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Abstract

The concept of a group is ubiquitous in biology. It underlies classifications in evolution

and ecology, including those used to describe phylogenetic levels, the habitat and

functional roles of organisms in ecosystems. Surprisingly, this concept is not explicitly

included in simple models for the structure of food webs, the ecological networks

formed by consumer–resource interactions. We present here the simplest possible model

based on groups, and show that it performs substantially better than current models at

predicting the structure of large food webs. Our group-based model can be applied to

different types of biological and non-biological networks, and for the first time merges in

the same framework two important notions in network theory: that of compartments

(sets of highly interacting nodes) and that of roles (sets of nodes that have similar

interaction patterns). This model provides a basis to examine the significance of groups

in biological networks and to develop more accurate models for ecological network

structure. It is especially relevant at a time when a new generation of empirical data is

providing increasingly large food webs.
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I N T R O D U C T I O N

Few concepts in biology are so pervasive as that of a group.

Since the work of Linnaeus more than 250 years ago,

biologists have tried to classify organisms into species,

species into genera, genera into families, and so on. In

ecology, species have been grouped according to their

habitat, such as benthic vs. pelagic species in marine

environments, below-ground and canopy communities in

tropical forests, autotrophs, primary consumers and detri-

tivores, based on energy sources, omnivores, specialists, and

generalists based on their diet breadth, to name a few

examples of grouping species. Surprisingly, however, the

concept of group has been largely left out from the

construction of simple models for food web structure

(Cohen et al. 1990; Williams & Martinez 2000; Cattin et al.

2004; Allesina et al. 2008). Only Cattin et al. (2004) implicitly

consider that similar predators act in a similar way. To date

no model addressed the presence of groups explicitly.

These stochastic models provide a way to construct with

a few simple rules �realistic� food webs or networks

describing �who eats whom� in an ecosystem. The simplest

models are motivated by a few ecological principles and

require only two parameters, the total number of species, or

species richness, and the total number of connections, or

connectance, in the network. The recent comparisons of

these models based on likelihoods have therefore consid-

ered the same number of parameters (Allesina et al. 2008).

However, the use of likelihoods opens the door for more

general comparisons among models of varying complexity

based on information criteria. We introduce here network

models based on the concept of groups and compare for the

first time, models with a different number of parameters.

We show that dividing species into groups yields critical

information for building better models of food web

structure, especially for large networks.

In all the simple models of food web structure proposed

so far, species are ranked into a one-dimensional hierarchy

with this ranking providing the basis to establish species�
interactions (Cohen et al. 1990; Williams & Martinez 2000;

Cattin et al. 2004; Allesina et al. 2008). For example, in the

cascade model (Cohen et al. 1990), a species can prey with a

given probability upon any species whose position in the

ranking is lower, but cannot prey upon those with higher
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ranking. If follows that in all these models, the only

characteristic that differentiates species is their �ranking

value�. No other information, on phylogeny, habitat, feeding

behaviour etc., is required.

Although the idea of identifying groups in food webs is

not new, it has been applied for specific definitions of

groups and has not been used in the construction of models.

Since the consideration of compartments in the late 70s

(Pimm 1979; Pimm & Lawton 1980; Critchlow & Stearns

1982; Yodzis 1982), several papers have dealt with the

�community detection� problem of identifying groups of

highly interacting nodes that interact very weakly with the

rest of the network. These methods have revealed some

underlying structuring of species according to spatial and

habitat distributions [e.g. benthic vs. pelagic communities

(Newman & Girvan 2004; Krause et al. 2003; Melián &

Bascompte 2004; Allesina et al. 2005; Newman, 2006)].

Another notion of group important to food webs has been

that of trophic position, the extension of the familiar idea of

trophic levels to include fractional positions (Levine 1980).

The concept of trophic similarity was proposed to reduce

the inherent complexity of food webs into manageable

smaller networks (Yodzis & Winemiller 1999). In this

framework, species that share the same predators and prey

are considered a trophic species. A generalization of this

concept is that of trophic role (Luczkovich et al. 2003) in

which two species are equivalent if they prey upon

equivalent species and are in turn preyed upon by equivalent

species. For example, two herbivores are said to be

equivalent if they both feed on equivalent plants and are

also the prey of equivalent carnivores, even though they do

not share necessarily the same plants and carnivores. The

recursive definition of trophic roles encompasses that of

trophic species as a special case (Luczkovich et al. 2003).

Interestingly, trophic species and trophic roles are known to

sociologists as structural and regular equivalence classes

(Luczkovich et al. 2003).

These two lines of research, on communities and roles

in networks, have typically been separated since they

represent different objective functions for the search

algorithms employed to detect the groups. Here we

present the simplest framework in which these two

characteristics of network structure are considered at the

same time in the detection of groups: if communities are

the main driver of network structure, our algorithm detects

communities; if roles provide a better explanation for the

interaction patterns, the framework yields groups based on

roles; finally, the two features are not mutually exclusive, as

the algorithm can detect some groups based on dense

within-group interactions (communities) that also have

well-defined between-groups interactions (roles). In this

sense, our framework provides a generalization in which

communities and roles are special cases of the more

general concept of a group. Although our results and

examples pertain to food webs, the methods we proposed

should apply to any type of network (biological or not,

directed or undirected). The general approach is also the

simplest one possible for constructing models of food web

structure based on groups of species. The resulting models

are shown to capture the structure of food webs better

than existing ones for sufficiently large networks. Thus the

concept of groups become critical for modelling ecological

networks at a time when a new generation of large

empirical networks is underway (Bascompte et al. 2005;

Arii et al. 2007). We argue that the construction of such

models will be impossible without considering the exis-

tence of groups in these large networks. We end with a

discussion of the open areas related to the biological

interpretation of such groups, including the further

improvement of the models themselves.

The framework we propose can be interpreted as a model

for food web structure based on groups, but can also be

seen as a clustering algorithm or a way to investigate

similarity among species in an ecological network. In what

follows we concentrate on the stochastic model interpreta-

tion, while we will focus on the other aspects in future work.

Both the group-based model proposed here and previous

stochastic models of food web structure based on a

hierarchical order of species can be used to generate

families of networks that reproduce aspects of the structure

of empirical food webs. Both are motivated by simple

principles, in one case the importance of groups in species�
interactions, in the other, the similarity of prey and a ranking

of species that defines the generality of predators. These

principles are not exclusive and future models are likely to

combine them in some form. Thus, our model should not

be viewed simply as a clustering method. It differs, however,

from previous simple models of structure in that the

number of parameters is not pre-defined and constant

across different empirical webs, since it does not rely on

species richness and connectance as the two fundamental

parameters. This difference has implications for generating

families of networks across ecosystems, to examine for

example the dynamical consequences of structure, using the

same set of fundamental parameters. That this is not the

case with our approach does not mean that comparisons

across ecosystems are not possible but that these have to

rely on possible differences and specific features of the

different communities. We view the two modelling

approaches as complementary, as their importance will

depend on the size of the networks. Furthermore, future

work is likely to reveal regularities in the group-based

structure that can serve as principles for general models. In

the Discussion, we further explore similarities and differ-

ences with previous stochastic models of food web

structure.
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M A T E R I A L S A N D M E T H O D S

We define here a food web N as a network formed by S

nodes representing species or a collection of similar species,

connected by L directed connections representing con-

sumer–resource interactions and denoted as edges or links.

Each network can be associated with a matrix A[aij] called

the adjacency matrix, in which each coefficient aij is 1 if the

row species i is a prey of the column species j and 0

elsewhere.

To reproduce an empirical food web N(S, L) with a

simple random process, the simplest model we can think of

is one in which there is a fixed probability p of connecting

each node with any other node. This is an Erdös–Rényi

(Erdös & Rényi 1960) directed random graph. What is then

the probability of obtaining exactly the given empirical

network N(S, L) using this process? We can see the

associated adjacency matrix A as a sequence of zeros and

ones. In the random graph, we seek to reproduce such a

sequence with the only rule that the probability of obtaining

1 is p and that of obtaining 0 is (1 ) p). Therefore the

probability of producing exactly N is:

PðN ðS ;LÞjpÞ ¼ pLð1� pÞS
2�L ð1Þ

where, for consistency, we define 00 = 1. This probability

can also be read as the likelihood of the parameter p given

the network N:

LðpjN ðS ;LÞÞ ¼ pLð1� pÞS
2�L ð2Þ

As one can easily show using derivatives, this probability

(or likelihood) is maximized by p = L ⁄ S2, exactly the

quantity known as the directed connectance (or density)

of the network.

A way to slightly complicate the above model is to divide

the nodes into two groups (�Green� and �Red�) so that we

now need four probabilities, pgg – the probability of a Green

node connecting to a Green node; prr – the probability of a

Red node connecting to a Red node; pgr – the probability of

a Green node connecting to a Red node; and prg – the

probability of a Red node connecting to a Green node. We

can rewrite the equation for the probability of obtaining the

graph N when we have two groups of nodes as follows:

PðN ðS ;LÞjpgg ; prr ; pgr ; prgÞ ¼
pLgg

gg ð1� pggÞS
2
g �Lgg � pLrr

rr ð1� prr ÞS
2
r �Lrr �

pLgr

gr ð1� pgr ÞSg Sr�Lgr � pLrg

rg ð1� prgÞSr Sg�Lrg

ð3Þ

where Lxy is the number of edges connecting nodes

belonging to the group X to nodes belonging to the group Y

and Sx is the number of nodes in group X. To maximize the

probability, it is sufficient to set pxy = Lxy ⁄ (SxSy) for all

combinations of groups.

We can generalize the formulation above to an arbitrary

number of groups k:

PðN ðS ;LÞj p
!Þ ¼

Yk

i ¼ 1

Yk

j ¼ 1

p
Lij

ij ð1� pijÞSi Sj�Lij ð4Þ

where p
!

is the vector containing all the probabilities pij. In

the limit, we can assign each node to a different group. In

this case, pij = Lij = aij. Because each probability is set either

to 0 or 1, this process will always produce the same network,

which is exactly the desired empirical one (N). The proba-

bility of recovering the data is therefore 1.

We can compute the probability above for any arrange-

ment of the nodes into groups. The two simplest cases

correspond to the two extremes of (1) all the nodes

belonging to the same group (a random graph) and (2) each

node consisting of a different group by itself (P ¼ 1).

Figure 1 shows these two extremes together with two

intermediate solutions. Each possible arrangement can also

be seen as a model for generating food webs: we divide S

nodes according to groups, and then generate a network by

connecting two nodes belonging to groups X and Y with

probability pXY. The probability of obtaining the original

network with this process is that given in eqn 4.

How many possible arrangements are there? Because we

seek to partition S nodes into k nonempty groups, we can

count the number of arrangements using the Stirling�s
numbers of the second kind:

SðS ; kÞ ¼ 1

k!

Xk

i ¼ 0

ð�1Þi k

i

� �
ðk� iÞS ð5Þ

The sum of Stirling�s numbers for all ks gives the Bell�s
numbers: For example, for 10 nodes, there is only 1 way of

arranging them into 1 group, but there are 511 ways to

define two groups, 9330 ways to define three and so forth,

with a total number of possible arrangements of 115 975.

Bell�s number can be written with the following recurrence

relation:

BS ¼
XS�1

k¼ 0

Bk
S � 1

k

� �
ð6Þ

This formula shows how fast the number of possible

ways of organizing species into groups grows with the

number of nodes. While B3 ¼ 5, B30 ¼ 1023 and

B60 > 1059. Setting aside the technical difficulties intro-

duced by these huge numbers, we can easily compute a

probability for each possible arrangement ⁄ model.

Increasing the number of groups used to partition the

network will never decrease the likelihood Lð~p; kjN ðS ;LÞÞ
(in fact, if k groups do not produce better probabilities than

k ) 1, we can always leave one of the groups empty,

recovering the better likelihood), but it will greatly increase
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the number of parameters. This consideration leads natu-

rally to issues of model selection. We can use Akaike�s AIC

(Akaike 1974) to select the best model and arrangement into

groups. The parameters for each model will be (a) a vector

specifying the assignment of each species to a group and (b)

k2 probabilities, where k is the number of groups. We can

write the AIC for any arrangement as:

AIC ðN ðS ;LÞj~p; kÞ ¼ 2k2 þ 2S

� 2 log
Yk

i ¼ 1

Yk

j ¼ 1

p
Lij

ij ð1� pijÞSi Sj�Lij

 !
ð7Þ

where k is the number of groups. If we define 0 log 0 = 0,

this can be reduced to a sum:

Minimizing the AIC yields the group arrangement that

maximizes the likelihood of reproducing the empirical data

while keeping the number of groups, and therefore the

number of free parameters, low. The use of AIC for

model selection is rooted in information theory, as AIC is

clearly connected with the Kullback–Leibler information

(Burnham & Anderson 2002). We report in Fig. 1 the

AIC values for four possible arrangements of a simple

food web.

The next section describes an algorithm to find the

grouping of species that minimizes AIC, i.e. the best simple

model based on groups for a given network.

A modified genetic algorithm

To search for the optimal solution (the lowest AIC) for a

given network N(S, L) and k groups we implemented a

simple modification of a genetic algorithm. Specifically,

a hill-climbing procedure is added to the algorithm to speed

up the search. In a genetic algorithm, chromosomes encode

possible solutions for the problem. In our case, each

chromosome is simply a vector of length S whose elements

are numbers between 1 and k, defining a way of grouping

the species. A population of chromosomes is built and

initialized at random. At each generation, each chromosome

locally searches for a minimum for the AIC as follows: the

algorithm considers all the possible groupings that can be

obtained by changing a single element in the vector

(effectively computing the AIC of all its neighbours). If

any of the neighbouring solutions is better than the one

currently encoded in the chromosome, the chromosome will

�mutate� to the better solution. This procedure is repeated

until no neighbour yields a lower AIC. In this way, each

chromosome is at a local minimum. Then, the proper

genetic algorithm takes place. Each chromosome is assigned

a fitness, equal to 1 ⁄ AIC, and reproduces (i.e. is copied in

the next generation) with a probability proportional to its

fitness. While copying chromosomes mutations can occur

with small probability. This procedure is repeated until a

(a) (b) (c) (d)

Figure 1 Arrangement into groups of a hypothetical food web. From left to right: (a) all species are included in the same group (random

graph with p = 0.22); the log-likelihood is )8.28 and the Akaike Information Criterion (Akaike 1974) is AIC = 30.56. (b) The species are

divided into three groups, which yields nine probabilities (e.g. p3,3 = 2 ⁄ 9). The log-likelihood is )3.73 and the AIC = 37.46. (c) and (d) divide

the matrix into sub-matrices containing either all 1s or all 0s. This means that the log-likelihood is 0 and therefore the AIC is given by

2S + 2k2, and equals 44 in the case (c) and 84 in the case (d).

AIC ðN ðS ;LÞj~p; kÞ ¼ 2k2 þ 2S � 2
Xk

i ¼ 1

Xk

j ¼ 1

Lij log pij

� �
þ SiSj � Lij

� �
log 1� pij

� � !
ð8Þ
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new population of chromosomes is created. The whole

process is repeated for a given number of generations or

until all chromosomes are identical.

We applied this algorithm with the following parameters:

size of the chromosomes� population = 1000; number of

generations = 100; number of mutations in the off-

spring = 3. (The code is available upon request). To test

whether the algorithm is sufficiently powerful we contrasted

the results with the ones obtained using adaptive simulated

annealing and a classical genetic algorithm. In all cases, our

algorithm produced better or equal solutions, and found the

local optima much faster than the other algorithms. For

each food web, we searched for the best solution for all the

k2[1,2,...,20].

R E S U L T S

We analysed 10 published empirical food webs (Table 1)

and found the best way of dividing each network into

groups. These networks are medium sized, and were chosen

because they were previously used to compute the likelihood

of existing models for food web structure. This allows us to

compare our model with previous simple models based on

the AIC values. For each network, we searched for the best

configuration using k = 1,2,...,20 groups. In all cases, we

found that the k minimizing the AIC is small (in all cases

but one we found that the minimum AIC is found for

k £ 10, Table 1). Also, the best AIC varies smoothly as a

function of k (Fig. 2).

Given a network, we can set an upper boundary for the

number of groups that can possibly lead to the minimum

AIC. Let us start from the simplest arrangement: all species

in one group k = 1. There is only one such an arrangement,

yielding and AIC value we denote with AIC1. Now,

consider any arrangement making use of x groups: if

2S + x2 ‡ AIC1, this means that the AIC of any arrange-

ment encompassing x groups will have a value greater than

that of the random graph (AIC1): the best solution must

have less than x groups. Similarly, the boundary can be

refined. Let us denote with AICg the best solution making

use of g groups, and say that AICg < AIC1. We can use

AICg to refine the boundary we set using AIC1. Take a

number of groups y < x. If 2S + y2 ‡ AICg, we know that

the best solution must have fewer than y groups. In our

search for the best AIC, each time we come across a better

AIC value we can refine the boundary, making the search

Table 1 Results of the analysis for 10 empirical food webs

Food Web S L k AICGroups AICMinPot Reference

Chesapeake 31 68 7 386.090 356.220 Baird & Ulanowicz (1989)

Grass 61 97 7 738.765 715.880 Martinez et al. (1999)

Bridgebrook 25 107 6 297.559 238.360 Havens (1992)

Skipwith 25 197 7 404.372 393.340 Warren (1989)

Benguela 29 203 7 481.477 489.040 Yodzis (1998)

Stmartin 42 205 10 829.810 864.120 Goldwasser & Roughgarden (1993)

Stmarks 48 221 9 1077.601 1108.980 Christian & Luczkovich (1999)

Broom 85 223 9 1081.523 1427.080 Memmott et al. (2000)

Coachella 29 262 9 524.282 654.200 Polis (1991)

Reef 50 556 13 1636.190 1973.420 Optiz (1996)

We report the AIC values for the group-based model and the Minimal Potential Niche (Allesina et al. 2008).

S, number of species or groups of species in the food web (number of nodes); L, number of connections; k, number of groups yielding the

minimum AIC for the group-based model described in the main text.

Figure 2 Profile of the best AIC value found by the algorithm for

the Skipwith Pond food web (Warren 1989) for a varying number

of groups (k). The curve has the same shape for all the 10 empirical

networks analysed. In this case, the minimum AIC is obtained for

k = 7 groups.
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more efficient. For example, we can see that for the

bridgebrook (Warren 1989) system AIC6 is 238.36. Given that,

for this network, AIC10 = 2Æ25 + 2Æ102 + L10 ‡ 250, we

already see that the best configuration cannot include more

than nine groups.

How do the AIC for the group model compare with

those of previous models for food web structure? In

Table 1 we report the AIC for the Minimal Potential Niche

Model [the best simple model – in terms of likelihoods –

proposed so far (Allesina et al. 2008)] and the minimum

AIC we found by using the simple model based on groups.

The Minimal Potential Niche Model assumes that species

can be ordered and that predators tend to prey among

similarly-ranked species. This model makes use of S + 3

parameters. The AIC is simply twice the number of

parameters minus twice the log-likelihood, and can

therefore readily computed using values published by

Allesina et al. When we order the food webs according to

their number of links, a clear pattern emerges. The group-

based models have a better likelihood when the networks

contain more than 200 connections (regardless of the

number of species), and worse values otherwise. We

explore this relation further, together with the effect of the

number of groups in Fig. 3, where we show the correlation

among the values in Table 1.

The number of species S is weakly correlated with the

number of links L and the number of groups k in the best

configuration. It exhibits however a strong correlation with

the AIC of the models. The number of links and more

strikingly, the number of groups k, are strongly correlated

with the AIC. In fact L can be used to predict k: a linear

regression k = 5.5 + 0.0136 L gives an r2 = 0.78 and a

highly significant p value. It follows that more complex

networks should produce configurations with more groups

than simpler ones, and that this relation is basically linear.

Also there is a strong correlation between the AIC for the

two models: a linear regression, AICGroups = 120.65 +

0.76AICMinPot, shows that for more complex networks the

group based solution should be much better than the one

obtained with the Minimal Potential Niche Model

(r2 = 0.97, P < 2 · 10)7). This result is consistent with

the findings of Table 1, and implies that for the large data

sets that are currently appearing in the literature, with tens

of thousands of links, the groups-based models should

outperform the Minimal Potential Niche Model.

The difference in the performance increases significantly

as the networks become more complex. For example, the

difference in our model selection criterion, AIC, is of 345.56

and 337.23 for the broom (Memmott et al. 2000) and the reef

(Optiz 1996) food webs respectively. One can use Akaike

Figure 3 Correlations among the values in

Table 1. In the upper part of the matrix we

report the Pearson�s coefficients. The red

lines represent the best fit linear regression

to the data.
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weights (Burnham & Anderson 2002) to determine the

strength of evidence for each model. The Akaike weight for

a model x is defined as:

wx ¼
e�

AICx�AIC�
2P

8y

e�
AICy�AIC�

2

ð9Þ

where AIC * is the minimum AIC among the models. The

weight wx expresses the probability that x is the best model

for the data (Burnham & Anderson 2002). For all the

networks with more than 200 links, the corresponding

weight wGroups is almost exactly 1, i.e. the probability that this

is in fact the best model is close to 1. The network with the

worst performance of the group-based model is bridgebrook

(Warren 1989), for which the difference is )59.2 (in this

case computing the Akaike weights shows that the Minimal

Potential model is almost certainly the best model).

D I S C U S S I O N

We have presented a formulation and approach to model

the structure of food webs based on the concept of groups.

These models perform substantially better than current

simple models when the networks are large, containing

more than 200 links. From our results, we expect the

difference in AIC to grow linearly with the number of links.

Given that a third generation of food web data is currently

underway (if we consider the data in Cohen et al. as the first

generation and the data collected in the 90s as the second

generation – J. Dunne, personal communication), with a

much larger number of links than ever before of the order

of several thousand (Bascompte et al. 2005; Arii et al. 2007),

the difference in performance between the group-based

models and their predecessors based on a one-dimensional

hierarchy is likely to be considerable.

By using likelihoods and a model selection criterion, we

were able to directly compare models of different complex-

ity. Until recently, food web models were compared using

�summary statistics� that measured, for a set of networks

generated with a given model, a set of network character-

istics such as the number of top predators, the number of

cannibal species, the average trophic level, etc. (Williams &

Martinez 2000; Cattin et al. 2004; Allesina et al. 2008). Thus,

the ability of the model to generate the network was

evaluated through its ability to reproduce these values. This

approach is clearly not feasible for models with a different

number of parameters. How much closer to the observed

number of top predators must the model predictions be to

justify a larger number of parameters? AIC solves this

problem in a simple and elegant way. The results of the

models based on groups show that complex networks

contain sufficient information to justify models with more

than 100 parameters. There is clearly room for considering

models with a much larger number of parameters than the

ones currently in use. In fact, the group-based models

presented here do not contain any a priori ecological

information and are a simple collection of random sub-

graphs. We foresee the development of better group models

that do incorporate ecological information. The formulation

proposed here provides the simplest null-model based on

groups and as such, a baseline for further improvements.

The fact that the null-model yields better results than

previous simple formulations motivated by ecological

considerations suggests that the latter are too simple to

show a good fit to the data. The use of complex models

with several parameters has been proved useful to under-

stand different problems in biology (Huelsenbeck et al.

2001; King et al. 2008).

One possible disadvantage of a variable number of

parameters is the lack of a fixed set of ecological quantities

that can be used universally to construct food webs with

structures similar to those of nature. A special place has

been so far given to two ecological quantities, connectance

and species richness, which are used in all the simple food

web models as the fundamental parameters. This has

allowed for example the evaluation of dynamical conse-

quences of structure as a function of these quantities

(Williams & Martinez 2000). The group-based models do

not possess such fundamental parameters; they can provide

however better models for specific systems, and as the

analyses of a large number of networks develop, give rise to

regularities that emerge from the data. Dynamical conse-

quences of structure can still be addressed, for example on

the specific role of groups, beyond the much debated role of

only one type of group, that of compartments (Yodzis 1982;

Pimm et al. 1991).

The search for the best group configuration can be

interpreted by examining at the adjacency matrix obtained

through the ordering of the species into groups. Figure 4

illustrates such an adjacency matrix for the broom system

(Memmott et al. 2000) and Fig. 5 shows the corresponding

network partitioned into groups. One can easily see from

eqn 4 that the likelihood is maximized when inside each

�sub-matrix� defined by two groups the density of links is

either maximized or minimized. For example, in Fig. 4 we

can see that in the given configuration the single node in

the pink group does not receive any link, but sends links to

all the nodes of the green, violet and cyan groups. In the

same way, all nodes in the cyan group are connected to all

the nodes in the violet group. Several other examples of

very high (or low) density of connections are represented in

the figure. Thus, groups are defined by the relation they

have with each other (e.g. the violet group is the one that

receives links from the pink, cyan and violet nodes and

sends most of its links to violet and orange nodes). This
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interpretation of groups leads naturally to the definition of

roles in networks, and therefore to a clear relationship of

our algorithm with �block-modelling� in social networks

(White et al. 1976) (even though the two approaches differ).

Sociologists have focused on the image-graph obtained by

condensing all the nodes belonging to a group into a single

node (Luczkovich et al. 2003). The image-graph is a

simplified picture of the role of nodes in networks.

Although �block-modelling� has a long tradition in socio-

logy, to our knowledge information criteria have not been

used before to find the best way of dividing networks into

roles.

The definition of roles is evident also by examining the

network itself (Fig. 5). For example, the broom system is a

web obtained by sampling a single plant (Scotch broom,

Cytisus scoparius), its herbivores and their predators. This is

one of the first food webs in which parasites, parasitoids and

pathogens were included. It is sensible then that the

algorithm singled-out the plant (in pink), and divided

herbivores (dark green, cyan) from the omnivores (light

green, violet). Although a full examination of the biological

significance of the groups found by our models is beyond

the scope of this paper, we note that similar patterns are

present in all the networks examined. Figure 6 shows for

example that the only primary producer is in a group by

itself for the Skipwith pond food web.

We drew a parallel between our framework and that of

block-modelling in social networks. Another very similar

model was recently proposed by Newman & Leicht (2007).

In their model, they group together all the nodes that have

similar relations to other nodes in the network, that is they

consider the probabilities uxj that a node belonging to group

x is connected to node j. Our model deals with the

probabilities pxy that a node belonging to group x is

connected to a node in group y. The similarity between the

contributions is carried forward by the fact that Newman

and Leicht used likelihoods to evaluate possible solutions

(Newman & Leicht 2007). The mathematical definition of

groups and the model selection techniques differ however,

defining two separate frameworks. Another approach that

uses likelihoods to identify communities is found in

the preprint �Identifying Community Structures from

Network Data�, by Čopič, J., Jackson, M.O. and Kirman,

A. (en.scientificcommons.org ⁄ 40597570). In this case, a network

is produced according to two probabilities: the probability

of interactions among nodes belonging to the same group

Figure 4 Adjacency matrix for the broom

food web in which the nodes are ordered

according to their group. As explained in the

text, the algorithm seeks a partition of the

nodes into groups that makes the density of

the connections within each sub-matrix

either maximal or minimal.
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and the probability of interaction for two nodes belonging

to different groups. The idea is similar to the one developed

here, although in the Čopič et al. approach there are only

two probabilities (instead of k2) and AIC cannot be used to

discriminate among arrangements (all partitions have the

same number of parameters). Finally, Rosvall & Bergstrom

(2007) used entropy and information to directly partition

networks into communities. If communities were the main

driver behind the patterns we obtained in our analyses, the

submatrices on the diagonal would contain very high

densities of links, while the off-diagonal sub-matrices would

be sparsely connected. The community definition becomes

in this context an extreme case of the division of nodes into

roles. In all the food webs analysed, we found very few

highly connected submatrices on the diagonal: the influence

of roles seems to be stronger than that of communities. To

test this further, we took advantage of the fact that the AIC

can be computed for any partition of the network. We

therefore partitioned the two networks shown in Figs 5 and

6 using two recent community-detection algorithms (Gui-

merà et al. 2007; Rosvall & Bergstrom 2007). We then

contrasted the AIC for the partitions obtained using

community algorithms with those in Table 1. For the

Skipwith pond, the AIC of the group-based model is

404.372, while the �best� partition into communities yields

792.629 using Guimerà et al. or 776.505 using Rosvall &

Bergstrom algorithm. We conclude that in this case the best

partition obtained using communities yields much worse

values than those derived above. The same pattern is found

for the Scotch Broom system (the AIC values are 1081.523,

2125.602 and 2364.942 respectively).

The proposed framework opens several avenues for

future research. We have begun to address the biological

signature behind the groups identified by the algorithm.

Are the groups related to trophic levels, body size or

phylogenetic relationships? A match between biological

characteristics and group structure will support to develop

better models for food webs. A second possible extension

of this work is indeed the development of such models by

considering together group structure and some of the basic

Figure 5 Best configuration for the broom food web. The groups are the same than those in Fig. 4.
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principles of existing models. A third future direction will

address the aggregation problem in food webs. The

algorithm can be used to produce networks of reduced

complexity that retain the basic information about the roles

of nodes in the network (like the image-graph). This might

provide an alternative to the concept of trophic species in

the aggregation and simplification of networks. Ways to

produce such reduced networks should provide valuable

tools for comparing systems of different sizes and levels of

resolution, by reducing the networks to their essential

features.

Consideration of different levels of resolution and a

systematic way to approach the problem of aggregation

would also be useful to explore how network properties vary

as a result of coarser node identity. This may reveal network

properties that are scale invariant and do not depend on the

level of aggregation. Alternatively, properties that depend

strongly on aggregation can be identified. Aggregation

further relates to the important concept of spatial (or

temporal) boundaries in the definition of nodes. For

example, how far should we aggregate the same species in

two different locations in an ecosystem? Network structure

may implicitly take into account spatial information and the

analysis of groups can tell us whether this information is

relevant or should instead be aggregated into a single node.

This aspect relates to the current interest in the role of space

in food web dynamics (Rooney et al. 2008).

The methods presented here are applicable to several

other types of networks since they are valid for both

directed and undirected graphs. We envision future appli-

cations to different social and biological systems including

metabolic networks.
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Erdös, P. & Rényi, A. (1960). On the evolution of random graphs.

Publ. Math. Inst. Hung. Acad. Sci., 5, 17–61.

Goldwasser, L. & Roughgarden, J. (1993). Construction of a large

caribbean food web. Ecology, 74, 1216–1233.
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