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Molecular defects in Factor VIII (FVIII), such as haemophilia A-related mutations or
denaturative conformational changes, may affect the stability of FVIII as well as its
interactions with physiological activators, von Willebrand Factor, phospholipid, or
conformationally sensitive antibodies. We summarize the contemporary assays which
allow identification of impaired functional interactions of FVIII that cause a reduc-
tion or loss of its cofactor activity and/or increased immunogenicity. These assays can
potentially be used for detection of molecular defects in FVIII and elucidation of the
function impaired by these defects.
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Structure of Factor VIII and its function in 
haemostasis

 

Factor VIII (FVIII) is an essential component of the intrinsic
pathway of the blood coagulation cascade where it serves as
a cofactor for a serine protease, activated Factor IX (FIXa).
Proteolytically activated FVIII (FVIIIa) increases the rate of
FIXa-catalysed conversion of Factor X (FX) into its active
form (FXa) by several orders of magnitude [1,2]. In turn,
FXa participates in the conversion of zymogen prothrombin
to thrombin, the key enzyme of the coagulation cascade.
Assembly of the FVIIIa/FIXa complex (Xase complex) occurs
on phospholipid (PL) membranes predominantly provided by
activated platelets at the sites of coagulation [3]. The role of
the PL surface is to concentrate components of the Xase com-
plex, direct their interactions from three- to two-dimensional

space, and provide the optimal mutual orientation of
complex components [4,5].

Initiation of blood coagulation is ascribed to the extrinsic,
tissue factor-dependent pathway, in which small amounts of
activated FIX and FX are generated, whereas the intrinsic
pathway dramatically amplifies the coagulation events trig-
gered by the tissue factor-dependent pathway by catalysing
FX activation approximately 50-fold more efficiently [6].
This powerful amplification of the coagulation burst via the
FVIII-dependent intrinsic pathway is an ultimate require-
ment for the normal coagulation process. Deficiency or
functional defects in the FVIII molecule result in the most
common inherited sex-linked bleeding disorder, haemophilia
A, which affects 1 in 5000 males [7]. Based on the residual
activity of FVIII in plasma, haemophilia A is categorized as
severe (< 1% of normal activity), moderate (1–5%) or mild
(5–30%).

The FVIII molecule (

 

∼

 

300 000 molecular weight, 2332
amino acid residues) consists of three homologous A domains,
two homologous C domains and a unique B domain, which
are arranged in the following order: A1–A2–B–A3–C1–C2
(Fig. 1). Prior to its secretion into plasma, FVIII is processed
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intracellularly into a series of metal ion-linked heterodimers
produced by cleavage at the B–A3 junction and by a number
of additional cleavages within the B domain. These cleavages
generate the heavy chain (HCh), consisting of the A1 (amino
acids 1–372), A2 (amino acids 373–740) and B domains
(amino acids 741–1648), and the light chain (LCh), composed
of the A3 (amino acids 1690–2019), C1 (amino acids 2020–
2172) and C2 (amino acids 2173–2332) domains. The C-
terminal portions of the A1 (amino acids 337–372) and A2
(amino acids 711–740) domains and the N-terminal portion
of the LCh (amino acids 1649–1689) contain a high number
of negatively charged residues and are called acidic regions
(AR1, AR2 and AR3, respectively).

 

Major interactions of Factor VIII in the 
intrinsic pathway of blood coagulation

 

Complex formation with von Willebrand Factor (vWf ) is
required for maintenance of the normal FVIII level in plasma.
FVIII binds to vWf with high affinity, 

 

K

 

d

 

 

 

∼

 

0·4 n

 

M

 

 [8]. The
binding to vWf prevents premature formation of the Xase
complex prior to activation of FVIII and protects FVIII from
inactivation by activated protein C, FIXa and FXa [4]. Three

regions within the LCh of FVIII are directly involved in bind-
ing to vWf (Fig. 1): AR3 (amino acids 1649–1689); and two
C2-domain regions (amino acids 2181–2243, 2303–2332)
[8,9]. AR3 not only directly participates in vWf binding, but
is also required for maintaining an optimal conformation of
the C2 domain for binding to vWf.

At the site of the coagulation event, FVIII is activated
by two major physiological activators – thrombin and FXa.
Both proteases cleave FVIII after Arg372 and Arg740 within
the HCh, and after Arg1689 within the LCh, producing A1,
A2, and A3–C1–C2 fragments, generating heterotrimeric
activated FVIII (FVIIIa) (Fig. 1). The cleavage after Arg1689
results in removal of AR3 and release of FVIIIa from vWf [8].
In addition, this cleavage is required for generation of the
maximal cofactor activity of FVIIIa [9]. An important
thrombin-binding site responsible for thrombin-catalysed
cleavage after Arg1689 in the LCh is assigned to the C2
domain of FVIII, although this site has not yet been precisely
mapped [10]. The FXa-binding site was localized to the C2-
domain amino acids 2253–2270, based on the inhibition of the
FXa/FVIII interaction by overlapping synthetic peptides [11].

In the assembled intrinsic Xase complex, the cofactor
activity of FVIIIa is provided by its three essential interactions:

Fig. 1 Factor VIII (FVIII) structure and sites involved in its major interactions. 

Non-activated FVIII is shown as a multidomain structure, in which A1 and A3 

subunits are non-covalently linked via a divalent metal ion bridge (dotted 

line) and three A domains are flanked by acidic regions (AR1, AR2 and AR3). 

The regions of FVIII involved in the binding of von Willebrand factor (vWf), 

activated Factor IX (FIXa), Factor X (FX), activated FX (FXa) and phospholipid 

(PL) are shown as hatched boxes. Activation of FVIII by cleavage after 

Arg372, Arg740 and Arg1689 (shown by arrows), by thrombin or FXa, leads 

to release of the B domain and AR3. Activated FVIII is a heterotrimer 

consisting of A1, A2 and A3–C1–C2 domains, in which A1 and A3 domains 

retain the metal ion linkage, and the stable A1/A3–C1–C2 dimer is weakly 

associated with the A2 subunit through electrostatic interactions.
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with PL membranes; with the enzyme FIXa; and with the
substrate FX. Regarding the interaction of FVIII with PL, the
C2 domain of the LCh of FVIII is entirely responsible for its
high-affinity binding [12,13]. Two PL-binding sites were
mapped to the C2 amino acids 2181–2243 and 2303–2332,
which overlap with vWf-binding sites [13–15]. Resolution of
the crystal structure of the human FVIII C2 domain revealed
the presence of three hydrophobic ‘feet’ formed by the side-
chains of Met2199/Phe2200, Val2223 and Leu2251/Leu2252,
which are proposed to penetrate the membrane bilayer
[16,17]. Additionally, four basic amino acids (Arg2215,
Arg2220, Lys2227 and Lys2249), which lie underneath the
‘feet’, may stabilize FVIII/PL binding by electrostatic inter-
action with negatively charged PL. The predictions based on
the X-ray structure of the C2 domain were confirmed by the
demonstration that Ala mutations of the amino acids
comprising the hydrophobic ‘feet’ – Met2199/Phe2200 and
Leu2251/Leu2252 – dramatically reduced the affinity of FVIII
for PL [18]. It is noteworthy that, in parallel with their effect
on the FVIII/PL interaction, these mutations led to a reduc-
tion of FVIII affinity for vWf, indicating that two hydro-
phobic ‘feet’ are also important contributors in the FVIII
interaction with vWf.

The high-affinity interaction between FVIIIa and FIXa (
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) is mainly provided by amino acids 1811–1818 within
the A3 domain of the LCh of FVIII [19]. The A2 domain of the
HCh also interacts directly with FIXa via two regions: 558–
565 [20] and 484–508 [21]. Interestingly, these A2 sites
become exposed only upon cleavage at Arg372 within the
HCh by either thrombin or FXa [22]. Although the affinity of
the isolated A2 subunit for FIXa is rather low (
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),
this interaction defines the cofactor activity of FVIIIa, as
the A2 domain amplifies the enzymatic activity of FIXa by
modulating its active site [23]. Involvement of the A2 and the
LCh sites in FVIIIa interaction with FIXa stabilizes FVIIIa
within the Xase complex, where FIXa serves as a bridge linking
the A2 subunit and the A1/A3–C1–C2 heterodimer [5]. This
stabilization is critical, considering the short half-life of isolated
or membrane-bound FVIIIa (2·1 min) owing to spontaneous
dissociation of the A2 subunit [24,25]. Interaction of FVIIIa
with the substrate, FX, in the assembled Xase complex occurs
via amino acids 336–372 of AR1 (Fig. 1) [26,27].

Therefore, the normal functioning of FVIII requires it to
interact with physiologically important ligands, including
vWf, PL, FIXa, FX, thrombin and FXa. Molecular defects in
FVIII, such as haemophilia A-related mutations or denatur-
ative conformational changes potentially occurring in the
process of FVIII manufacture, may affect one or more of these
key FVIII interactions. Below, we summarize the contem-
porary assays allowing identification of impaired functional
interactions of FVIII that cause a reduction or loss of its
cofactor activity and/or lead to an increased immunogenic-
ity. These assays can potentially be used for detection of

molecular defects in FVIII and elucidation of the impaired
function.

 

Detection of conformational changes in 
the C2 domain

 

Physiological changes within the C2 domain upon FVIII
activation have been previously reported [8,12,28]. These
changes occur upon removal of AR3 and lead to a 10-fold
increase in the affinity of FVIIIa binding to PL membranes
[12]. This was measured in a surface plasmon resonance
(SPR)-based assay using either a phosphatidylserine (PS)/
phosphatidylcholine (PC) (25/75) monolayer formed on a
hydrophobic alkanethiol-coated HPA biosensor chip
(Biacore, Uppsala, Sweden) or immobilized intact vesicles PS/
PC/phosphatidylethanolamine (PE) (4/76/20) with a compo-
sition close to that of membranes of activated platelets [12].
While immobilized intact vesicles represent a good model of
physiological membranes in their FVIII-binding properties,
they do not withstand repetitive binding-regeneration steps
in a SPR-based assay [29]. An improved SPR-based assay
was developed recently. This assay employs a flexible PL
bilayer formed on the surface of a biosensor chip (L1) coated
with lipophilically modified dextran [30]. The FVIII-binding
properties of the bilayer formed on the L1 chip proved to be
identical to those of intact vesicles, and this PL surface is
stable during repeated binding/regeneration cycles, which
makes this assay superior in comparison to that employing
an HPA chip.

SPR-based FVIII-PL binding assays employing PS/PC
monolayers formed on HPA chips have been extensively used
for characterization of the conformational status of the C2
domain of FVIII in the course of the industrial manufacture
of therapeutic FVIII concentrates [31–33]. The necessity of
controlling the conformational status of the C2 domain
emerged from the reported abnormally high formation of
inhibitory anti-FVIII antibodies with C2-domain specificity,
which developed in patients with haemophilia A who were
treated with FVIII concentrates prepared from plasma pools
with elevated levels of coagulation markers [34,35]. It was
demonstrated that samples of FVIII concentrates associated
with an increased immunogenicity had altered ability to bind
to an HPA-supported PS/PC monolayer [31,33]. The above
studies suggest that SPR-based FVIII/PL-binding assays can
be used as a criterion for evaluation of the conformational
status of the C2 domain.

As the PL-binding sites within the C2 domain of FVIII
overlap with the binding sites for vWf [36], and the binding
to vWf is strongly dependent on the conformation of the C2
domain [8], testing of FVIII binding to vWf is another
approach for investigating the conformation of C2. The
SPR-based assay for measuring kinetics of FVIII binding to
vWf has been described previously and was applied to
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confirm the identity of the properties of recombinant B-
domain-deleted FVIII and its plasma-derived analogue
[8,37]. An attractive microassay for quantitative measure-
ment of FVIII binding to either PL vesicles or vWf has been
recently reported [18]. In this assay, FVIII is preconcentrated
and purified from contaminants and vWf on beads with
immobilized anti-FVIII antibody from small amounts of
unpurified material with a low concentration of FVIII. Sub-
sequently, the binding of immobilized FVIII to fluorescently
labelled PL vesicles or fluorescently labelled vWf can be
accurately quantified by flow cytometry. This assay has been
successfully applied for characterization of vWf and PL bind-
ing of FVIII mutants expressed at low levels [18]. It can also
be potentially used for characterization of the FVIII com-
ponent in therapeutic FVIII concentrates without preliminary
FVIII isolation by conventional methods.

Another approach to detect conformational changes
within the C2 domain employs conformationally sensitive
anti-C2 domain antibodies as probes in SPR-based [8,28] or
quantitative immunoprecipitation assays [33]. In SPR-based
assays, conformationally sensitive monoclonal anti-C2 domain
antibodies, NMC-VIII/5 (epitope within the C2 domain amino
acids 2170–2327 [38]) or ESH8 (epitope 2248–2285 [39]),
were covalently immobilized on a carboxymethyldextran-coated
biosensor chip via amino groups [8,28]. The physiologically
relevant conformational changes within the C2 domain,
induced by FVIII activation, were detected with this assay, as
evidenced by a difference of approximately 10-fold between
the affinities of non-activated and activated FVIII derivatives
for immobilized antibody [8,28]. These SPR-based assays
may appear applicable for evaluating the C2 conformational
status in therapeutic FVIII concentrates. Indeed, the use of
NMC-VIII/5 antibody proved to be effective in probing the
C2 conformation by a competitive immunoprecipitation
assay in samples of FVIII concentrates prepared from abnor-
mal plasma pools [33]. As samples of FVIII concentrates
associated with increased immunogenicity demonstrated
a reduced binding to NMC-VIII/5 antibody and also had an
impaired binding to the PS/PC monolayer, probing of the C2
conformational status with conformationally sensitive anti-
bodies is another useful, practical criterion [33]. The
described approaches should be used in combination with
the full spectrum of high-resolution analytical techniques,
including size-exclusion chromatography, one- and two-
dimensional electrophoretic analysis, analysis of protease
peptide maps and immunochemical tests, comprehensively
summarized in several publications [40–42].

 

Detection of molecular defects impairing 
Factor VIII activation

 

It was recently reported that the C2 domain of FVIII contains
the binding sites for two major FVIII physiological activators

– thrombin and FXa [10,11]. As the C2 domain is potentially
susceptible to conformational changes during manufactur-
ing procedures, the ability of FVIII to bind thrombin or FXa
may also be impaired. This can be tested using recently devel-
oped SPR-based assays, in which the binding of FVIII or its
derivatives to anhydro-thrombin or anhydro-FXa, immo-
bilized on a carboxymethyldextran-coated Biacore chip (CM5)
is measured [10,11]. The catalytically inactive derivatives of
thrombin or FXa are prepared by converting the active site
serine to dehydroalanine, as described previously [43]. Per-
formance of this binding assay may be helpful in explaining
the results reported by Raut 

 

et al

 

. [31], who found that FVIII
concentrate samples with impaired PL binding (indicative of
altered C2 conformation) also showed reduced cleavage by
thrombin at Arg1689. Considering that cleavage at Arg1689
requires thrombin binding to the C2 domain [11], the reduced
thrombin cleavage at Arg1689 may be related to defects in
thrombin interaction with the conformationally altered C2
domain of FVIII. The described SPR-based binding assays
could complement the classical analysis of FVIII activation
by electrophoresis [28,44,45]. While electrophoretic analysis
reveals defects in proteolysis of FVIII by thrombin or FXa, the
binding assays may reveal a reason for such abnormality.

Another situation when defective activation of FVIII was
observed is related to mutations at the thrombin and FXa
cleavage sites (amino acids 372 and 1689). Indeed, it was
reported that mild-to-moderate haemophilia A is caused by
mutations of Arg372 to His [46] or to Cys [47], of Ser373 to
Leu [48] or to Pro [49], and of Arg1689 to Cys [50] or to His
[51]. While the defects in thrombin cleavage at a given specific
site(s) can be detected by conventional electrophoretic
analysis, enzyme-linked immunosorbent assay (ELISA) may
be beneficial for serial screening of FVIII samples. Such an
ELISA has been developed for detecting the defect in
thrombin cleavage of FVIII in which Arg1689 was mutated
to Cys [52]. This assay uses an anti-C2 domain antibody for
FVIII capture, and the thrombin-catalysed cleavage within
the LCh is detected with monoclonal antibody NMC-VIII/10
(which recognizes AR3), which is removed upon activation.
Although an ELISA for detecting mutations at the other
activation site in FVIII (amino acid 372 within the HCh) has
not been reported, it can be developed in an analogous
manner using a pair of antibodies directed against A1 and A2.

 

Mutations in A domains increasing instability 
of activated FVIII

 

Thrombin-activated FVIII (FVIIIa) is a heterotrimer (A1/A2/
A3–C1–C2), in which the A2 subunit is weakly associated
with the A1 and A3–C1–C2 subunits via ionic interactions.
Retention of A2 is required for normal stability of FVIIIa and
dissociation of A2 correlates with FVIIIa inactivation. A
phenotype of patients with haemophilia A has been described
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whose plasmas showed a discrepancy between their FVIII
activities determined in one- and two-stage activity assays
[53–55]. In these plasma samples, the FVIII clotting activity
determined in a two-stage assay is at least twofold lower than
the activity value in a one-stage assay. A critical difference
between one- and two-stage assays is that the latter includes
a first stage incubation step of several minutes duration. A
model of FVIII based on its homology to ceruloplasmin
[56,57] predicts that the three A domains of the activated
FVIII heterotrimer form a pseudo-threefold axis with inter-
domain interfaces between A1–A2, A1–A3 and A2–A3. The
reported patient mutations with one-stage/two-stage activity
discrepancy are all missense point mutations and lie at or
near the interdomain axis. Molecular characterization of
these mutations demonstrated that their resulting FVIII
molecules all have an increased rate of A2 dissociation from
the A1/A3–C1–C2 subunits following thrombin cleavage. The
mutant FVIIIa, owing to its inherent instability, would there-
fore exhibit reduced FXa generation in the two-stage assay
where there is a prolonged incubation period during the first
stage. We developed an SPR-based assay to monitor the real-
time kinetics of A2 dissociation upon thrombin activation of
FVIII captured by anti-C2 monoclonal antibody ESH8 cova-
lently immobilized on a CM5 chip [58,59]. The principal
scheme of the assay is shown in Fig. 2. The A2 dissociation
kinetic curves are used to determine the kinetic constant
(

 

k

 

diss

 

) and to calculate the half-life of FVIIIa as ln 2/

 

k

 

diss

 

.
This assay was applied to elucidate whether haemophilia A-
associated mutations within the A2 subunit result in an
increased instability of FVIIIa owing to a faster dissociation
of A2. This assay allows determinations to be performed

without preliminary purification of FVIII and, because the
capturing ESH8 antibody binds to the FVIII/vWf complex
[28], testing of plasma samples can also be performed. In
addition, this assay can be used to verify that interactions
between A domains within the FVIII molecule are not altered
by manufacturing procedures.

 

Detection of limiting concentration of FVIII by 
advanced clotting assay

 

The routine assays for measuring FVIII activity do not allow
determination of less than 0·01 IU/ml of FVIII (1% of normal
level). However, some molecular defects of FVIII frequently
result in very low levels of FVIII (less than 1% of normal
level), as in haemophilia A patients with a severe form of the
disease. Recently, a highly sensitive one-stage clotting assay
for serial sample analysis of very low levels of FVIII activity
has been developed [60]. While this assay is principally
similar to the conventional one-stage activated partial throm-
boplastin time clotting analysis, it measures the clotting time,
not by arbitrary decrease in light transmission, but by quan-
titative waveform analysis of the clotting kinetics registered
in an automated coagulation analyser. This device registers
the complete kinetics of decrease in light transmission during
the clotting event, calculates the second derivatives at each
time-point and determines the end-point of the clotting
event (clotting time) as the time at which the second deriv-
ative is minimal. A significantly higher precision in determ-
ination of the clotting time allows determination of approximately
10-fold lower FVIII concentrations in comparison with the
conventional clotting analysis. A higher sensitivity of the

Fig. 2 Assessment of the stability of activated 

Factor VIII (FVIII). Panel (a) shows the general 

scheme of a surface plasmon resonance (SPR)-

based assay for monitoring A2 dissociation 

upon activation of FVIII. FVIII is captured by 

anti-C2 domain monoclonal antibody ESH8, 

covalently immobilized on a biosensor chip. 

Following FVIII activation by thrombin, the 

kinetics of A2 dissociation is measured by SPR. 

Panel (b) shows typical kinetic curves of FVIII 

binding to immobilized monoclonal antibody 

ESH8, and real-time kinetics of A2 dissociation 

upon thrombin activation of the reference B 

domain-deleted FVIII (BDD-FVIII) and FVIII with 

an A1 mutation, which results in reduced 

retention of the A2 subunit. The curves are 

reproduced from Pipe et al. [59]. Panel (c), 

haemophilia A-related mutations on the 

interface of the A domains of FVIII, which lead 

to increased instability of FVIIIa. For FVIII 

mutants designated by a star, measurements of 

A2 dissociation were performed in SPR-based 

assay, as described above for panel (b).
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newly developed assay makes it advantageous in monitoring
FVIII levels in patients with severe form of haemophilia A.
This assay may also be useful in rigorous monitoring of the
progress of haemophilia A gene therapy in animal models,
and potentially in humans, as well as in detecting low levels
of recombinant haemophilia A-related FVIII C2-domain
mutants characterized by defective trafficking [18,61]. In
addition, deviation of the clotting kinetics of a FVIII
sample of interest from that of the reference FVIII sample
may serve as an indicator of molecular defects in the FVIII
molecule.

 

Concluding remarks

 

The normal functions of FVIII require its interactions with
physiologically important ligands including vWf, PL, FIXa,
FX, thrombin and FXa. Molecular defects in FVIII, such as
haemophilia A-related mutations or denaturative conforma-
tional changes potentially induced in the process of FVIII
manufacturing, may affect one or more of these key FVIII
interactions. SPR-based assays employing immobilized PL
surfaces, immobilized vWf or immobilized conformationally
sensitive antibodies, allow evaluation of the conformational
status of the C2 domain of FVIII. The latter is important, as
conformational alterations within the C2 domain are probably
related to an increased immunogenicity of FVIII products. The
recently developed microassay using FVIII immobilized on
anti-FVIII antibody-coated beads, allows the testing of FVIII
binding to PL vesicles or vWf in experimental samples with
a low FVIII concentration, without preliminary purification.
SPR-based assays employing immobilized anhydro-thrombin
or anhydro-FXa can be used for testing FVIII interaction
with its two major physiological activators, thrombin and
FXa. As both proteases bind to the C2 domain of FVIII, their
impaired binding can be an additional indication of the
conformational changes within the C2 domain. We also
described an SPR-based assay for assessing the stability
of activated FVIII by measuring dissociation of the A2
subunit from the FVIIIa heterotrimer (A1/A2/A3–C1–C2). The
recently developed improved automated one-stage clotting
assay based on the waveform analysis of the clotting event
provides an approximately 10-fold higher sensitivity in
measuring FVIII activity and is advantageous for monitoring
FVIII levels in patients with a severe form of haemophilia
A or in experimental samples with very low FVIII concen-
trations. In summary, the described assays are potentially
useful in detecting molecular defects in FVIII and for the
elucidation of impaired FVIII function. These assays can
complement a wide spectrum of high-resolution analytical
techniques, such as chromatographic and electrophoretic
analysis, analysis of proteolytic peptide maps, and immuno-
chemical tests classically used for characterization of FVIII
preparations.
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