THE UNIVERSITY OF MICHIGAN

INDUSTRY PROGRAM OF THE COLLEGE OF ENGINEERING

THE DETERMINATION OF THE ELECTRON DENSITY
PERTURBATIONS RESULTING FROM
THE MIXING OF TWO DIFFERENT PLASMAS

F. V. Schultz

November, 1962

IP-593



TABLE OF CONTENTS

Page

STATEMENT OF THE PROBLEM........ et teeeeanaeeeenaeaaans 1
BOUNDARY CONDITIONS. v e e aveenneacuneasnaonnasasaocanennoons 7
CALCULATION OF ELECTRON DENSITY PERTURBATIONS............ oo 9
CONCIUSIONS. ¢ v v evvevnnn- ettt eeeeceeeaceeanaaecacasoacas o
ACKNOWLEDGEMENTS. « v et veorveonne. e eeeceaeeeanecnacoanoanao 23
APPENDIX A - DETERMINATION OF BOUNDARY CONDITIONS

AT INTERFACE. ¢ ovvoouoasasnoooososoosoncosonss 2k
APPENDIX B - EVALUATION OF CONTOUR INTEGRAL...:evooeooons .. 32
REFERENCES. ........ t e e et e et ie e aea o 53

ii



I
STATEMENT OF THE PROBLEM

The problem under consideration is that of determining the mixing of two
plasmas, originally of different densities. It is assumed that, for t(time) <. 0, the
half-space z <« 0 (Region 1) is filled with a plasma having electron and ion densities

each equal ton 0 particles per cubic meter, and the half-space z > 0 (Region 2) is

1

filled with a plasma having electron and ion densities each equal to n 0 particles

2

per cubic meter. Here Do and n,, are constants, independent of x, y, z, and t.

For t = 0 the two plasmas are allowed to mix and the problem is to determine how

the perturbations in electron densities, ny in Region 1 and D, in Region 2, vary

with t and z. The time interval considered is assumed to be short enough that the

ion densities in the two regions remain essentially unchanged. Other assumptions

are these:
(a) The mean free path is assumed to be very large so
that collisions can be neglected.
(b) The initial electron temperatures (To) are equal in the
two regions.
(c) The perturbations in electron densities, nyy and Doy the

z-directed electron streaming velocities, u1 and u2, and

the induced electric field intensities, E. and E_, are small

1 2

enough that second-order, and higher, products of these



terms can be neglected. This is also assumed to be true
of the derivatives of these quantities.

(d) There are no externally impressed electric, magnetic, or
gravitational fields.

(e) The plasmas obey the perfect gas law. The electron gas pressure
is, rather arbitrarily but necessarily, assumed to be a scalar
given by p = nkT.

(f) The various physical quantities vary only with z and t, there

being no variations in the x and y directions.

(g) Pressure changes occur adiabatically, so that, for the electrons,
_> 9 _3 on
vp =k P k v kT 5z

where 7 is the ratio of specific heats andX is a unit vector
in the z-direction.
Our working equations for the electrons, then, are these, written in two
dimensions, z and t. MKS units are used.

ou on

mn s + YKT oz +nekE=0 (momentum equation) (1)
on ., 9 (nu)=0 (continuity equation) (2)
ot 0z

9E _ e (n - n) (Poisson equation) (3)
0z 60 o

p=nkT (equation of state) (4)



There are five unknowns, p, u, n, T and E, in these four equations, plus the
equation under (g), above. Here:
m =mass of electron
n = number density of electrons
n = number density of ions
p =pressure of electron gas
-19
e=1.602x10 " coulomb
E =electric field intensity (z-directed)
u = z-directed streaming velocity of electrons
€ 8.854 x 10-12, permittivity of free space
-23 .
k=1.380x 10 joule per degree K

T =temperature in degrees, Kelvin.

Now assume that, in Region 1, for t > 0, the electron density can be

written
R TRETOE
where
1< Yo
and ny, is a constant. Similarly for Region 2:

n2 =n20 + Ny, (z, t).



Also, in the same way,
Py “Pyg T Py
Py “Pgg T Pyy-

The unchanging ion densities are Do and Dy, in the two regions.

Making use of the assumptions mentioned above, one obtains the following

forms of the four basic equations for Region 1, with a similar set for Region 2:

ou on
m n, = + vk To . + n, o€ E1 =0, (1a)
anll +n il-l-l— =0
ot 10 Bz (22)
E -._ - n (3a)
oz € 11°
o
=n. kT..+n.. kT, . (42)

P11 7M0* f11 7 M1 * 1o
To obtain a single partial differential equation in ny alone, one may differ-
entiate (la) with respect to z, differentiate (2a) with respect to t, and use this

differentiated form of (2a), and (3a), in (la). There results:

2 2
“hn T T fulon, =

0, (5)




where e2n
w2 - 10 (6)

pl m e
0

is the electron plasma angular frequency squared in Region 1.
In order to solve (5) for nll(z, t) one may take the Laplace transform,

obtaining

2
on YkT o
2 11 o ‘N1 o
- +0) = —= - -
s Nll(z, s)-s nll(z, 0) " - az2 + wplN].l(Z’ s) =0,

t=+0
(7)

Here N, (z, s) is the Laplace transform of n, 1(z,t). We are assuming that both

11
anll
n, (z, +0) and are zero so (7) reduces to
11 ot
t =+0
2
O N
2 11 2 2 _
c 322 - (s +wp1) N11 =0, (8)

where

c= \‘ 'YkTo/m (9)

is the adiabatic acoustic velocity in the electron gas.

The solution of (8) is

z| 2 2 z s2+ 2
-2 -,l W
e\’ +wp1 pl

N, (2,5) =F (s) e + Fols) e® , (10)

where Fl(s) and F_(s) are undetermined functions of s, only. By a completely

2

similar process the following equation is obtained for Region 2:



z |2, 2 2, 2
--és+wp2 s+

(z,8) = F3(s) e + F4(s) e p2 . (11)

olN

Ny

In order to take the inverse Laplace transforms of (10) and (11) for
obtaining nll(z, t) and n2l(z,t), one must find the undetermined functions Fl(s), .

F 4(s). This is done by applying boundary conditions.



II
BOUNDARY CONDITIONS

Boundary conditions on nll(z, t) and n21(z,t) must be satisfied at z =0 and

at z =+ . These last conditions are:

lim nzl(z, t) =0, (12)

Z -

lim nll(z, t) =0. (13)
Z —> = 00

The boundary conditions at the interface (z = 0) are obtained by using the

conservation equations for mass, momentum, and energy, together with the

following assumptions:

(a) Viscous effects disappear because of the uniform unidirectional

drift motion of the particles.

(b) Second, and higher, order terms are neglected.
(c) Heat conduction is negligible, because of the very low density
of the gas.

The resultant boundary conditions at z =0, then, can be shown to be these:

T, =T2 (14)
u1 =u2 (15)
n1 =n2 (16)



From (16) one obtains (for z =0)

n21 = nll + (nlo - nzo) s (17)

which shows that our results will be valid only for values of (n ) of the same

10 20

order of magnitude as nyy and D,



I
CALCULATION OF ELECTRON DENSITY PERTURBATIONS

We are now in a position to apply the boundary conditions listed above and
thus to determine Fl(s), - F4(s) of (10) and (11). It is necessary to use also
the conservation of momentum equation, and (12) and (13), in the process. When

this is done the following relations are obtained:

Fl(s)=0 (18)
2 2
(n,.-n__ ) s w
20 10 2
F(s) = b , (19)
"0 [2 2 [2 2
s —I-l—— s +tw 11- ] +wp2
10 P
F.(s)= F.(s)+(n -n.) = (20)
3 2 (nlo 20" s’ '

F 4(s) =0, (21)
We may now determine nll(z, t) and n21(z,t) by using the results of the last
paragraph and then taking the inverse Laplace transforms of (10) and (11). We
obtain T i

t
nll(z,t)=—21—_— lim Ny, (z8) €™ g, (22)
Tl B .
v-iB

and a similar equation for nzl(z,t).



(s) given in (19), we obtain

— —Z-J s2+w2
2 2 ¢ pl st

By using the expression for F2

o _.-n vFiB s tw 9 e e
20 710 . p
n, {(z,t) = ——— lim ds.
11 27 n
B~ 20 I 2 2 \lz 2
Sl™m s tw,+ js +tuw
v - iB n10 \ pl p2

(23)
An examination of the integrand of this integral shows that there is a simple

pole at the origin, branch points at+iw , and only these. Branch

and+1iw
pl -

p2
cuts can be chosen as shown in Figure 1. It turns out that the Riemann surface of
the integrand has four sheets., On the branch cuts between i wpl and i wp2, and

between ~ s’.t.;p] and -i wp 9 the first and second sheets are connected and the third

and fourth sheets are connected. Between iwpz and - iwp 9 the first and third sheets
are connected and the second and fourth sheets are connected.

One may, as is customary, alter the path of integration of (23), as is
indicated in Figure 1, in order to facilitate the integration process. In choosing
the alternate path we must make sure that, in traversing this path, we remain on
the same fiemsnn surface as is used for Path 1 from v -iBto v+ i, and either
that no poles are enclosed between the two paths, or that the values of the residues
at the poles uve properly taken into account.

In erder to make a proper choice of alternate path, let us rewrite (23) as

follows:

10



X Branch Points

O Simple Pole

- == — —— —-= Branch Cut

Paths of Integration

FIGURE 1: S-PLANE FOR INTEGRAND OF EQUATION (23)

11



v+ 1iB 9 9 ¢ S2
n._-n s +w 9 e ds
20 10 . P
nll(z, t)=“‘é : lim — , (24
Tl O
SV e
v-iB 10 P P

remembering that z < 0. If we assume that (t +§ ) << 0, which means that

t < |zlfc (25)

for the real part of s very large, we see that

lim n, (z, t)=0. (26)
11
Re s —»00

Consequently, since no singular points of the integrand are located on Paths 1 or
3, or within the region bounded by these two paths, we see that
lim  ( / - /)=lim / =0, (27)
B0 Path 1 Path 3 > Path 1
Therefore,
nll(z, t) =0 for t < )zi/ec. (28)
For the case when (t + —z— ) > 0, or
t >)z)/c, {29)
we have devised Path 2 of Figure 1, since in this case the integrand becomes

infinite on Path 3, as Re s—0m. Path 2 has been so chosen that one remains on

one sheet by crossing no branch cuts. Also, no poles or other singularities are

12



enclosed between Path 1 and Fath 2. Therefore, the value of the integral as
determined along Path 2 is equal to the value determined by following Path 1.

In order to carry out the integration it was found necessary to make some
simplifying approximations in the integrand, which limit the validity of the results

to values of z less than about 1.5 Debye lengths. Then for

|z| < 1.5 Debye lengths, t >|zl/c

the following approximate result was obtained:

wpz(cosh-z-wpl) Y51 g
nll(z,t):(nzo—nlo) 0, + e Sl(wpzt)
o %1 ¥
10 P
1 “o2
- — sinw t+——9— —cosw _t
9 W t2 p2 2T W 1t 2
pl P
16 n 31(0 W
+ 200 pl pa2 L (cosw .t+cosw .t)
2 o0 t ot P2
R T A
+ 2 4L (sinw .t - sinw _t)
3 pl p2
W~ W t
p2 pl

(Egn. continued on
next page)

13



4n, w A B C

- 10 pl z (——1-+—-l+ —)cosw .t
c 5 3 t 1
7rw2 (n_.-n, Nw ,+w ) t t
p2 20 10" pl  Tp2

A B C D E
‘*'(—5—2‘*' —?72‘*‘ - ) cos w 2t+( —41—+ -—é—)sinw lt

t t t P t t P

D E

2 2 . .

+ ( 2 + 5 )smwpzt} . (30)

t t

Here Al’ P E2 are functions of wpl and wpz.

It is obvious that the first four terms in the expression for nll(z, t), given

by (30) go to zero as (n )—>0, as they must. The remaining terms in this

20 ™0

expression also go to zero as (1120—n1 0)—> 0, since they arise from evaluating

integrals between the limits of Wpo and wpl, and these limits are equal for Nyo* g
The expression for nll(z,t) given by (30) was obtained by assuming that

By > Ry In order to complete the analysis it is necessary to either compute the

perturbation n__(z,t) in Region 2 for n. . > n__ or to recalculate n, , for Dy < B

21 20 11

10 20°

The latter procedure was followed and the following result obtained (for n104 n, 0):

14



| w _ cosh (2w ,) W
P p2 ¢ p! pl z
nll(z, t) (n20 nlO) - + . o Si (wplt)
— W, tw
I Do pl  "p2

1 Z 1
_ 2 gin(w .t)+ = = cos (w .t)
9w tZ c pl 2rt pl
pl
16 n20 ‘ wpl wpz 1
+ 5 5 (cos wplt + cos wpzt)
- + t
T W (n20 nlo)(wp1 wpz)
+ 2 (sin t - sin t)
t3(w -w ) wpl wpz
p2 pl
4n Al BY d
W
_ 20 "pl 2z (__1+_1_+_.1.)003w t
c t3 2
T w2 (n..-n, Nw , +w ) t
p2 20 107 pl p2
A! B! C! D! E!
+ ( 52 + :2,) + 2)cosw1t+(-—41-+ -é—)sinwzt
t t t P t t p
DY E'
+(——2‘+-—Z)sinw t ) (31)
4 2 pl
t t
! 1 1 3
Here Al’ Bl’ e E2 are functions of wpl and wpz.
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It is now in order to investigate the physical significance of the two different
expressions for n 1 1(z,t): equation (30) for 0, > Ny, and equation (31) for no< Ny
This is done only for the case of D> Doy

It will be remembered that nll(z, t) =0 for |z|/c > t. This means, of

course, that the electron density perturbation n, . has a front which is propagating

11
in the direction of decreasing z with a velocity c, the adiabatic acoustic velocity
in the electron gas. This is characteristic of weak discontinuities, as discussed

in Section 93 of [1 :] . We are, of course, dealing with a weak discontinuity since
the linearization of the original partial differential equation, (1), is valid only for

nll/n10 = (nlo—nzo)/nlo = 0.1. Another restriction on the solutions is that z

must not exceed about 1.5 Debye lengths.

The following are the values of Al’ ..... E2 which appear in (30):
_ 2
A =- 24a /wp1
2
“p2
B, =2a (5 -—%— H-4b
wpl
C1 =0
D =- 24a + 6b
1 w
pl

16



pl
) 2
A, = 24a/wpl
2
“b2 Y2
B = -[10a 2% +6p -2 +2¢
2 2 ™
wpl P
C,= 0
Y52
D = — (24a £° +6p)
2 W
pl pl
“h2 3 “h2 2 2
E. = -2, |a(—B=) 7 +p(—E% )"+ (B2
2 1 W
pl pl pl
Here
a =-90.1
b =169.5
=-79.3

a+ b+ c=0 (exactly),

these being numerics arising in a curve-fitting procedure used as an approximation
in evaluating the integral of (23).

If we now consider the following numerical values:

12
g =10 " particles per cubic meter,

Nyq 0.9x 1012par'ticles per cubic meter,

TO =1000 degrees, Kelvin,

17



we find that
h = 2.18x10 ° meter, (Debye length)

c = 1.590 x 105 meters per second, (adiabatic acoustic velocity of
the electron gas)

fl = 8.98 megacycles per second, (plasma frequency of Region 1)
f2 = 8,52 megacycles per second, (plasma frequency of Region 2)
7
wpl = 5,64 x10 radians per second =27 fl,
wpz = 5.35 x 107 radians per second =27 f2,
wpz/wpl = 0.9486,

2
(“’pz /“’pl) = 0.900.

If these values are used in (30), there results, after collecting terms:

n,(z,t) 7
o o =-0,512 cosh 355z - 113 z Si(5.35 x 10 1)
)
+ [5. 03x10 32 +5.50% 102 L s 6% 1072° —Z—J sin(5. 35 x 107t)
2 3 4
t t t
+ [— 0.949 x 10 0% +0.802 x 10 4L _1.003x 1192
t 2 3
t t
- - -21
+9.74x 10 33 —fg] cos(5. 35 x 107t)+[8. 65 x 10 13% - 5.52x10°2 —1§
t t
-2.91x 1072 -Z-_] sin(5. 64 x 1o7t» [o. 802 x 10 L 48 60x 1079 2
4 2 3
t t t
- 7
_0.74x10°% = ] cos(5.64x 10" t). (32)
t

18



If one now attempts to use this expression to determine numerically the
values of ny on the wavefront progressing in the direction of decreasing z, it is
found that, because of the very small values of t involved, it is very difficult to
obtain accurate results. Consequently the integral of (23) was re-evaluated under
the assumption that t was small enough to allow us to replace sin rt by rt, and
cos rt by unity. The resulting required integration is straightforward (after making

other simplifying assumptions as before) and the final result is (for Iy > Dy and

very small t):

(z.1) (cosh 2w ) w .w w2
n,,(z, _ wpz cos C‘ﬂ)l 1% 2, (. 1 Yp2
(n, -n_) %90 4 ¢ 6 2
Mo~ oo ;—- wp1+wp2 pl

10
2
, 16 20 {901 %2 “p1 " "_"p_z_)z
37 (n n_) 2 )
+
10 20 (wpl W 2) wpz 1
n (:)2
_ ‘:_4}_ 10 wpl pl =z t]
T 2 c
- +
(n)y =myg) (0, +u ) “o2
6 5 4
2 (a, _“p2,, b, _p2, c,_ 02
e - -_— + = -
iwpl[?(l 6 )55 )Ty A )
“p1 wpl pl
w4 (.03 (.02
2 la,,_ P2, b D2, ¢c. . _p2
- =1 - +=(1 - +=(1 - .
Y02 [_4 1-= )+3a 3 )5 2 i! (33)
pl pl pl



If we now use (33) to calculate n

11/n10"n20

)

as a function of z for

t=|z ]/ ¢, we get information concerning the amplitude of the wavefront of the elec-

tron density perturbation as it moves in the direction of decreasing z.

are as follows:

TABLE 1

z (mm) ny /(g =ny0)

0.0 -0.510
-0.1 -0.510
-0.2 -0. 560
-0.3 -0.643
-0.4 -0.759
-0.5 -0. 908
-0.6 ~-1.001
-0.7 -1.306
-0.8 -1.555
-0.9 -1.837
-1.0 -2.153

The results

Another result of physical interest is the variation of Dy / (nlo—nzo) as a

function of z for values of t large enough that the oscillatory terms of the electron

density perturbation have essentially damped out, but t small enough that the ions

have not yet started to move.

This result is easily calculated by using only the first two terms of

{32) and one obtains the following values:

20



TABLE II

z (mm) nll/(nlo-nzo)
0.0 -0.512
-0.1 -0. 494
-0.2 -0. 477
-0.3 -0. 461
-0.4 -0, 445
-0.5 -0.431
-0.6 -0.418
-0.7 -0. 404
-0.8 ~-0. 391
-0.9 -0. 379
-1.0 -0. 368
-1.2 -0, 347
-1.4 -0. 328
-1.6 -0.313
-1.8 -0. 301
-2.0 -0. 293

It also is of interest to obtain an indication of the rapidity with which the elec-
tron density oscillations, as shown by (32), damp out. The t_l term will damp
out the most slowly. Our results are valid only out to |z] = 2 millimeters and
it takes the perturbation about 10—8 second to reach this distance. Consequently,
at the end of 10—7 second this t_l term will damp out to about 10 percent of
its original value, Since the frequency of oscillation is about 8. 52 megacycles,
only a cycle, or so, of this oscillation would occur. The Si(5. 35 x107t) term
is also a damped oscillating term, and a plot of it shows that several cycles of
this exist.

It is considered unnecessary to make a detailed analysis of the behavior of

n.. since the equation for it is very similar to that for n

91 so very similar

1’
phenomena will occur,
21



v
CONCLUSIONS
From (32), and Tables I and II, one can conclude that as t increases
from t =0 the following phenomena occur:
1. Immediately the electron density at z = 0 assumes a value
approximately midway between n 10 and oo
2. A rarefaction wave of electron density moves in the direction of
decreasing z, with a velocity ¢ and with an increasing amplitude.
3. At each point of the medium, after the passage of the rarefaction
wave, the electron density oscillates at two different frequencies,
one corresponding to wpl and the other to wpz. These are damped
oscillations consisting of only a few cycles.
4. After the oscillations die out the electron density varies smoothly

from a value of about 0.5 (nl —nzo) at z=0 toavalueof n for

0 10

large negative values of z.

22
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APPENDIX A
DETERMINATION OF BOUNDARY CONDITIONS AT INTERFACE
The boundary conditions at the interface, z = 0, are determined by first using
the applicable form of the momentum equation,
ou

du
i i 1 9 q
— = E _ - = — (nV.V)+ — E, (A-1)
At " uk F)xk n X axk ik m i

where Vi and V. are components of the peculiar, or thermal, velocity of a par-

k

ticle, and q is its charge, plus the continuity equation,

583

9%

9(pu )
k- (A-2)

where p = mn, the mass density of the fluid. To obtain useful results from (A-1)
and (A-2), one uses these equations in connection with the equation

9 ou,
-_— = . + -
3t (pui) (Y 51 ui 3T - (A-3)

By substituting (A-1) and (A-2) for the right-hand terms of (A-3) we find that
R O N S s S oL B
ot i T " Bxk n K Bxk ik

3(puy)
+9§1€ Ei'“iz 5 = (A-4
%

In our case of uniform unidirectional drift motion of the particles, viscous

24



effects disappear, with the result that

AT 6ik AN (A-5)

where Sik is the Kronecker delta. Then

9 To . 0 ozy . 1 9p _ 1 9p
kz ox, (nV.V, )= 7%, (nVP) = — 3;1 == S 3 - (A-6)

By using this result in (A-4) we obtain
du a(pu )

d i Y% ap

'—(pu)=g:fp - -4, —— - 9. —| +qnkE,._. (A-17)

a . . . .

t i T % 3 X i 9 X ik o x.k i
Equation (A-7) can be made more compact and its physical significance made

more evident by using this result:

3 du, a(puk)

L e S T e

Then (A-T7) becomes

2 Z 0
—_— = - —_— + + E -
ot (pu,) 7%, (puiuk 6ikp) qnE, . (A-8)
k

To get (A-8) into its final useful form, one expresses the electric volume
force in terms of the Maxwell stress tensor, by pages 95-97 of [2]:

DT,

anE = Y L (A-9)
i ox
k k

25



In our case, the Maxwell stress tensor is

i 1 2
T e [EiEk -3 6, F ] , (A-10)

since we are dealing with a plasma in otherwise empty space, with a constant
electric permittivity €,
By using (A-9) and (A-10) in (A-8) we obtain
—a—(u)-z 9 Sy u + € EE & E? (A-11)
ot PY T B, ik P7PY % T %5 T Q% o
k
By pages 12-15 of[l ]. we can write

oM

)
—— (pu.) - — — ,
ot L zkj 9 %

where T

ik is the momentum flux density tensor, given in our case by

1

5 E? | (A-12)

- + - +
TTik O P tpwu - EE + &

th
Now § TT;k n K is the flux of the i~ component of momentum through a
unit surface area having the unit vector 1 along its outward normal. The flux
of each component of momentum must be continuous at an interface between a

Region 1 and a Region 2, so

Zk: (Trik)l ' Zk(ﬂ_ik)_2 n i=1,2,3. (A-13)

26



At the interface z =0, we have k = 3 in (A-13) with the following three resulting

scalar equations for i =1, 2, 3, respectively.

- E. E = - E E -
p1 ulxulz Eo 1x 1z p2u2xu2z €o 2x 2z (A-14)
- E E = - E E A-
plulyulz o ly 1z p2u2yu2z o 2y 2z (A-15)
p, + p.u? - e E2 +-—1E2=p+pu2 —¢ E2 +% E2 (A-16)
1 1 1z o 1z 2 1 2 2 22 o 2z 2 2

Because our regions are unbounded and homogeneous in the x and y direc-
-1 -
tions, the x and y components of u and E are zero in both Region 1 and

Region 2. Also, we know that Elz = EZZ' Therefore, only (A-16) gives a use-

ful result:

+ 2 4 2
Py Tl Uy, T Pyl

or

+ + + 2 = + + + 2
(g ey + Pyt ey, = (Pyg + oy ) Hloygt oy )y,
Dropping terms of second, and higher, order gives
= + = = + -
Pp 7 Pig TPy T Py T Pyg TPy (A-17)

A second boundary condition at z = 0 is given by the fact that the normal flux

of electrons must be continuous at the surface z = 0. That is,

u, n, = u_.n_. . (A-18)

27



We obtain a third boundary condition here by recognizing that the normal com -

ponent of energy flux must be continuous at this plane interface between the two

regions. By sections 51 and 53 of [3_] we have for the conservation of

energy, in our case,

d 1 2 1 9, 1 2
— ( = + + = E?+ — H?) =
dt ( 2 pu pe 2 o 2 'uo )
- = = —
-v-pu(-;-u2+w)-ﬁ-%"'-7(vT+ExH:]=-v-a‘. (A-19
Here :

€ = internal energy per unit mass,

w = enthalpy per unit mass = € + p/ P,

Ll

o' = viscosity stress tensor,

X = thermal conductivity.

As mentioned previously, viscous effects do not enter in our case, so the
i~ H . s .
term u-o' in (A-19) is dropped. Also, we are assuming very long mean free

paths so collisions can be neglected, allowing us to drop the heat conduction term

XVT. Because we are dealing with longitudinal oscillations, there is no mag-

netic field and the Poynting vector term disappears.

By Section 85 of [1] we have for the enthalpy per unit mass of a perfect gas:

—_ = e+-§— , (A-200
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whence
(A-21)

Now if these expressions are used in (A-19), together with the results of the last

paragraph above, we obtain

p p
= u? + X 1 = 1oy x 2. _
m nlul( 5 U3 vy mn ) mn2u2( 5 Uy vy n2) (A-22)
By using the facts that
pl = P2
and
un = un,,
given by (A-17) and (A-18), respectively, (A-22) above becomes
P P
L s 2 Lo Ly o (A-23)
2 1 v-1 mn1 2 2 v-1 mn2
By dropping the second-order terms, ‘;* u2l and ';- uz2 , in (A-23), we obtain
n, o=, (for z=0) (A-24)
By using (A-24) in (A-17) and (A-18), we get
T, =T (z=0) (A-25)

1 2’
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(z=0). (A-26)

From (A-24) we have

+ +
10 11 20 21

n.. =n,. +(n

21 11 T{nyg = nygy . (2=0) (a-27)

This equation tells us that our results will be valid only for values of (n,  -n__)

10 20
of the same order of magnitude as D and Ny
Taking the Laplace transform of (A-27) gives
n._ -n
10 20
= + == -
N21 (0, s) N11 (0, s) . . (A-28)

A second relation involving Nll(o’ s) and N21(O, s) can be obtained by
taking the Laplace transform of (la), obtaining

aNll(z, s)
mn, [sUl(z,s)-ul(z,Oﬂ tykT o +nj,e El(z, s) =0, (A-29)

where Ul(z, s) and El(z,s) are the transforms of ul(z, t) and El(z,t),

respectively. One of our initial conditions is that
ul(z,O) = u2(z,0) = 0.

Consequently (A-29) can be rewritten

vk T aNll(Z, s)

10
s 0z ?

_ e
Ul(z,s) = - El(z,s) -

(A-30)
mnlo
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with a similar equation for Uz(z, s). Because of (A-25) and (A-26), we get

from (A-30):

3N21(O,s) LI BNll(O,s)
R T (=21
10

where we have made use of the fact that

El(O,t) = Ez(O,t).
We can now use (12), (13), (A-28), and (A-31) to determine Fl(s),

F4(s) in (10) and (11). From (13),

lim Nll( z,8) = 0, (A-32)
Z —) -0

Now FI(S) and F2(S) are not functions of z, so (A-32), in conjunction
with (10), shows that it is necessary that Fl (s) = 0. Similarly, it canbe
shown that F 4(8) = 0, Lastly, we can determine F2(s) and F3(s) by

using (A-28) and (A-31). This is routine algebra and the results are:

(n._ -n_.) \,sz—!- w2
Fy(s) = 20 10 p2 (A-33)
n
s—Z—Q s2+w‘21 +Js2+w22
10 p P
n -1n
F.(s) = F.(s) + 2—20 (A-34)
3 2 S
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APPENDIX B

EVALUATION OF CONTOUR INTEGRAL

In order to evaluate the integral in (23) we use Path 2 of Figure 1 and rewrite

the integral thus
(2 t) = N90 =110 i
nyq {z, t "—'—'—‘. _;_(¢11 +¢12)

2
_( ‘ i :
/ 9219229 o1 * o) o€ VF1LP12€ ere1¢td(rel¢)
) 4 (Poq +Po0)
8—-) o (re1¢) nlO |p11 P12 oZ ¢11 P12), Ip21p22 o7 (P21 ¢22]

where (B-1)
I (]
s lwpl Py
iy
oo P91®
if19
b1~ P12°
v - if9q
S 1wp2—p226 ,

i

s =re’,

Path 2

S

s +iw

and -r/2 < ¢mn<(3/2)7r .

It is to be noted that v > 0, but v can be a small quantity. Figure B-1
illustrates the geometry.

The value of the contour integral evaluated on Path 2 is, of course, equal to
the sum of the integrals evaluated along the various separate paths which make up
Path 2, as shown in Figure 1. We now evaluate our integral along the various

separate paths.
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iw 11
pl [
. ¢21
1 wp2
r
g

FIGURE B-1: POLAR REPRESENTATION OF s + iwp



First, we note that our integrand is analytic along the negative axis of reals,
so the integrais along paths B-O and O-C are equal in magnitude and opposite in
sign. Also, then, the integrals from 1 to 2, and from A' to D' can be evaluated
along continuous paths between these points.

Next, let us consider circular arc A-A'. On this path r = ro and ro——>oo,

P p—>-71/2, andﬂl;l? -7/2 as B—> . Then

i
i z 5P, .+
§(¢21+¢22)eclP11912 oo M lzetroel’b.

-7 /2 ’p21p226 idg
lim IA— = lim i : ’
3—= B—> fl_ZQ_ 6‘2(¢11+¢12 )+ §<¢21+¢22)
p—>-7/2 n, V11712 P21P22°
P
(B-2)
-r/2
i / ty+it B
lim 1 _,,= —— lim e ap=0 .
B—>rw (n /nl H1l B—w®
s G
o g=@
0
Similarly,
im I, =0 (B-3)
B—>m®
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First, we note that our integrand is analytic along the negative axis of reals,
so the integrals along paths B-O and O-C are equal in magnitude and opposite in
sign. Also, then, the integrals from 1 to 2, and from A' to D' can be evaluated
along continuous paths between these points.

Next, let us consider circular arc A-A'. On this path r = r, and ro——>oo,

P T p—> -r/2, and¢n—ﬁa— -7/2as B—s . Then

—(¢ +p :
?(¢21 + z) 01911 12e° 1 12) troe1¢

-r/2 ’p2lp22 e id@

lim IA-A" lim I : ’
3—m B> D50 e*z(¢1 1), e§(¢21+¢22)
p—=-n/2 n , ¥°11°12° P21P22
P
(B-2)
-r/2
i ty+it B
lim N lim e ap=0 .
B—> (n /Il1 H1l B—w
U UG
0 0=
Similarly,
lim Iy _p =0 (B-3)
B—»(D
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On the circular arc, A' - D', we use the form of the integral given by
(24), remembering that (t +% ) > 0. In the second and third quadrants (Re s) <0,

and as B —m, (Re s)~>» - ®m, so

lim Lop ™ 0 . (B-4)
B—> o

We next consider the integrals over the paths 1-2 and 9-10. Here r= rya

constant during the integration, and

( —
P11 7 %p1
P =W
I‘o—-’0 Pa2 =wp2
P12 "%
.
On the path 1-2:
( g =3,
11 2
3
b= 57
lim 21 ?
r —?0 = -
0 ﬁ Pog= 5 7
1
= =T
¢12 2
L
‘For the path 9-10,
~ ¢ =_l
11 27
1
, Por== 3"
lim 41 1
ro—:PO ¢22 } 2 7
1
L¢12 "2 7
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Then

-Zy tr e1¢
3. e . cpl "o
9 1wp2 e e ag
11-2 =rlfl>-0 / ’
0 ¢=£2 +€ __n20 y .+
e 3
10 e 9 .
p2 9T ~€ r.t e1¢
I = lim e
D pl p2 € —0 2
-z,
c
Tiw e pl
L _," p2
-2
Iigg‘ w, tw
no PL P2
For the path 9-10,
Zy rt elsZj
. cpl "o
T_e 10,8 dg
1., = lim 2
9-10
r—>0 T 9
° =-—+€ |7/ w, tw
e —0 2 pl  "p2
10
o eYpl -
iw e T _ .
p2 2 ¢ rot elgzj
I9-10~ lim e
%20 r—»0 J.
S +w 5 0 p= -§+€
10 P € —»0
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Z
=W
c bl
17T wpz e
10" ? (B-8)
20
o Y ten
o P
27i cosh-z-
T, o Y1
L ehe ™00 no ‘ (B-9)
— Y1 T Y%
n10 P p

for t >|z|/c.

then let € = 0. On this path as Py

Then

V]

p.—r0

For the circular path 3-4 we let p, ,—>0 andg+ € < ¢22$ % T - €, and

2—-—>0:

lim I, = lim

p—>
22 22

. .
3 2 “C{'pl “p2 ' p
5 7€ e ip, €
[2 szprZZe © P22

+

; - 1
€ (-iw _+ e1¢22) —1'1"2“0 w2 -wz + | 2w e2(
“p2 Paz n o\ pl P2 J p2P22
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lim I =0 . (B-11)

0 3-4
Pog
Similarly,
lim . I7_8=0 s (B-12)
Paa
lim . 111_12=0 , (B-13)
Pol
lim I =0 . (B-14)
15-16
—
Por 0
3
th 5-5 —> Tre < 2 .
On the path 5-5', we let Pis 0 and o te = ¢125 5 T Here, as plz—;..()__
_ _3
P11 =29 fp=3
3
= + - =
Pa1 "“p2 " “p1 Por= 5
Y - g -3,
Pog “¥s1 T ¥po 22 2
if),
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Then we obtain

lim I 5 lim
py3 =0 P> 0
e—>0
i 3
L= 7+0..)
z 5 32 7 1 . iy
Sy [2_2 ¢© “p1P12 © (Fwtepe b iy
27 (Vo Yp2 P12°
. d¢
i 12°
- e1¢12) "20 5 - e2(2”+¢12)_i,w2 B
L 1712 N, plr12 pl p2
2
(B-15
lim . I5_5, =0. (B-16)
P12
Similarly
lim 1., . =0, (B-17)
, 56
P13
lim I =0 . (B-18)
p >0 13-14

We now consider the following four integrals as a group, since they combine

well. 0
2 ,'

| (B-19}

16-1 r | r + 2
=W wp2
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(B-20)

(B-21)

Z | 2

__ Z -r°
l c elrt dr
(B-22)

L0-11
r{— l - r2 +Jw2 - r2
r=0 n wpl p2

“ombining these four integrals gives

= + -
L= Lg 1ty st g 9 o1, (B-23)
o -
p2 w22 - r2 (sinh% wzl - r2)(sin rt) dr
I, =4i D A A - (B-24)
| 20 l 2 2. [2 2
r=0 n, wpl wpz
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We can simplify this integral by considering the first term in the denominator

"ol 2 2 |0 |2 Mo 2
n %1 7F Tyn . (%2 n T
1w\ P 10 \P 10

Following (17), we noted that our results will be valid only for (n1 01 0) of

the same order of magnitude as n, . and n21, and we have restricted our work to the

11
case of
n << Dy, and n21<< D, -
Therefore we must restrict n20/ n,, as follows:

Bog/Pyg = 0-9;

‘n20/n10 =0, 95,

a

|2 M0 2o (2 2
J 20/ ™10 (“p2” 1 “p2 :
10
W
/p2 (sinh%lm2 —rz )(sin rt) dr
= 9 pl :

and we can say that

Then we can write

I (B-25)

2 r

r<)

This integral still is untractable so we must lock for further simplifications.

Now X3 X5
sinhx=x+-é-l- + E'—+ . (B-26)

We can use only the first term with fair accuracy if
3

xalO—;S—l—
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or if
x < 0,774 . (B-27)

Sinh-Z‘ wsl - r2 has its maximum value, sinh % wpl s, when r =0, Therefore, to

represent sinh %wpl by only the first term in the corresponding series we must

satisfy the relation

Zo . = 0.774.
c pl

By using the numerical values for wpl and ¢, which are given just before equation

(32), we find that our approximation for sinh% ol will be valid for

7z <3 millimeters, (B-28)

which is of the order of a Debye length, We then assume that

sinh 2 wz - r2 =z w2 - r'z. (B-29)
cy pl cy pl
Our last simplifying assumption is this,
- 2
2 2 ~ Z 1 r
Z _ ~ Z I -
p prl r cwpl(l 5 3 ) . {B-30)
W
pi

In our integral of (B~25) the upper limit on r is wpz =0.948 wpl" For this value of

r we have:

2,2 | 2 2.
\l 1-(r /wpl) —J 1- (wpz/wpl) =0. 3186,

1 r2
(1-—5 5 ) =0,550,
wpl
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Our approximation (B-30) is thus seen to be only fair at this limit, however, it
is much better for smaller values of r.

By using the above-discussed approximation in (B-25) we get

w .t
~ o Z sin(rt) sz 1 t)sin(rt)d(rt
I2 =2i S o1 (zt) d(rt) - i - t2 (rt)sin(rt)d(rt),
=0 1 =0
(B-31)
Z Z V4 “92
12 = 2i P wpl Sl(wpzt)—l p 5 sm(wpzt)+ 1S Tt cos(wpzt), (t#0) .
w .t pl
pl
(B-32)
w .t
2
Here p
. _ sin x _
S 1(wp2t) = T dx . (B-33)

0

In order to obtain some idea of the validity of (B-~32), we have numerically

evaluated 12/ 2i, as given by (B-25), for the following values of the various para-

meters: z =1.0 millimeter,
c=2Xx 105 meters per second
wpl =5 X 107 radians per second,
wp2 =4,7T4 x 107 radians per second,
and for wpzt taking the values 0.5, 1.0, 1.5, ..., 20.0 radians. Then 12/21 was

calculated by using (B~32). The results of the two different calculations are shown
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in Figure B-2. The numerical integration of 12 was carried out by using Simpson's

rule, with the number of subdivisions increased at w

t =5, 10, and 15. This
p2

accounts for the jumps on the curve of Y at these points.

Our last integral to evaluate is

3= 145" g lom15" lig1s (B-34)
where
©o1 l T e wil_rz —irt
p ilr-w e ¢ ! dr
P2
= (B_35
I 45 — , )
_ 20 | 2 . 2 2
r=w 9 rHi— |, -r +tijr -w
p D pl p2
W Z wz - r2
p2 | -4 pl
i rz- w2 ~ e~irt gp
p2
16—7 = N , (B-36)
r[—- 20 sz -r +ijr -
r=w
pl n10 pl p2
| 2 2
W ..Z_ -1
pl W .
i rz-wz e® pl elrt dr
\ p2
2-137 = ; (B-37)
r ﬁ@ J w2 r2 + i J r w2
r=w - -
p2 nlO 1 p2




y1 and y2

0.5

. - / e
. " &// T <

\\ A o \\ -!—-“1~
0.3
0.2
0.1
0 5 10 15 20

wp 2t (radians)

What z{ 2 2
p (sinh i )(sin rt) d(rt)
FIGURE B-2: PLOTS OF y, = D
1 (rt)
rt
rt=0
z 1z “p2  z
AND Yo" o wpl Sl(wpzt)— 5 o s1n(wp2t)+ ot o cos(wpzt),
2w .t pl
pl
- 7
FOR z =10 3, c=2x105, W =5x107, W, =4.74x10
pl p2
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N

I = . (B-38)

14-15 n
r _ 20 2 —r2+ilr2-—w2
r=w 0 wpl p2

After considerable algebraic manipulation, we find that

pl J:‘ —w )(w ;T )(cosh—lcos1 -r )(cos rt) dr
3
nlO 20 e Mo\ 2 2
Mo p2

wpl (r2 wz )(sinh-z— lwzl - r2 )(sin rt) dr
4i n10 p2 c\Y p

- " (B-39)
n n
10720 o _ { "o 20> 2 2 }
p2 T =Wy
"o p

In order to handle these integrals we make use of the fact that our range of

+

integration is very small, since wp2 =0.948 wpl.
First, we consider the denominator of the two integrals. 1/r is nearly

constant throughout the range of integration, so we replace it by its value at the

midpoint of the integration range:

1

- = . (B-40)

+
(wpl-*wpz)/ 2 W1 wp2
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Next we consider the other factor in the denominator, at the end points of the range

of integration

"o M0 2 2 P20 2

r=w . ( )r-w = W .
p2 nlO p2 nlO p2
+
) "0 " o0 2 2 M0 2
rEw L (———)r-wz—n—w 9
p ™0 pa Moy P

Since n_., =0.9 0o the above factor is very close to w2 throughout the range of

20 p2

integration, and will be taken equal to wf)z.

The first of the integrals in (B-39) can then be written:

W
pl
4in N
~ 0 2 1
I;=—‘ _i 0 o 2 J(rz—wzz)(wzl-rz)(cosh z wzl-rz) (cos rt)dr .
M0 20 “p1™p2 w 5 7 pa P eV p
e rTug, (B-41

In order to handle this integral one must resort to further simplifications.
The cosh term will be equal to unity at the upper limit of integration and equal to
(cosh -E' |w§1 - wiz ) at the lower limit. At this lower limit, the cosh term will be

equal to 1.1 if

Z 2 2 _
o wpl - wpz = 0.445 . (B-42)

By using the previously listed numerical values of c, wpl, and wpz, one finds that

the relation of (B-42) will be satisfied if z = 5. 56 millimeters. Therefore, one is

justified in replacing cosh% \] wpz)l - r2 by unity, if z <5.56 millimeters.
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Last, we consider the factor \J (rz— wiz )(wrz)1 - :r'2 ) in the integrand of

(B-41). To handle this radical we do the following:

r2-— w =|r-w r+ g\\ 2 r-
p2 p2 “p2 “p2 “p2 °

wpl-r =pr1—r pr1+r =J2wp1 jwpl-r ,

SO

2 2 2 2, ~ - -
J(r —wpz)(wpl- r) = ijplwpz J(rwpz)(wpl r). (B-43)

Now the function \r (r—wpz)(wpl—r) is zero at each limit of integration, has a maxi-

mum at r =(w +wp2) /2, and is symmetrical about this maximum. We replace the

pl
radical by a parabola which passes through these three points. The parabolic func--
tion is , ‘*’1'*""2 2 wl_wz
y=E-|{—— T - "'p"—"L + B (B-44)
W W 2 2
pl "p2

To check the validity of this substitution, a normalized numerical check was carried

out to compare y, = Rr-l)(l, 0548 - r)

with 9
Yy = -36.5 (r-1.0274) + 0. 0274
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as r varies from 1.00to 1.0274. The results are shown below:

r

M|

y

2
1. 000 0. 0000 0. 0000
1.005 0.0158 0.0091
1.010 0.0212 0.0163
1.015 0.0244 0.0218
1.020 0.0264 0.0254
1.025 0.0273 0.0272
1.0274 0.0274 0.0274

These values of A and Yo check quite well. One feels fairly well justified, then, in

replacing the radical by (B~44).

8i
1112

w (n10 nzo)(w +wp

]

We finally arrive at

wp 1+wp2

p2

)(r-

e cosrtdr .

The integration is straightforward now, and we obtain

321 n20 w 1w£2

2
2( 10 n20)(w +w )

I.=

It is tobe noted thatI'. =0ifw _ = wpl.

3

¥

1
- = Xcos wpl

2

p2

t+ cosw _t)+
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wpl-pr)

2 W "W
(R pz)}

(B-45)

(s1muplt-s1nwpzt)J .

(B-46)



By using the simplifications discussed between (B-39) and (B-41), we can

write the second integral of (B-39) thus:

W

pl
4in
= 10 2 L (r2- o2 Nsinh 2 w2 - r°)sin rt) dr.
"107"20 “p1"p2 W - P °
W52

(B-47)
By using the same reasoning as was used in obtaining (B-29), we find that,

in the integrand of (B-47), we can use this approximation,

smhc\lwpl—r = v r
if z is not greater than one centimeter.

With this simplification the integral still is intractable because of the factor

wil -r = wpl\! 1- (r/wpl)2 . The series approximation of (B-30) is not satis-

factory here, because, throughout the range of integration in this case, r/ wpl

close to unity. Because of this, the radical was approximated by the following

is

polynomial:

1- (r/wpl)z = a(]r‘/wpl)2 + b(r/wp1)+ c, (B-48)

where the constants of the polynomial were determined by matching the two functions
near the end points and center point of the range of (r/w 1). Following are the

values of a, b, and c for our particular range of values of r/ wplz
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a =-90,13
b =169, 46
c=-79.32

The goodness of the fit of the parabola for these values of a, b and ¢ is shown by the

following table:

With these simplifications, the integral of (B-47) becomes:

r/mpl ll - (r/wpl)2 a(r/wp1)2+b(r/wp1)+c
0.95 0.3122 0. 3150
0.96 0.2800 0. 2881
0.97 0.2431 0. 2431
0.98 0.1990 0.1801
0.99 0.1411 0. 0991
1.00 0. 0000 0. 0000

8in w

(rz_wsz) [a(r/wpl)z + b(r/wpl) + c] (sin rt) dr .

10 pl Z
2 c
w5210 o001 o)
h)pl
r =h)p2
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This integration is straightforward, giving

= ° 100 %1 za |1 4
] wz( -n_ Nw tw ) © wz tp2
b2 ™10 20" “p1 p2 1

COSW t—w4 cosw _t)-
p2 p

pl

é(w3 sinw _t
1 pl t2 p2 p2
p
12, 2 2 24
_ . 12 _ 24 . _ . ¢
wpl sin w 1t) t3 (wpzcos wpzt wplcoswplt) t4 (wpzsmwpzt wplsmwpl)
4 b1, 3 3
+ = - += | = -
t5 (coswpzt coswplt)] o, [t (wpzcoswpzt wplcoswplt)
--'(w2 sinw t—wz sinw t)—-6—(w cosw t-w ,Ccosw t)+6—(sinw t-sinw ,t)
t2 p2 p2 pl pl t3 p2 p2 pl pl t4 p2 pl
2
“o2 |1, 2 2
+(c-a N =(w .cosw _t-w .cosw . t)- — (v .sinw
w2 t p2 p2 pl
pl

- i t
tz 02 p2t wplsmwpl)

2
“p2 | 1
t3 (cos wpzt—cos wplt) -b 9 ;(wpzcoswpzt- wplcosw l’c)-—
pl

——l—(sinw
2

. 2 |1
) p2t—sm wplt)} c wpz {vt (cos w

pzt - Ccos wplt )

(B-50)
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