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Summary

Background Epidermolytic hyperkeratosis in humans is caused by dominant-negat-
ive mutations in suprabasal epidermal keratins 1 and 10. However, spontaneous
keratin mutations have not been confirmed in a species other than human.
Objectives To describe an autosomal recessive, mild, nonpalmar ⁄plantar epidermo-
lytic ichthyosis segregating in an extended pedigree of Norfolk terrier dogs due
to a splice-site mutation in the gene encoding keratin 10 (KRT10).
Methods Dogs were evaluated clinically, and skin samples were examined by light
and electron microscopy. Genomic DNA samples and cDNA from skin RNA were
sequenced and defined a mutation in KRT10. Consequences of the mutation were
evaluated by assessing protein expression with immunohistochemistry and West-
ern blotting and gene expression with real-time RT-PCR (reverse transcriptase-
polymerase chain reaction).
Results Adult dogs with the disease had generalized, pigmented hyperkeratosis
with epidermal fragility. Light microscopic examination defined epidermolysis
with hyperkeratosis; ultrastructural changes included a decrease in tonofilaments
and abnormal filament aggregation in upper spinous and granular layer keratino-
cytes. Affected dogs were homozygous for a single base GT fi TT change in the
consensus donor splice site of intron 5 in KRT10. Keratin 10 protein was not
detected with immunoblotting in affected dogs. Heterozygous dogs were normal
based on clinical and histological appearance and keratin 10 protein expression.
The mutation caused activation of at least three cryptic or alternative splice sites.
Use of the cryptic sites resulted in transcripts containing premature termination
codons. One transcript could result in shortening of the proximal portion of the
2B domain before the stutter region. Quantitative real-time PCR indicated a signi-
ficant decrease in KRT10 mRNA levels in affected dogs compared with wild-type
dogs.
Conclusions This disease is the first confirmed spontaneous keratin mutation in a
nonhuman species and is the first reported recessive form of epidermolytic
hyperkeratosis.

Keratin intermediate filaments are essential for structural stabil-

ity of epidermal keratinocytes and normal stratum corneum

formation. Thus, mutations of epidermal keratin genes are

largely characterized by haphazard filament aggregation and

cell fragility, often resulting in cell lysis (epidermolysis) that

is more severe with exposure to trauma.1–4 In most mutations

of the superficial keratins (KRT1, 10, 2e) blisters and hyper-

keratosis are both present. Blistering is most apparent in chil-

dren, where the disease is often called bullous congenital

ichthyosiform erythroderma, while scaling is more prominent

in adults, where the same disease can also be called epidermo-

lytic hyperkeratosis (EHK).5

Many different allelic variations occur in genetic disorders

of superficial keratins. A recent review listed 22 mutations in

KRT1 and 38 in KRT10.6 A majority of these mutations are

missense mutations and occur in two ‘hot spot’ regions of the
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molecule: the helix initiation and helix termination motifs.

Most keratin mutations are transmitted by an autosomal dom-

inant mode of inheritance.6

With the number of keratin mutations that have been iden-

tified in humans, and their distinctive clinical and histological

features, it is surprising that no spontaneous keratin defect has

been confirmed in a species other than human. To date, the

recognition of animals with a phenotype of a spontaneous

keratinization defect has occurred only in dogs. A Labrador

Retriever,7 a mixed breed dog,8 and arguably, Cavalier King

Charles spaniels9 have been noted with hyperkeratosis, epi-

dermolysis and ⁄or perinuclear aggregation of tonofilaments

and cytoplasmic vacuolation, but none of these cases was con-

firmed at the molecular level.

In this report, we confirm the first spontaneous heritable

keratin defect described in a species other than human. The

disease represents a novel mutation in KRT10 transmitted as a

recessive trait through an extended pedigree of Norfolk terrier

dogs.10 Affected dogs display lesions from birth through

adulthood with all of the hallmarks of a mild, superficial, non-

palmar ⁄plantar epidermolytic ichthyosis while heterozygotes

are clinically and histologically normal.

Materials and methods

All procedures relating to animal care in this study were

approved by the Clinical Research Review Committee, College

of Veterinary Medicine, Texas A & M University, approval

number CRRC 02-25.

Animals

The clinical disease was recognized in seven affected (four

female and three male) Norfolk terrier dogs within an

extended pedigree and these dogs were compared with nor-

mal dogs of the same breed. Normal, heterozygous and

affected dogs were available for sampling throughout the

course of the study.

Tissue sampling

A 6-mm punch biopsy and local anaesthesia were used to

obtain skin samples for histological and ultrastructural exami-

nation, RNA isolation and protein extraction. Both peripheral

blood and cheek swabs were used as sources of genomic

DNA.

Light and electron microscopy

For histology, skin biopsy samples were fixed with 10% neut-

ral buffered formalin, processed routinely, embedded in paraf-

fin, sectioned at 4–5 lm and stained with haematoxylin and

eosin. Immunohistochemistry was performed on formalin-

fixed skin samples using commercially available antibodies that

previously had been shown to display the appropriate cross-

reactivity with canine antigens: 34bB4 (Enzo, Farmingdale,

NY, U.S.A.) demonstrated K1 expression, and DE-K10 (Dako,

Carpinteria, CA, U.S.A.) demonstrated K10 expression.7,11 For

electron microscopy, formalin-fixed tissues were postfixed

with 1% osmium tetroxide in 0Æ1 mol L)1 phosphate buffer

and processed routinely. Sections were stained with aqueous

uranyl acetate and lead citrate and examined with a Phillips

301 Transmission Electron Microscope.10

Sequencing

Genomic DNA was extracted from blood leucocytes with the

Flexigene DNA kit (Qiagen, Valencia, CA, U.S.A.) as per the

manufacturer’s protocol. To obtain skin cDNA, punch biopsy

samples stored at ) 80 �C and ⁄or in RNALater (Ambion, Aus-

tin, TX, U.S.A.) were subjected to total RNA extraction using

Trizol Reagent (Gibco BRL, Rockville, MD, U.S.A.) as per the

manufacturer’s protocol and subsequently, reverse transcription

of total RNA was performed using random primers provided

in the Pro-Star reverse transcriptase-polymerase chain reaction

(RT-PCR) kit (Stratagene, La Jolla, CA, U.S.A.). Primers

designed to amplify canine KRT10 sequences from skin cDNA

or genomic DNA templates were initially derived from con-

served nucleotide regions of human (NM_000421 and

X_14487) and mouse (XM_283025) K10. As data were collect-

ed, canine-specific primers were designed. For amplification,

the Failsafe PCR system (Epicentre, Madison, WI, U.S.A.) was

employed according to the manufacturer’s protocol. The PCR

products were resolved by electrophoresis through agarose

gels ranging from 1Æ4% to 2Æ0%. PCR products with bands of

appropriate length, as predicted from human KRT10, were

purified directly or by gel extraction (Qiagen). Products were

sequenced directly using a Perkin Elmer ABI 373, 377XL or

3100 system. Sequence data were aligned using Sequencher

3.1.1 (Gene Codes Corporation, Ann Arbor, MI, U.S.A.). The

putative amino acid sequence was determined using the trans-

lation software on the ExPASy Molecular Biology Server

(http://us.expasy.org; accessed 13 March 2005).

Mutation detection assay

Genomic DNA was extracted from buccal epithelial cells with

the QIAamp Midi kit (Qiagen). A 660-bp region of genomic

DNA spanning the mutation was amplified using the Failsafe

PCR system (Epicentre) with buffer J, 1Æ0 lL of 0Æ2 mmol L)1

forward primer (5¢-CCTTCCAGGGATTGTTTCTGC-3¢), 1Æ0 lL
of 0Æ2 mmol L)1 reverse primer (5¢-AAGGAACTGACTACAGA-
AATCAACAG-3¢), and 2Æ0 lL of DNA. A restriction digest was

performed using 15 lL of PCR product, 30 lL of water,

5Æ0 lL of buffer R+ and 1Æ0 unit of MvaI (Fermentas, Hanover,

MD, U.S.A.) at 37 �C for 1 h; 8Æ0 lL of digestion product was

electrophoresed on a 2% agarose gel.

Immunoblotting

Keratinocytes were harvested from punch biopsy samples by

solubilization in Laemmli-type sample buffer and protein was
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quantified using the BCA assay (Pierce, Rockford, IL, U.S.A.).

b-Mercaptoethanol (4%) was added to extracts after quantifi-

cation. Protein (12 lg per sample) was electrophoresed on a

10% Tris–HCl ⁄glycine ⁄sodium dodecyl sulphate–polyacryla-

mide gel and proteins were transferred by overnight electro-

blotting to nitrocellulose membranes. The membranes were

incubated with a 1 : 50 dilution of primary antibody (K10,

clone RKS60) (Chemicon, Temecula, CA, U.S.A.). After

washing in phosphate-buffered saline, the membrane was

incubated with a 1 : 2500 dilution of goat antimouse IgG

conjugated with alkaline phosphatase (Sigma, St Louis, MO,

U.S.A.). After washing, the phosphatase activity was detected

with the chromogenic substrate BCIP ⁄NBT (Sigma).

TaqMan�� quantitative real-time polymerase chain

reaction analysis

Total RNA was extracted from 6-mm skin punch biopsy samples

from four homozygous normal dogs, four carrier (heterozy-

gous) dogs and four affected dogs with the RNAqueous-micro

kit (Ambion). The RNA was subsequently treated with DNase-

free (Ambion) to remove genomic DNA contamination, quan-

tified with RiboGreen (Molecular Probes, Eugene, OR, U.S.A.)

and stored at ) 80 �C. Quantitative real-time RT-PCR was per-

formed with 10 ng of total RNA ⁄reaction and the TaqMan�

One-step RT-PCR Master Mix reagents kit (Applied Biosystems,

Foster City, CA, U.S.A.). Gene-specific primers for KRT10

(forward primer 5¢-CCTGCTTCAGATCGACAATGC-3¢; reverse

primer 5¢-ACCTCGTTCTCATACTTTAATCTGAAGTC-3¢) and a

TaqMan� probe (5¢-AGGCTGGCAGCTGA-3¢) containing an

MGBNFQ (Minor groove binder ⁄nonfluorescent quencher) 3¢
label and a 6FAMTM 5¢ label (Applied Biosystems) were

designed using Perkin-Elmer Applied Biosystems Primer

Express software. Primers were designed to cross at least one

intron–exon boundary. The highly conserved regions of the

keratin genes, particularly the trigger motifs and the H1

homologous region, were strictly avoided when designing

primers to help ensure a high level of specificity. The forward

primer was designed to bind to the middle of exon 2. The

reverse primer was located at the end of exon 2 and crossed

the intron to include the beginning of exon 3. The product

size was 66 bp. The probe was designed to bind in the region

between the primers. A GeneAmp 5700 Sequence Detection

System (Applied Biosystems) was used for quantification. The

amplification program consisted of an initial 95 �C, 10-min

cycle followed by 40 cycles of 95 �C 15-s denaturation and

60 �C 1-min annealing ⁄extension. Samples were analysed in

triplicate for the expression of KRT10 and an internal house-

keeping gene, 18S ribosomal RNA (Applied Biosystems).

The threshold cycle values for each replicate reaction were

averaged. All genes were normalized to 18S ribosomal RNA,

and the fold change was calculated with the formula: X ¼
2–DDCt where DDCt ¼ (Ct,target ) Ct,reference)sample ) (Ct,target )
Ct,reference)normal. Target refers to the gene of interest, and ref-

erence refers to the internal control gene. ‘Sample’ refers to

affected skin, and ‘normal’ refers to normal skin.12

Statistical analysis

Triplicate measurements of mRNA expression for KRT10 and

18S using real-time PCR were obtained from each normal

(n ¼ 4), carrier (n ¼ 4) and affected (n ¼ 4) skin biopsy

sample. Due to the possibility of interassay variability, a sec-

ond run was performed on each sample for a total of six

measurements. The arithmetic mean of these measurements

was obtained and relative differences between KRT10 and 18S

calculated. A nonparametric version of the unpaired t-test

(Mann–Whitney) was used to compare the relative differences

between homozygous normal, heterozygous and affected skin

with statistical significance taken at P < 0Æ05.

Results

Clinical description

An eight-generation pedigree containing 108 dogs was assem-

bled and was consistent with an autosomal recessive mode of

inheritance (Fig. 1). The pedigree contained seven affected

dogs and 33 obligate and ⁄or genetically confirmed heterozy-

gotes. Clinically, affected dogs were identified within hours

after birth by sloughing of the superficial epidermis after mild

mechanical trauma to the skin. As adults, the epidermal fragil-

ity persisted and was accompanied by hyperpigmentation with

generalized dark grey hyperkeratosis; the intertriginous areas

were most severely affected (Fig. 2). Erythroderma was not

noted. Several affected dogs over 10 years of age were

observed and their clinical lesions remained static once they

reached adulthood. Footpads, claws, hair and teeth were nor-

mal. Heterozygous dogs were clinically normal at all ages.

Light and electron microscopy

In affected dogs, the most striking histological alteration was

the presence of granular cell layer epidermolysis that pro-

gressed to areas of intragranular clefting. This was associated

with large keratohyaline granules, a minimally to moderately

thickened stratum corneum with attenuated corneocytes and

mild to moderately papillated epidermal hyperplasia (Fig. 3).

None of these changes was present in heterozygotes. Immu-

nohistochemical staining for K10 using formalin-fixed, paraf-

fin-embedded skin biopsy samples failed to define K10

expression in the epidermis of affected dogs, while there was

strong, positive staining of the suprabasal epidermis of normal

Norfolk terrier dogs, Norfolk terrier dogs heterozygous for the

mutation and other normal canine breeds.10 Electron micro-

scopy confirmed cytolysis, decreased tonofilaments and abnor-

mal tonofilament clumping in affected dogs.

Mutation detection

A complete genomic sequence of canine KRT10 (GenBank

accession AY318944) was determined using oligonucleotide

primers for PCR designed initially from homologous regions
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of previously reported human and mouse DNA sequences and

later from canine sequences. DNA sequencing of a PCR prod-

uct resulting from amplification of genomic DNA from affect-

ed dogs using a canine-specific forward primer in exon 4

(5¢-TCTAGCAGGCTGCGGTAGG-3¢) paired with a reverse

primer in exon 6 (5¢-GATGCTGAAGCCTGGTTCAATG-3¢)
revealed a single base GT fi TT change in the consensus

donor splice site of intron 5. Sequencing of the same amplifi-

cation product in DNA samples from parents of affected dogs

(obligate heterozygotes) showed that both the wild-type allele

and TT mutant allele were present. The expected GT consensus

sequence was present in multiple normal Norfolk terrier dogs

not from lines related to affected dogs and in multiple other

breeds (Fig. 4). No additional nucleotide differences between

normal and affected dogs were identified.

a

b

Fig 2. Clinical features of the disease. (a) Moderate black scale is

present in the haircoat. (b) The skin is hyperkeratotic and

hyperpigmented. Mild mechanical trauma results in superficial bulla

formation with subsequent erosion.

Affected

Unaffected

Heterozygote

Fig 1. An eight-generation pedigree segregating epidermolytic hyperkeratosis in Norfolk terrier dogs displaying an autosomal recessive mode of

inheritance. Note: The symbols + and * indicate the same dog.

Fig 3. Histological examination of a skin biopsy sample from an

affected dog. Characteristic features include epidermal hyperplasia

with superficial epidermolysis, large keratohyaline granules, many

eosinophilic intracytoplasmic granules, and a hyperkeratotic stratum

corneum. Keratohyaline granules are variably present in normal canine

epidermis. In contrast to the large keratohyaline granules found in

affected dogs, the arrows indicate keratohyaline granules that are more

typical in size when these structures are identified. Haematoxylin and

eosin, original magnification · 400.
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To examine the effects of the splice-site mutation, the pre-

viously described primer set spanning this site was used to

amplify canine KRT10 cDNA from affected and homozygous

wild-type Norfolk terrier dogs. Agarose gel electrophoresis

revealed an expected single 359-bp band in normal dogs. In

affected dogs, the 359-bp band was not detected and multiple

smaller and larger bands were identified (Fig. 5). Three of

these aberrant amplification products were isolated, re-ampli-

fied and sequenced directly. The smallest band (approximately

230 bp) represented the in-frame and entire removal of exon

5 (126 nucleotides) and could be explained by the alternative

use of the normal intron 4 GT site. If translated, this mis-

spliced transcript would produce a deletion of 42 amino acids

from the proximal portion of the 2B rod domain before the

stutter. The brightest amplification product (approximately

330 bp) corresponded to a 35-bp out-of-frame deletion of the

end of exon 5. This probably occurred due to activation of a

cryptic splice site within exon 5 (GTCTG). The sequence of

this product was out of frame and contained an insertion of

114 incorrect nucleotides followed by a premature termin-

ation codon. If translated, the misspliced transcript would

encode for 38 incorrect amino acids in the mid 2B domain

and then termination of the molecule. Sequencing of a third

larger band (approximately 450 bp) showed it contained a

95-bp out-of-frame inclusion at the 5¢ end of intron 5 that

was probably due to the use of a GT sequence within intron 5

(GTAAG). This creates a premature termination codon after

the insertion of six incorrect nucleotides at the end of exon 5,

truncating the molecule in the mid 2B region.

If translated, the abnormal transcripts from these three cryp-

tic ⁄alternative splice sites would result in either a keratin

Fig 4. A novel point mutation in the donor splice site of intron 5

(GT fi TT) causes epidermolytic hyperkeratosis in dogs homozygous

for the mutation. Sequencing of KRT10 genomic DNA from normal,

affected homozygous and unaffected heterozygous dogs.

Fig 5. Polymerase chain reaction amplification of KRT10 cDNA in two affected dogs compared with a normal breed-matched dog and

corresponding line diagram illustrating the consequences of aberrant splicing of KRT10. Lane 1, 100-bp marker; lane 2, normal dog, expected

359-bp product; lanes 3 and 4, affected dogs, three aberrant bands (*) were isolated and sequenced. (*a) The normal donor site in intron 4 is

used and as a result exon 5 is removed from the transcript. The nucleotide sequence remains in frame and results in a 42 amino acid deletion

from the 2B domain. (*b) A cryptic splice site occurs upstream in exon 5, resulting in deletion of the last 35 bp of that exon. The resulting

sequence is out of frame and 38 incorrect amino acids are encoded before a premature termination codon truncates the molecule in the 2B

domain. (*c) An alternative splice site occurs downstream in intron 5, resulting in an additional 95 bp of the intron within the transcript. The

sequence is out of frame and generates a termination codon immediately following exon 5, truncating K10 in the 2B domain.
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molecule with a loss of a portion of the 2B domain or an

incomplete protein that terminates within the mid 2B rod

domain (Fig. 5). Other PCR amplification products in Figure 5

in the affected dogs were not examined and may represent

other misspliced transcripts or products generated from small

amounts of genomic DNA contaminating the cDNA samples.

Screening for the mutation

The mutation in the intron 5 donor splice site of KRT10 abol-

ishes an MvaI restriction site. Enzyme digestion of a 660-bp

PCR product spanning the mutation produces fragments of

247 bp, 208 bp and 121 bp (and three very small fragments)

from the normal allele and fragments of 329 bp and 247 bp

in the mutant allele (data not shown). MvaI digests of PCR-

amplified genomic DNA from the seven affected dogs con-

firmed that they were homozygous for this mutation. Seven of

the obligate heterozygote parents of the affected dogs were

available for testing and all were confirmed as heterozygotes.

Also, 50 clinically unaffected Norfolk terrier dogs not from

the breeding lines in which the disease is segregating and five

dogs from other breeds did not possess the nucleotide alter-

ation, indicating it is probably not a polymorphic site in dogs.

Using buccal swabs as a source of genomic DNA, this screen-

ing test has been made available to breeders of Norfolk terrier

dogs.

Keratin 10 protein expression

From previous work11 and based on the predicted amino acid

sequence, the molecular weight of canine K10 is 56–58 kDa.

A band of the predicted size was identified in protein extracts

from the skin of homozygous normal Norfolk terriers, in the

skin of a confirmed heterozygote and in the normal skin of

other breeds (data not shown), but was not found in extracts

of the skin of homozygous affected dogs (Fig. 6).

Comparison of KRT10 gene expression

Quantitative real-time PCR demonstrated a statistically signifi-

cant decrease (P < 0Æ05, Mann–Whitney) in relative mRNA

expression of KRT10 for both affected and carrier dogs com-

pared with homozygous normal dogs (Fig. 7).

Discussion

In all affected dogs, the phenotype correlated with a homozy-

gous mutation in the GT consensus sequence of the donor

splice site in intron 5 of KRT10. This represents the first time

a spontaneous keratin mutation has been confirmed in a dog

or any mammalian species other than human. Because of the

mild phenotype and the prominence of intragranular clefting,

we initially considered the disease to have greater phenotypic

homology with human ichthyosis bullosa of Siemens;4 how-

ever, we could not confirm a KRT2e mutation after comparing

the canine DNA sequences of normal and affected dogs (data

not shown).

The mutation corresponds to the proximal portion of the

2B region of the keratin molecule. In humans, a low number

of mild EHK phenotypes have been associated with mutations

in the 2B domain of KRT1 and KRT10. Mild EHK (KRT10),

mild epidermolytic palmar ⁄plantar keratoderma (PPK) (KRT1)

and mild combined EHK ⁄PPK (KRT1) have occurred due to

mutations in the 2B domain upstream from the conserved

helix termination motif sequence.13–15

As with other structural proteins that form multimers,

mutations affecting keratins usually cause a dominant negative

effect and recessive forms of these diseases are less commonly

recognized.6 The majority of recessive keratin disorders cited

are forms of epidermolysis bullosa simplex due to mutations

in KRT14,6,16,17 with a single report in KRT5.18 Most of these

mutations are nonsense mutations or missense mutations that

result in premature termination codons early in the keratin

molecule. To our knowledge, the disease in Norfolk terriers is

the first confirmed recessive mutation of a suprabasal keratin.

Because of shorter generational times, the importance

placed on pedigrees by pure-bred dog breeders, and the obvi-

ous clinical features of affected dogs, we were able to confirm

the phenotype in an eight-generation pedigree that contained

Fig 6. Immunoblot for K10 in dogs. Lane 1, extract of skin from a

homozygous normal Norfolk terrier; lane 2, extract of skin from a

homozygous affected Norfolk terrier; lane 3, extract of skin from a

heterozygous Norfolk terrier.

Fig 7. TaqMan� quantitative real-time polymerase chain reaction

analysis of KRT10 mRNA comparing four homozygous normal dogs,

four heterozygotes and four affected dogs. A significant decrease in

KRT10 mRNA was found in the skin of the heterozygous and, to a

greater extent, affected dogs.
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seven affected dogs. The pedigree defined an autosomal reces-

sive mode of inheritance. We verified the genotypes of most

of the 33 heterozygotes with a mutation detection assay. All

heterozygotes were clinically normal. Of the recognized her-

editary disorders of the pure-bred dog, approximately 66%

are recessive,19 higher than in humans, where approximately

26% of monogenic diseases are recessive.20 This is due to the

emphasis on maintaining desirable traits by selective breeding

of closely related dogs (inbreeding) and the use of a sire or

dam repeatedly when it is viewed as being particularly out-

standing. At the same time, an obviously diseased animal

would not be bred; therefore, dominant traits are not main-

tained for long. In sum, the breeding practices associated with

pure-bred dogs select for recessive traits but against dominant

traits. The recognition of a recessive mutation in a suprabasal

keratin, albeit in dogs, indicates that similar recessive muta-

tions may be present in humans but are not recognized due to

the rarity of consanguinity in human pedigrees.

The Norfolk terrier KRT10 mutation is associated with the

use of multiple exonic and intronic cryptic donor sites and the

normal intron 4 donor splice-site sequence as alternative splice

sites. In affected dogs, we speculate that lesions result from

the combination of markedly decreased filament synthesis,

supported by the electron microscopy and immunoblot

results, and the production of a small amount of mutated K10

derived from misspliced in-frame transcripts, supported by the

presence of abnormal filament aggregates ultrastructurally.

Although we could amplify portions of KRT10-derived cDNA

from the skin of affected dogs by PCR, the KRT10 mRNA lev-

els were markedly lower than in breed-matched dogs homo-

zygous for the wild-type allele, suggesting that the presence

of premature termination codons or other nucleotide altera-

tions leads to nonsense-mediated decay of KRT10 transcripts.

If abnormal K10 synthesis does occur, our data indicate at

least one mutated form would be altered in the central area of

the 2B region, not within the helix termination motif.

In this study, examination of confirmed heterozygotes

shows that these dogs were normal clinically, histologically

and in terms of K10 protein expression; therefore, it appears

that haploinsufficiency did not affect keratin intermediate fil-

ament assembly. Additionally, if abnormal K10 protein was

produced, it did not disrupt the cytoskeleton sufficiently to

produce epidermolysis.

To date, the example most analogous to the Norfolk terrier

disease is a genetically modified mouse model with a K10 null

mutation. These mice have a milder phenotype than the dogs

we describe.21,22 The K10– ⁄– mice were phenotypically nor-

mal at birth and, even as adults, did not display epidermolysis,

although they did develop epidermal hyperplasia and mild

orthokeratosis, presumably related to the effect of the loss of

K10 on cell cycle control.22

A second K10 mutant mouse model demonstrates a mild

phenotype in the heterozygous state.23 This mild phenotype is

related to reduced expression of the mutant allele so the wild-

type allele can partially compensate for the mutant allele. In

the clinically and histologically normal heterozygous dogs we

did not define downregulation of the mutant allele, although

this may be confirmed in future studies. The murine and can-

ine models differ also in the homozygous state. When homo-

zygous for the ‘hot spot’ R fi C mutation in exon 1, the

mice have severe epidermolysis resulting in extensive blister-

ing and scaling.23

Finally, this represents the first report of a keratin mutation

in the intron 5 donor splice site. Splice-site mutations have

been reported rarely as causes of EHK and epidermolytic PPK,

due to mutations in KRT1, and as causes of epidermolysis bul-

losa simplex, due to mutations in both KRT5 and 14. The

splice-site mutation most similar to this case occurred in the

donor site of intron 6 in KRT1 and led to a mild epidermolytic

PPK with rare hyperkeratotic lesions in other sites.14

As this mutation is outside of the ‘hot spot’ regions for

KRT10, and is recessive, it represents a unique model to fur-

ther define genotype–phenotype correlations of suprabasal

keratin mutations.
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