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ABSTRACT

SYMBOLIC COMPUTER SOLUTION OF ELILIPTIC
BOUNDARY VALUE PROBLEMS

by

Norman Loren Schryer

We study the elliptic boundary value problem:
Lu = Au + a(x, y)ux + b(x, y)u.Y +c(x,yju=0 with c(x,y) < 0 ona
simply connected domain D and u=f givenon dD.

Under the assumption that the coefficients a, b, and ¢ are
analytic functions of x and y, and following ideas of Stefan Bergman
and of I. N. Vekua, a system of particular solutions, pk(x, y) , of Lu= -0
is constructed. Each Py is given by an infinite series whose elements
are defined recursively in terms of a, b, and c . These solutions are
independent of the domain D and represent generalizations of the harmonic
polynomials Re (x + iy)k and Im (x + ‘iy)k for the equation Au=0. Let
be defined by truncating the series expansion of Py after T terms.
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For any vector s =(s s..) let
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Given boundary values f, a compact subset, S of R is
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constructed that contains the necessary coefficients for convergence to the

solution u.



To find these coefficients, we choose points zl, e, ZM
. . s . N.M, T
which are uniformly distributed around 8D . Define s to
be a solution of the linear approximation problem
min max l f(zj) -w(z_ , 8) | .
J
=1, -,
Se SN J M
Then UN M, T(z) = u(z, sN’M’ T) is a best fit to u at Z, , ZM .
Our principal result is that
lim [ lim max | u(z) - uN,M,T(z) |1 =0.
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The truncated solutions may be constructed exactly, but

Pr, T

they are not exact solutions of Lu=0. A computable a posteriori

error bound is given for l u-u in terms of how well

N,M,Tl

uN’ M, T satisfies the boundary conditions and the differential equation
Lu=0.

An alogorithm similar to the above is given for solving the
inhomogeneous equation Lu =g for analytic coefficients a, b, c,
and g .

Several examples are given and numerical results presented

for the special case where a, b, and ¢ are polynomials in x and y.



ABSTRACT

UNIFORM APPROXIMATION AS A LIMIT

L, APPROXIMATIONS
by

Alan Kaylor Cline

Let X be a compact Hausdorff space, and G be a finite
dimensional Haar subspace of C(X), the space of continuous, complex
valued functions on X . For a fixed f ¢ C(X) we seek to find the
unique g* ¢ G which best approximates f in the uniform sense (i.e.,

he-gell<lf-gl
for all ge G~{§O} ) .
In the thesis of Charles L. Lawson an algorithm was given for

determining g% as the limit of a sequence {gk} of weighted

00
k=0
least square approximateions to f, where the weight at the k+lst step
is proportional to the error | f- Ek‘ at the kth step. Lawson's work

assumed X was a finite set; the results of this thesis allow X to be

any compact, Héusdorff space for which C(X) is separable.



Specifically, a set of unit, Baire measures on X which

induce L2 norms on the subspace of C(X) spannedby G and

f is considered and denoted by S . An initial measure ko is

selected from S and go , the best | - "H approximation
0
from G to f, is determined (i.e., g9 satisfies
2 1/2 2 1/2
Crle-g, 1"y < (] £-gl" dpy
X 0 0 X 0

for all ge G~{§0} . For k=0, 1, *++, the measure M1

is defined by the relation

~
flf-gk‘ dl"'k

A
Mgy (A=
_
rhe-%, | du
X
for each Baire subset A of X. Prt1 is shown to be an element
of S and the best “ | approximation is determined and

+1

denoted by §k+l .

Sufficient conditions are given to guarantee the sequence
{ gk} ko=00 éonverges uniformly to g% on X . Furthermore, the
rate of such convergence is explored and the computer results of
several attempts to accelerate the convergence are discussed.
A technique is presented for directly determining g% when X
is a set containing exactly one more point than the dimension of G . This
technique is employed in an exchange algorithm for determining g% on

more general sets X.



ABSTRACT

THE NUMERICAL SOLUTION OF

THE GENERALIZED EIGENVALUE PROBLEM
by

Charles Raymond Crawford

This paper considers the eigenvalue problem Ax = ABx where A
and B are symmetric and B is positive definite, or equivalently the
problem of finding the zeroes of p(u) = det (A -uB). If B = SST and
C = S“1 AS_T then the generalized eigenvalues are the eigenvalues of C .
The Cholesky decomposition of B = LLT where L is lower-triangular
is easily obtained for positive definite B . Thus computing C = L-1 AL~T
and then finding the eigenvalues of C is the best general method, called
here the Cholesky-Wilkinson method for solving the generalized eigenvalue
problem,

To find the effect of perturbations of A and B on the generalized
eigenvalues, we prove first an analogue of a result of Weyl. Let U, V and
W be real matrices with U symmetric and W = VUVT and V non-
singular. Let {)\i} ’ {p.i} and {'qi} be the real eigenvalues of

U, W and VVT respectively. Then

< < >
nn)\m =w = nlkrn for )\m__ 0 and

ﬂl)\mf_p < nA for x_ < O



Furthermore if {)\i} are redefined as the generalized eigenvalues

of A and B and {;\_1} thoseof A4+ H and B+ F then

-1
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Round-off error analysis of the Cholesky decomposition and computation
of L-IAL-T’ reveals, as indicated by the perturbation theory, that the
stability of the Cholesky-Wilkinson method depends on the condition of

B or, more precisely, on the square of the condition of the computed

Cholesky factor.

In case A and B have band structure, that is for some m
aij = bij = 0 whenever |i-j| > m, the matrix L~ AL-T will in
general be full, An algbrithm is described which takes advantage of the
. T -1, _-T .
band structure to produce a matrix C=T L AL T where T is
orthogonal and C has the same bandwidth as A and B . The algorithm

begins with the Cholesky decomposition B = LLT and a factorization of

L  into elementary matrices

L = L, L_... L where q=n/m

then

Ak+—TL AkL T

where the Tk are chosen so that Ak+1 retails the band structure and

Aq+1 is orthogonally similar to - L"1 AL-T .



The error analysis of the band algorithm indicates that the effect
of the rouﬁd-off error depends on the pr;)duct nm rather than n2 as in
the full matrix Cholesky-Wilkinson method. Numerical examples are
included to compare the band algorithm with the full matrix method as
well as with the Sturm sequence method of Peters and Wilkinson. Running
times and error estimates are given for problems with a range of orders
and bandwidths. These results confirm the natural expectation that the
band algorithm is more efficient for large order problems with the band-

width significantly smaller than the order.



ABSTRACT

EXISTENCE, CHARACTERIZATION, AND COMPUTATION OF BEST
APPROXIMATIONS BY SUMS OF EXPONENTIALS
by

David William Kammler

Let Vn(S) denote the set of all solutions of all n-th order linear
homogeneous differential equations with constant coefficients for which
the roots of the corresponding auxiliary polynomial all liein S C C.

Given 1 < p < oo and fe Lp[O, 1] , we show that there is a best

I “p - apbroximation to f from Vn(S) provided S is closed, thus
extending the work of Rice, Hobby, and de Boor who establish this result
when S =IR.

An element of Vn(@) may be specified by giving the n initial
conditions and the n coefficients of an n-th order differential operator
which annihilates it. The tangential manifold corresponding to this para-
metric form does not suffer a loss of dimension when the roots of the
auxiliary polyﬁomial coalesce as is the case when one uses the roots of
the auxiliar;lr polynomial as parameters.

In general, a best ” “p - approximation need not be unique and there
may be troublesome local best ” ”p - approximations as we illustrate by
means of various example. In particular, neither Vn(IR) nor Vn(C) can
be parametrized in such a manner as to fall within Rice's theory of varisolvent

functions as was formerly believed.
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Fundamental first order necessary (but not sufficient) conditions
which a best || “p - approximation must satisfy are presented, and
sufficient conditions are given., Using the basic necessary conditions,
we derive generalizations of the previously known necessary conditions
of Hobby and ﬁice, and of Braess which were formulated in Vn(]R) .
Conditions for a best ” ”oo - approximation to f from Vn(]R) to be
expressable aé a simple sum of exponentials with positive coefficients
are derived independently of the Decartes sign rule used by Braess, The
use and limitations of these theorems are illustrated by means of carefully
chosen exampl.xes.

When fe¢ Cn[O, 1], the distance of f(n) from the linear space

spanned by f, f', ..., f(n-l)

is used to bound the error | f - Y”p in

a best || ||p - approximation to f from Vn(C) , and from this error
bound we devis:e two simple procedures for constructing remarkably good
initial estimates of { from Vn(C). For the construction of best ” ”00—
approximations, we also present an iterative procedure which has been
found to be quité effective in the early stages of the iterative process when

the parameters are not particularly close to their optimum values. Numer-

ical results are given for several examples to illustrate these procedures.
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