈t-Sahalia’s sample. Since our
parameters are calibrated to Aı̈t-Sahalia’s data, the differences between the two
data sets could explain why the nonlinearity in the drift happens at a higher
interest rate in our estimates.

Our analysis shows that although the nonparametric estimators of Aı̈t-
Sahalia (1996b) and Stanton (1997) could yield nonlinear drift when the true
drift is linear, the nonlinear drift could also be consistent with a data generating
process that follows our two-regime model whose drift is truly nonlinear. Ang
and Bekaert (1998) also discuss the implications of a regime-switching model
for the drift of the short rate. They show that a regime-switching model with
state-dependent transition probability can reproduce the shape of the drift
estimated using nonparametric methods. Given the evidence, it seems that
nonlinear drift is an important feature of the US short rate and should be taken
seriously in theoretical models of term structure of interest rates.

V. CONCLUSION

In this paper, we estimate and test a Markov regime-switching model for the US
short-term interest rate. We show that the short rate follows a regime-switching
model with two different regimes: In one regime, the interest rate behaves like a
random walk with low volatility, while in another it exhibits strong mean-
reversion and high volatility. This model has interesting implications for the
dynamics of the short rate.

First, it shows that the sensitivity of interest rate volatility to the level of
interest rate is not as high as commonly believed. This confirms the prediction of
Campbell et al. (1997) that a two-regime CIR model could provide a good
description of the time series behavior of the short rate over the past half century.

Second, our model is more flexible than the traditional ones in modeling the
conditional volatility of the interest rate. Unlike the traditional models in
which volatility solely depends on the level of interest rate, our model allows
volatility to be low while interest rate is high, and volatility to be high while
interest rate is low.

Finally, we show that the findings of nonlinear drift in Aı̈t-Sahalia (1996b)
and Stanton (1997) are consistent with our regime-switching model in which
the drift of the short rate is truly nonlinear. This suggests that nonlinear drift is
indeed an important feature of the short rate process.
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APPENDIX A

Proof of Lemma 1. In what follows, we derive a representation of the score
function. Observe that

@pðrn; . . . ; r1; sn; . . . ; s1; W; ZÞ
@Wi

¼ @logpðrn; . . . ; r1; sn; . . . ; s1; W; ZÞ
@Wi

pðrn; . . . ; r1; sn; . . . ; s1; W; ZÞ

¼
Xn

t¼1

@logpðrt jSt ;Ct�1; W; ZÞ
@Wi

� pðrn; . . . ; r1; W; ZÞpðSn ¼ sn; . . . ; S1 ¼ s1jrn; . . . ; r1; W; ZÞ:
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Then, summing over st50, 1 for t51, . . ., n and dividing by pðrn; . . . ; r1; yÞ; we
obtain

@logpðrn; . . . ; r1; W; ZÞ
@Wi

1

pðrn; . . . ; r1; yÞ

¼
Xn

t¼1

@logpðrt jSt ;Ct�1; yÞ
@Wi

pðSt ¼ st ; . . . ; S1 ¼ s1jrn; . . . ; r1; yÞ

¼
X1

sn¼0

@logpðrnjSt;Cn�1; yÞ
@Wi

pðSn ¼ snjrn; . . . ; r1; yÞ þ . . .

þ
X1

s1¼0

@logpðr1jSt ;C0; yÞ
@Wi

pðS1 ¼ s1jrn; . . . ; r1; yÞ

since pðrt jSt ;Ct�1; yÞ depends only on st. The conditional probabilities pðSt ¼
st jrn; . . . ; r1; yÞ are the so-called smoothed probabilities. This provides the explicit
representation of the scores.

To simplify notation, we denote et ¼ rt�ða1þb1rt�1Þ�ða2Stþb2rt�1StÞ
ðs1þs2St Þrgt�1

: Now we can

derive the score functions with Z5(p, q) fixed. Observe that

@logpðrt jSt ;Ct�1Þ
@a1

¼ @

@a1
� e2

t

2
� log½ðs1 þ s2StÞrgt�1�

� �
¼� 2et

2

�1

ðs1 þ s2StÞrgt�1

¼ et

ðs1 þ s2StÞrgt�1

@logpðrt jSt ;Ct�1Þ
@a2

¼ @

@a2
� e2

t

2
� log½ðs1 þ s2StÞrgt�1�

� �
¼� 2et

2

½�St �
ðs1 þ s2StÞrgt�1

¼ etSt

ðs1 þ s2StÞrgt�1

@logpðrt jSt ;Ct�1Þ
@b1

¼ @

@b1

� e2
t

2
� log½ðs1 þ s2StÞrgt�1�

� �
¼� 2et

2

�rt�1

ðs1 þ s2StÞrgt�1

¼ et rt�1

ðs1 þ s2StÞrgt�1

@logpðrt jSt ;Ct�1Þ
@b2

¼ @

@b2

� e2
t

2
� log½ðs1 þ s2StÞrgt�1�

� �

¼� 2et

2

½�rt�1St �
ðs1 þ s2StÞrgt�1

¼ et rt�1St

ðs1 þ s2StÞrgt�1
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@logpðrt jSt ;Ct�1Þ
@s1

¼ @

@s1
� e2

t

2
� log½ðs1 þ s2StÞrgt�1�

� �
¼� 2et

2

½�rgt�1�et

ðs1 þ s2StÞrgt�1

� rgt�1

ðs1 þ s2StÞrgt�1

¼ 1

ðs1 þ s2StÞ
½e2

t � 1�:

@logpðrt jSt ;Ct�1Þ
@s2

¼ @

@s2
� e2

t

2
� log½ðs1 þ s2StÞrgt�1�

� �

¼� 2et

2

etStr
g
t�1

ðs1 þ s2StÞrgt�1

� Str
g
t

ðs1 þ s2StÞrgt�1

¼ St

ðs1 þ s2StÞ
½e2

t � 1�:

Using

drgt =dg ¼ d expðg ln rt�1Þ=dg ¼ expðg ln rt�1Þ ln rt�1 ¼ rgt�1 ln rt�1

we obtain

@logpðrt jSt ;Ct�1Þ
@g

¼ @

@g
� e2

t

2
� log½ðs1 þ s2StÞrgt�1�

� �

¼� 2et

2

½�etðs1 þ s2StÞrgt�1 ln rt�1�
ðs1 þ s2StÞrgt�1

� ðs1 þ s2StÞrgt�1 ln rt�1

ðs1 þ s2StÞrgt�1

¼e2
t ln rt�1 � ln rt�1 ¼ ln rt�1½e2

t � 1�:

Evaluating these scores at the true distribution represented by y05(x0, z0, Z)
with x05(a0,b0, s0, g0), x05(0, 0, 0), we get

@logpðrt jSt ;Ct�1Þ
@a1

����
y0

¼ et

s0rgt�1

;
@logpðrt jSt ;Ct�1Þ

@a2

����
y0

¼ etSt

s0rgt�1

@logpðrt jSt ;Ct�1Þ
@b1

����
y0

¼ et

s0rg�1
t�1

;
@logpðrt jSt ;Ct�1Þ

@b2

����
y0

¼ etSt

s0rg�1
t�1

@logpðrt jSt ;Ct�1Þ
@s1

����
y0

¼ 1

s0
½e2

t � 1�; @logpðrt jSt ; Ct�1Þ
@s2

����
y0

¼ St

s0
½e2

t � 1�

@logpðrt jSt ; Ct�1Þ
@g

����
y0

¼ ln rt�1½e2
t � 1�:

It follows that the score functions are given by those in the Lemma. &
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Proof of Lemma 2. For Z5(p, q) and Z05(p0, q0), L(Z, Z0) is a 7�7 matrix. Here we
illustrate how each element can be calculated:

nEZa1
Za1
¼1

n
E
Xn

k¼1

ek

s0rgk�1

 !2

¼ 1

n
E
Xn

k¼1

Xn

l¼1

ekel

s2
0rgk�1rgl�1

¼1

n

XT

k¼1

E
e2
k

s2
0r2g

k�1

¼ 1

s2
0

1

n

Xn

k¼1

Er�2g
k�1 ¼

1

s2
0

Er�2g
1 :

Similarly,

nEZb1
Zb1
¼ 1

n
E
Xn

k¼1

ek

s0rg�1
k�1

 !2

¼ 1

s2
0

1

n

Xn

k¼1

Er�2g�2
k�1 ¼ 1

s2
0

Er�2g�2
1

nEZs1
Zs1
¼ 1

n
E
Xn

t¼1

1

s0
½e2

t � 1�
 !2

¼ 1

s2
0

1

n

Xn

t¼1

E ½e2
t � 1�2 ¼ 2

s2
0

nEZgZg ¼
1

n
E
Xn

t¼1

ln rt�1½e2
t � 1�

 !2

¼ 1

n
E
Xn

t¼1

E ½ln rt�1�2 ½e2
t � 1�2 ¼ 2

s2
0

E ½ln r1�2

nEZa1
Zb1
¼ E

Xn

k¼1

Xn

l¼1

ekel

s2
0rgk�1rg�1

l�1

¼ 1

s2
0

Er�2gþ1
1

nEZa1
Zs1
¼E

Xn

k¼1

Xn

l¼1

ek

s2
0rgk�1

½e2
l � 1�

¼E
Xn

k¼1

ek

s2
0rgk�1

½e2
k � 1� ¼ 0

nEZa1
Zg ¼ E

Xn

k¼1

Xn

l¼1

ek

s2
0rgk�1

½ln rk�1�½e2
l � 1� ¼ 0

nEZb1
Zs1
¼ E

Xn

k¼1

Xn

l¼1

ek

s0rg�1
k�1

½e2
l � 1� ¼ 0

nEZb1
Zg ¼ 0

nEZs1
Zg ¼E

Xn

k¼1

Xn

l¼1

1

s0
½e2

k � 1�½e2
l � 1� ln rl�1

¼ 1

s0
E
Xn

k¼1

½e2
k � 1�2 ln rk�1 ¼

2

s0
E ln r1:
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To derive other covariances, note that pt is the conditional probability of the
state variable conditioning on the data under the null. Hence the conditioning
s-field is generated by the shocks et only. It follows that

nEZa1
Za2
¼E

Xn

t¼1

et

s0rgt�1

" # Xn

l¼1

X
Sl

elSl

s0rgl�1

pl

" #
¼ E

Xn

t¼1

Xn

l¼1

X
Sl

etelSl

s2
0rgt�1rgl�1

pl

" #

¼E
Xn

t¼1

Xn

l¼1

etel

s2
0rgt�1rgl�1

E½Sljy1; . . . ; yn�

¼E
Xn

t¼1

Xn

l¼1

etel

s2
0rgt�1rgl�1

ESl ðsince Sl are independent of y1; . . . yn under the nullÞ

¼E
Xn

t¼1

Xn

l¼1

etel

s2
0rgt�1rgl�1

p0 ¼ p0

s2
0

Er�2g
1

where p0 ¼ ð1� q0Þ=ð2� q0 � p0Þ:
Similarly,
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This yields the desired results. &
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