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ABSTRACT. We consider the general optimization problem (P) of selecting a continuous function z over a o-compact
Hausdorff space T to a metric space A, from a feasible region X of such functions, so as to minimize a functional
c on X. We require that X consist of a closed equicontinuous family of functions lying in the product (over T') of
compact subsets Y; of A. (An important special case is the optimal control problem of finding a continuous time
control function = that minimizes its associated discounted cost c¢(z) over the infinite horizon.) Relative to the
uniform-on-compacta topology on the function space C(T, A) of continuous functions from T to A, the feasible
region X is compact. Thus optimal solutions r* to (P) exist under the assumption that ¢ is continuous. We
wish to approximate such an z* by optimal solutions to a net {P;}; € I of approximating problems of the form
ming¢ x, ¢;(x) for each 7 € I, where (1) the net of sets {X;}; converges to X in the sense of Kuratowski and (2)
the net {c;}; of functions converges to ¢ uniformly on X. We show that for large i, any optimal solution z} to the
approximating problem (P;) arbitrarily well approximates some optimal solution z* to (P). It follows that if (P) is
well-posed, i.e., limsup X is a singleton {x*}, then any net {z]} of (P;)-optimal solutions converges in C(T, A)
to z*. For this case, we construct a finite algorithm with the following property: given any prespecified error ¢
and any compact subset Q of T, our algorithm computes an i in I and an associated z; in X' which is within ¢
of r* on Q. We illustrate the theory and algorithm with a problem in continuous time production planning over
an infinite horizon.

%1 Introduction

Consider the abstract optimization problem

min c(zx) (P)

ri X

1991 Mathematics Subject Classification. Primary 90C20, Secondary 49A99.

Key words and phrases. Continuous time optimization, optimal control, infinite horizon optimization, production planning.

This work was supported in part by the National Science Foundation under Grants DDM-9214894 and DMI-9713723. The
first author was partially supported by an Oakland University Research Fellowship.

Typeset by ApS-TEX



2 IRWIN E. SCHOCHETMAN AND ROBERT L. SMITH

where the feasible region X is a non-empty compact subset of a function space Y and the objective function
c is a real-valued continuous function over Y. The Weierstrass Theorem assures us of the existence of an
optimal solution z* € X that attains the minimum value c¢* of ¢ over X. However, optimization problems
in this class are difficult to numerically solve in general, since there is seldom a concrete representation for
solutions in Y. In this paper, we explore general methods for approximating a solution to (P) via solutions
to a net (P;),1 € I, of simpler approximating problems, where (F;) is given by

;Yell)? ci(z) (F)

for 1 € I, ¢; is continuous on Y, lim X; = X (Kuratowski) and ¢; — ¢ uniformly on Y. These approximating
problems are typically finite dimensional (or special in other ways that render them more easily solvable than
the original problem (P)). For example, we may choose to approximate an optimal solution to a continuous
time infinite horizon optimization problem (P) by optimal solutions to discrete time finite horizon versions
(P;),i € N, where the time periods decrease to zero and the horizon increases to infinity as i — oo (see e.g.
Schochetman and Smith [1989, 1992a, 1997], Bes and Sethi [1988], Bean and Smith [1984, 1993]).

The emphasis in this paper is on the case where Y is an infinite dimensional function space. For example,
problems in infinite horizon optimal control seek a control function z from a space Y of continuous functions
on R* that minimizes its associated infinite horizon discounted cost. In this case, the feasible region X is
specified through a differential or integral equation that relates system state evolution to the control policy
employed (see e.g. Carlson, Haurie and Leizarowitz [1987], Luenberger [1969]). In fact, the special case of a
problem in infinite horizon production control is considered here in detail in section 5. More generally, best
approximation problems also fall within the framework of (P), where ¢(z) is a measure of the error of z from
a fixed target function zo (see e.g. Schochetman and Smith [1991, 1992b], Dontchev and Zolezzi [1993)).

Since the objective functions and feasible regions of the approximating problems (P;);cs are also defined
over the common space Y, it is important to endow Y with a topology that is fine enough to allow for
the error in solution approximation to be suitably small, but at the same time, coarse enough for desirable
properties like compactness of X to hold. Toward this end, we begin by embedding Y within the set of
all functions from a o-compact Hausdorff space T to a metric space A. By requiring X to be a non-empty
closed subset of equicontinuous functions from the product (over T') of compact subsets in A, the pointwise
convergence and uniform convergence on compacta topologies agree on X. If follows by Tychonoff that X
remains compact in the stronger topology of uniform convergence on compacta. It is this stronger topology
that appropriately measures solution error; roughly speaking, two solutions over T' are “close” when their
difference is uniformly small over a compact subset Q of T. For example, if T = N, and is discrete, then
this reduces to actual agreement on finite subsets of N and in particular on {1,...,n}. Moreover since T
is o-compact, it is the countable union of such subsets, and the near agreement can thus be required over
nearly all of T. In fact, there exist compact Q, — T (Kuratowski), as ¢ — oo, where Q; = Ui_,Q}, Q%
compact for all k.

We require only two properties of the approximating problems (P;) in their relation to (P): 1) their
feasible regions X; — X (Kuratowski) and 2) their objective functions ¢; — ¢ (uniformly). Requirement 1)
is a significant relaxation over assumptions commonly made in the literature. For example, in Schochetman
and Smith [1989], it is required that X, = X for all ¢, while in Schochetman and Smith [1992] and Semple
[1996]. it is assumed that X;:) C X,. all i, and X =N, X;, so that X; | X in all all cases. Also, the action
functions in these papers are defined within a discrete time framework where T = {1,2,...}.

In section 2, the class of optimization problems considered is formally defined, as well as their associated
nets of approximating problems. We prove optimal value convergence, i.e., that the net of optimal values
{ct} to the approximating problems converges to the optimal value c* of the original optimization problem.
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We also establish the fundamental result that solutions to the approximating problems (P;) become (for
large 1) arbitrarily close to optimal solutions to the original problem (P). Section 3 turns to establishing
conditions under which optimal policy convergence takes place, i.e., conditions under which optimal solutions
of approximating problems converge to an optimal solution of the original problem. Existence of a unique
accumulation point of approximating optima is established as a sufficient condition for this to take place.
Under this well-posedness condition, in section 4, an algorithm is provided, together with stopping rule, that
is guaranteed to finitely compute an approximating solution within any prespecified error from the optimal
solution. Finally, in section 5, we apply the theory and algorithms developed in the preceding section to a
problem in continuous-time infinite horizon production control.

§2 Problem Formulation and Value Convergence

Let T be a o-compact Hausdorff space (Dugundji [1966, p. 240]) and A a metric space with metric d.
The space T is the space of the action indez (e.g., time) and A is the space of all possible actions. Let AT
denote the set of all functions from 7 into A. An element y of AT will be called an action strategy in A over
T.

Next let C(T, A) denote the set of continuous functions from T into A. Although there are several natural
Hausdorff topologies for C(T, A), there is one which is of particular interest to us, namely the topology
of uniform convergence on compact sets or more briefly, the uniform-on-compacta topology (Kelly [1955].
Moreover, since T is o-compact, it follows (Dugundji {1966 , p.272]) that this topological space C(T, A) is
metrizable and hence, first countable. We next observe that the uniform-on-compacta topology is a jointly
continuous topology on C(T, A); this is not true in general for the topology of pointwise convergence (Kelley
(1955, p. 223]). It is primarily for this reason that we adopt the topology of uniform convergence on compacta
on C(T, A).

Lemma 2.1. The canonical mapping (y,t) — y(t) of C(T,A) x T into A is continuous. If T is discrete,
then it is also continuous relative to the topology of pointwise convergence on C(T, A).

Proof. This follows from the definitions of the relevant topologies, together with the fact that T is locally
compact. O

Let £ be a non-empty, equicontinuous (Kelley {1955, p.232]) family of functions in C(T, A), i.e., for each
to € T and ¢ > 0, there exists a neighborhood U of ¢y in T such that

d(y(1),y(to)) <¢, VteU, Vyek.

For such a suhspace E it follows (Kelley [1955, p.232]) that the relative topologies of uniform convergence on
compacta and pointwise convergence are equal. Note that a sufficient condition for E to be equicontinuous
is for I to be compact in C(T, A) (Kelley {1955, p.233]); if T is discrete, then it is sufficient for E to be
merely pointwise-compact (Lemma 2.1).

Since £ is equicontinuous, its pointwise-closure in AT is also equicontinuous (Kelley [1955, p.232]), as
is its relative pointwise-closure in C(T, A). Thus, there is no loss of generality in also assuming that F is
pointwise-closed in C(T, A). Consequently, E is closed in C(T, A) as well.

In general, given t € T, it is unlikely that all actions in A will be feasible for t. Thus, we will let Y; denote
the space of actions in A which are feasible at action index t, Vt € T. We assume that Y; is a non-empty,
compact subset of A, Vt € T. Let

Y = EnHY,
teT

={yeE:y(t)e Y, Vte T},
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sothat Y CECC(T,A) C AT and Y C [TierY: € AT. Note that [Iicr Y: is not contained in C(7, A) in
general, unless T is discrete. (In fact, if T is discrete, we could choose E = [[Y; =Y.) Thus, our choice of
Y is necessitated by the fact that the decision index t need not be discrete. We assume Y # (). The space Y
will play the role of the space of all possible strategies (feasible or not) over T with values in the appropriate
decision spaces Y;, Vt € T. Note that Y is an equicontinuous family also, so that the restrictions to Y of the
uniform-on-compacta and pointwise convergence topologies agree. We will simply refer to these restrictions
as the topology of Y. Finally, note that Y being a subspace of C(T, A) is also first countable.
The next result explains why we require F to be equicontinuous.

Lemma 2.2. The space Y is a non-empty compact Hausdorff space.

Proof. The space [],. Y: is pointwise-compact by the Tychonoff Theorem (Kelley [1955]), and contained in
AT which is Hausdorff relative to pointwise convergence. Hence, [l.cr Y: is pointwise-closed in AT (Kelley
[1955]). Thus, Y is pointwise-closed in AT and pointwise-closed in C(T, A). Consequently, Y is closed in
C(T, A). Thus, the result follows from Ascoli’s Theorem (Kelley [1955, p.233]). O

Example 2.3. (Discrete-Time, Discrete-Action Space) Let T be the positive integers N, ¥; =
{0,1,... ,m},Vt=1,2,...,and A ={0,1,...,m}, where we assume

0<m<m, Vt=12,...,

and
dlz,y) =z -y|, Vz,y=0,1,...,m.

Then E = [[;2,Y: is pointwise-compact and hence, equicontinuous (Kelley [1955, p.233]) and pointwise-
closed. In this case, Y =[]0, V..

Example 2.4. (Discrete-Time, Continuous-Action Space) Let T = N and let Y; be a compact subset
of the Euclidean space R™ of dimension n;, Vt = 1,2,.... Define A to be the set of infinite sequences
z = (x,) of real vectors in the R™ having the property that z, = 0, for all but finitely many ¢t = 1,2,....
Then A is a metric space with metric given by

oo
dz,y) = () llze - w2, Vo,ye A

t=1

Note that the canonical restriction of d to R™ yields the usual Euclidean metric, V¢t = 1,2,.... Once again,
E =TI, Y. is pointwise-compact. equicontinuous (Kelley [1955, p.233]) and pointwise-closed; Y = M2, Y
also.

Example 2.5. (Continuous-Time, Continuous-Action Space) Now let T = R* (non-negative reals)
and A = R. 5o that A7 is the set R®" of real-valued functions on R*. Fix M > 0 and let

E={yeRY : 0<y(t)-y(s) SM(t—s), WO<s<t)

Note that the constant functions are contained in each such E. Thus, E is a non-empty equicontinuous
subset of C'(R*,R). Moreover, it is pointwise-closed in C(R*,R), and hence, uniform-on-compacta closed
as well. Also let Y; denote the closed interval [0, Mt], ¥t > 0. Note that the zero function is in both E
and [],5 Yi. the non-zero constant functions are in E, but not in [],5, Yz, and there exist non-continuous
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functions in [],5q Yz, which are not in E. The set [],5, Y; is pointwise-closed in R®" and thus, also closed.
Therefore, Y = EN [1i>0 Y2 is also closed in C(R*,R), and hence, compact by Ascoli’s Theorem (Kelley
[1955, p.233]). Also, note that y(0) = 0, for each y € Y; in fact, y € Y if and only if y € F and y(0) = 0.
More generally, let

F={yeR" : y(t) - y(s)| < Mlt - |, Vs,¢20},

i.e., F is the set of Lipschitz continuous functions with uniform Lipschitz constant M. Accordingly, also let
Y, = [-Mt, Mt], V¢t > 0. Then the previous claims are true for F and Y = Fn thoYt as well.

Note that the remaining case where T is continuous-time while A is a discrete-action space is not considered,
since the only continuous functions from a connected space to a discrete space are the constant functions, a
trivial family.

Returning to the general discussion preceding Example 2.3, recall that Y is a compact Hausdorff space.
We will let K£(Y) denote the set of all closed (hence, compact), non-empty subsets of Y. If we assume that
K(Y) is equipped with the relativized Vietoris topology (Klein and Thompson [1984, p.8]), then K(Y) is
also a compact Hausdorff space (Klein and Thompson [1984, pp.15-17]). Moreover, the convergence in K(Y')
underlying this topology is precisely Kuratowski convergence (Klein and Thompson [1984, p. 34]) which we
describe next. Let {S;}; be a net of subsets of Y (with I directed by <) and y € Y. Define:

(i) y is a limit point of the net {S;}; if, for every neighborhood U of y in Y, there exists iy € I such that
S;NU # @, for all 7 € I for which ip < 1.

(ii) y is a cluster point of the net {S,}; if, for every neighborhood U of y in Y, and every i € I, there exists
Ji € I'such that 1 < j; and S;, N U # 0.

Then let liminf; S; (resp. limsup, S;) denote the set of limit (resp. cluster) points of the {S;};. f SCY
and S = liminf; S; = limsup; S;. we write lim; S; = S. In general, liminf; S; and limsup; S; are closed
subsets of Y which may be empty. and which satisfy liminf; S; C limsup; S;. Thus, lim;S; = S if and only
if limsup,; S; €S and S C liminf; s,.

We assumne that our feasible region X is a given closed, non-empty subset of Y, i.e., X € K(Y). We also
assume we are given a real-valued. continuous cost function c defined on Y. Our optimization problem (P)
is then defined as follows:

min c(x). (P)
Since X is compact and c is continuous, it follows that the minimum is attained. We will denote the set of
optimal solutions to (P) by X* and the optimal cost by c¢*. Of course, X* is a non-empty, closed subset of
X,ie. X' e K(Y).

Our primary objective in this paper is to approximate the optimal solutions of (P) by optimal solutions
of problems which approximate (P). To this end. let {X;}; be any net in K(Y') such that lim; X; = X. The
directed set [ (directed by <) is the approzimation indez set.

Example 2.6. (Discrete, Partially-Ordered Approximation Index) Suppose that X can be expressed

as a countable intersection NS, K,,. where K,, € K(Y), Yn=1,2,... . For example, if the notation is as in
Example 2.1, and X is the region satisfving countably infinitely many nonlinear constraints, then K,, could
be the set of solutions in ¥ which satisfv the n-th constraint, Vn = 1,2,.... Let I denote the collection of

all finite subsets of N, so that I is a countable set which is directed by C. For each i € I, let X; = N, K.
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Then {X;}; is a (countable) net in K(Y') where i C j implies X; C X;. Moreover, by Klein and Thompson
(1984, p.28],
ll;rl Xi = ﬂie[X,; =X.

Example 2.7. (Continuous-Time Approximation Index) Let the notation be as in Example 2.5, with
(I, <) = (R, <) also. Suppose we are given a function D : Rt — R*. Define

X={yeY :y(t) 2 D(t), vt 20},
and suppose it is non-empty. Then X is pointwise-closed in Y, i.e., X € K(Y'). For each t > 0, define
Xe={yeY y(s) > D(s), V0 < s <t}
so that {X,}¢>o is a net in K(Y") for which s <t implies X, C X,, and

Jim X, = ()X, =X.

>0

We now return to our general situation. For each i € I, let ¢; be a continuous, real-valued function on Y.
We assume that the net {c;}; converges uniformly to con Y, i.e., given § > 0, there exists 15 € I such that

le(y) - ci(y)l <6, Wy €Y,
for all 2 € [ such that is < i. For each : € I, we define the i-th approximating problem (P;) as follows:

min ¢;(z). (P:)
(In the particular case where [ = N. we have that the sequence of problems (P;) converges in the sense of
Fiacco [1971] to the problem (P).) The optimal solution set X} to (P;) is then a non-empty, closed subset
of Y. Thus. X € K(Y), for all i € I. We will denote the optimal objective value to (P;) by ¢}, Vi € I.

Theorem 2.8. (Value Convergence) The net {c!}; of optimal values to the (P;),i € I, converges to the
optinal value ¢* of (P), ve., limjc = ¢*.

Proof. We first show that liminf; ¢} > ¢*. By definition of liminf; ¢}, there exists a subnet {c}}; of {c}}/
such that limy¢j = liminf; ¢}. But ¢} = ¢,(z}), for some z} € X;, Vj € J. Hence, {z}}, is a net in
compact Y. Thus, there exists a subnet {z}}x of {z}},, with corresponding subnet {c}k of {cj},, and
r € Y such that limg x} = z and limy ¢; = liminf; ¢}. Since lim; X; = X, i.e., limsup; X; C X and

x € limsup X, C limsup X; € X
18J el

(i.e.. z is {'P)-feasible), we have that

liminfe! = lim ¢; = lim cx(z}).
el b keK KT kek (2%)
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But limg cx(z}) = c(z), since
lek(zk) — c@)] < le(z) — c(@k)| + le(zi) - (=),

cis continuous at z and the subnet {ci} x converges uniformly to con Y. Finally, c¢(x) > c*, which completes
this part of the proof.

Next we show that limsup; ¢f < c¢*. Let z* € X*, so that ¢* = ¢(z*). Since X C liminf; X;, we have
that z* € liminf; X;. Hence, there exists a net {z;}; such that z; € X;, Vi € I, for which lim;z; = z*.
By definition of limsup; ¢}, there exists a subnet {c;}; of {c; }s such that lim; ¢j = limsup; c}. Necessarily,
limy z; = 2" also. Let ¢} = c;(z}), where 2} € X7 C X;, Vj € J. Then

. . . e .
¢t =c(z*) = lime;i(z;) > limc} =limsupc]
( ) jGJ J( ])—jGJ 7 'GIp (R

which completes the proof. O

Remark. Note that the second part of the previous proof does not require Y to be compact. Also, it is not
true in general that lim; X} = X* (see Schochetman and Smith [1992a], for example). However, we do have
a partial result in this direction.

Theorem 2.9. Every accumulation point of optima drawn from the (P;) is optimal for (P), i.e.,

limsup X; C X™.
1

Proof. Let « € limsup; X;. Then there exists a subnet {X;}; of {X;}r and a corresponding net {z}} such
that 25 € X7, Vj € J. and lim;«; = z. Therefore. z € limsup; X; by definition, so that z € X by
hypothesis. 1.e.. ¢* < c(z). Since lim; 2} = z, we have that

*

c(z) =limc;(z

by Theoremi 2.8, so that z € X*. O

The following easy corollary to Theorem 2.9 is a fundamental result. It states that any optimal solution
to an approximating problem (P;) arbitrarily well approximates some optimal solution to (P) for sufficiently
large 1.

Theorem 2.10. Let Q be a compuct subset of T and § > 0. Then there exists ig € I with the following
property. For each 1 € I with ig < i. and for each x} € X, there exists y* € X* such that d(z}(t),y*(t)) <
vt e Q.

Proof. Suppose not. Then. for each 1 € I. there exists k; € I such that ¢ < k;, and there exists y; € X,
with the following property. For cach y* € X°*. there exists to € Q (depending on y* and ) such that
d(yi(to),y' 1)) > 8. Now {y;}; is a net in the compact space Y. Thus, there exists a subnet {y;}, of
{yi}; and y € Y such that limyy, = y in Y. Consequently, y € limsup; X} C X*. Moreover, by the
topology on Y. there exists jo € .J such that d(y,(t),y(t)) <Vt € Q, for all 7 > jo in J. In particular,
d(y,, (1)) uit) < 8.Vt € Q. But. for y* =y and 1 = jo, there exists tg € Q such that d(y;,(to)),y(to) > 4.
Contradiction. O

Example 2.11. (Discrete-Time. Continuous-Action Space with Discrete-Time Approximation
Index) Let 7'=1 = N. 4 = R. and let ¥ be a non-empty compact subset of R, V¢ € N, withY = E =[] Ys.
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For each y € Y, let K;(y) (resp. R:(y)) denote the cumulative cost (resp. revenue) attributed to y through
time t = 1,2,.... We assume that for each y € Y, the real functions (sequences) t — K;(y) and ¢t — Ry(y)
on N are non-negative, non-decreasing and uniformly bounded by some exponential function, i.e., without
loss of generality, there exist B > 0 and 8 > 1 such that

max(K,;(y), Ri(y)) < BB, VyeY, Vi=1,2,....

For each y € Y, also define Cy(y) = K;(y)— R:(y) to be the cumulative net cost of y through timet = 1,2,.. ..
For each {, we assume that all costs and revenues incurred at time ¢ are discounted by the discount factor
a=(1+p)~!, where p > 0 is the interest rate. Then, c; is defined by

t

ca(y) =Y o C(y) - Comi(y)], VWeEY, Vt=1,2,....

s=1
Similarly for the t-horizon discounted cost k;(y) and revenue r.(y), i.e.,

t

ki(y) =Y oYK (y) - Komy)], VyeY, vi=12,...,

s=1

and
t

r(y) =Y o Ry(y) - Risi(y)), WeY, Vt=12,...,

s=1

so that ¢;(y) = k:(y) — r¢(y) in this case. Define the infinite horizon discounted net cost to be

ey) =Y o Cly) = Comi )] = lim ely), Yy e,

sl

provided this limit exists. We similarlv define the infinite horizon discounted cumulative cost and revenue
functions k(y) and r(y). i.e..

x

Ky) =)o 'R (y) - Keoay) = lim k(y), Yy €Y,

s=1

and
o~

rly) =)o HRiy) - Reay)] = lim r(y), Vyev,

s

respectivelv. If p > 3 — 1. so that 0 < o3 < 1. then for each y € Y, the quantities c(y), k(y) and r(y) do
exist and c(y) = k(y) — r(y). For each y € Y, we also have that

le(y) = ce(y)] < a,

where «, is defined by
4B

e yt+1 —
u(]_ug)(am , V=12,

ay =
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(See 2.2-2.5 of Schochetman and Smith [1989] for analogous results in the case where T =R and 8 =¢".)
Consequently, the sequence {c;}n converges uniformly to ¢ on Y. The same is true for k¥ and r, ie.,
Vt=1,2,...,

k(y) = ke(y)] < ae,

and
Ir(y) —r¢(y)| < as,

Finally, ¢; < ci+as, for all s,t = 1,2,... such that s < t. If, in addition, we assume that for eacht =1,2,...,
the functions K;, R, and hence C;, are continuous real-valued functions on Y, then for each t = 1,2,...,
the real-valued functions k;, r;, c; are continuous on Y. Hence, the real-valued functions k, r, c are also
continuous on Y. (See 2.6-2.7 of Schochetman and Smith [1989].)

Example 2.12. (Continuous-Time, Continuous-Action Space with a Continuous-Time Approx-
imation Index) Let T = I = R* and A = R, as in Examples 2.5 and 2.7. As in Schochetman and Smith
[1989], let K¢ (y) (resp. R:(y)) denote the cumulative cost (resp. revenue) attributed to y € Y through time
t > 0. We assume that, for each y € Y, the functions t — K;(y) and t — R:(y) on RT are non-negative,
non-decreasing and uniformly bounded by some exponential function, i.e., without loss of generality, there
exist B,~ > 0 such that

max(K(y), Ri(y)) < Be", VyeY, vt >0.

Also define Cy(y) = K:(y) — Re(y) to be the cumulative net cost of y € Y through time ¢ > 0. Then, for
each y € Y. the function t — C,(y) is of locally bounded variation on R*. For each t > 0, we assume that
all costs and revenues incurred at time 0 < s <t are continuously discounted by e™#°, where p > 0 is the
interest rate. Thus, the t-horizon discounted net cost c,(y) for y € Y is given by the Stieltjes integral (see
Widder [1946])

t
ct(y)=/ e ”dCy(y), Vt2>0.
0

The t-horizon discounted cost k.(y) and revenue r,(y) for y are obtained analogously, i.e.,

t
kily) = / e P dK,(y), Vi 30,

0

and
t
rly) = / ¢ P dR,(y), Vi3> 0.

0

Obviouslv. ¢/{yi = ki(y) — re(y). Yy € ¥ and ¥t > 0. Define the infinite horizon discounted net cost ¢(y) of
y € Y to be the Laplace-Stieltjes transform (see Widder [1946])

t—oo

(y) = /0 P dCy(y) = lim ci(y),

provided this limit exists. Similarly for the infinite horizon discounted cost and revenue functions k(y) and
r(y). respectively, ie.,

Ho) = [ e Ky = Jim k), Ve,

0
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and -~
r(y) = / e P’dR,(y) = lim ri(y), VyeY.
0 t—o0

If 0 < v < p, then for each y € Y, the quantities c(y), k(y) and r(y) exist, and c(y) = k(y) — r(y). For each
y €Y, and for each t > 0, we have |c(y) — c:(y)| < a¢, where a; is defined by

—p)t
ag = M, vt Z 0.
pP=
(See 2.2-2.5 of Schochetman and Smith [1989].) Consequently, the net {c;}:>0 of finite horizon net cost
functions converges uniformly to the infinite horizon net cost function ¢ on Y. The same is true for k and r.
If, for each t > 0, the functions K;, R;, and hence C;, are continuous real-valued functions on Y, then the
real-valued functions k;, 7, c; are also continuous on Y. Thus, the real-valued functions k, r, c are likewise
continuous on Y. (See 2.6-2.7 of Schochetman and Smith [1989].) Moreover, the net {c; }:>o of optimal costs
satisfies ¢; < c! +as, V0 <s<tandc* =limc} (see 3.2 of Schochetman and Smith [1989)]). '

§3 Approximation Algorithms and Policy Convergence

The problems (P;), Vi € I, are viewed as approximating problems to (P). In general, the directed set I
is not countable. However, it is intuitively the case that an approximation algorithm for solving (P) should
be sequential in nature. (For example, consider the situation where an infinite horizon continuous-time
optimization problem is being approximated by a sequence of finite horizon subproblems whose horizons are
increasing without bound.) Consequently, for the remainder of this paper, we assume that N is a countable
subset of the directed set I which is order-isomorphic to the positive integers and satisfies the property that
for each 7 € . there exists n; € N such that : < n;, i.e., N is a subnet (Kelley [1955, p.70]) of I. Formally,
we are assiuning that there exists an order-preserving, one-to-one mapping ¢ of (N, <) into (I, <) which
satisfies: for each 1 € I, there exists n; € N such that if m € N is such that n; < m, then i < ¢(m). We then

have N = ¢(N). For convenience, on N, we will use < and < interchangeably.

Example 3.1. Let (I, <) be the positive reals (R*, <) and N the positive integers N. (More generally, N
could be a strictly monotone sequence in R* which is unbounded.) Alternately, let I denote the uncountable
set of all finite subsets of N (with < given by C) with N the subset of I givenby N = { {1,2,...,n} : n € N}.

In general. for each n € N, let A, be a closed. non-empty set of (P, )-optimal solutions, i.e., § # A C X},
so that ¢, = c,(z), Vo € A}, and A; € K(Y), Vn € N. Define

A’ =limsup A4;,

neN

which is necessarily a closed subset of X (Klein and Thompson [1984, p.28]). It is also non-empty, i.e.,
AL, € K(Y). since the A} are non-empty and Y is compact. Since Ay C X, for all n € N, we have that

Al =limsup A;, Climsup X, C limsup X; C X*,
neN neN el

by Theorein 2,12 i.e.. the elements of A7 are optimal for (P). In this context, as in Schochetman and Smith
[1989]. we define an approzimation algorithin A* for (P) to be such a sequence { A}, }n, for some choice of N
as above. If A* is an approximation algorithm, then the elements of A%, will be called A*-algorithmically
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optimal solutions. The algorithm A* cannot approximate the other elements of X*. We will also say that
the approximation algorithm A* converges if
liminf A}, = limsup A,
neN neN

inY,ie, if

l' * — *

2 = A
in K(Y).

Proposition 3.2. Suppose A* is an approzimation algorithm for (P) which admits a unique A*-algorithmically
optimal solution, i.e., A% = {z*}, for some z* € X*. Then:

(i) The algorithm A* converges to {z*} in K(Y), i.e., limy A}, = {z*}.

(i) Bvery selection from the A, converges to z*, i.e., if x,, is any element of A}, Vn € N, thenlimy z,, = z*
mY.

Proof. Both parts follow from Corollary 2.2 of Schochetman and Smith [1991]. a

Remark. If (P) admits a unique optimal solution, i.e., if X* = {z*}, then § # A% C {z*}, so that
A%, = {z"}. Such optimization problems are said to be well-posed (Dontchev and Zolezzi [1993]).

Example 3.3. (Strictly Convex Programs) Consider the particular case where A is also a (real)
topological vector space, X is a closed, non-empty, convez feasible region and c is a strictly convez objective
function. In this case, (P) is well-known to admit a unique solution.

Recall our fundamental notion of nearness of solutions in Y as near agreement over a compact subset of
T. This guides our definition of neighborhoods of Y. Toward this end, let @ be a compact subset of T,
z €Y and ¢ > 0. Define

Ug(z,0) ={y e Y :d(z(t),y(t) <6, VteQ}

and
Uq(G.6) = | Uglz,0),
zeG
for G C Y. Note that Ug(z,d) is a basic open neighborhood of z in the relative topology of Y, so that
Ug(G.d) i~ open in Y. In this context, we are able to give necessary and sufficient conditions for A’  to be
a singleton

Theorem 3.4. The following are equwalent for an approzimation algorithm A* = {A%}n:
(i) AL s u singleton {z*}.
(ii) Solution indices exist for A*, i.e., there enists * € A%, such that, for each compact Q C T and § > 0,
there exists ng € N satisfying

A, C Ug(z*, ),
for all v = N such that n > nyg.
(i12) Policy convergence takes place for all approzimate solution subsequences generated by A*, t.e., there
emsts «* € A3, such that for all subsequences {A;, } of {A}, and corresponding sequences {z;} for which
z;€ A, . Vj=1,2..., we havelimz; =z* m Y.

Proof. (i+ == (ii). Suppose A% = {z*}. Then limy A} = {z*} in K(Y) by Proposition 3.2. Suppose
(ii) is false for z*. Then. there exist Q and d as in (ii) such that for each n € N, there exists j, € N



12 IRWIN E. SCHOCHETMAN AND ROBERT L. SMITH

such that 7, > n and A;" Z Ug(z*,d), i.e., the intersection of A;., with the complement of Ugp(z*,d) in
Y is non-empty. Thus, there exists a subsequence {.A;n} of {A%}n, and a corresponding sequence {y,}n,

such that y, € A} , but y, & Ug(z*,8), ¥n € N. Since Ug(z*,d) is open, its complement is closed and
hence, compact. Hence, passing to a subsequence if necessary, we may assume that limy y, = y, for some
y ¢ Ug(z,0). In particular, y # z*. But y, € A}, Vn € N, so that y € limsupy A; = A3, ie, y =27,
by hypothesis. Contradiction.

(i) = (iii). Suppose z* is as in (ii). Let {4} be a subsequence of {A;}~ and {z;}, a corresponding

sequence satisfying z; € A}, Vj € J. Let Q be a compact subset of T and § > 0. By (ii), there exists

ng € N such that Ay C Ug(z*,d), for all n € N satisfying n > ng. By definition of subsequence, there exists
Jo € J such that whenever j € J and j > jo, the image of j in N is at least ng. Consequently, for j > jo we
have

d(z;(t),z"(t)) <6, VteQ,

so that Z, € UQ((IJ*,(S), Y7 > jo, i.e., limy T = T*.
(i) = (i). By hypothesis, {z*} C A%.. Suppose y* in A% . Then there exists a subsequence {A;}J

of {4} and a corresponding sequence {z;}, such that z; € A}, Vj € J, and lim;y; = y. By (ii),
limyy, = +*. Since Y is Hausdorff, it follows that y = z*. 0

§4 Stopping Rule for a Finite Algorithm

Let A* be an approximation algorithm for (P) as in section 3. In this section, under suitable additional
assumptions, we present a Stopping Rule for this algorithm, as well as sufficient conditions for this Stopping
Rule to be satisfied at some m € N, given compact @ C Y and § > 0. To do this, we require some additional
notation and ideas. For the remainder of the paper, we adopt the following assumptions.

Assumptions

(1) The X, are nested downward. i.e.. if n > jin N, then X,, C X;. Note that since limy X,, = X, we
also have that X = Ny X, (Klein and Thompson {1984, p.28)).

(2) Costs are monotonically increasing. ie..if n > jin N, then cq(y) > ¢j(y), Vy € X,, where X, C X;;
by . 1).

Examplc 4.1. In Examples 2.11 and 2.12. simply set R = 0 in order to satisfy both of these assumptions.

Lemma 1.2, The sequence {c}}n s monotonically non-decreasing and bounded above by c*, i.e., ¢ 1 c*,
as n — x

Proof. lor n > jin N, let z;, € X;. so that ¢}, = cn(z}), ie., ¢, > cj(zy), by assumption (2). Since
z;, € X, by assumption (1), it follows that ¢;(z;,) > ¢}, which proves the first part. For the second part,
recall Theorem 2.8, O

Let {a, }n be a sequence of real numbers satisfying a, > ¢* — ¢}, so that a, > 0, Vn € N. Note that
in general. the sequence {a,}n need not converge.
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Example 4.3. If we know some b > c*, then we can let a, =b—c},, Vn € N. As an example, set b = ¢(z),
for any € X. Thus, there exist many such sequences. In particular, recall examples 2.11 and 2.12.

Our next Lemma establishes upper and lower bounds on the optimal costs c; as we increase n.

Lemma 4.4. For j <mnin N, we have

Proof. By the previous lemma,
* * * * *
<ct =(c =cj)+c <aj+c],

by the choice of a;. O

We next define a measure of error in value from optimal associated with solutions close to optimal for
problem (P,,). Define
Mg(é,m) = inf{cm(z) : x € Xm\Ug(An, 9)},

where the slash denotes set difference (in }'). Since Ug(A;,,d) is an open subset of Y, it follows that
Xm\Ug(A},,6) is a closed (hence, compact) subset of Y, because it is equal to the intersection of X,
and the complement of Ug(A7,,d) in Y. Thus, Mg(é, m) is attained, since c,, is continuous. Recall that

¢, =cmle), VT € A:n

Stopping Rule. Fix compact Q@ C T and ¢ > 0. Let m € N. Then stop at m if
(Policy Criterion)

d(xz(t),y(t)) < /3. VteQ, Vz,ye A,

and
(Value Criterion)
Mg(d/3.m) —c;, > 2am.

We will sav that the algorithin A* termnanates at m if the Policy and Value Criteria are satisfied for m, which
we will call a solution inder of tolerance § and support Q.

Solution Index Algorithm
1. Choose compact Q@ CT. ¢ > 0 and set m = 1.
2. Solve {P,,) to get A, and c;,, which is equal to ¢, (z), for any z € A7,.

3. If the Stopping Rule is not satisfied. set m = m + 1 and go to step 2.
4. Otherwise, stop. In this event, m is a solution index of tolerance ¢ and support Q.

Lemma 4.5. [f A* termninates at m, then for all n > m, we have X, C Ug(Ay,,/3).
Proof. 11 not. then there exists n > m such that X is not a subset of Ug(A;,,8/3). Hence, there exists

x* e X! (A, 9/3). Then. since the X, are nested downward,

m?
X:CXnC Xnm

and
rt e Xp\Ug(A;,,6/3).
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Thus, by definition,
Mq(6/3,m) < cm(a*).

Also,
em(z*) = ¢, > Mg(0/3,m) — ¢, > 2am,

by the Value Criterion, i.e.,
em(z*) = cpy > 20m.

On the other hand,
¢, =cn(z") 2 cm(2®) 2 cm(z*) — am,

by Assumption (2). Consequently, adding the previous two inequalities together, we obtain that

*

. *
Cp — Cpp > A,

le.
ey > Coy .
By Lemmia 4.4, this is a contradiction. Therefore, X} C Ug(A},,4/3), Yn>m. a

Theorem 4.6. If A* terminates at m, then for each z* € A%, and each n > m, A}, C Ug(z*,9), i.e., for

each x € A, we have

d(z(t),z*(t) < 6, VteqQ.

Proof. Fix z* € A% and ¢ > 0. Note that Ug(z*,¢) is an open neighborhood of z* in the topology of Y. By
definition of A%, (Klein and Thompson [1984, p.24]), there exists n > m such that A} NUg(z*,¢) # 0, i.e.,
there exists z,, € A}, such that

d(z,(t),z2°(t)) <e, VteQ.

Consequently, z* € Ug(a,, .« ). We have
o, € A, CUg(A;,,6/3),
by Lemma 4.5. Therefore. there exists x,, € A;, such that z, € Ug(zm,d/3), i.e.,
dlan(t), am(t) < 3/3, VteQ.
Hence. by the Triangle Inequality.
Az (t), zp (1)) < 6/3+¢€, ViteQ,

so that
€ UQ(;L',,,, d/3+¢€), Ve>O0.

We next show that there exists y € A;, such that

d(y(t). 2" (1)) < §/3, VteQ.
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For each positive integer k, by the previous argument, there exists y, € A;, such that z* € Ug(yx, 6/3+1/k).
Then {yx } is a sequence in A, which is compact. Hence, there exists an accumulation point y of this sequence
in A7 . This point z* must have the property that

d(y(t),z*(t)) <é/3, VteQ.

Now let n > m and z € A},. By Lemma 4.5, z'€ Ug(A},, 6/3). Hence, there exists z,, € Ay, such that
z € Ug(zm,d/3), ie.,
d(z(t),zm(t)) < d/3, Vte Q.

By the Policy Criterion,
d(zm(t), y(t)) <6/3, Vi€ Q.

Thus, by the Triangle Inequality,
d(z(t),z* (1)) < d(z(t), zm(t)) + d(zm(t),y(t)) + d(y(t), 2" (t)) <6, Vi€ Q,

which implies that = € Ug(z*,d), so that A}, C Ug(z*,d), ¥n > m. This completes the proof. O
Remark. The conclusion of Theorem 4.6 is true for all of X;. However, we are assuming that our algorithm
A* yields only that portion of X given by A C X:.

We next give sufficient conditions for the algorithm A* to terminate.

Theorem 4.7. Suppose X* = {z*} and the an can be chosen so that limy a, = 0. Then for each compact
Q CT. und for each § > 0. the algorithm A* terminates at some m € N (which depends on Q and é).

Proof. Let @ and 6 be as above.
(Policy ('riterion) Since X* = {z*} and 0 # A C X*, we have that

limsup A; = li[{/n A, = AL = {z"},
N

by (i) of Proposition 3.2. Thus, by Theorem 3.4, there exists ng sufficiently large such that for n > ngy, we
have A; C Ug(z*,6/6), i.c.,
d(z, (1), 2% (1)) < 6/6, VteQ,

and for all x,, € A;. Therefore, for each n > nq and each z,, y, € A}, we have by the Triangle Inequality
that

d(zy(t), yn(t)) < dlx, (1), T (t)) + d(:t‘(t), yn(t))

<9/3, vteQ.

This establishes the Policy Criterion for every n € N satisfying n > ny.
(Value Criterion) Given () and §, we obtain ng as above. Hence, for each n > ny,

z* € Ug(z,,0/6), Yz, € A,
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because
d(z,(t),z*(t)) < 8/6), VteQ.

Since A}, # 0, Vn, we have that
z* € Ug(A;,0/6), Yn > ng. (%)

Therefore, if, for some m > ng, we have that
Mq(0/3,m) — cj, > 2am,

then the Value Criterion is satisfied at m, as is the Policy Criterion, i.e., A* terminates at m.
Thus, suppose that for each n > ng, the Value Criterion does not hold, i.e.,

MQ(6/31 ’I'L) - C:z S 20’11)

for such n. Since Mg(d/3,n) is attained, for each n > ng, there exists 2™ € X,\Ug(A},d/3) such that
en(a™) = Mg(6/3,n). Hence,
0 < cn(z™) — 5, < 2an,

for all n > ng. But {z"} is a sequence in compact Y. Thus, there exists (Kelley [1955, p.138]) a subsequence
{z™} of {z"} and z € Y such that lim, z™ = z. Necessarily,

0 <cp (™) - c;k < 2an,,
for all k sufficiently large such that ny > ng. Let ko be sufficiently large so that k > ko implies nx > ng, and
hence.

0 < cnp (™) =, < 204,.

Since litng an, =0, we have that
. . . *
limep, (2™) = limc, =,

by Theorem 2.9. Now limg z™ =z and z" € X,,, Vn, so that z € limsup,, X,, = lim, X,,, i.e., z € X. But,
by the Triangle Inequality,

len, (&™) = c(2)] < len, (&™) = c(a™)] + |e(z™) = c(z)], VK 2 ko,

which converges to 0, since the function c is continuous and the ¢,, converge uniformly to con Y. Therefore,
we have that ¢(z) = ¢*. so that z is optimal. Since X* = {z*}, it must be that z = z*.
Now let 0 < € < 4/6. Since, lim, z™* = z* in Y, there exists k; (which we may assume is at least ko)
such that for k > ky,
d(z™(t), " (1)) <e < 8/6, VteQ,

a" € Ug(z*,€) CUg(z*,d/6).

Moreover. recall that x* € Ug(A}, 6/6), for n > ng, by () above. Then, for each k > ky (so that ng > ng),
there exists z,, € A;, for which

d(z* (1), 20, () < 6/6, VteQ.
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Thus, by the Triangle Inequality, for k£ > k;,

d(z"™ (t), zn, (1)) < d(2™(2), 2" () + d(z" (), Ty (¢))

<6/3, VteQ,

ie., ™ € Ug(An,, 6/3). However, k > k; > ko implies nx > ng, so that Mg(8/3, ny) is attained as c,, (z™*)
at
™ € Xnk\UQ(Aﬂk’6/3)7

ie.,

" ¢ UQ(Ank’J/?’)-
Contradiction. Consequently, there exists n > ng for which the Value Criterion holds. O

In the next section, we present an application where the hypotheses of Theorem 4.7 hold.

§5 An Application to Production Planning

Consider a production facility which produces one product over continuous time subject to a maximum
production rate M > 0. Suppose that at any time ¢ > 0, the cumulative demand through time ¢ is given by
D(t), where the demand function D : R* — R™ is non-decreasing (therefore Riemann integrable over any
bounded interval) and satisfies D(0) = 0.

Let T =R* and A = R, so that AT is the set RR" of all functions from R* to R and C(T, A) is the set

of all such functions which are continuous (we view RR" as a topological vector space of functions under
pointwise operations and convergence). Define E and Y as in Example 2.5, with ¥; = [0, Mt], ¥t > 0, so
that Y = Fn thOYt, le.y€eYifand only ify : R™ — R, y(0) =0 and y € F, that is,

0<y(t) —yls) SM(t-s), Y0<s <t

Recall that Y is compact in C'(R™,R).

For cach y € Y, y(t) denotes the cumulative production through time ¢ > 0. The non-empty, compact
Hausdor{f space Y is also an equicontinuous family of real-valued functions on R*. In practical terms, Y
consists of all (non-decreasing) cumulative production functions which do not exceed the maximum produc-
tion rate A/, and which reflect the fact that production begins at time t = 0. Also, let X(Y') be as in section
2.

In order to ensure that it is possible to satisfy demand at all times, we must assume that the demand
function 17 and the production rate Al are such that D(t) < Mt, Vt > 0. Consequently, as in Example 2.7,

the feasible region X is then the conver subset of RR" given by

X ={yeV¥ y(t)> D), ¥t > 0}.
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(If D(to) > Mtg, for some ty > 0, then X = 0.) Since the function y(t) = Mt is in X, it is non-empty.
Moreover, X is pointwise-closed in Y, so that X is compact, i.e., X € K(Y). Also as in Example 2.7, let
(I, <) = (R, <) and define

Xe={yeY y(s) > D(s), VO<s<t} V20,
so that {X;}¢>0 is a net in K(Y) which is nested downward and satisfies

lim Xt = leOXt =X.

t—oc

In order to introduce the cost structure, for ¢t > 0, let:
h(t) = the unit holding cost at time ¢,
p(t) = the unit production cost at time ¢, and
q(t) = the unit revenue at time t.
We assume that the functions h,p,q: R™ — R™* are continuous and bounded, i.e.,

sup{h(t), p(t), q(t)} < oo.
t>0

Thus. for any choice of ~ > 0, there exists B > 0 sufficiently large such that
max{h(t), p(t), q(t)} < Be"*, vt >0.

Given this data, we will construct an infinite horizon optimization model for the production planning facility
along the lines we have developed in sections 2 and 3.

Before we can specify the cost structure. we need to define the inventory and sales functions  and o,
respectively. Let 6, 0 : Y x R™ — R™ be given by

0(y.t) = max{y(t) - D(t),0}, VyeY, Vt >0,

and
o(y.t) =nmun{y(t). D(t)}, YyeY, vt>0.

Thus. if we follow production strategy y € Y over all time, then 6(y, t) represents the inventory on hand at
time t. and o(y,t) represents the cumulative sales through time t. It is not difficult to verify that for any
production strategy in Y. the inventory at time ¢ is equal to total production through time ¢, less cumulative
sales through time t, i.e..

O(y.t) = y(t) —a(y.t), Vyey, vt >0.

In partienlar, if y € X, then
a(y.t) = D(t), Yt >0,

so that aiy.t) is independent of y. Thus. for y € X. we have
O(y.t) =ylt) - D(t), Vvt >0.

The following additional properties of ¢ and o will be required in what follows.
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(i) Forallt >0 and y € Y, we have 0 < §(y,t),0(y,t) < Mt.

(ii) For all t > 0 and z,y € Y, we have

16(x,t) = 0(y,t)], lo(=,t) —o(y, t)] < |=(t) — y(2)].

(iii) For each y € Y, the function t — 6(y, t) is Riemann integrable in ¢.
(iv) For each y € Y, the function t — o(y,t) is non-decreasing in &.

We are now ready to introduce a cost structure as in Example 2.12. Let 0 < p < oo be a specified interest
rate and choose 0 < ¥ < p. Define the holding cost, production cost and revenue functions (respectively)

H PR:YxR"—->R"

as follows. For each y € Y and t > 0, let:

Hily) = / h(s)0(y, s)Mds

0

for any fixed A > 1,

and

t
Ri(y) =/ q(s)do(y, s).
0

Then H,(y) represents the cumulative holding cost for production strategy y through time ¢. Similarly for the
cumnulative production cost P,(y) and the cumulative revenue R,(y). Note that for y € X, R, is independent
of y, i.c.. it is constant on .\'. The reason for taking the A-th power of 6 in the definition of H,(y) will become
clear shortly.

Also define the cumulative cost function K : Y x R* — R* by K = H + P, so that the cumulative net
cost fiunction C: Y x R™ — R isgiven by "= K ~ R= H + P — R. Then K,(y), R:(y) and C(y) are as
in Example 2.12. We leave it to the interested reader to verify that, for each y € Y, the functions ¢t — K (y)
and t — R(y) are non-negative, non-decreasing and uniformly bounded by an exponential function, as
required in Example 2.12. Furthermore. for each t > 0, the functions y — K,(y) and y — R(y), and hence,
y — ('/{y). are continuous in y. Thus, our model satisfies the hypotheses of Examples 2.5, 2.7 and 2.11.
Consequently. we obtain a net {c¢;}r>0 of continuous cost functions and a continuous cost function ¢ such
that

lime =c
t—o0
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uniformly on Y, where, for ¢t > 0,

t
aly) = / P dC,(y), Ve,
0

and

(y) = / e dC,(y) = lim aly), Yy €Y.
0 t—o0

Similarly for hy(y), pe(y), m:(y) and h(y), p(y), r(y), so that ¢, = h, +p; —7¢, V¢ >0,andc=h+p—-r,
where c is a strictly convex function because of our choice of X in the definition of H¢(y). Furthermore,

le(y) — ce(v)| < pBe " (p—v) =@, VyeY, Vt20,

so that

lim a; = 0.
t—oc

Thus. (P) is given by min ¢y ¢(z). and for each t > 0, (P;) is given by mingex, c;(z). Consequently, X*
and X are non-empty, closed subsets of Y, i.e., X* € K(Y), X} € K(Y), V¢t >0, and

limsup X, C X*.
t>0

Note that X* is a singleton {z*}. since ¢ is strictly convex as in Example 3.3. Moreover, the optimal solution
values ¢* and cj, Vt > 0. satisfy
o <cl+a, V0<s<t.

and ¢ = lim.eoc}.

From the Remark following Proposition 3.2, we have that A% = {z*} for all approximating algorithms
A. Then by Proposition 3.2 (ii). z; — x* as t — 2. for all t-horizon optima z7,t = 1,2,3,..., since Nis a
linearly ordered subset of R In particular. bv (ii) of Theorem 3.4, we conclude that for all times 7 < oo
and positive numbers d. there exists a ¢ € N satisfving |z} (s) — z*(s)| < 4, for all 0 < s < 7, and for all
u > {.u € N. That is, given 7, all sufficiently distant finite horizon optima uniformly well approximate all
components of the unique infinite horizon optimum z* over [0, 7].

Turning to how large the horizon must be to approximate z* for a given component error é and given
interval [0, 7], we need to assume R = 0 to conclude that the optimal costs C; are monotonically increasing
in t. so that Assumptions 1 and 2 in section 4 are satisfied as well (see Example 4.1). We can now invoke the
stopping criterion in section 4 to finitely terminate the forward procedure of solving the problem for horizons
T=1.23.... We are guaranteed by Theorem 4.7 that the corresponding algorithm finitely converges.
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