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Summary. Combined deficiency of factor (F)V and FVIII

(F5F8D) and combined deficiency of vitamin K-dependent

clotting factors (VKCFD) comprise the vast majority of

reported cases of familial multiple coagulation factor deficien-

cies. Recently, significant progress has been made in under-

standing the molecular mechanisms underlying these disorders.

F5F8D is caused by mutations in two different genes (LMAN1

and MCFD2) that encode components of a stable protein

complex. This complex is localized to the secretory pathway of

the cell and likely functions in transporting newly synthesized

FV and FVIII, and perhaps other proteins, from the ER to the

Golgi. VKCFD is either caused by mutations in the

c-carboxylase gene or in a recently identified gene encoding

the vitamin K epoxide reductase. These two proteins are

essential components of the vitaminKdependent carboxylation

reaction. Deficiency in either protein leads to under-carboxy-

lation and reduced activities of all the vitamin K-dependent

coagulation factors, as well as several other proteins. The

multiple coagulation factor deficiencies provide a notable

example of important basic biological insight gained through

the study of rare human diseases.

Keywords: c-carboxylation, ER, Golgi, factor V, factor VIII,

Vitamin K.

Introduction

Familial multiple coagulation factor deficiencies are a group of

rare inherited disorders characterized by the simultaneous

decrease in the levels of two or more coagulation factors.

Recent progress has led to a better understanding of the

molecular mechanisms underlining combined deficiency of

factor (F)V and FVIII (F5F8D) and combined deficiency of

vitamin K-dependent clotting factors (VKCFD). These studies

have also yielded significant insights into ER to Golgi protein

transport and vitamin K metabolism, respectively. Little is

known about other types of multiple coagulation factor

deficiencies, as only isolated case reports are available.

Combined deficiency of FV and FVIII (F5F8D)

Biosynthesis of FV and FVIII

Hemostasis is mediated by the regulated and sequential

activation of serine proteases in the coagulation cascade. FV

and FVIII are two large plasma glycoproteins that function as

essential cofactors for the proteolytic activation of prothrombin

andFX, respectively.FV is synthesizedprimarily in hepatocytes

and megakaryocytes and is found in the plasma and a granules

of platelets as a 330-kDa single chain polypeptide [1]. In

contrast, there has been long-standing uncertainty as to the

primary tissue source for the biosynthesis of FVIII. Though

earlier results suggested the hepatocyte [2–5], a recent study

identified liver sinusoidal endothelial cell as a significant source

of circulating FVIII [6]. FVIII is synthesized at low levels and is

processed upon secretion to a heterodimer consisting of an

80-kDa light chain in association with a 200-kDa heavy chain

fragment [7]. The light chain is bound through non-covalent

interactions to a primary binding site at the amino-terminus of

vonWillebrand factor (VWF).TheVWF interaction is required

to stabilize FVIII in plasma. FV and FVIII circulate as inactive

precursors that are activated through limited proteolysis by

thrombin. FV and FVIII share similar domain structure

(A1-A2-B-A3-C1-C2), and undergo similar extensive post-

translational modifications, including signal peptide cleavage,

formation of conserved disulfide bonds, addition of multiple

oligosaccharide structures, and sulfation of specific tyrosine

residues [8]. Both protein cofactors are also inactivated through

proteolysis by activated protein C (APC). Despite these

similarities, the plasma concentration of FVIII is �40-fold

lower than that of FV, and expression of FVIII in heterologous

systems is similarly inefficient. The latter observation appears to

bedue to lower expressionofFVIIImRNA,aswell as inefficient

secretion of the primary translation product.

Genetic deficiency of FVIII results in classic hemophilia

(hemophilia A) whereas inherited FV deficiency leads to
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parahemophilia, a rare autosomal recessive condition exhibit-

ing a similar hemorrhagic phenotype. Combined deficiency of

FV and FVIII is an autosomal recessive disease that was first

described in 1954 by Oeri et al. [9]. Patients with this disorder

exhibit plasma FV and FVIII antigen and activity levels in the

range of 5–30% of normal. Bleeding symptoms are similar to

those observed in patients with single deficiencies of FV or

FVIII [10–12]. The most commonly noted are epistaxis,

menorrhagia and excessive bleeding during or after trauma,

surgery, or labor. Inheritance of F5F8D is autosomal recessive

and distinct from the coinheritance of both FV deficiency and

FVIII deficiency. To our knowledge, at least 140 patients in

81 families have been diagnosed with F5F8D to date, with over

half of the families from theMediterranean region. However, it

is likely that F5F8D is under-diagnosed, in part due to its often

mild bleedingmanifestations. Some of the F5F8Dpatients may

bemisdiagnosed as havingmild hemophilia or parahemophilia.

This disorder appears to be particularly prevalent among

Middle Eastern Jews and non-Jewish Iranians, estimated at

�1 : 100 000 [12]. This high frequency is probably due, at least

in part, to the high incidence of consanguineous marriages in

these populations [13].

Molecular basis of F5F8D

Using a homozygosity mapping approach, the gene for

F5F8D was localized to the long arm of chromosome 18 in

nine unrelated Jewish families of Sephardic and Middle

Eastern origin [14], and in 19 families from Iran, Pakistan, and

Algeria [15]. Subsequent positional cloning analysis of the

same nine Israeli families identified two founder mutations in

LMAN1 (also known as ERGIC-53), a gene of previously

unknown function [16]. To date, 17 different mutations have

been identified [16–18]. All but one of the mutations are either

nonsense or frameshift alleles whose truncated protein prod-

ucts would be predicted to lack normal LMAN1 function

(Fig. 1). The only missense mutation, a substitution of

threonine for the initiator methionine, is also predicted to

result in the absence of a protein product. The diverse nature

of the mutations indicates multiple independent genetic

origins. However, founder mutations may account for all or

the majority of F5F8D in isolated populations. For example,

one of the originally reported mutations was found to be

prevalent in Jews originating from the island of Djerba in

Tunisia, while this mutation was not found in North African

Jews [13].

Though mutations in LMAN1 account for F5F8D in the

majority of patients with this disease, no LMAN1 mutations

could be identified in �30% of affected families [17,18].

Homozygosity mapping using 10 of the latter pedigrees

localized the disease gene to the short arm of chromosome 2.

Positional cloning identified a novel gene, now termedMCFD2

(multiple coagulation factor deficiency gene 2), as the second

cause for F5F8D [19]. Seven different mutations were identi-

fied, including two missense mutations (Fig. 1). MCFD2

encodes an EF-hand domain protein that colocalizes with

LMAN1 in the ER-Golgi intermediate compartment

(ERGIC). MCFD2 does not contain an ER retention motif.

The intracellular localization of MCFD2 relies on its interac-

tion with LMAN1, as intracellular MCFD2 is markedly

reduced in lymphocytes derived from LMAN1 deficient

patients. MCFD2 interacts with LMAN1 in a calcium-

dependent manner. Missense mutations within the second

MCFD2 EF-hand domain (D129E and I136T) disrupt this

interaction and result in F5F8D [19].

Biological insights from studies of F5F8D

A central problem in cell biology is how newly synthesized

proteins are sorted for transport to their final destinations.

Sorting involves both selection of cargo proteins intended for

different destinations, and efficient separation from the com-

ponents of the ER and Golgi. The Golgi body is generally

regarded as the major sorting machinery and is the site of

extensive post-translational modification of transported pro-

teins. However, it has become increasingly clear that ER exit is

also an important point for protein sorting. Correctly folded

proteins destined for secretion by anterograde transport

towards the Golgi are packaged in the ER into COPII-coated

vesicles [20]. In yeast, the COPII coat consists of the small

GTPase Sar1p and the heterodimeric protein complexes Sec23/

24p and Sec13/31p [21], in which Sec24p appears to be involved

in the recognition of sorting signals [22,23]. These vesicles then

uncoat and fuse with each other to form the ERGIC, also

referred to as vesicular tubular clusters (VTCs). Resident

proteins recycle from the ERGIC back to the ER in COPI-

coated vesicles. The COPI coat consists of the small GTPase

ARF and a coatomer of seven-subunit complexes [21]. Two

distinct models have been proposed to explain howER resident

proteins are segregated away from soluble cargo proteins

during vesicle formation [24,25]. Secretion of certain abundant

proteins is consistent with a bulk flow model in which cargo

moves by default and requires no export signals [26]. In

contrast, the receptor-mediated export model envisions select-

ive packaging of secreted proteins into budding COPII vesicles

with the help of cargo receptors (Fig. 2), and is supported by

recent observations of sorting in ER-derived transport vesicles

[27–29].

Identification of cargo receptors has proven difficult.

Although LMAN1 was first identified in 1987 [30,31], its

function had remained an enigma in cell biology. LMAN1 is a

53- kDa homo-hexameric transmembrane protein, and along

with VIP36 [32], VIPL [33,34] and ERGL [35], belongs to a

recently defined class of animal lectins [36,37]. Due to its

intracellular localization and its calcium-dependent mannose

binding [38,39], LMAN1 was postulated to function as a cargo

receptor for glycoproteins. The unexpected finding of LMAN1

gene mutations as a cause of F5F8D provided the first direct

evidence for a mammalian ER cargo receptor, suggesting that

LMAN1 specifically mediates export of FV and FVIII from

ER to Golgi [16]. Two potential cargo receptors were recently

described in yeast [40,41].
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The luminal segment of LMAN1 contains a carbohydrate

recognition domain (CRD) that shares homology to lectins

from leguminous plants (Fig. 1). Point mutations of conserved

amino acids in the CRD abolish mannose binding [38,39]. The

crystal structure of the CRD domain of rat LMAN1 was

recently solved, and shown to consist of primarily b-sandwich
folds that are most similar to leguminous lectins, and also

resemble the CRD of the ER folding chaperone calnexin that

also interacts with FVIII [42]. LMAN1 contains a C-terminal

diphenylalanine motif that interacts with COPII coat proteins,

potentially directing LMAN1 to vesicles budding from the ER

[43]. Thismotif, together with a dilysine ER retrieval signal [44],

results in constitutive recycling of LMAN1 between the ER

and Golgi apparatus [45,46]. Correct trafficking of LMAN1

also requires oligomerization (hexamer) of LMAN1, which is

mediated by cooperation of the ER luminal and transmem-

brane domains [47]. MCFD2 lacks the C-terminal KDEL

retrieval signal that mediates recycling of many other soluble

ER resident proteins [48], via binding to the KDEL receptor

[49,50]. MCFD2 is retained in the ER and the ERGIC through

an alternative mechanism that is dependent on its direct

interaction with LMAN1 [19]. The crystal structure of the

LMAN1-CRD [42] also identified a surface patch of conserved

residues on the opposite side of the mannose-binding site that

could serve as a binding site for MCFD2 or an additional

ligand.

ER ERGIC Golgi

LMAN1
MCFD2

COP II

COP I

FV

FVIII

Fig. 2. Model of receptor-mediate ER to Golgi transport of FV and FVIII. Correctly folded FV/FVIII molecules are envisioned to be recruited

to the COPII-coated vesicles budding from the ER by binding to the LMAN1-MCFD2 complex. Release of FV/FVIII from LMAN1-MCFD2 occurs in

the ERGIC, where COPII coats are replaced by the COPI coats. The LMAN1-MCFD2 complex is recycled back to the ER in COPI-coated retrograde

vesicles as FV and FVIII are transported to the Golgi.
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Fig. 1. Hypothetical protein products from the LMAN1 and MCFD2 genes carrying patient mutations. (a) All mutations in LMAN1 identified to date

are predicted to result in complete loss of protein function. CRD: carbohydrate recognition domain; TMD: transmembrane domain. The C-terminal ER

exit/retrieval signal KKFF is noted. (b) Most mutations in MCFD2 are predicted to result in frameshift ahead of the second EF hand domain. Two

missense mutations also occur in the second EF hand and were shown to abolish binding to LMAN1 (19). White rectangles at the C-terminal end of the

truncated LMAN1 and MCFD2 proteins indicate additional amino acid sequences resulting from frameshifts.
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MCFD2-deficiency does not alter the subcellular localization

of LMAN1, suggesting that it is not required for the ER exit

and recycling of LMAN1 [19]. MCFD2 could function at the

point of either cargo loading or cargo unloading during the ER

to Golgi transport of FV and FVIII (Fig. 2). Ca2 ± MCFD2

could form a receptor complex with the luminal domain of

LMAN1 in which MCFD2 may serve as the cofactor that

specifically captures correctly folded FV and FVIII in the ER

lumen. This complex could then be stabilized by interactions

between LMAN1 and the oligosaccharides and/or amino acid

side chains of FV or FVIII. This cargo-containing complex is

then packaged into COPII-coated vesicles for budding. An

intriguing implication of this model is that the primary cause of

F5F8D is defective MCFD2, and failure to retain MCFD2 in

the ER is the mechanism by which LMAN1 mutations cause

F5F8D. Alternatively, MCFD2 may be required for the

dissociation of FV and FVIII from LMAN1 in the ERGIC,

perhaps in response to the dissociation of COPII coats from

transport vesicles, or a decrease in pH and Ca+concentration

in the ERGIC [51]. Dissociation of cargo from LMAN1 seems

to depend on the lower pH in the ERGIC, which may affect

calcium binding [51,52]. All of these models imply a direct

interaction between MCFD2 and/or LMAN1 and their cargo.

Indeed, FVIII was detected in a coimmunoprecipitation

complex with overexpressed LMAN1 [53].

Clear MCFD2 orthologs with >60% amino acid identity

are evident in a number of vertebrate species, including mouse,

rat and zebrafish. Possible homologs ofMCFD2may also exist

in invertebrate species, with the sequence conservation most

striking in the C-terminal EF-hand domain [19]. Though there

are no other clear human homologs with sequence similarity

extending along the full length of MCFD2, a subset of other

EF-hand-containing proteins could potentially define a class of

adaptors/chaperones that might serve similar functions for

other secreted proteins. Close homologs of LMAN1 can also

be identified in multiple vertebrate and invertebrate species

including C. elegans and D. melanogaster. Of note, inverte-

brates separated from vertebrates prior to the evolution of the

blood clotting system, suggesting a more general role for the

MCFD2/LMAN1 pathway in the biosynthesis of a broad class

of secretory proteins, in addition to FV and FVIII. Consistent

with this notion, mutations in the Drosophila LMAN1

homolog, rhea, cause a late embryonic recessive lethal pheno-

type, resulting from somatic wing and muscle developmental

defects [54,55]. However, inactivation of the C. elegans

homolog of LMAN1 by an RNAi approach resulted in no

discernable phenotype (B. Zhang, R. Ellis, and D. Ginsburg,

unpubl. data).

Though no other abnormalities have yet been identified in

F5F8D patients, it is likely that the ER to Golgi transport of

other proteins is also altered, though at a level insufficient to

produce a clinical phenotype. A selective delay in secretion

of procathepsin C was observed in HeLa cells that overex-

press a dominant-negative form of LMAN1 [56]. A cathep-

sin-Z-related protein (catZr) has also been shown to

crosslink to LMAN1 [57], though catZr secretion has not

been directly examined in LMAN1 or MCFD2-deficient

cells. Interestingly, a recent report presented in vitro evidence

that the rat ortholog of MCFD2 may function as a stem-cell

derived neuronal survival factor [58]. Although F5F8D

patients with MCFD2 deficiency do not present obvious

neurological symptoms, a subtle defect in humans or a

species-specific neurological phenotype in MCFD2 null mice

cannot be ruled out.

Both FV and FVIII are heavily glycosylated, particularly in

the B domains. In cells overexpressing a dominant negative

LMAN1 mutant, secretion of wild-type FV and FVIII was

impaired, while secretion of B domain-deleted FV and FVIII

was unaffected. These results suggest that the B domains may

be important in mediating LMAN1-dependent secretion of FV

and FVIII [59]. A small amount of B domain sequence with six

consensus N-linked glycosylation sites is sufficient to mediate

efficient FVIII secretion [60]. In addition to sugar residues,

protein–protein interactions appear also to contribute to the

interaction between FVIII and LMAN1 [53].

Combined deficiency of vitamin K-dependent clotting
factors (VKCFD)

Vitamin K and c-carboxylation

c-glutamyl carboxylase (GGCX) catalyzes a post-translational

modification of glutamate (Glu) residues into c-carboxyglut-
amate (Gla) residues [61,62]. This carboxylation is required for

the activities of coagulation FII, FVII, FX and FX, as well as

the anticoagulant factors protein C, protein S and protein Z

[63,64]. Carboxylation occurs at Glu residues located in a

homologous �45 a.a. �Gla domain�. The presence of Gla

residues enables these proteins to adapt to a calcium-dependent

conformation that allows binding to phospholipids. Other

proteins known to undergo c-carboxylation include osteocalcin
[65], matrix Gla protein [65], Gas6 [66], nephrocalcin A-D [67],

as well as several putative carboxylated proteins identified

through nucleotide database screening (PRGP1, PRGP2,

TMG3 and TMG4) [68,69]. Vitamin K is an essential cofactor

for c-carboxylase [61,62]. As carbon dioxide is added to Glu to

form Gla, the reduced form of vitamin K (vitamin K

hydroquinone) is oxygenated to form vitamin K 2,3 epoxide.

Another enzyme, vitamin K epoxide reductase (VKOR), is

required to regenerate the vitamin K hydroquinone, comple-

ting the so-called vitamin K cycle (Fig. 3).

c-carboxylation occurs in the ER.GGCX appears to bind to

the propeptide at the amino terminus of its substrates [70,71].

Several point mutations in the propeptide substantially reduce

or eliminate carboxylation of FIX [71,72]. The carboxylated

proteins are then transported to the Golgi for secretion, where

the propeptide sequence is removed. VKOR activity was

identified 30 years ago [73]; however, little is known about the

biochemistry of this enzyme, as it is extremely refractory to

purification. The oral anticoagulant warfarin functions by

inhibiting VKOR and thereby blocking the regeneration of

active vitamin K hydroquinone [74]. As a consequence, the
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vitamin K-dependent coagulation factors are under-carboxyl-

ated, leading to a reduction in functional activity.

Clinical symptoms of VKCFD

VKCFD is an autosomal recessive disorder characterized by

deficiency of all vitamin K-dependent clotting factors. The first

case of VKCFD was described in 1966 in an infant girl who

had bleeding from the first week of life [75]. The proband was

found to have low or undetectable levels of FII, FVII, FIX and

FX, with no evidence of hepatic damage or malabsorption.

High doses of vitamin K partially restored the clotting factors

(FII, FVII, FIX, and FX) in this patient toward normal and

prevented bleeding [76]. Only a few additional cases of

VKCFD2 have been reported since [77–88]. Clinical symptoms

of VKCFD vary in accordance with procoagulant protein

levels [87]. Large amounts of vitamin K can partially correct

symptoms in most, but not all [86,89] of the cases. Bleeding can

include intracranial hemorrhage in the first weeks of life,

sometimes leading to a fatal outcome. Hemarthrosis and

mucocutaneous bleedingsmay follow antibiotic therapy, due to

decreased vitamin K production by gut bacteria. Skeletal

defects have been reported in some probands, presumably

resulting from undercarboxylation of bone Gla-proteins

[77,82]. Diagnosis of familial VKCFD requires differentiation

from acquired forms of the disorder that can be caused by

accidental ingestion warfarin products, intestinal malabsorp-

tion of vitamin K, and liver dysfunctions.

Molecular basis of VKCFD and perspective on vitamin

K-dependent c-carboxylation

Studies of VKCFD have provided important insights into the

mechanisms of the vitamin K cycle and protein carboxylation.

VKCFD is a heterogeneous disorder with at least two subtypes.

VKCFD1 is defined by defective c-carboxylase (GGCX)

activity, first reported in Devon Rex cats [90]. CCGX was

purified to homogeneity in 1991 [91] and its gene cloned the

same year [92]. Recently, two different homozygous point

mutations in the GGCX gene have been reported in three

consanguineous human families [79,81,84]. The first mutation

results in the substitution of arginine for leucine at residue 394

(L394R) in four members of an Arab kindred. The second

mutation that changes a tryptophan at residue 501 to serine

(W501S) was reported in two Lebanese families. In addition,

another family was found to have an 8 nucleotide deletion in

the first intron of GGCX, which may disrupt a cis transcrip-

tional element [85]. GGCX carrying the L394R mutation

demonstrated a threefold reduced activity compared with the

wild type protein [79]. L394 is in a 25 amino acid stretch of the

enzyme that is highly conserved among all species with a

knownGGCX gene, including invertebrates such as the fruit fly

and mosquito [62]. The primary defect associated with L394R

appears to be reduced glutamate-substrate binding [93,94].

L394 may be directly involved in glutamate binding or may

stabilize the binding site. The effect of the W501S mutation is

still under investigation. It was noted, however, that W501 is in

proximity to one of the regions involved in propeptide binding

[81].

VKCFD2 results from functional deficiency of vitamin K

2,3-epoxide reductase (VKOR) [82,87]. Purification and clo-

ning of VKOR turned out to be a challenging task. A genome

wide linkage analysis in 2 pedigrees localized the disease gene to

a 20-Mb segment of chromosome 16p [95], a rather large

interval for positional cloning. It was noted, however, that a

4.0-Mb subinterval in this region corresponds to the warfarin

resistance loci in rats andmice [96], suggesting that the warfarin

resistance loci in rodents and VKCFD2 locus in humans may

be caused by allelic mutations in the same gene [95]. Indeed,

systematic screening of candidate genes in this region led to the

identification of the vitamin K epoxide reductase complex

subunit 1 gene (VKORC1) [97]. This gene was so named

because of evidence suggesting that VKOR is a multisubunit

complex [98,99]. A homozygous mutation that replaces argin-

ine 98 by tryptophan was identified in two families. In addition,

four heterozygous mutations were detected in warfarin resist-

ant individuals. Li et al. identified the same gene independently

using an alternative approach that involved knocking down

Fig. 3. Vitamin K cycle.Vitamin K is an essential cofactor for c-carb-
oxylase (GGCX). GGCX adds a carbon dioxide to glutamic acid to form

c-carboxyglutamic acid, at the same time that the reduced form of vitamin

K (vitaminK hydroquinone) is oxygenated to form vitaminK 2,3 epoxide.

Vitamin K epoxide reductase (VKOR) is required to regenerate the vita-

min K hydroquinone, completing the vitamin K cycle. Warfarin inhibits

VKOR to limit the carboxylation of vitamin K-dependent coagulation

factors. Reprinted by permission from Nature (115), copyright (2003)

Macmillan Publishers Ltd.
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expression of individual candidate genes in the VKCFD2

disease interval with short interference RNAs and testing for

reduced VKOR activity [100].

VKORC1 is a small protein of 163 amino acids (�18 kDa)

with up to three potential transmembrane domains. Like

c-carboxylase, it is localized to the ER via the C-terminal

dilysine ER retentionmotif [97]. Expression of VKORC1 alone

in insect cells confers warfarin-sensitive VKOR activity, raising

the possibility that VKOR may be encoded by a single gene

[100]. The identification of a point mutation that decreases

VKOR activity and mutations that increase the warfarin

resistance of VKOR provide critical information about the

residues important for enzymatic activity.

c-Carboxylation is absolutely required for the function of the
vitamin K-dependent blood coagulation factors. Though its

importance for the function of other carboxylated proteins

seems likely, this is less clearly established. The function of the

c-carboxylated protein Gas6 is not well defined. However,

Gas6-deleted mice exhibit a defect in platelet function [101] and

appear to be protected from glomerular injury in a nephrotoxic

nephritis model [102]. A mutation in the matrix Gla protein

(MGP) gene causes Keutel syndrome [103], a human disorder

characterized by abnormal cartilage calcification, peripheral

pulmonary stenosis and midfacial hypoplasia. MGP deficient

mice develop soft tissue calcifications, and uniformly succumb

to aortic rupture within 2 months of birth [104]. Osteocalcin is

an inhibitor of osteoblast function. Mice lacking osteocalcin

exhibit increased bone formation without impairing bone

resorption [105]. Administration of warfarin during pregnancy

results in warfarin embryopathy, characterized by a spectrum

of birth defects including abnormal mid-facial development,

stippling of the epiphyses, andmental retardation [82,106–108].

Patients with VKORC1 mutations do not closely resemble

those of warfarin embryopathy, though bone deformation has

been noted [82]. The phenotypic differences may be explained

bymaternal complementation in VKCFD2 patients of the fully

c-carboxylated form of the protein responsible for the terato-

genic effect.

The rarity of VKCFD and the fact that only missense

mutations in GGCX and VKORC1 have been identified

suggest that complete deficiency in either of these enzymes has

severe consequences. Indeed, deletion of the Ggcx gene in mice

is partially embryonic lethal [109]. Null mice surviving to term

died uniformly at birth of massive intra-abdominal hemor-

rhage [109]. These results exclude the existence of a redundant

carboxylase pathway and indicate a role for c-carboxylated
proteins in early mammalian development.

Other inherited diseases that exhibit blood coagulation

defects

Sporadic cases of combined deficiencies for other coagulation

factors have been reported [110–113]. Many of these patients

may represent the chance inheritance of two different disease

genes. In addition, several inherited diseases may exhibit

coagulation deficiencies as a consequence of a more general

metabolic defect. For example, congenital disorders of glyco-

sylation (CDG) are a rapidly growing family of inherited

diseases affecting any of the steps involved in glycosylation of

proteins in the ER and Golgi. CDG types 1a and 1b have been

associated with abnormal coagulation factor levels [114].

Concluding remarks

The powerful tools provided by the human andmouse genome

projects have made it possible to identify the causes for several

previously mysterious combined coagulation factor deficien-

cies. The identification of VKORC1 should significantly

expedite the biochemical study of the vitamin K epoxide

reductase. For example, we are now in a much better position

to tackle long-standing questions such as whether VKOR is a

multicomponent enzyme, and where the electrons come from

that reduce vitamin K epoxide. Warfarin is currently the only

highly active oral anticoagulant drug and is widely used in the

treatment of thromboembolic diseases. Problems associated

with the use of warfarin include difficulty in determining the

right dosage and controlling the risk of bleeding. Better

understanding of VKOR should provide information that may

guide the design of safer vitamin K antagonists. Further

elucidation of the LMAN1-MCFD2 secretory pathway will

enhance our understanding of FV and FVIII biosynthesis, and

provide fundamental insight into the basic biological process of

ER-Golgi transport. To date, LMAN1-MCFD2 remains the

only cargo receptor identified in higher eukaryotes. The

requirement of a soluble protein (MCFD2) as an essential

subunit of the cargo receptor distinguishes it from the known

cargo receptors in yeast. Identification of other proteins relying

on LMAN1-MCFD2 for efficient secretion should provide

further insight into this important biologic pathway. FV and

FVIII share little homology to two other putative ligands of

LMAN1, cathepsin C and catZr. With the identification of

additional ligands, it may be possible to define the common

structural features that mediate these interactions. Finally,

future studies may exploit the LMAN1-MCFD2 pathway as a

novel drug target for the treatment of thrombophilia, and for

the more efficient production of recombinant proteins, inclu-

ding FVIII.
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