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Summary. We consider the problem of obtaining population-based inference in the presence of
missing data and outliers in the context of estimating the prevalence of obesity and body mass
index measures from the ‘Healthy for life’ study. Identifying multiple outliers in a multivariate set-
ting is problematic because of problems such as masking, in which groups of outliers inflate the
covariance matrix in a fashion that prevents their identification when included, and swamping,
in which outliers skew covariances in a fashion that makes non-outlying observations appear
to be outliers. We develop a latent class model that assumes that each observation belongs to
one of K unobserved latent classes, with each latent class having a distinct covariance matrix.
We consider the latent class covariance matrix with the largest determinant to form an ‘outlier
class’. By separating the covariance matrix for the outliers from the covariance matrices for the
remainder of the data, we avoid the problems of masking and swamping. As did Ghosh-Dastidar
and Schafer, we use a multiple-imputation approach, which allows us simultaneously to conduct
inference after removing cases that appear to be outliers and to promulgate uncertainty in the
outlier status through the model inference. We extend the work of Ghosh-Dastidar and Schafer
by embedding the outlier class in a larger mixture model, consider penalized likelihood and
posterior predictive distributions to assess model choice and model fit, and develop the model
in a fashion to account for the complex sample design.We also consider the repeated sampling
properties of the multiple imputation removal of outliers.

Keywords: Body mass index; Child; Community health centre; Latent class; Multiple-edit–
multiple-imputation model; Obesity; Survey sampling

1. Introduction

Childhood obesity has become epidemic in the USA and is rapidly increasing throughout the
developed and even the developing world (Hedley et al., 2004; Kimm and Obarzanek, 2002).
The increase in childhood obesity during the past 25 years has led policy makers to rank it as
one of the most critical public health threats of the 21st century (Koplan et al., 2004). Although
the nationally representative sample of the National Health and Nutrition Examination Survey
provides childhood overweight status by age group in non-Hispanic white, non-Hispanic black
and Mexican-American children (Hedley et al., 2004; Ogden et al., 2002), data on other ethnic
groups are lacking. Additionally, the magnitude of the problem of obesity among children living
in medically underserved areas is unknown, yet it is an important factor to consider in directing
scarce resources for the treatment and prevention of obesity.
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In this context, the ‘Healthy for life’ survey obtained data from a probability sample of chil-
dren using Health Service and Resource Administration (HSRA) supported community health
centres at least once during calendar year 2001 (Stettler et al., 2005). The purpose of the survey
was to quantify the prevalence of paediatric obesity in medically underserved areas. Data were
collected by abstraction of the clinically measured height and weight during the last visit to the
health clinic in 2001. Because height data are collected only sporadically, nearly a quarter of
the height and consequently the body mass index (BMI) data were missing; missingness was
associated with age, since older children tended to grow more slowly and thus were less likely
to have height recorded at a given visit. To reduce bias and inefficiency that are associated with
a complete-case analysis, and to allow analysts to work with the data in a convenient man-
ner, a multiple-imputation (MI) method was implemented in Stettler et al. (2005). However,
the MI procedure was potentially problematic, because the data were overdispersed under the
assumption of normality and included incorrectly recorded or abstracted elements. Failure to
account for missing data and clerical errors in the height and weight HSRA data may have
important clinical and public health repercussions. Without correction, differences in preva-
lence between centres with more or fewer clerical errors may be misinterpreted as an increased
risk for obesity in children living in one area rather than insufficient standardization between
centres. Standardization in measurement and transcription in multicentre studies is expensive,
as it requires rigorous training and travelling. The method that we propose provides a post-data
collection alternative to eliminate outliers when extensive training has not been possible before
data collection.

The literature on outlier detection is voluminous: books in the field that provide an over-
view include Hawkins (1980) and Barnett and Lewis (1994). Using standard methods such as
consideration of the Mahalanobis distance to identify multiple outliers in multivariate data
is problematic (Campbell, 1980; Rousseeuw and van Zomeren, 1990; Hadi, 1992). ‘Masking’
prevents identification of outliers when a small cluster of observations inflates the empirical
covariance matrix, whereas ‘swamping’ can make some observations appear to be outliers when
true outliers pull the empirical covariance matrix away from non-outlier observations. Meth-
ods for simultaneously assessing outliers and accounting for missing data in an MI framework
include Little and Smith (1987), Little (1988), Penny and Jollife (1999) and Ghosh-Dastidar and
Schafer (2003).

The goal of our analysis is to obtain the distribution of the BMI in the HSRA paediatric popu-
lation after removing outliers that are probably due to clerical errors. We begin by defining a
mixture model for the joint distribution of Box–Cox-transformed and age- or gender-normalized
(‘z-score’) height and weight data. The mixture model is defined by latent classes that have com-
mon means, conditional on age and health centre to accommodate the disproportional sample
design, but that have differing covariances; the ‘clerical error class’ is the class with the largest
covariance matrix determinant. We then use this mixture model to develop an MI algorithm that
imputes latent variance class conditional on its posterior probability of membership; missing
height z-score data are then imputed conditional on weight, health centre and latent variance
class. The height and weight z-scores are then backtransformed to heights and weights on their
original scales, and then used to compute the BMI. Subjects who were assigned to the clerical
error class at a given imputation are dropped before the complete-data analysis of the observed
and imputed data.

Two statistics summarizing the distribution of the BMI in the HSRA paediatric population
after clerical error removal were of particular interest: the proportion of children above a fixed
BMI cut point measure for obesity, and the 2.5- and 97.5-percentiles of the BMI distribution.
In principle these could be obtained from the mixture model that was used to produce the MIs.
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We used the MI approach to rely on the empirical distribution of the data to the largest extent
possible, and to accommodate the complex sample design at the complete-data stage of analysis,
further enhancing robustness. Another alternative to the MI approach would be to remove all
subjects whose modal probability of class membership was in the outlier class before conducting
analyses; the use of MI instead of ‘one-off’ outlier removal provides a simple method to obtain
the obesity prevalence estimates within a variety of subdomains while stochastically eliminating
potential clerical error outliers from the analysis, so that subjects with less extreme values can
be ‘partially’ removed in proportion to the probability with which they belong to the clerical
outlier class. Thus outliers are assessed on the basis of how an observation relates to a posterior
predictive distribution that excluded the observation in estimation, yielding a discordancy or
‘surprise’ measure (Chaloner and Brant, 1988; Bayarri and Morales, 2003). Our work extends
the ‘multiple-edit–MI’ model of Ghosh-Dastidar and Schafer (2003) by

(a) embedding the clerical error class in a larger mixture model that allows for differing
degrees of height–weight overdispersion in the population,

(b) considering the Akaike information criterion AIC, Bayes information criterion BIC and
posterior predictive distribution p-values to select among differing class sizes considered
and

(c) developing the model in a fashion to account for the complex sample design.

By allowing for more than two latent covariance classes, we accommodate overdispersion in
the HSRA height–weight data relative to the total population beyond that induced by tran-
scription errors, which may be of direct interest of itself. We also consider the repeated sampling
properties of the MI procedure proposed.

Section 2 describes the model and provides details about the Gibbs sampling algorithm that
was used to develop the MI procedure. Section 3 applies the MI procedure to the ‘Healthy
for life’ survey data. Section 4 considers the proposed MI procedure in the repeated sampling
context. Section 5 summarizes the results and considers future extensions of this approach.

2. Description of the model

We consider a complete-data mixture model: for the ith subject, i=1, . . . , n,

Zi|Ci =k ∼Nq.μi, Σk/, .1/

Ci ∼MULTI.1, p1, . . . , pK/

where Zi is a q-dimensional outcome of interest, μij =xT
i βj, j =1, . . . , q, where |Σ1|< . . .< |ΣK|.

Thus we assume that each subject has a mean that depends on a set of p covariates xi, and a
covariance that is given by his or her latent variance class membership, which is denoted by the
unobserved latent variable Ci, where Ci =K indicates that the ith subject belongs to the ‘clerical
error’ class with the largest variability. Clearly the Ci are missing for all subjects; we also allow
for some components of Zi to be missing. This model assumes that transcription errors have a
single common covariance, which is larger than the correctly transcribed data, but allows for
variance heterogeneity within the outcome.

We next postulate the following independent, weakly informative priors for the model param-
eters:

p.β/∼N.0, Vβ/,

p.ΣK/∼ INV-WISHART.2, SK/,
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p.p1, . . . , pK/∼DIRICHLET.1, . . . , 1/,

p{log.σjjk/} ind∼ N.0, s2/, k =1, . . . , K −1,

p.ρlmk/
ind∼ U.−1, 1/, l=1, . . . , q−1, m=2, . . . , q:

This model-based approach assumes that the missingness mechanism and sample design are
fully ignorable in the sense of Rubin (1987). The missingness at random assumption holds
if, conditional on the observed elements of Zi, the missingness status of the elements of Zi

is unrelated to their value. This assumption is untestable but is a weaker assumption than a
standard complete-case analysis, which assumes a mechanism of data missing completely at
random (unconditional independence between the missingness status of elements of Zi and
their value). By including covariates that account for the sample design in the regression of the
mean, there is no need to incorporate the sample design further in the model if the latent class
Ci is independent of the probability of selection. This assumption can be tested by considering
the association between the posterior probabilities of class membership and the case weights.
Even if the probability of class membership is associated with the probability of selection, the
effect of this form of model misspecification may be less severe on the MI procedure if the com-
plete-data analysis uses a robust procedure (i.e. includes case weights) in the analysis. Indeed,
by using Taylor series linearization estimates of variance (Woodruff, 1971), we can account for
stratification, clustering and unequal probability of selection in the sample design in the com-
plete-data analysis. This is an example of ‘uncongeniality’ (Meng, 1994) in which the analyst
assumes more than the imputer; if the analyst’s assumptions are correct, the resulting inferences
will usually be consistent, though conservative.

Details of the Gibbs sampler data augmentation algorithm that was used to obtain impu-
tations of the missing elements of Zi and the completely unobserved Ci for use in the MI
are provided in Appendix A. In many settings it may be reasonable to constrain the correla-
tions

ρlmk =σlmk=σllkσmmk

across the non-clerical-error covariance classes k = 1, . . . , K − 1 to be equal; hence we include
this constraint as an option in the algorithm.

2.1. Multiple imputation
We simultaneously accommodate the missing height data and remove the clerical error outlier
class from our inference by use of MI (Rubin, 1987; Schafer, 1997), which allows us to take m

independent draws of Zcomp given by replacing the missing elements of Z with their imputed
values from the Gibbs sampling procedure, to analyse by using standard complete-data proce-
dures and to combine the results in a fashion that properly propagates the uncertainty in the
imputation procedure and, in this setting, in the clerical error class assignment. In the finite pop-
ulation inference setting, assume that, if we had complete data, we would estimate a (scalar) finite
population quantity T with a statistic Q.Zcomp/, and that the corresponding var{Q.Zcomp/}
would be estimated by using v̂ar{Q.Zcomp/} that appropriately accounts for the sample design.
We then obtain an MI point estimate of the underlying model parameter or finite population
quantity Q as

Q̂=m−1
m∑

t=1
Q.Zcomp.t//:
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Inference is based on

V 1=2.Q̂−Q/∼ tν

where

V =U + .1+m−1/B

for

U =m−1
m∑

t=1
v̂ar{Q.Zcomp.t//},

B= .m−1/−1
m∑

t=1
{Q̂−Q.Zcomp.t//}2,

ν = .m−1/

{
1+ U

.1+m−1/B

}2

:

Because we do not want inference about the underlying population to be based on the data
elements that are clerical errors, we delete subjects who are assigned to the Kth latent class
when computing Q.Zcomp.t//.

2.2. Model identifiability
The finite mixture normal model, of which the complete-data model (1) is a special case that
assumes equal means across mixture classes, is identifiable up to the permutation of the class
assignments (Teicher, 1963); model (1) requires at least

p+K −1+K
q.q+1/

2
complete observations to identify the equivalent number of parameters. For small numbers of
observations, the likelihood may be maximized at Σ̂k−1 = Σ̂k if Σk−1 ≈Σk, leading to aliasing
and requiring that a model of size K − 1 be fitted instead. Missing elements of Zi will weaken
identification by making the class assignment for this subject less certain.

3. Application to ‘Healthy for life’ survey

The ‘Healthy for life’ survey was a cross-sectional survey of a representative sample of all chil-
dren users of the 141 HRSA-supported community health centres in region 2 (New Jersey, New
York, Puerto Rico (PR) and the Virgin Islands) and region 3 (Delaware, the District of Colum-
bia, Maryland, Pennsylvania, Virginia and West Virginia), from January 1st to December 31st,
2001. A three-stage disproportionately stratified sampling scheme was designed to provide sta-
ble prevalence estimates by age group (2–5 years and 6–11 years) and, within each age group,
by gender, race or ethnicity (non-Hispanic white, non-Hispanic black, non-Hispanic Asian and
Hispanic), and region (US mainland urban, suburban and rural, PR urban and non-urban, and
New York City Chinatown). A total of 30 centres were sampled, with date of birth, gender,
race or ethnicity, height, weight and other medical information abstracted from the child’s most
recent 2001 visit for approximately 100 children aged 2–11 years from each centre. Details of
the sampling scheme are available in Stettler et al. (2005).

Data for a total of 3579 children were obtained from the participating centres. Population
totals at the time of sampling were available only for the age groups of 1–4 and 5–12 years; thus
known sampling fractions could be obtained only for children in these age categories, and thus
samples of children who were 1–4 and 5–12 years old were initially drawn. Because the desired
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age stratifications were ages 2–5 and 6–11 years, however, 720 1-year-old and 12-year-old chil-
dren were dropped before analysis. An additional 351 cases were dropped because they lacked
information on age, making it impossible to determine whether they were eligible for the analy-
sis, whereas 23 were deleted because they lacked gender or both height and weight information,
making it difficult to impute data meaningfully. Finally, three cases were removed because they
lack information on weight, making the resulting missing data pattern monotonic and simplify-
ing computations somewhat, whereas eight cases were removed because of known transcription
errors. This yielded a total of 2474 cases that were available for analysis. Of these 606 were
missing height data. Under Teicher (1963), sufficient data should be available to identify four
classes of variability easily, the most that we consider below.

Because the populations of children within the age categories 1–4 and 5–12 years were known,
the selection probability for each sampled child could be determined as πsa = 1=Hs ×nsa=Nsa,
where Hs is the number of centres in region-by-size substratum s, nsa is the number of children
who were drawn in the ath age group from the centre sampled and Nsa is the number of children
in the ath age group at the centre. Post-strata consisting of 12 r region by a age cells were then
formed, and post-stratification adjustments

fra =
∑
s∈r

Nsa∑
s∈r

1=πsa

were computed so that the sum of the weighted sample matched known age–region totals. The
final design weights that were used in the analysis were then given by wi =fra=πsa for i∈a and
s ⊂ r. The mean design weight was 171.2, with a range from 28.8 to 659.1. The case weights
are not used in the data augmentation algorithm that produces the MIs but are used in the
complete-data analysis of the multiply imputed data to enhance robustness.

In keeping with the clinical literature for the analysis of the BMI (Cole et al., 2000; Leonard
et al., 2004; Weiss et al., 2004), we perform a ‘preprocessing’ step to transform the raw height and
weight data to approximate normality via a Box–Cox-type transformation (Box and Cox, 1964).
Denote weight (in kilograms) and height data (in metres) for the ith subject by Yi1 and Yi2. Then

Zij = .Yij=Mij/Lij −1
LijSij

, i=1, . . . , n, j =1, 2,

where Lij = Lj.Ai, Gi/, Mij = Mj.Ai, Gi/ and Sij = Sj.Ai, Gi/ are population parameters that
are functions of the age Ai and gender Gi of the ith subject and are obtained from National
Center for Health Statistics growth charts and treated as known (Cole, 1990, 1994). This yields
height and weight z-scores that are used in the remainder of the analysis. Covariates xi consist
of an age-by-centre group dummy variable, to accommodate within-centre correlation along
with any systematic association between BMI and the probability of selection.

A preliminary analysis suggested that correlations ρk =σ12k=σ11kσ22k across the non-clerical-
error covariance classes k =1, . . . , K −1 were similar. Because this is consistent with correlation
between height and weight z-scores being equal in the population regardless of the variance
class to which a subject belonged, which is a reasonable assumption, we assume this constraint
in our analysis.

For our prior distributions, we assumed

Vβ =
(

1000 0
0 1000

)
,

p{log.σjjk/} ind∼ N.0, 4/, k =1, . . . , K −1,
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and

SK =
(

5 0
0 5

)
:

We ran two Gibbs samplers and assessed convergence by using the Gelman–Rubin statistic
R̂, an adjusted ratio of between- and within-sequence variability to within-sequence variabil-
ity (Gelman et al. (2004), pages 296–297). A 2000-draw burn-in was used for each chain. The
two- and three-class models required 5000 draws for convergence; the four-class model required
20000 draws.

3.1. Results of model fit
Table 1 provides the 2.5-, 50- and 97.5-percentiles of the posterior distributions of the vari-
ance class fractions and variance parameters for two-, three- and four-class models under the
assumption that ρ1 = . . . =ρk−1. The two-class model suggests that 5–8% of the entries are tran-
scription errors. Both the three- and the four-class models suggest an extremely overdispersed
group of 1–3% of entries that are probably transcription errors, along with a more moderately
‘overdispersed’ class of extremely large or extremely small children for their gender and height
consisting of 5–10% of the population. The four-class model splits the overdispersed class in
the three-class model into a moderately and highly overdispersed class.

3.2. Model checking and model choice
Table 1 shows AIC- (Akaike, 1978) and BIC- (Schwarz, 1978) measures under each of the three
models, obtained by using the posterior mode of .β, φ, ρ/ where β = .βT

1 , . . . , βT
q /T, φ =

.σ2
111, . . . , σ2

qqK, ρ12, ρq−1,q/ and ρ= .ρ1, . . . , ρK/. Both criteria suggest that the three-class model
provides the best fit to the data. We focus on constrained three-class models for the remainder
of the analysis.

To test the distributional assumptions of the model, we use posterior predictive distributions
(Gelman et al., 1996). We consider the posterior predictive distribution of the χ2-type statistic

Table 1. Results from the data model for the ‘Healthy for life’ study for two-, three- and four-
variance class models†

k pk σ2
11k σ2

22k ρk AIC BIC

2 class
1 0:9360:917,0:953 1:431:33,1:56 1:191:10,1:29 0:700:67,0:73 13657.25 14401.39
2 0:0640:047,0:083 12:719:75,17:30 18:7713:71,27:18 0:730:62,0:81

3 class
1 0:9120:873,0:936 1:431:35,1:55 1:141:04,1:24 0:700:67,0:72 13616.95 14378.53
2 0:0720:049,0:106 3:882:40,6:07 12:347:01,18:83 0:700:67,0:72
3 0:0150:007,0:029 37:4821:14,83:88 29:2315:23,64:03 0:920:63,0:98

4 class
1 0:8790:717,0:918 1:411:26,1:54 1:090:98,1:22 0:700:67,0:72 13662.57 14441.59
2 0:0670:011,0:216 2:231:00,3:76 4:751:22,8:82 0:700:67,0:72
3 0:0430:014,0:084 5:113:13,5:11 17:049:35,29:06 0:700:67,0:72
4 0:0130:006,0:026 43:3923:31,98:60 28:4915:26,65:17 0:950:73,0:99

†The values are the posterior median and 95% posterior predictive interval in the subscripts for the
proportion of population pk in variance class k, variance of weight σ2

11k , variance of height σ2
22k

and correlation between height and weight ρk ; variance class K is assumed to consist of clerical
error outliers. The correlation is assumed to be equal for classes k =1, . . . ,K −1 (‘true data’).
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S =n−1
n∑

i=1

K∑
k=1

I.Ci =k/Z̃2
ki

where

Z̃2
ki =

{
.Zi −μi/

TΣ−1
k .Zi −μi/ if Zi2 is observed,

.Zi1 −μi1/2=Σ11k if Zi2 is missing.

If the number of classes is sufficient, the assumption of normality within class will hold, at least
approximately, and Sobs and Srep will correspond. For the three-class model, P.Sobs <Srep|y/=
0:46, suggesting that the distributional assumptions of the model are reasonable.

To assess the assumption that the latent class membership probabilities are independent of the
selection probabilities, we determined the Spearman correlations between the posterior medians
of latent variance class probability membership for the three-class constrained model π̂ki and
the inverse of the case weight 1=wi: Spearman’s ρ is −0.022 for k =1 (p=0:27), 0.008 for k =2
(p=0:69) and 0.012 for k =3 (p=0:54). This suggests that including the centres as fixed effects
has been sufficient to remove design effects from the model.

3.3. Multiple imputation
To assure independence between draws of Zcomp, we retained the imputation from every 250
draws from the Gibbs sampler for a total of 20 imputations. Fig. 1 plots the observed and
imputed height and weight z-scores for the first four imputations; draws assigned to the ‘outlier’
class are denoted in red. Fig. 1 highlights the overrepresentation of imputed values in the outlier
class, which is consistent with clerical errors being associated with missing data. The uncertainty
that is associated in assigning outliers at the edge of the non-outlier distribution is accounted
for, as well as the fact that the error mechanism that generates outliers will also create erroneous
values that are assigned to the central part of the distribution by chance.

3.4. Estimation of obesity rate and body mass index extremes
For each imputed data set, the observed weight and observed or imputed height z-score were
backtransformed to weight and height measures, and the BMI was computed as weight/height2;
the BMI was then itself z-score transformed as in Cole (1990). A subject was classified as obese if
their BMI z-score for their age exceeded the 95-percentile of a reference population (Kuczmar-
ski et al., 2000). The standard complete-case data analysis to estimate the obesity prevalence
utilized design-based procedures that account for stratification by region, clustering by centre
and unequal probability of selection by age–centre cell in the sample design; in particular, fully
weighted means and Taylor series linearization estimates of variance (Woodruff, 1971) were
calculated by using procedure SURVEYMEAN in SAS version 8.2 (SAS Institute, 2001).

Table 2 gives the percentage of the population of patients that is obese, by age and region:
under a complete-case analysis, the standard MI for height without outlier mixture model and
MI under the outlier mixture model.

The standard MI analysis suggests that children missing height data appeared somewhat more
likely to be heavier for their age and gender in the US regions, and somewhat underweight for
their age and gender in the urban PR centres. Accounting for the effect of the missingness also
reduced the confidence intervals by about 5–10% relatively to the complete-case data, which
is consistent with the 25% missingness of the height data and the fact that the length of the
confidence interval is O.n−1=2/.

The MI mixture analysis suggested that the outliers may have caused the obesity rate to be
biased upwards under a standard MI analysis: if height data are missing and an older child is
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Fig. 1. Weight versus observed (�) and imputed (�) height z-scores for (a) imputation 1, (b) imputation 2,
(c) imputation 3 and (d) imputation 4: black values are assigned to non-clerical-error variance class clusters
and red values are assigned to clerical error variance class clusters

Table 2. Percentage obese by age and by region†

Region % obese for age 2–5 years % obese for age 6–11 years
and the following models: and the following models:

CC MI(1) MI(2) CC MI(1) MI(2)

All 23:019:2,26:7 23:519:9,27:1 22:719:1,26:2 22:820:0,25:6 22:720:3,25:2 22:720:2,25:2
Urban 22:017:0,27:1 21:817:0,26:6 21:616:7,26:5 23:018:7,27:4 23:019:0,27:1 23:419:2,27:6
Suburban 21:014:0,28:0 23:516:8,30:3 22:315:4,29:2 24:017:7,30:3 24:218:7,29:7 23:618:1,29:1
Rural 19:413:0,25:8 22:615:9,29:2 20:815:2,26:5 28:622:0,35:1 25:220:4,30:1 25:219:9,30:5
New York City 16:23:7,28:7 15:83:6,27:9 15:63:8,27:3 18:26:3,30:0 17:87:1,28:5 18:16:8,29:4

Chinatown
PR urban 21:17:5,34:6 19:77:2,32:1 18:96:4,31:4 21:39:1,33:4 20:88:9,32:8 20:58:9,32:1
PR other 27:417:3,37:5 27:017:2,36:8 25:816:2,35:5 18:913:0,24:8 18:612:7,24:4 18:312:6,24:1

†CC, complete-case analysis; MI(1), standard MI for the height without outlier mixture model; MI(2), MI
under the outlier mixture model. 95% confidence intervals are given in the subscripts.
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Table 3. Empirical estimates of 2.5- and 97.5-percentiles of BMI, by age and by region†

Region Percentiles for age 2–5 years Percentiles for age 6–11 years
and the following models: and the following models:

CC MI(1) MI(2) CC MI(1) MI(2)

All (13.9,22.8) (13.8,22.8) (13.8,22.7) (13.3,30.5) (13.1,30.2) (13.4,30.2)
Urban (13.5,22.7) (13.6,22.7) (13.7,22.5) (13.7,29.3) (13.5,29.3) (13.7,29.3)
Suburban (13.9,22.3) (13.9,22.8) (13.9,22.5) (13.6,32.6) (13.7,31.0) (13.6,31.7)
Rural (13.6,22.3) (13.4,23.4) (13.5,22.6) (12.3,31.0) (12.2,31.4) (13.0,30.8)
New York City (14.1,23.3) (13.8,23.3) (13.8,23.2) (13.4,26.0) (13.3,26.0) (13.6,26.0)

Chinatown
PR urban (13.5,27.1) (13.6,24.2) (13.7,23.7) (12.8,27.5) (12.8,27.5) (12.8,27.2)
PR other (14.0,22.8) (13.9,22.8) (13.9,22.9) (11.8,28.1) (11.8,28.3) (12.3,28.2)

†CC, complete-case analysis; MI(1), standard MI for the height without outlier mixture model;
MI(2), MI under the outlier mixture model.

incorrectly noted as younger, the resulting weight z-score would be extremely large, probably
yielding a large BMI after height imputation, and potentially classifying a non-obese child as
obese; the reverse is true if a younger child is incorrectly noted as older. Since children are more
likely than not to be non-obese, the net effect of age transcription errors should be to inflate
rates of obesity among younger children, and to deflate to a much lesser degree obesity rates
among older children.

Table 3 presents the estimated population 2.5- and 97.5-percentiles for the BMI under a com-
plete-case analysis, the standard MI for height without outlier mixture model and MI under
the outlier mixture model.

The standard MI analysis suggests that the complete-case analysis underestimated both 2.5
and 97.5 BMI percentiles for 2–5-year-old children in US suburban and rural areas, and over-
estimated 97.5-percentiles for PR urban 2–5-year-old children and 6–11-year-old suburban US
children.

The MI mixture analysis suggested that younger children appear to have large BMI outliers
and older children small BMI outliers, and outliers of both types appear to be somewhat dis-
proportionately located in the US rural and PR urban centres. The tendency for the younger
children to have large BMI outliers and older children to have small BMI outliers is also con-
sistent with clerical errors being due to age, rather than incorrect transcriptions of height or
weight directly.

4. Simulation study

For a simulation study, we generated data under model (1) where μi ≡0,

Σk =σk

(
1 0:5

0:5 1

)
for k<K and

ΣK =σK

(
1 0
0 1

)
and n = 500. We assumed a simple random sampling. In addition, we deleted elements of Zi2
under a missingness at random mechanism, where
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P.Mi =1|Zi1 = zi1, Ci =k/=
{

exp.zi1=
√

σk/

1+ exp.zi1=
√

σk/
if k<K,

0 if k =K

for the missingness indicator Mi, so that large values of Zi1 tended to be associated with missing
Zi2 unless the observation was a member of the outlier class.

We considered four latent variance class models in each of 200 simulations:

(a) K =2, σ1 =1, σ2 =100, ρ=0:5 and p= .0:98 0:02/T (model A);
(b) K =2, σ1 =1, σ2 =100, ρ=0:5 and p= .0:90 0:10/T (model B);
(c) K=4, σ1 =0:25, σ2 =1, σ3 =9, σ4 =100, ρ=0:5 and p= .0:245 0:245 0:245 0:02/T (model

C);
(d) K=4, σ1 =0:25, σ2 =1, σ3 =9, σ4 =100, ρ=0:5 and p= .0:225 0:225 0:225 0:10/T (model

D).

For each simulation we determined the following:

(a) the choice of K under the AIC- and BIC-criteria;
(b) the mean and 95% confidence interval for p = P.Zi2 < Z2.0:9/

/ where Z2.0:9/
is the 90-

percentile for Z2 (0.82 for models A and B, and 1.86 for models C and D) and ρk =ρ for
k<K

(i) under a complete-case analysis,
(ii) under a standard MI procedure that did not account for outliers and
(iii) under the mixture MI procedure using the value of K that was selected under the AIC-

criteria and treating the K mixture class as containing transcription-type outliers to be
deleted.

Table 4 shows the results of the simulation study. The AIC- and BIC-criteria performed well
for the two-class model but tended to mix the two smallest non-outliers classes for the four-class
model; this tendency was more pronounced in BIC than in AIC, and when the proportion of out-
liers was smaller. When the fraction of outliers was small, both imputation methods correctly
estimated the proportion of the Zi2 observations above the 90-percentile; when it was large,
standard imputation overestimated the fraction belonging to the 90-percentile and above by
approximately 30%. The non-outlier correlation was more sensitive to the missingness mecha-
nism and presence of outliers than was the estimate of the proportion above the 90-percentile. As
the proportion of outliers increased they overwhelmed the estimation of the common non-out-
lier correlation; standard imputation corrected this only to a very modest degree. The estimate
of the common correlation was essentially unbiased under all four scenarios under the mixture
imputation, and the coverage was approximately correct despite the tendency to underestimate
the size of the model. This was also true for the proportion above the 90-percentile, with the
partial exception of the four-class simulation with 2% clerical outlier contamination: the 8% of
simulations in which the BIC-criterion incorrectly suggested the two-class model lead to biased
estimation of the proportion of subjects above the true 10-percentile.

A procedure which iteratively removed outliers based on the z-statistic, retaining observations
if z-statistics for both variables lie between z0:025=n =−3:89 and z1−0:025=n =3:89 and repeating
until all observations are retained, reduced the mean-squared error relative to a standard imputa-
tion procedure but did not substantially improve the bias or coverage (the results are not shown).

5. Discussion

We have described a method using a latent class model for variability that simultaneously
accounts for missing data and clerical error outliers that should be removed. We applied our
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Table 4. Simulation study†

Results for the following simulations:

A B C D

AIC
K =2 98 94 1 0
K =3 2 5 57 57
K =4 0 1 42 43

BIC
K =2 100 100 8 0
K =3 0 0 87 97
K =4 0 0 3 3

CC
Mean p̂ 0.073 0.104 0.079 0.109
Mean-square error p̂ 9.76×10−4 3.84×10−4 7.40×10−4 4.12×10−4

Nominal 95% coverage p̂ 62 93 72 95
Mean ρ̂ 0.21 0.06 0.31 0.11
Mean-square error ρ̂ 0.163 0.235 0.066 0.171
Nominal 95% coverage ρ̂ 20 4 25 3

IMP(1)
Mean p̂ 0.106 0.131 0.106 0.131
Mean-square error p̂ 3.15×10−4 12.11×10−4 2.17×10−4 10.13×10−4

Coverage p̂ 98 74 98 70
Mean ρ̂ 0.23 0.06 0.33 0.13
Mean-square error ρ̂ 0.149 0.228 0.057 0.162
Nominal 95% coverage ρ̂ 22 5 32 4

IMP(2)
Mean p̂ 0.099 0.099 0.094 0.100
Mean-square error p̂ 2.84×10−4 3.02×10−4 4.97×10−4 2.22×10−4

Nominal 95% coverage p̂ 98 98 94 98
Mean ρ̂ 0.49 0.49 0.50 0.49
Mean-square error ρ̂ 0.003 0.003 0.005 0.006
Nominal 95% coverage ρ̂ 94 95 94 94

†Simulation A, K = 2, σ1 = 1, σ2 = 100 and p = .0:98 0:02/T; simulation B, K = 2, σ1 = 1,
σ2 = 100 and p = .0:90 0:10/T; simulation C, K = 4, σ1 = 0:25, σ2 = 1, σ3 = 9, σ4 = 100 and
p = .0:245 0:245 0:245 0:02/T; simulation D, K = 4, σ1 = 0:25, σ2 = 1, σ3 = 9, σ4 = 100 and
p = .0:225 0:225 0:225 0:10/T. For all simulations, p = 0:1 and ρ= 0:5. CC, complete-case analy-
sis; IMP(1), standard MI procedure; IMP(2), mixture MI procedure using the value of K selected
under the AIC-criteria. The results are based on 200 independent simulations.

method to generate an unbiased estimate of the prevalence of obesity among children aged
2–11 years who receive care at HSRA-supported community health centres in HSRA regions
II and III at least once during calendar year 2001. By developing our method in the context
of an MI framework, we allowed estimation to proceed using standard design-based methods
for complete-case analyses. We showed that failing to account for the outliers that are caused
by clerical errors leads to a modest overestimation of rates of obesity and widths of confidence
intervals, particularly among subpopulations for which clerical errors were more likely. The
results of our analysis suggested that including transcription errors may have led to modest
overestimates of the prevalence of obesity among younger children in selected subregions, but
for most subdomains their effect appears to be minimal.
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Our method also suggested evidence for at least two classes of variability in the HSRA-served
population aged 2–11 years: a normative variance class containing 90–95% of the population
and a class overdispersed by a factor of 2–4 containing 5–10% of the population. These overdis-
persion classes are now accounted for in the modelling procedure and are of clinical interest as
well as they are indicative of obesity or malnutrition ‘clustering’. A richer data set could deter-
mine whether overdispersion might be related to individual or health centre covariates such as
income, health status or other socio-economic factors.

The method that was considered here has obviously been tailored to the application, in that
we assume that a distinct class of clerical error outliers exists, which we would remove if we
could be certain which they were. The method could be used simply to identify cases for further
consideration, which, because of issues about returning to the health centres for further data
collection, was not considered to be practical here. The model does rely on the transcription
or clerical error class being overdispersed relative to the correctly transcribed data, but, if the
clerical errors are such that the resulting data are representative of the true population, they
presumably have little effect on inference.

Extensions of this approach are possible. The presumed cause for the missingness—failure to
collect height data because of recent visits or slower growth among older children—is probably
unrelated to the height of the child after conditioning on the weight, centre, gender and age,
the last two of which are incorporated in the z-score transformation. Hence the missingness
mechanism is arguably ignorable. We could weaken this restriction by postulating a missingness
mechanism for height that involved non-identifiable parameters that are a function of height and
by conducting a sensitivity analysis that is a function of these parameters. A more fully design
consistent model would cross-classify the dispersion classes by the probability of selection, as
Elliott and Sammel suggest in their discussion of Patterson et al. (2002). Third, rather than the
somewhat ad hoc method of fixing the number of classes K via a penalized likelihood method
and treating it as known, a fully Bayesian method that accommodates uncertainty in the number
of classes could be implemented by adding a prior distribution for the total number of classes
and adding a model choice step to the Gibbs routine via a product space search (Carlin and
Chib, 1995) or reversible jump (Green, 1995) step. Finally, an interesting approach might be
to model the clerical error mechanism itself, for example, as transpositions of digits, dropping
or adding of digits, misreadings (e.g. ‘7’ as ‘2’) or misinterpretations of units (e.g. pounds as
kilograms), rather than as a ‘black box’ as in the current multiple-edit–MI approaches.
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Appendix A: Data augmentation algorithm

A Gibbs sampling routine that accommodates missing data proceeds by imputing the missing data condi-
tional on the latest draw of the parameters, then drawing the parameters from their posterior distributions
conditional on both the observed and the latest draw of imputed data (Li, 1988). Here we consider the
missing data not only to include the missing data that in principle could have been observed but also the
latent class assignment. Denoting Σi I.Ci =k/ by Ck, the conditional draws are as follows.
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(a) Order the elements of Zi into the observed components Zobs
i and Zmis

i , with corresponding reor-
dered model parameters conditional on membership in the k variance class μobs

i , μmis
i , Σobs

k , Σmis
k and

Σmis,obs
k , the covariance between the unobserved and observed components. Draw Zimp

i from a nor-
mal distribution with mean μmis

i +Σmis,obs
k .Σobs

k /−1.Zobs
i −μobs

i / and variance Σmis
k −Σmis,obs

k .Σobs
k /−1

×Σobs,mis
k . Zcomp

i is then given by replacing Zmis
i with Zimp

i and returning to the original order of
Zi1, . . . , Ziq.

(b) Draw latent class indicator Ci from a multinomial distribution of size 1 and K cells, with probability

πki =
pk|Σk|−1=2 exp{− 1

2 .Zcomp
i −μi/

TΣ−1
k .Zcomp

i −μi/}∑
k

pk|Σk|−1=2 exp{− 1
2 .Zcomp

i −μi/
TΣ−1

k .Zcomp
i −μi/}

:

(c) Draw qth mean βq from a bivarate normal distribution with mean .Σi:i∈q Di/
−1Σi:i∈q Didi and covari-

ance .Σi:i∈q Di/
−1, where

Di =
∑

k

I.Ci =k/Σ−1
k +V −1

β

and

di =
{∑

k

I.Ci =k/Σ−1
k +V −1

β

}
Zcomp

i :

(d) Draw latent class marginal probability pk from a Dirichlet distribution with parameters C1 +
1, . . . , CK +1.

(e) Draw the inverse of the outlier covariance matrix Σ−1
K from an inverse Wishart distribution, with

df=CK +2 and scale {Σi I.Ci =K/.Zcomp
i −μi/.Z

comp
i −μi/

T +SK}−1.
(f) Draw the remainder of the covariance parameters φ= .σ2

111, . . . , σ2
qq.K−1/, ρ12, . . . , ρq−1, q/

T by using
a Metropolis algorithm. Draw a proposal φÅ from a .q.K − 1/ + q.q − 1/=2/-variate normal dis-
tribution centred at the current draw φ and covariance −cH−1; accept φÅ with probability r,
where

r =min

⎡
⎢⎢⎢⎣

exp
{

−∑
k

∑
j

− 1
8 log.σÅ

jjk/
2 +

n∑
i=1

K−1∑
k=1

I.Ci =k/ li.β, φÅ
k /

}

exp
{

−∑
k

∑
j

− 1
8 log.σjjk/2 +

n∑
i=1

K−1∑
k=1

I.Ci =k/ li.β, φk/
} , 1

⎤
⎥⎥⎥⎦

for

li.β, φk/=− log.2π/− 1
2 log |Σk|− 1

2 .Zcomp
i −xT

i β/TΣ−1
k .Zcomp

i −xT
i β/;

otherwise retain the current φ. H is given by @2l.β, φ/=φφT for

l.β, φ/=∑
i

∑
k

I.Ci =k/ li.β, φk/,

where β and φ are evaluated at their maximum likelihood estimate, and c is a tuning parameter to
adjust the acceptance rate.

To obtain the maximum likelihood estimates under the model for an efficient draw of φ, or as an alter-
native to the Markov chain Monte Carlo procedure, an EM algorithm (Dempster et al., 1977) for fitting
model (1) when missing data are present is available in Elliott (2006). Alternatively, to obtain a less efficient
H by using the Markov chain Monte Carlo algorithm only, the posterior distribution of an unconstrained
model can be obtained by drawing all values of Σk as in step (e). Estimate H by replacing β and φ with
their posterior means, where the common value of ρ is simply estimated as the mean of the posterior
means of ρk weighted by the posterior mean of πk; or, the unconstrained results can be used directly, if
preferred.

Because the likelihood is unchanged under the permutation of the class labels k, the labelling of the
kth class can change over the length of a single Gibbs chain (Stephens, 2000). To ensure that the kth
class is labelled consistently throughout, the Markov chain Monte Carlo draws were discarded unless
|Σ1|< . . .< |ΣK|; this was a relatively rare event, required for fewer than 1% of the simulations.
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