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Abstract

In the use of laser scanning devices for inspection, metrology, and re-
verse engineering tasks, the accuracy of the data is of primary importance.
To compensate for the error characteristics of such .devices, we employ a
two-stage algorithm fully presented in [7] for reducing the error and fitting
a densemathematical surface rggrésentation to the data. We performed a
number of tests with the algozithin on both synthetic’and actual data, and
we show that the error is sigfiificantly reduced. We also varied the param-
eters for the algorithm to nfinimize the error given the error characteristics
of the laser scanner. o



1 Introduction

This report presents and tests algorithms to create a robust surface model
of an object utilizing data input from a ranging device. There is a large
variety of laser scanning devices, with differing error characteristics and
output formats [1]. Each scanner has a different ratio of Gaussian to non-
Gaussian distributed noise (outliers, or a broad-tailed distribution), and a
different standard deviation for the Gaussian distribution. Some common
output formats are scattered, line, and gridded. Scattered data are randomly
sampled points on the object surface, line data are points sampled unevenly
along a number of curves on the surface of the object, and gridded data
are points sampled on a regular grid. See Figure 1 for illustrations of the
scattered, line, and gridded formats. All of these formats have the effect
of creating a cloud of points located on the object surface. To maximize
the utility of this technology, there must be a way to eliminate both the
normal errors and the outliers and arrive at a dense canonical mathematical
representation of the surface of the scanned object.

Our claim is that the accuracy of laser scanning devices can be greatly
improved by combining it with a surface apprba:imation algorithm. In fact,
the sensor should not be viewed in isolation, but only as a part of the com-
bination of sensor hardware and surface fitting software. In this report, we
experiment with parameters of our model, and show that the accuracy does
indeed increase when the raw data is filtered through our algorithms. The
major advantages of our approach are the increase in sensor accuracy and
a reduction in the data volume due to the approximation. We also specif-
ically analyze the error characteristics of the Perceptron laser scanner and
compare it to our theoretical experiments. In our tests with the Perceptron
scanner, we were able to reduce a 154K data file containing 11,060 points
to a 17K spline surface file containing 1024 knots, with an error reduction
of more than one third.

The software we have developed accepts raw data from a laser range
scanner, with the type of errors and any of the output formats mentioned
above, and fits it using a two stage algorithm to get a dense representation
of the data. The file formats are described in Appendix A.

1.1 Algorithm overview

The algorithm uses a combination of local least median of squares regression
as the first stage and an approximating weighted bicubic spline for the sec-
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Figure 1: Descriptions of the three common laser range scanner formats: (a)
Scattered, (b) Line, (c) Gridded.



ond stage. In our current implementation of the two-stage philosophy, we
have dealt with the problems that arose from an early implementation [8].
We do not simply use least-squares for approximation. The assumption
behind least-squares fitting is that the noise in the data has a Gaussian dis-
tribution. We found our input data contains outliers (due to sensor errors)
and discontinuities due to the physical nature of the scene. These violate the
assumptions of normally distributed noise. An approximating spline in the
second stage also assumes that the errors are normally distributed, whereas
again this is not the case because of the outliers in the data. This leads us
to the use of a robust Least Median Squares based algorithm for fitting in
the first stage, and an approzimating spline in the second stage. The first
stage eliminates outliers and grids the data, while the second stage reduces
noise from a Gaussian distribution. The approximating spline presented in
this report has little relationship to the interpolating spline in [3, 8], except
for the fact that a weighting term is used in both. We have been able to
use our experience with the adaptive weights in [8] to create a weighting
function in our new formulation.

2 Background

In the past, inspection, metrology and reverse engineering projects have uti-
lized coordinate measuring machines (CMM) in order to digitize a physical
model. This device is an accurate robotic arm with a touch-probe sensor
attached to its wrist. The device is either manually probed over the sur-
face, or programmed to follow a particular path. In either case the process
is laborious and time-consuming. Another disadvantage of the CMM is its
price. However, the one great advantage of the CMM is its accuracy— a
typical CMM has an accucracy of the order of 10 microns.

A different approach involves using an “optical” CMM (laser plane-of-
light triangulation or laser radar) to obtain surface points. This is a cheaper
sensor, and measurements over the whole object can be obtained in a few
frames. As the laser scanner operates by line-of-sight, an important consid-
eration is that the points generated will all belong to a surface which will
not bend behind itself with respect to the direction of the scanner. There-
fore, by definition, the points belong to a graph surface. This allows us to
assume that all points in a certain neighborhood lie on the same surface,
and can be processed together. The disadvantage of the laser scanner is that
each individual point has less accuracy than a mechanical CMM. Figure 2
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Figure 2: A real range image of postal packages on a tabletop, with noise
(outliers) at the discontinuities caused by sensor errors.

shows the data obtained from such a sensor. As is apparent, there are three
problems that arise— (a) Outliers, or data points not obeying a Gaussian
distribution, occur due to sensor errors, (b) Data dropouts occur due to
light scattering from the metallic object, especially near the edges, where
the slope becomes large, (c) Gaussian noise caused within the sensor, due
to its electronics and software. The accuracy of the system is of the order of
150 microns. Another source of error is due to the polynomial interpolation
used when transforming coordinate systems between the pixel space to real
sensor space, and finally to a world coordinate system.

Our solution to these problems is to use a two stage algorithm to first
grid the data and remove outliers, and second fit the data to a discontinuity
preserving spline surface to eliminate the Gaussian errors and create a dense
representation of the data. This report describes and tests both stages of
the surface reconstruction algorithm.

2.1 The first stage

The first stage is categorized as a moving least median squares operation,
which grids and cleans the range data. This means the raw data can be



transformed from a scattered or line data format to a regular grid of any
density, and any outliers in the raw data can be removed. The first stage
works by imposing a rectangular set of grid points on the input point cloud.
The range value for each grid point is calculated from the neighborhood
or window of surrounding points in the following manner: Every possible
combination of three points in the neighborhood is examined (For a more
efficient approximation, the algorithm can operate with only a certain maxi-
mum number of combinations.). For each combination, a plane is fit through
all three points, and the error for all points in the neighborhood is calcu-
lated. The errors should fall into three categories: (a) Zero errors for the
points used to calculate the plane, (b) High errors for the outliers with re-
spect to the points in category (a), and (c¢) Normally distributed errors for
the points on the plane. We then associate an error with the plane fit, and
continue until all combinations of points have been examined. Instead of
using a mean of the point errors for the fit error, we chose to use the median
error. This median error measures the accuracy of the planar fit to a “typ-
ical” data point in the neighborhood of the grid point, ignoring both the
well-fit points such as the ones used to calculate the plane, and the poorly-
fit points such as outliers, as long as no more than 50% of the neighboring
points are in one of these categories. The plane for which the median error
is minimized is used to calculate the range value for the grid point.

The Least Median of Squares algorithm allows us to choose a plane for
each grid point which best fits the majority of neighboring points, ignoring
the points which are not well fit. Note that it is also possible to fit any
surface through the sample points, such as polynomial patches [2]. Up to
50% of the points are ignored in this fashion, allowing the algorithm to
perform with up to 50% outliers.

The first stage also preserves discontinuities as an attribute of its median
filtering nature [4]. If a neighborhood contains a discontinuity (i.e. two
regions with different surface equations), the points in the smaller region
will be considered outliers and the plane will be fit to points in the larger
region.

2.2 The second stage

The second stage of the algorithm uses the gridded and cleaned result of the
first stage to compute a smooth spline fit to the data. The second stage is
based on the regularized solution to the surface reconstruction problem [10,
11], minimizing



J(f) = E(f) +v*S(f) (1)

where £ is an error term and S is a smoothness norm (The function is
smooth.). In 1-D, S is chosen to be S(f) = [ f"*(z)dz. The square term
in the integrand can be thought of as the “energy” of the curve, and is an
approximation to the curvature
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of the curve for small f’. Minimizing the global measure f(z) gives equal
weight to all data. The modification we have introduced is to weight the
quadratic smoothness norm with an adaptive measure w(z,y) of the varia-
tion in the surface. For rapidly varying data, such as an image with discon-
tinuities, the smoothness norm should be small over flat regions and large
over steep ones. The weighting function w(z,y) is chosen such that it is
large when the data is flat and small when the data is steep. This allows
S(f) to be smaller in the flat regions, which implies the surface f(z) can
be smoother. In the steep regions, S(f) can be large, allowing the surface
to vary or “bend” rapidly. The general form of these norms (or stabilizers)
is derived by Tikhonov and Arsenin [12]. Based on their general form, we
obtain in 2-D the approximating surface f(z,y) by minimizing the functional
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where N is the number of data points. Here, the smoothness functional
measures the energy of a thin-plate under small perturbations. The stabilizer
is necessary because our experiments with regression splines alone (without
the integral term) gave poorly-conditioned results.

The surface model used for the fitting procedure in the second stage
algorithm is the adaptive thin plate spline [6]. The approximating spline is
obtained by minimizing expression 3. The 2-D adaptive spline is given as a
linear combination of the tensor products of 1-D B-splines.

g+k h+k

fz,y) =YY cijbri(z)bi;(y) (4)
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bri(z) and bg;(y) are 1-dimensional B-splines of degree k — 1, bx;(y) is de-

scribed in the same manner as bii(z), and g and h are the number of knots

in z and y. We assume that the basis functions are cubic (order k = 4).
The weighting functions are chosen to be

walei, ) = [p(1+ 02 +03)] (5)
wy(Zi,y;) = [p(l + vf__ + vz)]_2 (6)
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We use a modified version of Inoue’s technique [5] for solving the prob-
lem. B-Splines are used as the finite element in the solution instead of the
quadratic element. Inoue formulates the problem as a set of N linear equa-
tions in N unknowns. Solving this using standard elimination techniques
is computationally intractable, so instead Inoue constructs an iterative so-
lution. After the initial solution is computed by elimination, the next step
doubles the number of knots in each direction, then interpolates to find a
new approximation. The new coefficent matrix and value vector are calcu-
lated, and a new solution is obtained via a successive overrelaxation method.
This solution then can be used in the next step of the iteration.

2.3 Parameters

Besides the availability of three data formats, the two-stage algorithm has
a number of user-adjustable parameters that gives it a range of behaviors.
Besides parameters controlling the number of grid rows and columns, there
are a number of parameters for the first stage involving the window used to
find the plane for each grid point. The size of the window can be adjusted,
and the maximum and minimum number of points in the window can be
specified. If the minimum number of points is not found in the window due to
the sparseness of the data in that area, there are a number of search options
that can be employed. The window search can be immediately abandoned,
the window can be grown to a maximum size, or until a certain number
of points is found in the window. If the chosen search fails, a user-defined



background value is associated with the grid point. It is also possible to
choose how many samples will be chosen from the points in the window to
find the plane fit.

The first stage also performs some initial data filtering tasks. The input
data can be scaled in the z, y, and z dimensions, and for line data a “gra-
phize” filter can be employed to remove points that seem to conflict with the
graph surface assumption. This filter works by assuming that coordinates in
the z and y axes are monotonically increasing. So, if any value is found that
is not a new maximum for that axis, it is removed. The filter only works
with line data because gridded data is implicitly a graph surface and more
assumptions must be made for scattered data.

The second stage has four parameters influencing the shape of the surface
fit. The most important parameter in our experiments has been p, the
roughness parameter. For a low p, the spline fit is very smooth. As p
increases, the spline fit is allowed to fit the data more and more closely,
causing a rougher appearance due to the noise in the data. The tension
parameter 7 represents the amount of energy pulling the sides of the thin
plate. Finally, the third and fourth parameters define the number of knots
in the z and y directions, which affects the level of detail in the fit.

The second stage also has two parameters named unit length [/, and
unit observable d,, which normally stay constant at 0.1 to allow the other
parameters to maintain their intended effects.

See Appendix B for the parameters to the subroutines used for the al-
gorithm.

3 Testing methodology

The experimental testing of the two stage algorithm was designed to measure
the error reduction achieved by the bicubic spline compared to the original
point cloud. Because the input data may have different levels of noise, one of
the objectives of the algorithm was to find the best possible solution given
the Gaussian standard deviation. This was accomplished by varying the
smoothness of the spline fit. If the data is noisy, the spline must smooth
out the surface to eliminate the Gaussian peaks and valleys. If the data has
little noise, the spline can fit the data more closely. The parameter which
determines where the spline is located on the loose to tight fit continuum is
denoted p.

There were two experiments performed: (a) Synthetic data, and (b)



Actual data. In each experiment, several spline fits were performed with
different p values to determine empirically what p value is optimal for a
sensor with known error characteristics. Error measurements were taken in
two regions: the continuous planar region where the fit was expected to be
most accurate, and the transition region between the two surfaces, which was
expected to have a larger error since the spline surface smooths across step
discontinuities. Because of Gibbs phenomena (a common artifact causing
“ripples” near the boundary of a surface) on the edges, the continuous region
for the actual data set is taken from the interior.

The synthetic test model was a cube on a plane viewed from directly
above. Several test images were created of this model simulating errors of
0, 2, 5, 10, and 15 units standard deviation (o). The images were created
by first generating a background of constant height, then adding the cube
into the middle of the image 50 units above the background. Finally, the
Gaussian-distributed noise was added to the entire image by adding o - n,
where n comes from a Gaussian distribution with a unit standard deviation,
to each value. The model is shown in Figure 3 (a) with no noise and (b)
with a o of 5. The continuous and transition regions are marked. Since the
images were already gridded and contained no outliers, the first stage was
unnecessary and instead the second stage was directly applied with a 32 by
32 knot grid. For each test image, the spline fit used values of 10, 50, 100,
500, and 1000 for p. Figure 4 presents the resulting spline fits for (p, o)
values of (10,0), (10,10), and (100,0).

The actual data was taken from a Perceptron laser range finder with an
accuracy of 20 microns in the z dimension. The accuracy in the z and y
dimensions is unimportant because the first stage uses a neighborhood of
points to calculate each grid point value. The object was a rectilinear block
on a flat support. The scanner was directly above one edge of the block. The
geometry of the scan is depicted in Figure 5. The scan created a data set
consisting of two horizontal planes separated by a discontinuity. The data is
organized into lines, with a number of points scattered along each line. The
original data is shown in Figure 6, rotated to make it viewable. The equation
for the top plane is 0.002293z + —0.089056y + z + —224.711655 = 0 and the
equation for the bottom plane is 0.00190z 4+ —0.206307y + 2+ —1.779542 = 0.
The data was first “graphized” and scaled to match the synthetic data, then
the first stage was applied to grid and clean the data. A 64 by 64 grid
was chosen. For each grid point, the least median squares operator used
a window two pixels in diameter to search for neighbors. If not enough
points were in the window, the window was expanded, continuing until the
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Continuous region

Figure 3: Original synthetic data, (a) ¢ = 0, (b) ¢ = 5.
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Figure 4: Spline fits of synthetic data using (p, o) values of (10,0), (10,10),
and (100,0) and a 32 x 32 knot grid

12




Camera

of view

Figure 5: Geometry of the scanning setup

window was six pixels wide. If there were still too few neighboring points,
the search was abandoned and a value of 0 was associated with that grid
point. For computational tractability, at most 20 neighbors were considered
by the median filtering operation. The first stage produced a regular mesh
without outliers shown in Figure 7. Figure 7 also shows the transition and
continuous regions chosen for this data set. The top planar region covers
pixels (10,44) to (54,54), the bottom planar region covers pixels (10,10) to
(54,20), the top transition region covers pixels (10,33) to (54,44) and the
bottom transition region covers pixels (10,20) to (54,28). The second stage
was run with the same five values for the smoothing coefficent p as the
previous experiment. Figure 8 presents the resulting spline fits.

13



Figure 6: Original actual data, with typical features of actual laser scans:
(a) outliers, (b) Gaussian noise, (c) sparse data. The equation for the top
plane is 0.002293z + —0.089056y + z + —224.711655 = 0 and the equation
for the bottom plane is 0.00190z + —0.206307y + z + —1.779542 = 0.
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removed and the surface is now on a regular 64 x 64 grid. Maximum of
twenty neighbors, window size starting at two pixels and growing to six.
The planar and transition regions are shown. The top planar region covers
pixels (10,44) to (54,54). The bottom planar region covers pixels (10,10)
to (54,20). The top transition region covers pixels (10,33) to (54,44). The
bottom transition region covers pixels (10,20) to (54,28).
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RMS errors:

Continuous region | 0 =0 og=2 o=5 oc=10 g=15
p=10 2.482037 | 2.739954 | 3.515457 | 5.877151 | 8.724344
p =50 2.296183 | 2.673086 | 3.585446 | 5.914074 | 8.789596
p = 100 2.325248 | 2.698088 | 3.604199 | 5.923125 | 8.787552
p = 500 2.474280 | 2.733994 | 3.624499 | 5.936285 | 8.799943
p = 1000 2.526491 | 2.740286 | 3.628135 | 5.939984 | 8.804909

Table 1: RMS errors for the continuous segment of the synthetic data case.

RMS errors:

Transition region { ¢ =0 c=2 c=5 o =10 oc=15
p =10 13.02646 | 11.06147 | 10.90778 | 11.75066 | 13.16949
p =50 11.65798 | 10.64287 | 10.84079 | 11.75580 | 13.17786
p = 100 11.22843 { 10.58591 | 10.83498 | 11.75650 | 13.17991
p = 500 10.66605 | 10.54125 | 10.83144 | 11.75787 | 13.18161
p = 1000 10.57072 | 10.53557 | 10.83123 | 11.75793 | 13.18173

Table 2: RMS errors for the transition segment of the synthetic data case.

4 Experimental results and comparison of test
cases

The RMS errors for the spline fits in the synthetic case are presented in
Tables 1 and 2 and graphed in Figure 9. As expected, the error increased as
the noise level increased, but much less so in the transition region. As the p
value increased, the error in the transition region dropped but the error in
the continuous region actually increased slightly. This occurred because the
extremely high p values introduced artifacts into the transition region that
extended into the continuous region.

The statistics for the analysis of actual data are presented in Table 3,
and graphed in Figure 10. See Figure 11 for the distribution of errors. In the
original data, the RMS error for the top plane was high because of outliers.
The first stage eliminated these errors, but had little effect on Gaussian
errors, as evidenced by the small decline in the error for the bottom plane.
The second stage substantially reduced the error for the continuous regions,
but increased the error for the transition regions. This occurred because of
the inevitable smoothing effect of spline surfaces.

The results for the synthetic experiment measured the RMS error of the
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RMS errors Bottom plane | Top plane | Bottom Transition | Top Transition
Original data | 0.810616 2.9244 0.926927 1.77072

First stage 0.706392 0.766733 | 0.779363 0.716332
Second stage,

p =10 0.450508 0.469865 | 4.041837 3.786735

p =50 0.499335 0.551630 | 2.971268 2.288447

p = 100 0.534586 0.574002 | 2.537365 3.619183

p = 500 0.661485 0.722999 | 3.621776 4.637547

p = 1000 0.765062 0.731556 | 4.545904 5.09075

W W = v o N o o

Table 3: RMS errors for the actual data case.
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Figure 11: distribution of errors for the actual data case
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second stage as a function of p and the sensor error. The hypothesis was
that more inaccurate sensors would require smaller p values to minimize
error, which was observed.

Since the synthetic results were obtained directly from gridded data with-
out outliers, they cannot be directly compared to the input data for the ac-
tual case. Instead, since the first stage removes outliers and grids the data,
it can be compared with the sensor error from the synthetic case. The graph
of the synthetic data with the new results superimposed is in Figure 12. The
error curves for the bottom and top planes match the synthetic results well,
so we conclude that the two-stage algorithm is effective in reducing error
found in the raw data generated by laser range scanners. In fact, for the
Perceptron scanner, using a p value of 10, the root mean squared Gaussian
error in the continuous region was reduced by more than one third, and
all outliers were eliminated. These results were obtained using a grid with
64 rows and columns, and a spline surface with 32 knots in each direction.
We have experimentally determined that increasing the grid density and
number of knots does not significantly reduce the error. We expect that
similar results can be achieved with any range scanner, and accuracy can be
maximized by choosing the appropriate p value for the error characteristics
of the sensor, which can be done using the graph in Figure 13, where the
error units have been normalized by the mean depth value so any sensor’s
expected performance can be measured.

5 Conclusion

This report has described the error-reduction properties of the two-stage
algorithm for surface reconstruction. The first stage uses a moving least
median squares filter to clean and grid range data. The second stage uses
a weighted bicubic B-Spline representation of the visible surface. The al-
gorithm fits a surface to scattered depth data while rejecting outliers and
without distortion such as Gibbs phenomena at discontinuities. The moving
least median squares regression algorithm in the first stage removes outliers
and preserves discontinuities. Weighted bicubic splines are able to fit scat-
tered data (containing discontinuities and normal noise) with fidelity and
no distortion such as Gibbs phenomena.
The major advantages of our approach are

e The increase in sensor accuracy.
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Figure 12: Error comparison between the actual and synthetic cases, (a)

continuous region, (b) transition region
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e A reduction in the data volume due to approximation.

o Reduced time data collection.
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A File formats

The file formats used by the two-stage algorithm correspond to the three
types of scanning patterns employed by laser scanners: scattered, line, and
gridded. Any of these formats can be used as either input to or output from
the algorithm.

The input and output formats are represented by an ASCII text file.
Scattered data has the extension .xyz and the data points are presented
one per line, with the z, y, and 2z coordinates followed by a semi-colon. Here
is an example of file scat_example.xyz:

113.4181;-0.8952;205.9230;
113.3281;-1.2301;205.9526;
113.3121;-1.3980;205.8819;
113.3360;-1.6866,205.8326;
113.3089;-2.0491,205.8505;

The line data file format has the extension .DT. The data points are
organized into a set of strings, where each string of points has the same z
coordinate. A new string is begun with an X, and the constant « coordinate
on its own line. Each point in the string is defined by a P, followed by the
y and z coordinates, separated by a space. Again, each point is on its own
line. Here is an example of file 1ine_example.DT:

X 0.000000

62.997548 232.980167
62.076995 233.736144
61.153380 231.671953
1.258941

62.690697 233.216075
61.768307 232.170575
60.847142 232.497629
2.519143

61.462068 233.130290
62.382009 232.020453

‘U 'O > 'U 'U ‘U > 'U ‘U ‘U

Finally, the grid file format is a standard image format known as pgm,
which is a widely used format for image conversion and manipulation. Fol-
lowing is a part of the man page describing the pgm format:

NAME
pgm - portable graymap file format
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DESCRIPTION
The portable graymap format is a lovest common denominator
grayscale file format. The definition is as follows:

A "magic number" for identifying the file type. A pgm
file’s magic number is the two characters "P2".

- Whitespace (blanks, TABs, CRs, LFs).

- A vidth, formatted as ASCII characters in decimal.

- Whitespace.

- A height, again in ASCII decimal.

- Whitespace.

- The maximum gray value, again in ASCII decimal.

- Whitespace.

- Width * height gray values, each in ASCII decimal, between
0 and the specified maximum value, separated by whi-
tespace, starting at the top-left cormer of the graymap,
proceeding in normal English reading order. A value of 0

means black, and the maximum value means white.

~ Characters from a "#" to the next end-of-line are ignored
(comments).

- No line should be longer than 70 characters.

Here is an example of a small graymap in this format:

P2

# feep.pgnm

24 7

15

0o 0000 0 0O OO0OO0OOOUOOOOO0OOOO0OOO0OO0OO
033330077770 011111111 0 015151515 0
03 000O0O07O0O0O0O0O0O11 0 0 0 0 015 0 015 0
0 3330007 7 700 0111111 0 0 015151515 0
0 3000007 0O0O0O0O0O11 O 0 0 0 015 0 0 0 O
0 3000 0 07 7 77 0 011111111 0 015 0 0 0 O
0 000 0O OOOOOOOOOOOOOOO OO0 O

Since the gridded file format implicitly assumes the location of the grid
points, the z coordindate of each grid point is defined to be the column
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number of the point, and the y coordinate to be the row number of the
point.

All of these file formats contain as their basic element a point cloud as
described above, but the line and grid formats contain more structure, so
the algorithm can take advantage of this to operate more efficiently.

B Subroutine declarations

The first stage has one major subroutine which calculates the least median
of squares value for a given grid location. The definition of 1ms is

double lms(data_type type, any_type data, float row, float col,
float delta_x, float delta_y, float cur_window);

where data is the input data of type type, row and col is the grid location,
delta_x and delta_y is the area covered by only one grid point (a “pixel”),
and cur_window is the size of the window in pixels.

The second stage has one subroutine to calculate the spline fit and one
to evaluate the spline at a particular location. The subroutine 1sf2c finds
the spline coeflicients. Its definition is

subroutine 1lsf2c(xmin,ymin,xmax,ymax,xd,yd,fd,sd,weightx,
iweighty,nd,unl,und,rou,tau,mx0,my0,n2,nit,cij,kc,a,b,indp, aint)

where:
¢ xmin, xmax, ymin, and ymax define the bounding box of the data,
¢ xd, yd, and fd are arrays of the z, y, and z locations of each point,
¢ sd is an estimate of the standard deviation at each point,
o veightx and weighty contain the weights of each point,
¢ nd is the number of data points,

e unl, und, rou, tau, mx0, and myO are the fitting paramters described
earlier,

¢ n2 and nit are the number of binary divisions and number of intera-
tions in the relaxation step,
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e cij is the two-dimensional array of the spline coefficients whose row
dimension is kc,

¢ Finally, a, b, indp, and aint are temporary work arrays.

The subroutine to evaluate a point on the spline surface is named 1sf2f
and is defined

subroutine 1lsf2f(xmin,ymin,xmax,ymax,mx,my,cij,kc
1 »X,y,1defx,idefy,f)

where:
o The first eight parameters are identical to 1sf2c,
¢ x and y is the location of the point,

e idefx and idefy is the order of z, y differentiation of the fitted surface
(0,0 is the value of the surface itself), and

o f is the desired z value.
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