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It is well known that maximizing revenue from a fixed stock of perishable goods may require discounting
prices rather than allowing unsold inventory to perish. This behavior is seen in industries ranging from fashion

retail to tour packages and baked goods. A number of authors have addressed the markdown management
problem in which a seller seeks to determine the optimal sequence of discounts to maximize the revenue from
a fixed stock of perishable goods. However, merchants who consistently use markdown policies risk training
customers to “wait for the sale.” We investigate models in which the decision to sell inventory at a discount will
change the future expectations of customers and hence their buying behavior. We show that, in equilibrium,
a single-price policy is optimal if all consumers are strategic and demand is known to the seller. Relaxing any
of these conditions can lead to a situation in which a two-price markdown policy is optimal. We show using
numerical simulation that if customers update their expectations of availability over time, then optimal sales
limit policies can evolve in a complex fashion.
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1. Introduction
A merchant holding a fixed inventory of a perishable
good is better off (at least in the short run) discount-
ing his stock than allowing it to perish. This is true
whether the item being sold is physically perishable
(as in bread), is a service that uses fixed capacity (such
as an airline seat), or needs to be removed from the
store by a certain “out date” (as in the case of fash-
ion goods or discontinued consumer electronics). As a
result, many sellers of constrained and perishable
goods use a “markdown policy” whereby an item is
initially sold at full price and then subjected to deeper
and deeper discounts until inventory is completely
sold or the out date arrives, whichever comes first.
Under a markdown policy, the price of an item can
only decrease over time. This is in contrast to a “pro-
motions policy” in which an item may be subject to
periodic promotions of limited duration (Warner and
Barsky 1995). Industries in which markdown policies
are common include fashion retailers, European tour
operators, and consumer electronics, among others. In
this paper we consider the problem of determining
an optimal markdown policy when markdowns in a
current season can influence customer expectations in
future seasons.

A seller using a markdown policy faces the mark-
down management (or markdown optimization) prob-
lem of when to increase the discount (i.e., lower
the price) on remaining stock and by how much.
This problem has been addressed by a number of
authors, including Feng and Gallego (1995, 2000),
Bitran and Mondschein (1997), and Gallego and Van
Ryzin (1994). Elmaghraby et al. (2004) consider the
case in which customers may demand more than one
unit of inventory. Heching et al. (2002) showed that
optimizing the timing and magnitude of markdowns
could significantly increase revenues at a women’s
specialty apparel retail store. The benefits of mark-
down management are sufficiently substantial that
a number of retailers, including ShopKo, JCPenney,
Sears, and Circuit City, have purchased commer-
cial software systems from vendors such as Profit-
Logic (now owned by Oracle). Levy and Woo (1999)
and Friend and Walker (2001) discuss some of the
challenges encountered in implementing markdown
management systems. Talluri and van Ryzin (2004)
and Phillips (2005) provide overviews of common
approaches to the markdown management problem.
A virtually universal assumption in the markdown

management literature is that the goal of the seller is
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Gallego, Phillips, and Şahin: Strategic Management of Distressed Inventory
Production and Operations Management 17(4), pp. 402–415, © 2008 Production and Operations Management Society 403

to maximize revenue from his current stock of inven-
tory. Markdown management typically occurs in the
situation when inventory has already been purchased
or capacity levels are fixed and purchase costs are
therefore sunk so that maximizing revenue is equiva-
lent to maximizing contribution. This ignores the fact
that the markdown policy adopted by a seller will
influence the future behavior of customers. A retailer
who initiates a policy of drastic late-season discounts
is likely to find that more and more of his customers
will wait for the discounts. There is a widespread
feeling both among North American retailers and
European tour operators that customers are indeed
increasingly reluctant to purchase at list price and
instead “wait for the sale.” As one observer noted,
“Unfortunately, the department stores have trained
customers to shop during clearance sales or special
promotions” (Fickes 2001). This feeling is supported
by empirical evidence—the average price paid for all
items purchased in department stores fell from 94% of
list price in 1967 to 80% of list in 1997; by 1998 more
than 72% of all fashion items were sold at a discount,
compared with less than 20% in 1950 (Phillips 2005).
An automated system has even been proposed to pre-
dict future online airline seat prices based on past
seller behavior to counsel customers when to wait for
a better deal (Etzioni et al. 2003, Cook 2004).
This paper focuses on how a seller’s markdown

policy would change if he considered the influence
of his current actions on the future behavior of cus-
tomers. We consider a situation in which a retailer
will interact with customers many times and cus-
tomers learn from the retailer’s past actions. One
example is fashion retailing, in which markdowns
occur during well-established seasons. Levy and Woo
(1999) describe a typical case in which a fashion item
was discounted three times during a 26-week season:
the first time by 20%, the second time by 50%, and
the third time by 70%. Because stores often schedule
markdowns to occur at the same times each year (and
often at the same discount level), savvy customers
quickly learn that they are likely to save if they are
willing to wait. In a similar vein, European tour oper-
ators begin offering tours approximately 18 months
prior to departure. At first, tours are offered at list
price (the so-called “brochure price”), but over time,
prices are reduced for tours that are not selling well.
Customers know that they can realize discounts of
50% or more on the brochure price by waiting. In
these markets, a seller who offers a late discount is not
only influencing current sales, he is also training cus-
tomers to wait. We investigate how this training effect
might change the seller’s optimal markdown policy.
Specifically, we address the question of whether or
not there are situations in which a seller would be

better off allowing merchandise to perish than selling
it at a discount.
The decision faced by a customer in a markdown

market is whether to buy now or wait for a discount.
This decision would incorporate the customer’s belief
about whether or not the item in question will be dis-
counted at some point in the future, when it will be
discounted, and by how much, as well as the prob-
ability that it will still be available if she decides
to wait. In other words, customers are strategic. The
focus of this paper is on models in which customers
update their expectations of a seller’s behavior over
many different interactions. We show that this can
result in optimal markdown policies that are quite
different from the tactical solutions. Optimal pricing
with strategic customers has been addressed by a
number of authors, including Harris and Raviv (1981)
and Besanko and Winston (1990) and more recently
in a working paper by Cachon and Swinney (2007).
However, our paper is, to our knowledge, the first to
address the question of optimal markdown policies in
the face of customers who learn from past behavior.

2. Outline of the Paper
In §3, we introduce a general two-period model in
which a seller can offer all or some of his unsold
inventory for sale in the second period at a discount.
In §4, we consider a fluid version of the model in
which the total number of consumers in the system
is constant and the willingness-to-pay distribution is
stationary over time. We show that for this model a
“consistent expectations equilibrium” always exists in
which the probability assigned by customers that dis-
counted goods will be available in the second period
is consistent with the amount of inventory that the
seller actually makes available.
In §4 we start by considering the case in which a

seller has the freedom to set prices and to determine
how much inventory to sell in each period, all cus-
tomers are strategic, and both the willingness-to-pay
distribution and number of customers are known to
the seller. In this case, we show that it is optimal for
the seller to set a single price across both periods and
not to limit second-period sales. We then show that
this result requires each of the assumptions—if the
population consists of a mixture of strategic and tacti-
cal customers, then a two-price markdown policy can
be optimal. If prices are set exogenously, it can be
optimal for the seller to limit second-period sales. If
the seller is uncertain about the size or composition
of demand, then a two-price markdown policy can be
optimal.
In §5, we consider models in which total demand

is a random variable and the seller wishes to maxi-
mize total revenue across a time horizon consisting of
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many different interactions. We use numerical simu-
lations to explore the type of behavior that can occur.
A key insight is that the stability of demand and the
optimal policy of the seller depends critically upon
the speed with which customers update their expec-
tations. If customers never update their expectations
(i.e., they are “myopic”), then the policy of selling
all unsold inventory in the second period at a dis-
count is optimal. As customers begin to update expec-
tations more rapidly, policies in which only some
unsold inventory is released in the second period can
become optimal. The character of the optimal policy
depends upon the speed of updating, on the prices in
the two periods, and on the underlying willingness-
to-pay distribution.
In §6, we discuss the implication of our results as

well as some opportunities for further research.

3. Model and Notation
A seller has a fixed stock C of a good that is avail-
able for sale over two periods. The item perishes at
the end of the second period with no residual or
salvage value to the seller. (The assumption of no sal-
vage value is not restrictive. Our models could be
modified to incorporate a nonzero salvage value for
unsold inventory without changing the nature of the
results.) There is a population of size D of potential
customers. Each potential customer can be character-
ized by a vector �W1�W2� where Wi ≥ 0 is willingness
to pay in period i = 1�2. We define f �w1�w2� on �2

as the density function over willingness to pay with
F �w1�w2� the corresponding cumulative distribution
function (c.d.f.).
We consider the case in which W2 ≤ W1 for all

customers—that is, the situation in which purchasing
the item in the second period is an inferior alternative.
The assumption of nonincreasing willingness to pay
and perishable inventory characterizes a wide range
of so-called “markdown industries.” In a markdown
industry, the value of a good declines over time. The
reasons for the decline may be deteriorating quality
(as in day-old bread), loss of use (as in a coat whose
usefulness declines as winter progresses), fashion, or
approaching obsolescence. Phillips (2005, Chapter 9)
provides a broader discussion of these factors and
their effects in different markdown industries.
At the beginning of the first period, the seller

announces prices r1 and r2. Customers know both W1
and W2 at the beginning of the first period. However,
the seller only knows the density of the joint distri-
bution f �w1�w2�. Because W1 ≥ W2 for all customers,
a revenue-maximizing seller will only consider prices
such that r1 ≥ r2. Each customer determines in which
(if either) of the two periods she will seek to purchase.
Assume that a risk-neutral customer has a prior prob-
ability, say p, at the beginning of period one that the

good will be available in the second period. The buy-
ing behavior of each customer can be characterized by
the following:

W1 ≥ p�W2− r2�
+ + r1

→ seeks to purchase in period 1 (1)

W2 ≥ �W1− r1�
+/p+ r2

→ seeks to purchase in period 2 (2)

W1 < r1 and W2 < r2

→ does not seek to purchase� (3)

Note that the seller may sell all of his inventory in the
first period. In this case none of the customers who
decide to wait until period two will be able to buy. In
fact, some of the period-one customers may also be
unsatisfied. Another possibility is that all period-one
customers are satisfied but the remaining inventory
is not sufficient to satisfy all remaining period-two
customers. When inventory is insufficient to satisfy
demand, we assume that limited supply is rationed
among potential customers in a way that is indepen-
dent of the customers’ willingness to pay. Perhaps the
most common practice is “first come, first served,” in
which customers are served in order of arrival where
order of arrival is independent of willingness to pay.
Denote the unconstrained demands experienced by

the seller in periods one and two as D1 and D2, respec-
tively. In each period, the seller may choose to set a
sales limit 0≤ bi ≤C, i= 1�2 on the amount of inven-
tory that he will allow to be sold in that period. The
expected total revenue (TR) over a single interaction,
where E is the expected value operator, is given by

TR�b1� b2� = r1E�min�D1� b1��

+ r2Emin�D2� b2�max�C −D1�C − b1���

The seller’s tactical problem is to determine the val-
ues of bi—say 	bi, i = 1�2—that maximize TR�b1� b2�.
Since inventory is perishable, it is always tactically
optimal to have 	b1 = 	b2 = C. Note that this is due to
the fact that r1 ≥ r2. If r1 < r2, then by Littlewood’s
rule, 	b1 = �C −G−1

2 �1− r1/r2��
+, where G2 is the c.d.f.

on D2 (Littlewood 1972).
We now extend the model to consider multiple

interactions between customers and the seller. For
fashion goods, each interaction would represent a sea-
son. For simplicity, we assume that each customer
seeks to purchase at most a single unit. Let Di�n�
denote the unconstrained demand in period i during
interaction n≥ 0, pi�n� a customer’s subjective proba-
bility of availability during period i in interaction n,
and bi�n� the amount of inventory that the seller will
offer for sale at price ri during interaction n. Let xi�n�
denote sales and yi�n� = xi�n�/Di�n� the fraction of
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unconstrained demand in period i that is satisfied in
interaction n. That is, a customer who seeks to pur-
chase in period i on interaction n will find the good
available with probability yi�n�. We consider models
in which customers’ posterior probability that a good
will be available during a period is a function of the
fraction of total demand that was satisfied during that
period in past interactions:

pi�n�= g�yi�n− 1�� yi�n− 2�� � � � � yi�1��� n≥ 2 (4)

pi�1�= pi� (5)

This is the basic framework that we will use to
address two questions. First, under what conditions
does it make sense for a seller to adopt a mark-
down policy, that is, announce a lower price for
second-period sales? Second, once prices have been
announced, under what conditions does it make sense
for a seller to set a binding second-period sales limit?

4. Fluid Model
We define a fluid model in which the number of cus-
tomers in the system is constant, the willingness-to-
pay distribution is stationary, and both the number
of customers and the distribution are known to the
seller. The elements of this model are
• n= 1�2� � � �= interaction number.
• Wi ≥ 0 willingness to pay of a customer in period

i= 1�2.
• D = total customer population assumed constant

across interactions. For what follows we will, without
loss of generality, set D = 1.
• Di�n�= demand in period i on interaction n.
• b = sales limit applied in period 2 with 0≤ b ≤ 1.
• p�n�= common subjective probability of second-

period availability.
• p�1� = p1 = initial probability, prior to the first

interaction.
• ri = price in period i = 1�2 with r1 > r2 > c = 0.

Consistent with the usual assumptions in markdown
management, we assume that unit cost is zero. Thus
revenue maximization is equivalent to profit maxi-
mization. Moreover, all inventory is available for sale
at price r1 in period one.
• 
F �x� = complementary cumulative distribution

function of the willingness-to-pay distribution; that is,

F �x�= the fraction of the population with willingness
to pay greater than x. For this model, we assume that
the willingness-to-pay distribution is continuous and
constant across interactions and that the willingness
to pay is the same for each customer in periods one
and two.
Since W1 =W2 =W and r1 > r2, then W > r1 implies

W > r2, so Equation (1) holds if and only if W ≥ r�p�=

�r1− pr2�/�1− p�, while Equation (2) holds if and only
if r2 ≤W < r�p�. As a result,

D1�n� = 
F �r�p�n��� and D2�n�= 
F �r2�−D1�n�� (6)

Notice that the total demand across both periods is
equal to D1�n�+D2�n�= 
F �r2�.
The final element of the fluid model is to specify

how p�n� evolves from interaction to interaction and
how this is affected by the sales limit b. We assume
that on each interaction, customers observe the frac-
tion of second-period demand that is satisfied, y�n�=
min�1� b/D2�n��, and update their probabilities based
on y�n�. Specifically, we consider updating formulas
of the form p�n+ 1� = Z�y�n�� p�n�� such that Z�y�p�
is a continuous function of both variables and has the
property

Z�y�n�� p�n��= p�n� ⇐⇒ y�n�= p�n�� (7)

Property 7 states that the updated probability p�n+1�
equals the prior probability p�n� if and only if the real-
ized fraction y�n� is equal to the prior. This require-
ment is nonrestrictive and is met by most common
updating schemes such as exponential smoothing. For
this family of updating mechanisms and any constant
value of b, the following lemma guarantees the exis-
tence of a “consistent expectation” value of p such
that y�n�= p�n�= p�n+ 1�= p.

Lemma 1. For any Z�y�p� continuous in y and p and
satisfying Property 7, and any b�1� = b�2� = · · · = b ≥ 0,
there exists a p such that y�n�= p�n�= p⇐⇒ y�n+ 1�=
p�n+ 1� = p. If D2�n� is a strictly increasing function of
p�n�, this p is unique.

Proof. Define H�y�n�� p�n�� = �y�n + 1�� p�n + 1��.
By the continuity of W and Z, H is a continuous func-
tion of y�n� and p�n� on the closed set S = �0�1� ×
�0�1�, so the existence of a fixed point �y� p� such
that H�y�p�= �y� p� ∈ S follows from Brouwer’s fixed-
point theorem. The fact that y = p is a consequence
of Property 7. We prove uniqueness by contradiction.
Let D2�n� be a strictly increasing function of p�n� and
assume that there are two distinct fixed points p1 > p2.
If p1 < 1, then p1 = b/D2�p1� < b/D2�p2� = p2, a contra-
diction. If p1 = 1, then D2�p1� ≤ b < D2�p2�, which is
also a contradiction. �

Note that at p, the prior probability that a customer
will be able to purchase in the second period is equal
to the fraction of customers that is actually served. We
consider the problem in which the seller sets r1, r2,
and b to maximize equilibrium contribution. This may
not be the optimal solution, starting at an arbitrary
value of p0, due to the contribution of nonequilib-
rium states. (We consider the effects of such dynamics
in §5.)
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Because we are considering only the equilibrium
strategy, for this section we drop the interaction index
n and write p�b� to highlight the dependence of p on b.
Define TR�b� as the steady-state revenue per interac-
tion given b ≥ 0. The problem facing the seller is then

max
b

TR�b� = r1 
F
(
r�p�b���+ r2 min

{
b� 
F �r2�− 
F �r�p�b���

}
�

We can divide TR�b� into two regions:
1. b < 
F �r2�− 
F �r�p�b���. Then, TR�b� = r1 
F �r�p�b���

+ r2b.
2. b ≥ 
F �r2�− 
F �r�p�b���. Then p�b�= 1, so r�p�b��=

�, resulting in TR�b�= r2 
F �r2�.
In particular, if b = 0, then p�b� = 0 and TR�0� =

r1 
F �r1�, whereas if b ≥ 
F �r2�, then p�b� = 1 and
TR� 
F �r2�� = r2 
F �r2�, so these two cases correspond
to selling only in period one or selling only in
period two. Since there is a one-to-one correspon-
dence between b and p for b in the interesting region
b ∈ �0� 
F �r2�− 
F �r�p�b����, we can analyze the problem
as a function of p only where b�p�= p� 
F �r2�− 
F �r�p���.
Letting H�r� = r 
F �r� and after some algebra, we

have

TR�p� = r1 
F �r�p��+ pr2� 
F �r2�− 
F �r�p���

= �1− p�H�r�p��+ pH�r2��

so TR�p� is a convex combination of H�r�p�� and
H�r2�.
Recall that without loss of generality we let the cus-

tomer demand D = 1, and we assume that the capac-
ity of the seller is C. Then the optimization problem
faced by the seller is

max
p

TR�p�

s.t. �1− p� 
F �r�p��+ p 
F �r2�≤C

p ∈ �0�1��

Proposition 1. If all customers act strategically and
H�r� is unimodal with a maximizer r∗ ≤ r1, then

TR�p� ≤ max�TR�0�� TR�1��

= max�H�r1�� H�r2��≤H�r∗��

Proof. The proof will be by contradiction. Suppose
first that H�r1� ≥ H�r2� and there exists an optimal
p ∈ �0�1� such that

�1− p�H�r�p��+ pH�r2� > H�r1��

Then,

�1− p�H�r1�+ pH�r2�≥ �1− p�H�r�p��+ pH�r2� > H�r1�

because H�r1�≥H�r�p��, because r�p� > r1 > r∗ and H
is unimodal, but then H�r2� > H�r1�, contradicting the
hypothesis.

Suppose now that H�r2�≥H�r1� and there exists an
optimal p ∈ �0�1� such that

�1− p�H�r�p��+ pH�r2� > H�r2��

but this implies that H�r1� ≥ H�r�p�� > H�r2�, again
contradicting the hypothesis. �

Proposition 1 shows that in the absence of a capac-
ity constraint, it is optimal to set r2 = r∗, r1 ≥ r2 and
p= 1. If C is finite and r�C�= inf�r > 0� 
F �r�≤C , then
the optimal value of r2 is max�r∗� r�C��. Notice that
for any r1 > r2 =max�r∗� r�C��, all customers will buy
in period two. Thus, the same results can be achieved
by setting r1 = r2 = r∗ and a two-price policy is not
necessary to achieve optimality.
If the seller is free to select r1, r2, and b; all cus-

tomers act strategically; and the customer willingness-
to-pay distribution is known and does not change
between periods one and two, then a two-price mark-
down strategy cannot increase revenue over the best
single-price strategy max�r∗� r�C��. In other words, at
equilibrium, there is no opportunity for intertempo-
ral segmentation when all customers are strategic and
total demand and the willingness-to-pay distribution
are both known by the seller. In the following sec-
tions, we consider cases in which one or more of these
assumptions are relaxed.
The case is different if prices are set exogenously.

This could be the case if a seller does not have the
flexibility to change prices in response to short-term
changes in demand. For example, Broadway theaters
do not tend to adjust their prices dynamically in
response to seasonal changes in demand (Leslie 2004).
Demand may be greater on Thursday night than
Wednesday night, but the list price and the same-
day purchase discount price will be the same on both
nights. Thus, the prices are likely to be nonoptimal
for at least one of the two nights.
We consider the possibility that a seller might wish

to pursue a mixed strategy—that is, offer all unsold
second-period inventory for sale at a discount with
some probability less than 1. As before, we assume
sufficient capacity to serve all demand. Then at equi-
librium, the probability assigned by a customer that
he will be able to purchase at a discount in the sec-
ond period will be the same as the probability that the
seller is offering it for sale, which we will denote by p.
We consider the situation in which the seller chooses
p to maximize expected total revenue per interaction:

E TR�p�= r1 
F �r�p��+ pr2� 
F �r2�− 
F �r�p���� (8)

where r�p� = �r1 − pr2�/�1 − p�, and as before, we
assume without loss of generality (w.l.o.g.) that total
demand D = 1.
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Proposition 2. If


F ′�r1� >− r2� 
F �r2�− 
F �r1��

r1�r1− r2�
and

r1 
F �r1�≥ r2 
F �r2��

then there exists an optimal mixed strategy on the part of
the seller with p∗ ∈ �0�1�.

Proof. First note that p = �r�p� − r1�/�r�p� − r2� is
a continuous, strictly increasing function that maps
r�p� ∈ �r1��� to p ∈ �0�1�. This means that any finite
r�p� > r1 maps one-to-one to a finite p ∈ �0�1�. The
first condition implies d�ETR�/dr �p=0 > 0. The second
condition implies that ETR�0� ≥ ETR�1�. These two
conditions, along with the fact that ETR�p� ≤ r1 
F �r2�,
imply the existence of an internal maximizer. �

For example, assume that willingness to pay
is distributed according to 
F �r� = 
F �r1��1 −
�r − r1�

"/�1− r2�
"� for " > 1 with 0 < �r2/r1� 
F �r2� ≤
F �r1� < 
F �r2� < 1. It is easy to show that this case

satisfies the conditions of Proposition 2 and that a
mixed strategy must therefore be optimal. Figure 1
illustrates the dependence of expected revenue on p
for this distribution with " = 4. In this case, the payoff
from playing a mixed strategy over a pure strategy
can be substantial. The best pure strategy is to set
p = 0 with expected revenue ETR�0� = 0�3. Playing
the best mixed strategy gives ETR�0�6�= 0�375, a 25%
improvement.
We have shown that a single-price policy is opti-

mal if all customers are strategic with a common
willingness-to-pay distribution that is known to the
seller and that does not change between periods.
It is natural to speculate that the optimality of a

Figure 1 Expected Revenue as a Function of the Mixed Strategy
Probability p for the Willingness-to-Pay Distribution
F �r �= 
F �r1��1− �r − r1�
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single-price policy may be dependent on the fact
that willingness to pay is the same in both periods;
that is, W1 = W2 for all customers. Many goods that
are marked down, such as fashion goods or day-old
bread, are considered less desirable over time. How-
ever, we can show that a decline in customer willing-
ness to pay such that W2 =W1 − # with # > 0 in itself
does not justify a two-price markdown policy.
Suppose that W2 = W1 − # for all customers in the

population. Given p ∈ �0�1� and r1 ≥ r2 + # define
r�p� #� = �r1 − p�r2 + #��/�1− p�. Then customers with
W1 ≥ r�p� #� will buy at r1, customers with r�p� #� >
W1 ≥ r2 will buy at r2, and customers with W1 < r2 will
not buy. The corresponding revenue function is

TR�p� = �1− p�H�r�p�#��

+ p�H�r2+ #�+ #� 
F �r�p� #��− 
F �r2+ #����

Notice that

TR�p�≤ �1− p�H�r�p�#��+ pH�r2+ #��

because 
F �r�p� #��≤ 
F �r2+ #�.
From this, it follows that TR�p�≤max�H�r1��H�r2+

#��≤H�r∗�. In conclusion, the revenues are bounded
above by TR�p�≤H�r∗�, and this upper bound can be
achieved by selecting r1 = r∗ and p = 0 with obvious
modifications if C is binding.

4.1. Mixtures of Strategic and Myopic Customers
In the previous section we showed that, under reason-
able assumptions, a single-price policy with no sales
limit can maximize revenue when demand is known
and all customers act strategically—even if they place
a lower value on second-period consumption. Strate-
gic customers can be contrasted with myopic customers
who will purchase the product in period one ifW > r1.
If r1 ≥W > r2, they will purchase in the second period.
What if the seller faces a mixture of myopic and
strategic customers? We show in this section that a
two-price markdown policy can lead to significant
gains in revenue compared with a single-price policy
if even a small fraction of the customers act myopi-
cally and the rest of the customers act strategically.
Suppose that there are D customers and that D$

behave strategically and D$̄ act myopically where $̄=
1 − $, $ ∈ �0�1�. We assume that all customers have
the same willingness-to-pay distribution in each of the
two periods. Expected customer revenue for a partic-
ular choice of p, r1, and r2 is

TR�p� r1� r2� = r1D�$ 
F �r�p��+ �1−$� 
F �r1��

+ pr2D
[
$� 
F �r2�− 
F �r�p���

+ �1−$�� 
F �r2�− 
F �r1��
]
�

Now r2 = r∗ and p= 1 yields

TR�1�$�=DH�r∗�+D�1−$��r1− r2� 
F �r1�≥DH�r∗��

so two prices can be better than one!
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We now consider the problem of determining the
optimal values of p, r1, and r2 when the popula-
tion consists of a mixture of strategic and myopic
customers.

Proposition 3. If 
F �r1��$r1+ $̄r2� < r2 
F �r2�, then

TR�p� r1� r2� < TR�1� r1� r2��

Proof. The condition implies

$H�r�p�� < $H�r2�+ $̄r2� 
F �r2�− 
F �r1��� (9)

Because H�r�p�� is maximized at p = 0, a suffi-
cient condition for the inequality (9) to hold is
$H�r1� < $H�r2� + $̄r2� 
F �r2� − 
F �r1��, which simplifies
to 
F �r1��$r1+ $̄r2� < 
F �r2�r2. �

Notice that 
F �r1��$r1 + $̄r2� ≤ H�r1� ≤ H�r∗�, so the
condition of Proposition 3 always holds if r2 = r∗. This
means that for a large choice of prices r1 and r2, it
is optimal to allow all the remaining inventory to be
sold at r2! In other words, it is optimal to set prices
so that all of the strategic customers purchase in the
first period. For p = 1, the optimization problem is
given by

max
r1� r2

TR�1� r1� r2�=D��r1− r2��$̄ 
F �r1��+ r2 
F �r2��

s.t. D 
F �r2�≤C�

We can solve this problem explicitly for r1 and r2 for
p= 1 in the case of an exponential willingness-to-pay
distribution with 
F �r�= e−&r .

Proposition 4. For the exponential willingness-to-pay
distribution with parameter &, the following policy is
optimal�

r1 = r2+
1
&

r2 =max
(
1− $̄e−1

&
� r�C�

)

p= 1�

The proof is straightforward and therefore omit-
ted. The reader can verify that the solution for the
exponential willingness to pay satisfies the condi-
tions of Proposition 3. Figure 2 shows how revenues
deteriorate as the proportion of strategic customers
is increased. Notice that the decline is nearly linear
and actually linear over the regions where capacity
is tight. In this case the revenue decreases at rate
CE�W�/e.

Figure 2 Revenue as a Function of 
 ∈ �0�1	 Where 
 Is the Fraction
of Strategic Customers in the Population and 1− 
 Is the
Fraction of Myopic Customers in the Case When Willingness
to Pay Follows an Exponential Distribution with Parameter �
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4.2. Segmentation with Demand Uncertainty
In this section we will show that a markdown policy
can be superior to a single-price policy when all cus-
tomers are strategic if the seller is uncertain about the
composition (or size) of his demand. Specifically, we
assume that customer willingness to pay will follow
one of two known distributions. In state i, the number
of customers with willingness to pay greater than r is
given by di�r�=D 
Fi�r�. The seller announces prices r1
and r2 prior to knowing which state will hold. How-
ever, the seller knows the probability of state i, $i for
i = 1�2 with $1 + $2 = 1. Once the seller announces
prices r1 and r2, nature chooses the state i ∈ �1�2 . All
customers are strategic. For what follows, we assume
d1�r� > d2�r� for all r > 0.
This could represent the situation in which a seller

is uncertain whether a new fashion item is going to
be a “hit” or a “miss” prior to ordering and setting
prices. If it is a hit, demand will be high; if it is a
miss, demand will be low. A similar but much sim-
pler model was proposed by Lazear (1986) to explain
the existence of markdown policies for fashion goods.
Lazear’s model considered the case when all cus-
tomers had the same willingness to pay for an item,
but the seller was ex ante uncertain whether that will-
ingness to pay was low or high. We extend the model
to the case where customers follow a distribution of
willingness to pay.
As before, a customer will purchase in period one if

her willingness to pay exceeds r�p�= �r1−pr2�/�1−p�.
Notice that r1, r2, and p completely determine r�p�.
Define r̄ = r�p� and note that

r1 = pr2+ �1− p�r̄ � (10)
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In this section we will calculate the optimal policy in
terms of r̄ , r2, and p and then derive the optimal value
of r1 using (10).
Fix r̄ , r2, and p and assume scenario i occurs. Then

di�r2�−di�r̄� customers seek to purchase in period two
but only �C − di�r̄��

+ units are available. Let

'i =min
(
1�

�C − di�r̄��
+

di�r2�− di�r̄�

)
�

Then 'i is the fraction of the second-period demand
that will be satisfied if the seller does not limit sales.
Assume that the seller does not limit sales. Then his
expected revenue is given by

2∑
i=1

$i�'iHi�r2�+ �1−'i�Hi�r̄���

Because customers do not know which state holds
prior to making their purchase choice, we must have

2∑
i=1

$i'i = p�

We have shown that the best policy when the
willingness-to-pay distribution is known is to set a
first-period price to maximize expected revenue from
first-period sales. Then in scenario i the seller would
choose a price to maximize Hi�r� subject to di�r�≤C,
resulting in optimal solution max�r∗i � ri�C�� where
r∗i maximizes the revenue rate Hi�r� and ri�C� =
inf�r� di�r� ≤ C . Clearly, r1�C� > r2�C�, and it is rea-
sonable to assume that r∗1 > r∗2 , so we will proceed
under this assumption.
Now define r̄1 =max�r∗� r1�C�� >max�r∗2 � r2�C��= r2.

We assume that C ≤ d1�r
∗
1 �, since otherwise there

will be excess capacity in both scenarios. Under this
additional assumption it follows that r̄1 = r1�C�, so
d1�r̄1� = C and '1 = 0. Because d2�r̄1� < d1�r̄1� = C, it
follows that '2 > 0. Moreover, because d2�r2� ≤ C, it
follows that '2 = 1.
We have shown that if d1�r� > d2�r�, r∗1 > r∗2 and C ≤

d1�r
∗
1 �, then it is optimal to set r2 =max�r∗2 � r2�C�� and

r̄ = r1�C�, resulting in '1 = 0 and '2 = 1 with corre-
sponding p= $2 and revenues equal to

$1H1�r̄�+$2H2�r2�= �1− p�H1�r̄�+ pH2�r2�

and that this revenue is achieved by announcing
prices r2 and r1 = $2r2+ �1−$2�r̄ .
We will show briefly using examples that other

forms of uncertainty such as random total demand
and willingness-to-pay distribution with random
parameter can also lead to a two-price markdown pol-
icy being optimal.

4.2.1. Random Total Demand. Suppose that the
total demand D is a doubly stochastic Poisson process
with random intensity ( with any nonnegative dis-
tribution. In this case, the use of two prices can lead
to increased revenue over a single-price policy. The
proof of the optimality of two-price markdown pol-
icy is available from the authors. Suppose that ( can
take values 300 or 200 with probabilities $1 = 0�7 and
$2 = 0�3, respectively. Assume that C = 60 and that
willingness to pay is exponential with mean equal
to 50. Setting r2 = 60�20 and r1 = 78�67 results in p =
$2 = 0�3 and total expected revenue of $4,828.38 with
'1 = 0 and '2 = 1. In contrast, the best the seller
could do with a single price is $4,345.48 with r =
80�47 = p�C�300�, so using two prices increases rev-
enues by 11%.

4.2.2. Willingness-to-Pay Distribution with Ran-
dom Parameter. Assume that the willingness-to-pay
distribution is exponential with random parameter )
so that demand at price r is *e−r) , where * is the
expected total number of customers. For exponential
willingness-to-pay distribution with parameter ) that
has nonnegative support, one can improve revenues
by using a two-price markdown policy over a single-
price policy. Here, C = 60, *= 250, and ) = "1 = 1/70
with probability 70% and ) = "2 = 1/50 with proba-
bility 30%. The best single price is p�C�"1� = 99�89,
resulting in revenue of $5,211.77. In contrast, using
price r2 = p�C�"2� and setting r1 and p = ' such
that r�p� = p�C�"1� is an optimal solution with two
prices resulting in r2 = $71�36, r1 = $91�33, '= p= 0�30
and revenues equal to $5,480.27, representing a 5.15%
improvement over the best single price.

5. Dynamic Models with Learning
In the previous section we considered the equilibrium
situation in which the ex ante estimates of the prob-
ability of second-period availability are equal to the
fraction of customers that will be served in the sec-
ond period. We have shown that, in this situation, it
is optimal for sellers to pursue a single-price policy
if all customers are strategic and both total demand
and the distribution of customer willingness to pay is
known. If any one of these conditions is violated, a
two-price markdown solution may become optimal.
Although equilibrium behavior is clearly impor-

tant, it does not illuminate one of the most interesting
features of markdown markets. It is in the interest of
the seller to do everything possible to convince cus-
tomers that little or no inventory will be available in
the second period (“Buy now, supply is limited”). Yet
when the second period arises, it is in the seller’s tac-
tical interest to sell as much of his remaining inven-
tory as he can. If customers form their expectations
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of the seller’s future behavior from his past behav-
ior, this creates a tension between the seller’s tacti-
cal interest in selling as much as he can now and
his strategic desire not to “train” customers to expect
high levels of future discount availability. In partic-
ular, it may be in the seller’s interest to prevent the
market from settling into equilibrium—if he can. In
fact, we will show that, in a dynamic setting, complex
nonequilibrium behavior is indeed possible.
In this section, we study multiperiod models in

which aggregate demand D is a Poisson random vari-
able with parameter *. If all customers share the same
value for p and the willingness to pay is drawn inde-
pendently from the same distribution, then Di, the
demand in period i= 1�2, is also Poisson with param-
eter *i given by

*1 = *Pr�W1 ≥w∗ (11)

*2 = *Pr�W1 < w∗�W2 ≥ r2 � (12)

where w∗ = r1 + p�W2 − r2�
+. We consider the sim-

ple model in which W2 = W1 − $ for some $ ≥ 0; in
other words, the difference between first-period and
second-period willingness to pay is the same constant
for every customer. In this case, we can specify the
full dynamic system and Poisson demands Di�n� with
parameters *i�n�, i= 1�2:

p�0�= p0 (13)

p�n�=Z�y�n�� p�n− 1�� (14)

*1 = *P�W ≥ r�p�$�� (15)

*2 = *P�r2 ≤W ≤ r�p�$�� (16)

x1�n�=min�D1�n��C� (17)

x2�n�=min�D2�n��C − x1�n�� b2�n�� (18)

yi�n�= xi�n�

Di�n�
� i= 1�2� (19)

We consider the problem of setting optimal second-
period sales limits for each of n successive sales
interactions. This problem can be formulated as a
dynamic program. However, the dynamic program
using the simple updating rule p�n�= 'y2�n�/D2�n�+
�1−'�p�n−1� is computationally intractable. For this
reason we use the updating approach

p�n+ 1� = 'Pr�D2 ≤min�C −D1�n�� b�n�� 

+ �1−'�p�n�� (20)

That is, p is updated based on the probability that
all second-period demand is met. This simplifies
the computations considerably. ' is a parameter
that determines how rapidly customers update their
expectations of inventory being available in the sec-
ond period. If ' = 0, customers do not update at all

and p�n� = p0 for any strategy used by the seller. If
' = 1, customers update their expectations immedi-
ately. Values of ' between these extremes correspond
to different updating speeds, with higher values rep-
resenting more rapid updating.
We consider two types of policies. In a dynamic sales

limits policy, the seller sets a new b�n� in each inter-
action n. In a static sales limits policy, the seller sets a
single b = b�n� that applies during every interaction.
We investigate the nature of the optimal policies in
both cases.

5.1. Dynamic Sales Limits
Let N be the total number of interactions. For each
interaction, the decision variable is the second-period
sales limit b�n�. We define R�n�p�n�� as the expected
total revenue for periods �n�n+ 1� � � � �N  given p�n�.
Let . denote the discount factor between interactions.
We can then formulate the problem as a dynamic
program:

R�n�p�n��= max
0≤b�n�≤C

{
r1E�min�D1�n��C��

+r2E
[
min�D2�n���C−min�D1�n��C���b�n��

]
+.E�R�n+ 1� p�n+ 1���

}
p�n+1�='Pr

{
D2≤min�C−D1�n��b�n��

}+�1−'�p�n�

R�N + 1� p�N + 1��= 0�

Figure 3 illustrates the time tracks of optimal dynamic
sales limits and revenues for four values of ' when
N = 25, * = 80, . = 1, and C = 100. In each of the
four panels in Figure 3, one track is optimal sales limit
for each interaction, read from the left axis, and the
other track is the corresponding revenue per interac-
tion, read from the right axis. Note that in each case,
the final-period optimal sales limit is b�N � = C. This
is an end-of-horizon effect. However, in every period
other than the last, it is optimal for the seller to set a
sales limit< 100. That is, it is optimal for the seller to
restrict the amount of second-period inventory to be
sold. The optimal limits converge to a three-point dis-
tribution with support at 28, 29, and 30 for '= 1 and
a two-point distribution with support at 29 and 30 for
'= 0�75. (Recall that ' is a parameter that determines
the speed of customer updating, with higher values
of ' reflecting more rapid updating.) For '= 0�25 and
' = 0�5, the optimal sales limits converge to steady-
state values. This suggests that if customers update
quickly (large '), then the seller should use a strategy
in which the sales limit is raised and lowered in alter-
nate periods. For lower values of ', the seller should
set a constant sales limit.
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Figure 3 Optimal Revenue (�) and Dynamic Sales Limits (�) for Four Values of  with Poisson Arrivals
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Note. For these runs, N = 25, �= 80, and C = 100.

5.2. Static Sales Limits
The results from §5.1 suggest that a static sales limit
can be optimal when the value of ' is sufficiently low
and the number of interactions is large. In this section,
we compute the optimal static sales limit b. For these
simulations, we assume a Poisson process with rates
given by Equations (11) and (12). We consider expo-
nential, triangular, and uniform willingness-to-pay
distributions and set W2 =W1−$ where $≥ 0. Inven-
tory is fixed, p�0� = 0, and p�n� is updated accord-
ing to (20). The number of interactions is N = 100.
To eliminate initialization effects, the results for the
first 20 interactions are not shown.
Figure 4 shows some typical sample paths of rev-

enue by interaction for different values of b and ' in
the case when willingness to pay follows an exponen-
tial distribution. These sample paths illustrate the fact
that changes from interaction to interaction in cus-
tomer behavior can lead to significantly greater varia-
tion in revenue as sales fluctuate beyond those arising
from the underlying uncertainty in total demand. A

forecasting model that did not incorporate the depen-
dence of future customer behavior on current and
past sales limits would be unable to accurately fore-
cast future demand. This could lead to a miscalcula-
tion of future sales limits and a corresponding sub-
optimal revenue realization. The situation is reminis-
cent of the phenomenon described as “spiral down”
by Homem-de-Mello et al. (2004) in the two-period
revenue management model. Spiral down can occur
when a revenue manager ignores the effects of chang-
ing the allocation for one booking class on book-
ings in other classes. Homem-de-Mello et al. show
that spiral down can lead to significant loss of rev-
enue. The sample paths in Figure 4 illustrate that
sales variation among interactions tends to increase
in ' and decrease in b. This is intuitive—rapid updat-
ing by customers causes wider swings in behavior
from interaction to interaction while p will tend to
approach 1 as b increases, resulting in less varia-
tion from interaction to interaction. The dependence
of demand variation on the sales limit suggests the
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Figure 4 Some Typical Sample Paths for Different Values of  Where �= 250, and Willingness to Pay Follows an Exponential Distribution with
Mean 100, and the Prices Are r1 = 150, r2 = 110
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potential for a spiral down-like phenomenon in mark-
down management—a planner who assumed that
future demand was independent of past sales limits
might make increasingly poor sales limit decisions.
Figure 5 shows expected revenue as a function of

the sales limit for different willingness-to-pay distri-
butions and different values of the updating parame-
ter '. In these simulations, N = 25, C = 100, and p0 =
0. For Figures 5(a) and 5(b) $= 0, and for Figure 5(c)
$ = 40. When customers do not update their expec-
tations ('= 0) and p0 = 0, the optimal strategic value
of b is the same as the optimal tactical value, namely,
b =C. This situation is ideal for the seller—customers
never anticipate the second-period sale so it is always
optimal for the seller to allow all unsold inventory to
be sold in the second period. Expected revenue drops
radically as soon as customers begin to “wise up”—
that is, ' > 0. In Figure 5(a), exponential distribution

with *= 250 and common willingness to pay between
the two periods ($ = 0), the optimal strategic policy
is still to allow all remaining inventory to be sold in
the second period. However, expected revenue drops
considerably from the nonanticipating case for all val-
ues of b. A similar drop is seen in the case of the uni-
form distribution (Figure 5(b)); however, in this case
the optimal strategy for all values of ' is for the seller
never to allow any unsold inventory to be sold in the
second period—that is, to set b = 0.
The case of the exponential distribution when

$= 40 (Figure 5(c)) is more complex. Expected rev-
enue still drops drastically as soon as customers begin
to update. However, average revenue is now maxi-
mized at neither b = 0 nor b = C but at an intermedi-
ate value that depends upon '. In fact, for '= 1, aver-
age revenue has not only an intermediate maximum
but also an intermediate minimum. This is intriguing
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Figure 5 Expected Revenue as a Function of Sales Limit for Different
Distributions and Values of  with r1 = 150, �= 250,
C = 100
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because it suggests that a seller who is trying to deter-
mine the optimal amount of inventory to withhold
might miss the global maximum if he proceeds by a
process of local adjustment. That is, if he starts by set-
ting a sales limit of 70, which he gradually adjusts to
increase revenue, he will end up ultimately setting b =
100 rather than at the global maximum near b = 25.
Also intriguing is the fact that ' = 1 results in

higher revenues for all positive values of ' tested over
selected values of suboptimal sales limits, as can be
seen in Figure 5. Notice, however, that this excludes
' = 0 and does not happens at optimal sales limits.
The intuition for this is that if sales limits at r2 are
too high, then the seller may be better off if more
customers wait to buy in period two, i.e., if more cus-
tomers act strategically.
The results in Figure 5 are for a fixed r2. Define

R�b� as the expected revenue per interaction when
b is the static sales limit. It is natural to speculate
that R�0� > R�C� when r2 is small and R�C� > R�0�
when r2 becomes sufficiently large. That is, when r2 is
small, it is better to withhold all second-period inven-
tory, and when it is large, it is better for the seller to
allow all second-period inventory to be sold. This is,
in fact, the case. We note first that by the same method
as Lemma 1 we can show that for any value of b,
Equation (20) has a unique fixed point p∗�b�, utilizing
the facts that D = D1 + D2 is independent of p and
Pr�max�D−C�D2�p�− b�≤ 0 is a decreasing function
of p. Moreover, p∗�b� is increasing in b. This gives us
what we need to prove the following:

Proposition 5. There exists an r∗2 such that R�0� ≥
R�C� if r2 ≤ r∗2 and R�0� < R�C� otherwise for ' > 0.

Proof. Let D0
1 and DC

1 be the random variables
denoting first-period demand when b = 0 and b = C,
respectively. Note that p∗�0�→ 0 as n→� and thus,

R�0�= r1Emin�D
0
1�C��

where D0
1 ∼ Poisson(*Pr�W > r1�). When b = C,

(20) becomes

p�n+ 1� = 'Pr�D2�n�≤min�C−D1�n��C��+�1−'�p�n�

= 'Pr�D1�n�+D2�n�≤C�+ �1−'�p�n��

which goes to Pr�D ≤C� as n→� where

D ∼ Poisson�*Pr�W ≥ r2���

Therefore,

DC
1 ∼ Poisson�*Pr�W > r�p���

with r�p� > r1, which implies D0
1 > DC

1 . We also have

R�C�= r1Emin�D
C
1 �C�+ r2Emin�D

C
2 � �C −DC

1 �
+��
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D0
1 > DC

1 implies r1Emin�D0
1�C� > r1Emin�DC

1 �C�;
because R�C� is a continuous function of r2, there
exists r2 such that R�0�=R�C�. �

This suggests that the strategy of withholding all
unsold inventory in the second period is superior
to allowing it all to be sold when r2 is small and
vice versa. It is also clear that b = 0 is optimal when
r2 = 0 and b = C is optimal when r2 = r1. Thus, as we
increase r2 from zero, it is initially optimal to with-
hold all unsold inventory. As r2 increases, intermedi-
ate solutions are possible where it is optimal to set
b ∈ �0�C�. As r2 increases further, at some point it
becomes optimal to allow all unsold inventory to be
sold in the second period.

6. Summary and Discussion
We consider the situation in which a seller is offering
a finite (although potentially very large) stock of per-
ishable inventory over two periods, with inventory
perishing at the end of the second period. We first
consider the case in which
1. Sellers have the freedom to set prices in both

periods;
2. All customers are “strategic”; that is, they choose

in which period to purchase based on their expecta-
tion of prices;
3. Total customer demand is known to the seller;

and
4. The willingness-to-pay distribution is also

known to the seller.
Under these conditions, the optimal equilibrium

policy is for the seller to set a single price and not
restrict second-period sales. This can hold true even
if customer willingness to pay is lower in the second
period than in the first.
We have also shown that the four conditions listed

above are all necessary for a single price to be optimal.
If prices are set exogenously, then it can be optimal for
the seller to limit second-period sales. If the seller is
facing a population consisting of a mixture of strategic
and myopic customers, a two-price markdown policy
may be optimal. Finally, if the seller is uncertain about
the magnitude of total demand or its composition,
a two-price markdown policy may also be optimal.
We note that both demand uncertainty and mixtures
of strategic and myopic customers are likely to char-
acterize most real-world markets and therefore help
explain the widespread use of markdown policies by
sellers in different markets.
We used numerical simulation to explore the case

in which total demand is uncertain from interaction
to interaction. In these cases, it is often optimal for the
seller to limit second-period sales, even when all cus-
tomers are strategic. The behavior of this optimal sales
limit depends in part on the speed of customer updat-
ing. If customers update their expectations quickly,

then the optimal sales limit can oscillate between two
values. If updating occurs more slowly, then the opti-
mal sales limit tends to converge to a constant value.
We also noted that faster customer updating results in
higher variability in sales and revenue from interac-
tion to interaction. This indicates that the dynamics of
the system can increase variability significantly over
that simply due to underlying demand uncertainty.
A seller who assumed that demand was independent
of his past policies might easily overestimate the vari-
ation in underlying customer demand.
There are several directions in which these models

could be extended. For example, we have assumed
that customers are risk neutral. We would expect in
many cases customers would be risk averse. Risk neu-
trality implies that a customer with a willingness to
pay of $100 and facing a ticket price of $80 would pre-
fer to wait for the chance of a half-price ticket at TKTS
if the probability of discount ticket availability in the
second period was greater than 33%. This would not
likely be the case for a parent who has promised to
take her child to see The Lion King. Intuitively, a pop-
ulation of risk-averse customers would seem to make
withholding second-period inventory more attractive
since the corresponding reduction in probability of
availability would make risk-averse customers even
more likely to purchase in the first period.
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