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Summary

dTOR (target of rapamycin) and dFoxo respond to changes

in the nutritional environment to induce a broad range of

responses in multiple tissue types. Both dTOR and dFoxo

have been demonstrated to control the rate of age-related

decline in cardiac function. Here, we show that the Eif4e-

binding protein (d4eBP) is sufficient to protect long-term

cardiac function against age-related decline and that

up-regulation of dEif4e is sufficient to recapitulate the

effects of high dTOR or insulin signaling. We also provide

evidence that d4eBP acts tissue-autonomously and down-

stream of dTOR and dFoxo in the myocardium, where it

enhances cardiac stress resistance and maintains normal

heart rate and myogenic rhythm. Another effector of dTOR

and insulin signaling, dS6K, may influence cardiac aging

nonautonomously through its activity in the insulin-

producing cells, possibly by regulating dilp2 expression.

Thus, elevating d4eBP activity in cardiac tissue represents

an effective organ-specific means for slowing or reversing

cardiac functional changes brought about by normal aging.
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Introduction

Single-gene mutations have been demonstrated to extend life-

span in multiple organisms (Tatar et al., 2003; Kim, 2007). Tis-

sue-specific targeted knockdown or overexpression of such

genes can, in some cases, act locally to extend lifespan of the

entire organism (Helfand & Rogina, 2003; Libina et al., 2003;

Giannakou et al., 2004; Hwangbo et al., 2004b), presumably by

regulating long-range signaling molecules. Less is known about

how target tissues respond to such signals to slow age-related

physiological changes. By understanding tissue-specific regula-

tion of aging physiology, it may become possible to dramatically

reduce the negative consequences that aging has on the func-

tion of critical organs.

Cardiac functional changes during aging have been described

in Drosophila (Paternostro et al., 2001; Wessells & Bodmer,

2004; Wessells et al., 2004; Luong et al., 2006; Ocorr et al.,

2007a,b,c; Taghli-Lamallem et al., 2008). Multiple mutations

have been demonstrated to extend cardiac functional parame-

ters in conjunction with extending lifespan (Wessells et al.,

2004; Luong et al., 2006) Significantly, it has also been demon-

strated that cardiac functional aging can be attenuated by virtue

of tissue-specific genetic mutations, and that these effects are

separable from changes in lifespan (Wessells et al., 2004; Luong

et al., 2006; Ocorr et al., 2007a).

Two signaling pathways have been shown to regulate cardiac

functional aging in a tissue-autonomous manner, the insulin sig-

naling pathway (Wessells et al., 2004) and the TOR kinase sig-

naling pathway (Luong et al., 2006). Although both pathways

are interlinked (see diagrams in Oldham & Hafen, 2003; Junger

et al., 2003), it has not been clear how they are coordinated to

regulate long-term cardiac function. As the effects of insulin

and TOR signaling on cardiac aging are remarkably similar, we

decided to examine potential common factors under the control

of both that may account for the cardiac aging phenotype.

A potential area of commonality between TOR and insulin sig-

naling is that of translational control. Both TOR and the insulin

receptor are involved in the control of translation (Oldham &

Hafen, 2003). One important mechanism by which these path-

ways control the rate of protein synthesis is by regulating the

expression or activity of 4eBP (Junger et al., 2003; Puig et al.,

2003; Hay & Sonenberg, 2004; Teleman et al., 2006), a protein

which impedes translation by binding and sequestering an

essential component of the translation initiation complex (Hay &

Sonenberg, 2004; Tee & Blenis, 2005). In Caenorhabditis ele-

gans, lifespan extension by the Foxo homolog daf-16 is partially

dependent on reduction in translation (Hansen et al., 2007), and

activation of translation in rat cardiomyocytes is dependent on

insulin and TOR signaling (Wang et al., 2000).

Here, we examine whether the role of 4eBP downstream of

both insulin and TOR signaling is sufficient to mimic the role of

insulin and TOR signaling in controlling cardiac functional aging.

We find that d4eBP acts autonomously in the heart and in a

downstream fashion of both dTOR and dFoxo to modulate

cardiac aging. This role is specific to d4eBP, as other targets of
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dFoxo and dTOR do not have similar effects. dMyc has no

discernible effect on the rate of age-related cardiac decline,

while dS6K appears to modulate cardiac aging by virtue of its

activity in the insulin-producing cells (IPCs).

Results

dFoxo and dS6k loss-of-function have differential

effects on cardiac aging

Overexpression of dFoxo in adipose tissue of the whole body

(Giannakou et al., 2004) or just in the head (Hwangbo et al.,

2004a,b) has been shown to extend lifespan. Conversely, dFoxo

null mutants have reduced stress resistance (Junger et al., 2003;

Puig et al., 2003) and can block lifespan-extending effects of JNK

pathway activation (Wang et al., 2005). We have previously

established that external electrical pacing of the fly’s heart causes

acute cardiac dysfunction (arrest or fibrillation, collectively

termed ‘failure’) at a rate that is highly age-dependent and thus

serves as a useful marker for cardiac functional aging (Wessells &

Bodmer, 2004; Wessells et al., 2004). Cardiac-specific overex-

pression of dFoxo is known to prevent age-related decline of

cardiac performance (Wessells & Bodmer, 2004; Wessells et al.,

2004), but the effects of systemic dFoxo loss-of-function on

cardiac performance have not been measured. dFoxo21 ⁄ 25 flies,

which are null for dFoxo function (Junger et al., 2003), display

cardiac stress resistance characteristic of wild-type flies (Fig. 1).

dS6K is a kinase that acts downstream of both insulin and

TOR signaling to phosphorylate the ribosomal S6 protein and

regulate translation (Ruvinsky & Meyuhas, 2006). Viable hetero-

allelic dS6K mutants (S6K1-1 ⁄ S6KP1713; Montagne et al., 1999)

show improved late-life cardiac performance, with stress-

induced failure rates at 5 weeks of age that have not increased

compared with those at 1 week, and are significantly less than

in heterozygotes (genotype-by-age, v2 = 11, P < 0.001), which

display normal age-related decline in cardiac stress resistance

(Fig. 1).

dTOR modulates cardiac functional aging tissue-

autonomously

Reduced dTOR function has been previously shown to extend

lifespan in multiple species (Kapahi et al., 2004; Powers et al.,

2006; Pan et al., 2007) and protect youthful cardiac perfor-

mance to advanced ages (Luong et al., 2006). In an effort to

ascertain the relationship between insulin ⁄ Foxo signaling and

TOR ⁄ S6K signaling in controlling cardiac age-related change,

we have altered expression levels of these proteins, both singly

and in combination, in myocardial tissue and assayed hearts for

changes in stress response during the aging process. Using the

myocardial cell-specific Gal4 driver GMH5 (Wessells et al.,

2004), we expressed UAS-dTOR (Hennig & Neufeld, 2002) in the

heart throughout adult life. Increased cardiac dTOR expression

resulted in increased stress-induced failure rate already at young

ages (Fig. 2A, genotype-by-age, v2 = 17, P < 0.0001). This high

failure rate continued to increase during the aging process,

remaining higher than controls at each time point. In flies, as in

mammals, TOR activity is negatively regulated by the amino-acid

responsive protein complex TSC1 and TSC2 (Gao et al., 2002).

Co-overexpression of dTSC1&2 (Potter et al., 2001) in the heart

throughout life greatly reduced the slope of age-related decline

in cardiac stress response. dTSC-overexpressing hearts were

identical in stress-induced failure rate to controls at young ages,

but exhibited only a minimal increase in their stress-induced fail-

ure rate with increased age (Fig. 2A, genotype-by-age, v2 = 10,

P < 0.01; see also Supplementary Table S1 for control outcross-

es). We conclude that TOR activity in myocardial tissue is impor-

tant for regulating cardiac stress sensitivity, and that reduction

in TOR activity promotes maintenance of youthful heart function

during aging.

dS6K can modulate cardiac functional aging tissue-

nonautonomously

As mutations in dS6K reduce age-related cardiac dysfunction,

we examined whether tissue-specific reduction of dS6K in the

heart could provide benefits to cardiac aging. We expressed a

Gal4-inducible dominant-negative dS6K construct (Barcelo &

Stewart, 2002) with the heart-specific GMH5-Gal4 driver. The

progeny of UAS-dnS6K x GMH5 flies had an identical stress-

induced failure rate at young ages to that of flies containing

either GMH5 or UAS-dnS6K constructs alone (Fig. 2B). The

GMH5 x yw and UAS-dnS6K x yw progeny displayed an

increased failure rate with age similar to that of other controls

(Supplementary Table S1). Interestingly, UAS-dnS6K x GMH5

progeny displayed an increase in their failure rate with age at a

slightly shallower slope than their controls. However, the failure

rate of the UAS-dnS6K x GMH5 progeny was not significantly

different from that of UAS-dnS6K x yw flies. This suggests that

this dnS6K is either less active in the heart than other tissues (see

Fig. 1 dS6K mutants have improved cardiac stress resistance. dFoxo21 ⁄ 25

flies show cardiac stress resistance similar to wild-type flies (yw data not

shown) and heterozygotes (dFoxo x yw) at both 1 week and 5 week of age.

dS6K mutants show no increase in stress-induced failure rates between 1 and

5 weeks of age (v2 = 11, P < 0.001). Heterozygotes (S6KP1713 x yw) show a

normal decline in cardiac stress resistance between 1 and 5 weeks.
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below), or dS6K activity in myocardial tissue does not account

much for the effect of systemic reduction of dS6K in cardiac

aging, and that that dS6K may (primarily) play an indirect role

via other tissues.

To determine how S6K might act indirectly in other tissues to

regulate cardiac aging, we first expressed dominant negative

versions of each gene with an adipose-specific driver, lsp2-Gal4

(Hennig & Neufeld, 2002; Cherbas et al., 2003). Neither

dominant-negative dTOR (Hennig & Neufeld, 2002) nor domi-

nant-negative dS6K had a significant effect on the slope of

age-related decline when expressed in the fat body (Fig. 2C;

Supplementary Table S1), as compared with outcrossed domi-

nant-negative constructs without the presence of an inducing

driver construct. Although a negative result with overexpression

constructs is not conclusive by itself, manipulation of dTOR and

dS6K in the fatbody does not alter cardiac aging under normal

(dietary) conditions.

In vertebrates, S6K responds to glucose levels to control pro-

liferation of pancreatic b-cells, thus regulating insulin produc-

tion (Briaud et al., 2003). As flies produce insulin-like peptides

(DILPs) from specialized neuronal cells (Rulifson et al., 2002),

we tested the possibility that dominant-negative S6K may

affect heart function via the neuronal IPCs. We utilized an IPC-

specific driver (dilp2-Gal4; Ikeya et al., 2002) to express dnS6K

and measured stress-induced heart failure rate. The progeny of

UAS-dnS6K x dilp2-Gal4 flies showed a somewhat higher fail-

ure rate than controls at early ages. However, this failure rate

did not increase with age and was even seen to be lower in

5-week-old flies compared with 1-week-old flies (Fig. 2C,

genotype-by-age, v2 = 12, P < 0.001). This profile is strikingly

similar to that seen in loss-of-function dS6K mutants (Fig. 1)

and in flies with ablated IPCs (Wessells et al., 2004), suggest-

ing that interference with S6K in the IPCs might affect cardiac

function by virtue of lowering systemic DILP levels. To assess

this possibility, we measured the mRNA levels of DILP2 in flies

expressing dnS6K in the IPCs. We found that expression of

dnS6K in the IPCs leads to a reduction in the mRNA levels for

dilp2 (Fig. 3A, unpaired, two-tailed t-test, P < 0.01, n = 3).

This reduction is similar to that seen in dS6K mutant flies

(Fig. 3A). Consistent with this result, we measured ‘blood’ glu-

cose levels and found a significant increase compared with

controls (Fig. 3B, unpaired, two-tailed t-test, P < 0.01, n = 8).

The reduction in dilp2 levels in these flies is not a consequence

of loss of IPCs, as flies expressing dnS6K driven by dilp2-Gal4

exhibit normal size IPC cell clusters (Fig. 3 C,D). We also

expressed dnS6K in the adipose tissue and did not see a

change in dilp2 RNA levels (data not shown). Thus, reduction

of dS6K activity in IPCs by multiple methods leads to lowered

dilp2 RNA levels, which correlates with resistance to pacing-

induced cardiac failure with age nonautonomously. We do not

know at this point, whether it is the reduction of dilp2 expres-

sion or of another factor that is critical in modulating

age-dependent cardiac performance via the IPCs in a S6K-

dependent manner.

Taken together, these results are consistent with a model

where both dTOR and dFoxo act directly in myocardial tissue

(A) 

(C) 

(B) 

Fig. 2 Cardiac TOR overexpression results in an

increase in stress-induced heart failure. (A) Cardiac

TOR overexpression (Hennig & Neufeld, 2002)

resulted in an increase in cardiac stress-induced

failure rate at young ages compared with the

control group (blue) (week 1: v2 = 17,

P < 0.0001). The failure rate at each time point

remained higher than that of control flies (GMH5 x

yw). Cardiac dTSC1-2 overexpression (yellow)

generated similar cardiac failure rates to the

control group at young ages, but significantly

reduced age-related decline (genotype-by-age,

v2 = 10, P < 0.01). (B) Cardiac overexpression of

UAS-dnS6K x GMH5 did not significantly affect the

slope of age-related decline compared with

controls. (C) Adipose overexpression of UAS-

dnTOR (brown), UAS-dnS6K x yw (blue), and UAS-

dnS6K x Isp2-Gal4 did not significantly affect the

slope of age-related decline compared with

controls. Expressing UAS-dnS6K x dilp2-Gal4 (light

blue) impeded age-related decline in cardiac stress

failure rates (genotype-by-age, v2 = 12,

P < 0.001). UAS-dnS6K x dilp2-Gal4 had a higher

failure rate at week 1 compared with the control

(dark blue) (v2 = 29, P < 0.0001) although this

decreased over time while the control group

increased (genotype-by-age, v2 = 54, P < 0.0001).

Statistics: two-way ANOVA followed by a

Bonferroni comparison.
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to regulate cardiac aging. dS6K appears to be of lesser

importance within the heart itself, but plays an indirect, per-

missive role in the IPCs controlling the amount of dilp2 or

other factors the heart is exposed to. Action of dTOR and

dS6K in adipose tissue appears to be dispensable for the reg-

ulation of cardiac functional aging under normal dietary

conditions, but seems to mediate effects on the heart when

the flies are fed a high fat diet (R. Birse; R. Bodmer and

S. Oldham, unpublished data).

d4eBP acts downstream of dFoxo and dTOR in a

tissue-autonomous fashion to modulate cardiac

functional aging

We wanted to know what downstream factors in cardiac tis-

sue were necessary for dTOR and dFoxo to exert their effects

on cardiac functional aging. As dTOR activity promotes rapid

functional aging and dFoxo activity slows functional aging,

we looked for candidate downstream factors that are both

negatively regulated by dTOR activity, and positively regu-

lated by dFoxo activity. One such candidate is 4eBP, which,

in flies as in mammals, acts to reduce levels of mRNA trans-

lation in the cell by binding to the translation initiation fac-

tor, Eif4e (Jastrzebski et al., 2007), which is known to

modulate aging in worms (Syntichaki et al., 2007). d4eBP is

regulated transcriptionally by dFoxo (in flies; Junger et al.,

2003; Puig et al., 2003), and its activity is controlled post-

transcriptionally by TOR-mediated phosphorylation (Pause

et al., 1994; Beretta et al., 1996; Brunn et al., 1997; Burnett

et al., 1998). d4eBP has also been shown to interact geneti-

cally with dFoxo to control stress response and lifespan

(Tettweiler et al., 2005).

d4eBP null mutant flies exhibit an early increase in stress-

induced failure rate compared with controls, in which the P-ele-

ment causing the mutation has been reverted (Fig. 4A,

genotype-by-age, v2 = 15, P < 0.001). Then we investigated

whether d4eBP and its regulatory target, dEif4e, were sufficient

to control cardiac functional aging in flies. Cardiac-specific

expression of UAS-d4eBP (Miron et al., 2001) in adult flies dra-

matically reduces age-related decline in cardiac performance.

Stress-induced failure rate of UAS-d4eBP x GMH5 progeny was

as low at 5 weeks as at 1 week (Fig. 4B, genotype-by-age,

v2 = 1, P = 0.4). Expression of UAS-Eif4e in the myocardium, as

well as cardiac-specific expression of three independently gener-

ated UAS-inducible insertions upstream of the dEif4e locus

(eIF-4E, Krupp et al., 2005), also abrogated a gradual decline in

cardiac stress response. However, in this case, flies throughout

the 5 weeks of testing all showed a maximal failure rate in

response to stress, with 1-week-old flies showing high stress-

induced failure rate normally associated with 5-week-old flies

(Fig. 4B, v2 = 22, P < 0.0001).

We next asked whether these phenotypes were specific to

the 4eBP ⁄ Eif4e complex and its targets, or whether any pro-

tein capable of altering growth and cellular translation could

generate the same effect. We expressed the Drosophila Myc

gene in the myocardium and tested cardiac stress response

over time. Myc is a highly conserved regulator of cellular

growth and translation (de la Cova & Johnston, 2006). In

Drosophila, dMyc has recently been demonstrated to be a

direct target of dFoxo, and to act downstream of both dTOR

and dFoxo to regulate ribosome biosynthesis in response to

nutritional levels (Teleman et al., 2008). However, UAS-dMyc

(Johnston et al., 1999) showed no effect on cardiac func-

tional aging when overexpressed in the heart (Fig. 4B). We

(A)

(C) (D)

(B)

Fig. 3 S6K modulates heart aging by regulating

DILP2 levels. (A) Decreased dilp2 mRNA levels in

the S6K mutant and by insulin-producing cell (IPC)

expression of dnS6K. (P < 0.05, unpaired, two-

tailed t-test, n = 3). Decreased dilp2 expression

levels with dnS6K expression are shown fold

change relative to control. (B) Expression of dnS6K

in the IPCs leads to increased glucose levels

(P < 0.001, unpaired, two-tailed t-test, n = 8)

compared with control. Glucose levels are shown

fold change compared with control. These

experiments have been performed two times

independently. Asterisks indicate significant

difference from dilp2-Gal4 alone. (C,D) Expression

of dnS6K in the IPCs does not lead to a change in

the number of IPCs. Anterior is on the left and

posterior on the right. The two sets of the IPC

clusters are marked by circles and the IPCs by small

arrows (7 per cluster). (C) Control genotype:

(dilp2-Gal4) yw; dilp2-Gal4, UAS-GFP ⁄ +.

(D) Experimental genotype: (dilp2-Gal4; UAS-dnS6K)

yw; dilp2-Gal4, UAS-GFP ⁄ +; UAS-dnS6K ⁄ +.

Images are at 400· and bar is 0.1 mm.
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conclude that dEif4e activity is specific and sufficient to pre-

maturely induce symptoms of cardiac functional aging, while

its negative regulator, 4eBP, is sufficient to slow or even

block such symptoms.

As overexpression of either dFoxo or d4eBP decreases pacing-

induced heart failure at old age, we asked if tissue-specific RNAi

knockdown could prematurely increase pacing-induced heart

failure. Cardiac expression of RNAi constructs for either dFoxo

(A) (B)

(C) (D)

(E) (F)

Fig. 4 Cardiac overexpression of d4eBP and deif4e flattens the slope of stress-induced failure rate during aging, while tissue-specific knockdowns of dFOXO and

d4eBP increase stress-induced heart failure. (A) d4eBP null mutants exhibit a high failure rate at young ages and have a significantly different pattern of age-related

change to revertant controls (genotype-by-age, v2 = 15, P < 0.001). (B) Cardiac overexpression of d4eBP showed a significantly flattened slope of stress-induced

failure. Indeed, the change in failure rate with age is no longer statistically significant (genotype-by-age, v2 = 1, P = 0.4). Expression of dEif4e also showed a

flattened slope throughout the time period, but showed a higher failure rate compared with controls at each time point (at week 1 v2 = 22, P < 0.0001). Three

independently generated upstream insertions of a UAS-inducible expression element immediately upstream of the 5¢UTR of the dEif4e locus were crossed to

GMH5-Gal4 and produced similar results. Results shown are from dEif4eGS2783x GMH5-Gal4. UAS-dMyc showed no significant effect on the slope of age-related

functional decline in cardiac tissue compared with the controls. (C) Cardiac RNAi knockdowns of both Foxo and 4eBP showed significantly higher failure rates at

week 1 compared with their respective controls (UAS-dfoxo-RNAi x GMH5: v2 = 6, P < 0.02; UAS-4eBP-RNAi x GMH5: v2 = 14, P < 0.001). No significant change

in the high failure rate occurred in either genotype throughout 5 weeks. (D) Cardiac co-expression of d4eBP and dTOR in flies had a similar profile of age-related

failure as expression of d4eBP alone (genotype-by-age, v2 = 1, P = 0.3). Likewise, cardiac co-expression of deif4e and dTSC (yellow) was not significantly different

from dEif4e overexpression alone (genotype-by-age, v2 = 0.5, P = 0.5). (E) Co-expression of dFoxo and d4eBP was not significantly different than expressing

d4eBP alone (genotype-by-age, v2 = 3, P = 1.0). UAS-dEif4e; UAS-dfoxo x GMH5 flies showed a higher failure rate than UAS-dEif4e; UAS-dfoxo x yw at 1 week

(v2 = 41, P < 0.0001). No significant change in stress-induced cardiac failure of UAS-dEif4e; UAS-dfoxo x GMH5 flies occurred during 5 weeks of aging. (F) A

repetition of cardiac expression of dfoxo-RNAi produced similar results with a significantly higher failure rate at 1 week of age than is seen during cardiac

expression of d4eBP or outcross controls (F-test, P < 0.001). Co-overexpression of d4eBP with dFoxoRNAi completely eliminated the adverse effect of dFoxo RNA

reduction. Statistics: two-way ANOVA followed by a Bonferroni comparison (except in F).
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or d4eBP increased stress-induced cardiac failure rates signifi-

cantly at young ages compared with controls. Furthermore, little

age-related decline occurred in such flies, with 1-week-old flies

showing a similar stress response as 5-week-old flies (Fig. 4C,

UAS-dFoxo-RNAi x GMH5: v2 = 6, P < 0.02; UAS-4eBP-RNAi x

GMH5: v2 = 14, P < 0.001). By contrast, outcrossed control

strains carrying the same RNAi constructs without an inducible

driver showed a normal pattern of age-related increase in stress-

induced failure rate with age (Fig. 4C, see also Supplementary

Table S1). We conclude that lowering either dFoxo or d4eBP

function is sufficient to induce hearts to respond to stress as if

they were already aged.

As d4eBP expression has the same effect on cardiac stress

response during aging as does inhibition of dTOR activity, we

wanted to confirm whether d4eBP acts downstream of dTOR in

this context or whether the two effects were independent. If the

effects of d4eBP and dTOR are independent, then co-expression

of both genes in the heart should result in an intermediate

phenotype. Conversely, if the two act in a linear pathway, then

the phenotype of flies co-expressing both genes should resem-

ble the phenotype of the more downstream gene. Flies

co-expressing d4eBP and dTOR had slightly elevated stress-

induced failure rates as young flies. This failure rate did not

increase with age, however, and even declined somewhat

(Fig. 4D, genotype-by-age, v2 = 1, P = 0.3). This phenotype is

similar to that of flies overexpressing d4eBP alone (Fig. 4B),

consistent with the idea that d4eBP acts downstream of dTOR

to regulate cardiac functional aging. A complementary

experiment also produced results supportive of this model.

Co-overexpression of dEif4e and the dTOR antagonist dTSC1-2

produced a phenotype identical to that of dEif4e overexpression

alone (Fig. 4B,D, genotype-by-age, v2 = 0.5, P = 0.5).

As d4eBP is a transcriptional target of dFoxo, we also tested

whether d4eBP might account for the beneficial effects of dFoxo

expression in aging hearts. To ask this question, we co-

expressed the d4eBP binding partner dEif4e along with dFoxo. If

the primary role of dFoxo in slowing cardiac functional aging is

to up-regulate 4eBP, thus lowering dEif4e activity, then this co-

expression should phenotypically mimic expression of dEif4e

alone. If dFoxo acts instead through multiple independent tar-

gets, the prediction would be that heart performance would still

benefit from dFoxo expression even in the presence of abundant

dEif4e function. Flies co-overexpressing dEif4e and dFoxo exhib-

ited elevated stress-induced failure rates already at 1 week of

age and failure rates remained at a high level at later ages

(Fig. 4E, 1-week; v2 = 41, P < 0.0001). This profile matches

exactly the phenotype of flies expressing dEif4e alone in heart

tissue (Fig. 4B). Meanwhile, flies carrying both expression con-

structs without an inducible driver had a wild-type profile of

age-related decline (Fig. 4E). These results are consistent with a

model where up-regulation of dEif4e is sufficient to bypass the

effects of dFoxo expression on cardiac functional aging.

We also tested whether dFoxo and d4eBP may have beneficial

effects separately from their relationship with each other. We

co-expressed the two and asked whether any additive benefit

would result from combining the two, or whether, conversely,

d4eBP expression would already provide the maximum possible

benefit that dFoxo could provide to aging cardiac tissue. Flies

co-expressing d4eBP and dFoxo in cardiac tissue exhibited a sim-

ilar profile of slowed functional aging to flies expressing either

gene alone (Fig. 4B,E and Wessells et al., 2004; genotype-

by-age, v2 = 3, P = 1.0). Furthermore, co-overexpression of

d4eBP rescues the high failure rate phenotype caused by cardiac

expression of dFoxoRNAi in 1-week-old flies (Fig. 4F).

An inherent caveat of co-overexpression studies is that it is dif-

ficult to rule out the possibility that the effects seen can be

attributed to unexpected differences in expression ⁄ activity levels

between constructs. However, in this case, expression of several

insulin ⁄ TOR pathway components in five different cardiac over-

expression combinations (progeny of dEif4e ⁄ dFoxo and dFoxo ⁄
d4eBP – Fig. 4E; dTSC ⁄ dEif4e and d4eBP ⁄ dTOR – Fig. 4D;

dFoxo-RNAi ⁄ d4eBP – Fig. 4F) all produce results that argue in

the same direction, suggesting that coincidental differences in

expression level are unlikely to be a deciding factor. We con-

clude that overexpression of d4eBP alone is capable of reproduc-

ing the entire effect of dFoxo expression on cardiac functional

aging, confirming the previously established epistatic relation-

ship between dFoxo and d4eBP (Junger et al., 2003).

Expression of dEif4e in the heart mimics the age-

related increase in cardiac arrhythmias

The cardiac response to electrical pacing-induced stress has

been a useful marker for measuring age-related decline of car-

diac function in fly populations. Several other measurements of

cardiac function have also been found to decline in aging flies

(Paternostro et al., 2001; Ocorr et al., 2007a,b,c; Wessells &

Bodmer, 2007; Taghli-Lamallem et al., 2008), and these corre-

late well with indices of vertebrate cardiac functional changes

during aging (Jones, 2006; Judge & Leeuwenburgh, 2007). If

d4eBP and dEif4e are critical factors in regulating the rate of car-

diac aging, then the expectation would be that a change in

d4eBP or dEif4e function should affect multiple indices of

cardiac performance in aging flies.

We measured the effects of dEif4e expression in the myocar-

dium on the age-dependence of both heart rate and incidence

of arrhythmias. When compared with out-crossed controls,

hearts overexpressing dEif4e exhibit a significant increase in

heart period (HP) (corresponding to a lower heart rate) at young

ages, which is similar to that observed at older ages (Fig. 5A,B).

This increase in HP is because of an increase in both the systolic

as well as the diastolic interval during a heart beat (Fig. 5C,D).

Next, we determined the incidence of arrhythmias, which nor-

mally increases steadily with age (Ocorr et al., 2007a). The level

of cardiac arrhythmia is calculated as the standard deviation of all

the HPs recorded for a fly normalized to its median HP, thereby

generating an ‘arrhythmia index’ (AI) that quantitatively repre-

sents the level of cardiac beat-to-beat variation (Ocorr et al.,

2007a). We find that increased cardiac dEif4e expression at

young ages caused an elevated incidence of arrhythmias, similar
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to that normally observed in old flies (Fig. 5A,B,E). Remarkably,

at older ages these arrhythmias increase even further with ele-

vated dEif4e levels (Fig. 5A,B,E), suggesting an accelerated car-

diac deterioration at advanced ages. The increased AI in these

flies was primarily because of an increased variability of the dia-

stolic intervals (Supplementary Fig. S1). In addition, bouts of

fibrillation occurred with high frequency in dEif4e overexpressing

hearts, especially in older flies (Fig. 5B), and such events did not

occur in control flies until after 3 weeks of age. Taken together,

these results indicate that the presence of high levels of dEif4e in

cardiac tissue is sufficient to promote premature manifestation

of several markers of age-related cardiac functional decline.

Discussion

Invertebrate model systems have become an informative arena

in which to study regulation of ‘functional aging’ or ‘health-

span’, in addition to the long-standing utility of flies and worms

as models for research into regulation of lifespan. Indeed, inter-

ventions that extend lifespan do not necessarily extend function-

ality of critical tissues (Burger & Promislow, 2006; Bhandari

et al., 2007). Conversely, tissue-specific interventions can pro-

tect organ functionality with minimal effect on lifespan (Wessells

et al., 2004). In an effort to further understand the regulation of

functional aging of cardiac tissue, we have used the fly system

to test direct genetic interventions in cardiac tissue, as well as

indirect interventions that affect cardiac function by virtue of

their roles in other tissues. We find that d4eBP is a critical target

downstream of both dFoxo and dTOR in cardiac tissue. Over-

expression of d4eBP is sufficient to protect cardiac function

against functional decline during aging, and can rescue the

effects of TOR overexpression in the heart. Likewise, the binding

target of d4eBP, dEif4e, is sufficient to hasten cardiac aging

when expressed in the myocardium, and such expression can

(A)

(B)

(C)

(D)

(E)

Fig. 5 Effects of heart-specific overexpression of dEif4E. A,B) Representative M-mode records showing the movement of the heart tube walls (y-axis) over time

(x-axis). Blue bars indicate the diastolic diameter of each heart and the red bars indicate the systolic diameter. Records for 1-week-old flies (A) show predominately

regular heart beat patterns as the GMH5 heterozygotes (as in Ocorr et al., 2007a), whereas most flies overexpressing UAS-dEif4e in the heart show arrhythmic heart

beat patterns. Approximately 50% of the UAS-dEif4e heterozygotes exhibited slightly arrhythmic patterns, which may reflect a partial leakiness of the UAS transgene

in the absence of the GMH5 driver. Records for 4-week-old flies (B) all show an increased arrhythmicity, but flies with heart-specific overexpression of dEif4e exhibited

a dramatic increase in the incidence of sustained systoles (fibrillation). (C) Overexpression of dEif4e resulted in a significant increase in the systolic intervals (SI) in both

young (**P < 0.01) and old flies (*P < 0.05) compared with controls (one-way ANOVA and Tukey’s multiple comparison post-test). There was no significant effect

of age on SI (P > 0.05, two-way ANOVA). (D) Overexpression of dEif4e also significantly increased diastolic intervals (DI) in young flies (**P < 0.01, one-way ANOVA

and Tukey’s post-test). There was no age-dependent effect on DI for the group as a whole but there was a significant effect of age on the DI of the control groups

(P < 0.05, two-way ANOVA). (E) The arrhythmias observed in the M-modes in (A) can be quantified as the arrhythmicity index (AI), which is the standard deviation of

all heart periods in each record normalized to the median heart period for each fly (Ocorr et al., 2007a). The average AI for all the flies in each genotype is shown. This

index shows a significant age-dependence (P < 0.05, two-way ANOVA) and is also significantly higher in 4-week-old flies with heart-specific overexpression of

dEif4e compared with controls (*P < 0.05, two-way ANOVA and Bonferroni post-test). The AI is also significantly increased in hearts from 1-week-old flies where

dEif4e is overexpressed compared with GMH5 controls (P < 0.05, Student’s t-test). The mean AI in outcrossed controls (UAS-dEif4e ⁄ +) is intermediate between the

other groups consistent with what is seen in the M-modes. All error bars are ± SEM, for each bar n > 20 flies, and data are from a single experiment.
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counteract the benefits of impeding either insulin or TOR signal-

ing in heart tissue. Thus, these results highlight the promise of

using Drosophila genetics to determine how the insulin and TOR

pathways interact to regulate the function of tissues and organs,

including the heart (model in Fig. 6).

As our results are derived from overexpression and co-over-

expression studies, we cannot formally conclude that d4eBP is

fully epistatic to dTOR and dFoxo in this context. However, it is

clear that overexpression of d4eBP has a potent protective effect

on long-term maintenance of cardiac function during aging and

represents a target of great potential for therapeutic interven-

tions to protect the aging heart.

The Drosophila insulin-TOR pathways have numerous effects

on cellular metabolism and maintenance, including fat storage

(Bohni et al., 1999; Clancy et al., 2001; Tatar et al., 2001; Luong

et al., 2006), glucose metabolism (Rulifson et al., 2002; Luong

et al., 2006), oxidative stress sensitivity (Wang et al., 2005; Patel

& Tamanoi, 2006), starvation stress sensitivity (Teleman et al.,

2005; Tettweiler et al., 2005), autophagy (Scott et al., 2004),

and cell growth (Oldham et al., 2000; Zhang et al., 2000; Co-

lombani et al., 2003; Junger et al., 2003; Puig et al., 2003).

Indeed, d4eBP is a critical mediator of the effects of dFoxo on

cardiac functional aging. In addition, 4eBP may be a generalized

mediator of Foxo function as part of a feedback loop that con-

trols its own translation and that of the insulin receptor (Marr

et al., 2007). Each of these effects is likely to play a significant

role in lifespan regulation. Which of these effects are critical for

the regulation of cardiac functional aging? Neither resistance to

starvation or oxidative stress are necessary processes for

extension of cardiac functional aging, as hypomorphic dTOR

mutations that do not enhance resistance to either starvation

nor oxidative stress nonetheless extend cardiac function to

advanced ages (Luong et al., 2006). Cardiac expression of

another important target of dFoxo and dTOR, the cell growth

regulator dMyc (Teleman et al., 2008) also had no effect on

cardiac aging.

Interestingly, cardiac expression of a dominant-negative

dS6K, another regulator of ribosomal activity, did not signifi-

cantly slow cardiac performance decline with age, even though

S6K can act systemically to influence cardiac aging, as it does for

lifespan in worms by regulation of translation levels (Hansen

et al., 2007). Thus, it does not seem that tissue-specific regula-

tion of a cell growth program per se is the predominant factor

controlling cardiac functional aging. Rather, downregulation of

translation by d4eBP appears to have effects in cardiac tissue

that are uniquely aging-related and distinguishable from other

potent translational regulatory proteins.

An attractive candidate for the primary mechanism down-

stream of d4eBP in the aging heart may be regulation of fatty

acid metabolism. Changes in fatty acid substrate utilization have

been associated with age in rodent hearts (Sample et al., 2006).

Expression of genes involved in fatty-acid metabolism are up-

regulated both in dietary-restricted rodent hearts (Dhahbi et al.,

2006; Linford et al., 2007) and in fasted Drosophila larvae (Bauer

et al., 2004; Gershman et al., 2007), while such genes are down-

regulated during normal aging (Linford et al., 2007). Mutations

in dTOR that slow cardiac functional aging also alter fatty acid

metabolism (Luong et al., 2006). dFoxo also directly regulates

lipid metabolism through its transcriptional target, dLip4 (Viher-

vaara & Puig, 2008). Furthermore, mutations in Drosophila fatty

acid transporter genes dramatically alter late-life cardiac perfor-

mance (S. Morley and R. Wessells, unpublished observation).

Even though cardiac interference with dS6K function did not

affect cardiac aging, dS6K hypomorphic mutants exhibit dra-

matic improvement in late-life cardiac function. Tissue-specific

expression of dnS6K in IPCs was able to replicate the cardiac

benefits of dS6K partial loss-of-function mutants, suggesting

that S6K activity can dramatically alter cardiac function with age

by acting nonautonomously. Moreover, IPC expression of dnS6K

leads to a reduction in the mRNA levels for dilp2. These findings

are reminiscent of ablating the IPC neurons, which also leads to

a block of the age-dependent increase in pacing-induced heart

failure (Wessells et al., 2004). However, it is not clear at this

point what the exact roles of the different DILPs are in modulat-

ing aging (Broughton et al., 2005; Min et al., 2008), and

whether there is redundancy between them. As it may be, regu-

lation of insulin signaling is clearly critical autonomously within

the heart, and possibly also nonautonomously within the IPCs

via S6K activity, in the control of cardiac aging.

In conclusion, we favor a model (Fig. 6) in which d4eBP ⁄ dEif4e

act autonomously within the heart to modulate cardiac func-

tional aging. There are also nonautonomous influences medi-

ated by (adipose) tissues and secondary signaling hormones that

may modulate overall lifespan and ⁄ or specifically the age-

dependent decline of heart function. Importantly, insulin-like

peptides themselves are some of these secondary signals, and

insulin-TOR signaling has an important tissue-autonomous role

in regulation of cardiac functional aging, which is likely via a

d4eBP ⁄ dEif4e output, as our data suggest. dS6K, on the other

Fig. 6 Model of autonomous and nonautonomous effects of insulin ⁄ TOR

signaling. dFoxo and dTOR both act systemically in adipose tissue to promote

growth and regulate lifespan. Both of these proteins also act autonomously in

target tissues of insulin signaling, such as the heart, where dFoxo and dTOR

are both necessary for normal cardiac senescence to occur. A critical target of

both dTOR and dFoxo in this context is d4e-BP, which also acts autonomously

in cardiac tissue to regulate cardiac senescence. By contrast, dS6K seems to

play a prominent indirect role in the regulation of cardiac aging by virtue of its

activity in the insulin-producing cells and the expression of insulin-like

peptides, which in turn, signal to the heart.
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hand, also plays a nonautonomous role in regulating expression

of insulin-like peptide 2, and possibly other factors, in the IPCs.

Whether it is the reduction in dilp2 expression or of another fac-

tor that is responsible in abrogating the functional decline of

cardiac function with age remains to be determined.

Given the complex and flexible role of Foxo and TOR in regu-

lating the response of metazoans to changing environmental

conditions, discovery of limited, tissue-specific, effects of these

proteins on the aging process offers exciting therapeutic possi-

bilities. By increasing levels of 4eBP activity in postmitotic adult

cardiac tissue, and keeping them high throughout life, it may be

possible to prevent or reduce the cardiac functional decline that

comes about as a consequence of normal aging, while avoiding

systemic alterations in metabolism.

Experimental procedures

Stress-induced cardiac failure

Flies were aged in the same way as for lifespan. Once each

week, a minimum of 50 males and 50 females were removed

from the cohort and subjected to an electrical pacing protocol

as previously described (Wessells & Bodmer, 2004). The percent-

age of flies that responded to pacing by entering either fibrilla-

tion or arrest was charted and expressed as ‘% failure rate’.

These fibrillation events resemble stress-induced ‘sudden death’

in vertebrates, and are not necessarily reflective of resting heart

dysfunction. Rather, they are a marker for stress sensitivity. As

gender did not significantly affect failure rate, combined male

and female data was analyzed by multivariate regression for

genotype by age effect.

Q-RT-PCR analysis

Total RNA was extracted from six adult flies per genotype (done

in triplicate biological samples) by using TRIzol (Invitrogen, Carls-

bard, CA, USA) and purified with the RNeasy kit (Qiagen,

Valencia, CA, USA) for adult flies. After treatment with DNaseI,

first-strand cDNA was transcribed with SuperScript III (Invitrogen)

by using oligo(dT) primer, followed by second-strand synthesis.

Quantitative PCR was carried out by using the LightCycler Fast-

Start DNA Master PLUS SYBR Green I kit (Roche, Basel, Switzer-

land), using primers that spanned the DILP2 and Actin 5C introns.

DILP2 message levels were normalized to the actin control

(primer sequences and cycle conditions available upon request).

Metabolic assay

Glucose levels were detected using a glucose oxidase assay

(Pointe) as described (Luong et al., 2006).

Image-based analysis of fly heart physiology

Image analysis of beating, semi-intact heart preparations from

1-, 2-, 3-, 4-, and 5-week-old adults was performed according

to Ocorr et al. (2007a). M-modes were generated using a Mat-

Lab (The MathWorks, Natick, MA, USA) based image analysis

program. Briefly, a 1 pixel-wide region is defined in a single

frame of a high-speed digital movie that encompasses both

edges of the heart tube; identical regions are then cut from all

consecutive movie frames and aligned horizontally. This pro-

vides an edge trace that documents the movement of the heart

tube walls in the y-axis over time in the x-axis.

Heart periods are defined as the time between the ends of

two consecutive diastolic intervals. The ‘AI’ was calculated as

the standard deviation of all recorded HPs for an individual fly,

normalized to the median HP for that fly (Ocorr et al., 2007a).

Large standard deviations in HP for a single fly are a reflection of

nonrhythmic contraction ⁄ relaxation cycles.
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