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INFLUENCE DIAGNOSTICS FOR THE NORMAL LINEAR 
MODEL WITH CENSORED DATA 

L.A. WEISSFELD' AND H. SCHNEIDER~ 

University of Michigan and Louisiana State University 

Summary 

Methods of detecting influential observations for the normal model 
for censored data are proposed. These methods include one-step dele- 
tion methods, deletion of observations and the empirical influence func- 
tion. Emphasis is placed on assessing the impact that a single ohser- 
vatioii has on the estimation of coefficients of the model. Functions of 
tlie coeflkieiits such as tlie median lifetime are also considered. Results 
are coinpared when applied to  two sets of data. 

Key words: Censored data; influence function; linear model; one-step meth- 
ods. 

1. Introduction 

The  detection of influential observations, that  is observations whose 
deletion, either singly or multiply, result in substantial changes in parame- 
ter estimates, fitted values or tests of hypothesis, has received considerable 
attention in recent years. Several methods have been proposed for study- 
ing the impact of deletion of observations on parameter estimates obtained 
from the normal linear model (Belsley, Kuh 8L Welsch, 1980; Cook SC Weis- 
berg, 1982), the logistic regression model (Pregibon, 19S1; Jolinson, l985), 
tlie Weibull model for censored data  (Hall, Rogers SC Pregibon, 1982) and 
the proportional hazards model (Reid 8L Crkpeau, 1985). 

The focus of this paper is on the detection of influential observations 
for the normal regression model fitted to censored data. The methods 
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discussed are one-step deletion diagnostics, the empirical influelice function 
and deletion of single observations. These methods are applied to the 
problem of the detection of a single influential observation and to the 
assessment of the effect that an observation has on parameter estimates 
and functions of the parameter estimates, such as the median lifetime. The 
use of these diagnostics is illustrated in several examples. 

2. Linear Regression Model for Censored Data 

Let Tj denote the failure time of the j t h  observation. Then the linear 
regression model takes the form 

~j = log(Tj) = XTP + a e j  ( j  = 1,. . . , n )  

where the distribution function F and density function f of the e j s  is 
normal. The covariate vector x j  is pdimensional with xoj = 1 and p 
is a parameter vector with p = (PO,. . . ,&,-I). The censoring times Sj 
are independently distributed with distribution function G j  the failure 
times Zj  are independently distributed with distribution function F ,  and 
21,. . . , 2, are independent of S1,. . . S,. We observe 

1 
0 

if j t h  observation is a failure 
if j t h  observation is censored . Yj = min(Zj,Sj) and 6, = 

This random censorship model includes Type I censoring as a special case. 
Two methods for the maximum likelihood estimation of p and v will 

be discussed based on Newton-Raphson iteration and the expectation max- 
imization (EM) algorithm. Let 

.j(p,.> = .j(S) = ( ~ j  - z T ~ ) / o  , (1) 

a(.) denote the standard normal cumulative distribution function, and X 
be the design matrix. The maximum likelihood estimator of 0 = (@,a) is 
based on A(t9), the log-likeliliood of the data. In this case 

~ ( 8 )  = C L j ( e )  , 
j 

where 
The maximum likelihood estimators of /3 and u can then be computed 

using the Newton-Raphson method. For application of this method the 
following set of equations is solved iteratively: 

Lj(e) = 6j log [~{uj(6)}/of + (1 - 6j)log [I - @{uj(6)}] . 

4k+1] = J,k, t 5 l q k ]  (k = 071, * * .  1 )  t (2) 
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where 
do) = (a /ae )A(q  7 I(@) = -(a/a%(e) (3) 

and Irk] and q k ]  are I ( B )  and q ( 0 )  evaluated at  d [ k ~ ,  the estimated value of 
B at the kth iteration. 

The maximum likelihood estimators of ,B and CT can also be computed 
using the EM algorithm (Dempster, Laird & Rubin, 1977; Aitkin, 1981). 
The expectation step of this algorithm requires the computation of 

Then ,b and 6 are computed in the maximization step using the ordinary 
least squares estimates evaluated at y* and Y * ~ ,  that  is, 

p = ( X * X ) - ’ X T y * ,  (6) 
6 2  = n-yy* - X p ) T ( y *  - xp) . (7) 

For the normal case we obtain 

where u j  is given by (1). Since y* is a function of the estimates of P and 
u,  the EM estimates must be computed iteratively. 

Diagnostics for this model can be developed based on either the EM al- 
gorithm or the Newton-Raphson method for obtaining estimates; however, 
the rates of convergence of these two methods differ with the Newton- 
Raphson method converging quadratically while the EM algorithm con- 
verges linearly. Although the convergence rate for the EM algorithm is 
slower, often it will converge to  an estimate when the Newton-Raphson 
method is divergent. 

3. Diagnostics for the Linear Model with Censored Data 

We turn now to a discussion of methods that can be used to  detect 
influential observations for a normal model that is fitted t o  censored data. 
These methods differ from those used for ordinary linear regression due 
to the effect of censoring and the iterative procedures required for the 
calculation of the estimates. We consider four methods for assessing the 
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influence of a single observation for this model: the empirical influence 
curve, one-step methods and deletion. 

3.1. T h e  Empirical Influence Curve  

The influence curve or function can be used to monitor the influence 
of individual cases on estimates since it can be interpreted as a measure 
of the change in parameter estimates when the point z is added to the 
sample. To calculate the influence curve, one considers estimators which 
are functionals of the empirical cumulative distribution function, 8, = 
T,,(F'), or estimators which can be replaced by functionals asymptotically, 
that is, B = T ( F ) .  For a maximum likelihood estimate, the appropriate 
functional T ( F ) ,  is the solution to 

where q(8,y)  = aL(O,y)/a#.  Let F, = (1 - E)F + €Ay, where Ay is the 
point mass at y, and H ( 8 , e )  = J q(#, y) dF,(y) .  Then the influence curve 
can be obtained by implicit differentiation of the equation H{T(F,) ,  E }  = 0 
leading to 

IC(Y; F7 TI = r-'(e>de, Y j )  - ( 8 )  

This quantity is the general form of the influence curve for a maximum 
likelihood estimate. For a linear combination of the elements of /3 it  takes 
the form 

IC(yj7F7R)  = Q{IC(Yj;F,T)) 7 

where R = QB and Q is a vector of dimension p + 1. 
The influence curve is commonly estimated by substituting the sample 

cumulative distribution function f, for F in (8), yielding the empirical 
influence curve 

EIC(yj ,  P7 4) = 1-*(4)q;(4, Y j )  3 (9) 

where q3(8, yj)  = a L j ( 0 ,  yj)/8B/,=i. This estimator of the influence curve 
is based on the assumption that an infinitely large sample has been used 
to obtain F. 

3.2. One-Step M e t h o d s  

Measures of influence for ordinary least squares are generally based 
on the change in parameter estimates when the ith observation is deleted, 
that is, 8 - l(j), where 8(i) is the estimate of 8 when the ith observation 
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is deleted (Cook & Weisberg, l9SO; Belsley et al., l9SO). This difference 
measure has been applied in other, more computatioiially complex settings 
by using a one-step estimate of (Cook & Wang, 1983; Hall et al., 1952) 
and can be implemented for either the Newton-Raphson iterative method 
or the EM algorithm. In either case the full data estimate is used as the 
starting value for the one-step estimate. 

The change in estimates, after deletion of the itli observation, based 
on the one-step Newton-Raphson estimate is given by 

A N R  = 6 - 8(i, = I<;(d)qi(d) , (10) 

where gi is the ith element of q(8)  and I(i) is defined by (3)  with the 
ith point removed. It is of interest to note that the one-step Newton- 
Raphson and empirical influence curve, given by (9), differ only in the use 
of the ith observation in the computation of I-*(8).  The one-step EM 
algorithm estimate is based on substituting f i  and 6 into (4) and (5) to 
obtain estimators of yf . and yf2. when the ith point is removed. This 

J ( 1 )  J (  I )  

yields 

AEM = 8 - 8(i) 

4. Examples  

We consider two examples, Crawford's motorette data and the Stan- 
ford heart transplant data. Each of the diagnostics discussed is computed 
and compared, with interest focusing on the median lifetime in one example 
and on the slope of the regression line in the other. 

4.1. Crawford's Moto re t t e  Data 

Crawford's (1970) data set considers the failure times of electrical 
insulation of rnotorettes as a function of temperature. Ten motorettes 
were tested at each of the temperatures 22OoC, 190°C, 170°C and 150"C, 
with interest focusing on the median of the distribution at  130"C, which, as 
is typical in accelerated life tests, was unobserved. The data were modelled 
by the Arrlienius Law 

= log Ti = 00 + / L a  + ae i  ( i  = 1, . . . ,40) , 
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where t ,  is the absolute temperature and the e i s  are assumed to be nor- 
mally distributed with mean zero and variance one. The data at 16 months 
and the following measures of influence for the median lifetime at  130°C are 
presented in Figures l a  and b: the change in the estimate of median life- 
time based on the one-step EM algorithm, the one-step Newton-Raphson 
given by (10)) the empirical influence function (9)) and the change in the 
estimate based on deletion of a single observation. Each of these mea- 
sures was standardized by dividing the difference by 3. The deletion and 
one-step Newton-Raphson methods give similar results. These methods 
isolate the two early failures at 190°C, observations 11 and 12, whereas 
the influence curve finds these observations less influential than the fail- 
ures at  170"C, observations 21 and 22, and the one-step EM algorithm 
does not isolate these values. This result may be due to the linear rate of 
convergence of the EM algorithm. 

It is of interest to note that both influence curve and one-step EM 
estimate draw greatest attention to  the first two failures at 170°C) obser- 
vations 21 and 22, whereas the one-step Newton-Raphson and deletion 
methods call greatest attention to the first two failures at  19O"C, observa- 
tions 11 and 12. This may be due to the impact of the two failures at  190°C 
on the information matrix I .  If they have a large impact on 1 this will 
be more readily reflected by the deletion and one-step Newton-Raphson 
methods resulting in a larger value for these diagnostics. In fact, deletion 
of the failures at 190°C, observations 11 and 12, results in a substantial 
change in the 8 element of 1-l whereas deletion of each failure at  170"C, 
observations 21 and 22, does not have this effect. 

4.2. Stanford Heart Transplant Data 

This data set was collected from 184 patients who participated in the 
Stanford Heart Transplant Study (Miller & Hdperin, 1982). loglo(survival 
time) was modelled as a function of age. In this case we are interested in 
the influence of single observations on the estimate of the coefficient for 
age. The empirical influence curve, one-step EM algorithm, deletion and 
one-step Newton-Raphson estimates have been calculated for this example 
and selected results are presented in Table 1. Once again these measures 
have been standardized by dividing the difference by 6. 

Each of the measures tended t o  be similar and gave the same rank- 
ing for the five observations with the largest values for each diagnostic. 
The values of these diagnostics ranged from -3.3 to 5.6 for the empirical 
influence curve, -2.4 to 4.7 for the one-step EM algorithm, -3.3 to  5.9 for 
deletion and -3.5 to 6.0 for the one-step Newton-Raphson method. The 
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TABLE 1 

Influence diagnostics for the coefficient of  age from the model 
loglo(survivaI time) = Po t p l ( a g e )  

fitted to the Stanford Heart Transplant Data. n = 184. 

Age Lifetime 6, t Empirical Deletion One-Step One-Step 
Influence ( x l o )  (XIO) EM (~10) NR ( ~ 1 0 )  

54 1 1 -33 -33 -24 -35 

27 22 1 22 22 17 22 

28 7 1 25 25 20 26 

19 42 1 31  32 24 32 

21 1 1 53 54 46 57 

12 86 1 35 37 28 37 

13 10 1 56 59 47 60 

20 5 1 45 46 37 47 

t 6 i  is a censoring indicator: 0 = censored, 1 = uncensored. 

most influential observation, a death at 10 days for a subject aged 13, was 
found by each of the diagnostics so that in this example all of the meth- 
ods performed well. It is of interest to  note here that the most influentid 
observations are uncensored observations with short lifetimes, indicating 
that uncensored observations tend to be more influential than censored 
observations. 

5 .  Summary and Conclusions 

Of the methods discussed here both the one-step Newton-Raphson 
method and deletion tended to call attention to the same set of observa- 
tions. While the different methods isolated the same set of points for the 
Stanford heart transplant data, this was not true for the motorette data  
at  16 months, where the one-step EM algorithm and empirical influence 
curve differed from deletion and the one-step Newton-Raphson method in 
choice of most influential observation. The difference may be due to either 
of the following factors: the impact that the failure time at  190°C has on 
I - I ,  or the way in which the two failures at  190°C act together to create 
a masking effect. While the deletion and one-step Newton-Raphson diag- 
nostics demonstrate a greater impact when either of the failures at 190°C 
is deleted, this impact is not as likely to be seen with the empirical influ- 
ence curve or the one-step EM algorithm. Since the empirical influence 
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Fig. 2-Influence diagnostics for the median lifetime at 130°C for Crawford's 
33 months motorette data. 

Deletion result. 

curve is measuring the change in parameter estimates when the masking 
observation is added t o  the sample, this diagnostic is not as likely to  choose 
the observation as is the one-step Newton-Raphson method. The one-step 
EM estimate is also unlikely t o  change much when only one of the two 
masking points is removed. 

These results indicate that the one-step Newton-Raphson diagnostic 
will perform well; however, information obtained from the empirical influ- 
ence curve and the one-step EM estimate is helpful in locating observations 
which are important in the computation of I-'. This does not preclude 
the use of the EM algorithm for obtaining parameter estimates since these 
estimates are equivalent to the maximum likelihood estimates and the E M  
algorithm converges more reliably than the Newton-Raphson method. 

One would also expect that  uncensored observations are more likely 
to have an  influence on parameter estimates than censored observations, 
as this is the case for the Kaplan-Meier estimatpr of the survival func- 
tion when the influence curve is computed separately for censored and 
uncensored observations (Reid, 19Sl). When examining the EM algorithm 
that is used to  obtain parameter estimates one would expect uncensored 
observations t o  have a more direct effect on parameter estimates since cen- 
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sored observations are replaced by their estimated expected values, so that 
the actual censoring time is used only for obtaining estimates at  the first 
iteration. 

To explore this issue in more detail, the 16 month motorette data pre- 
sented in Figure 1 were examined at 33 months. Figure 2 gives the results 
obtained with the method of deletion. This data set contains only three 
censored observations, 38-40, which were tested at  1 5 O O C  and censored at  
17661 hours. These censored observations were the most influential with 
the deletion method (Figure 2) and also with the one-step EM and empiri- 
cal influence diagnostics. However, the one-step Newton-Raphson method 
ranked them second in influence to observations 11 and 12, the first fail- 
ure at  190°C. The results indicate that censored observations also have an 
impact on parameter estimates and need to be examined carefully when 
models are fitted to  censored data. 

References 
AITKIN, M.A. (1981). A note on the regression analysis of censored data .  Technometrics 

BELSLEY, D.A., KUH, E. & WELSCH, R.E. (1980). Regression Diagnostics: Identifying 
Influential Data  and Sources of Colfinearity. New York: Wiley. 

COOK, R.D. & WEISBERG, S. (1980). Characterizations of an empirical influence func- 
tion for detecting influential c a e s  in regression. Technometrics 22, 495-508. 

COOK, R.D. & WEISBERG, S. (1982). Residuals and Influence in  Regression. New 
York: Chapman and  Hall. 

COOK, R.D. & WANG, P.C. (1983). Transformations and influential cases in regression. 
Technometrics 25,  337-343. 

CRAWFORD, D.E. (1970). Analysis of incomplete life test d a t a  on  motorettes. Insula- 
tion/Circuits 16, 43-48. 

DEMPSTER, A.P., LAIRD, N.M. & RUBIN, D.B. (1977). Maximum likelihood for in- 
complete data via t h e  EM algorithm (with discussion). J .  Roy. Statist.  SOC. Ser. B 

HALL, G.J., ROGERS, W.H. & PREGIBON, D. (1982). Outliers Matter in Survival 

JOHNSON, W. (1985). Influence measures for logistic regression: another point of view. 

MILLER, R. k HALPERIN, J. (1982). Regession with censored data. Biometrika 89, 

REID, N. (1981). Influence functions for censored data .  Ann. Statist.  9, 78-92. 
REID, N. & CR&PEAU, H. (1985). Influence functions for proportional hazards regres- 

23, 161-163. 

39, 1-38. 

Analysis. Rand Technical Report D-6761. 

Biometrika 72, 59-65. 

52 1-531. 

sion. Biometrika 72 ,  1-9. 




