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ABSTRACT

The results of numerical computation of the radiation patterns produced by a
spherical antenna array are reported. Each antenna element is assumed to produce
circularly polarized radiation having a cosine type of pattern. It is found that the
pattern stays fairly constant as the beam is steered over the hemisphere. For wide
spacing between the elements large subsidiary lobes appear in the pattern. From
the calculated patterns an estimate is made about the directivity of the array. Pat-
terns are also calculated for the case when no phasing is introduced in the individual
elements.

An approximate method is developed to explain the subsidiary lobes in the pat-
tern produced by a circular array of isotropic elements when the spacing between
the adjacent elements is of the order of or larger than a wavelength.

The basic principles of a signal processing method are described which
eliminate the use of individual variable phase shifters necessary for steering the
beam in conventional antenna arrays.

The results of experimental studies of the log conical spiral antenna and a
VHF power dividing circuit are reported.
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FOREWORD

This report was prepared by The University of Michigan Radiation Laboratory
of the Department of Electrical Engineering under United States Army Electronics
Command Contract No. DA 28-043 AMC-01499(E). This contract was initiated
under United States Army Project No. 5A6 79191 D902 01 04 "Azimuth and Elevation
Direction Finder Study". The work is administered under the direction of the
Electronics Warfare Division, Advanced Techniques Branch at Fort Monmouth,

New Jersey. Mr. S. Stiber is the Project Manager and Mr. E. Ivone is the Contract
Monitor.

The material reported herein represents the results of the preliminary investi-
gation into the study of the feasibility of designing a broadband circularly polarized
direction finder antenna with hemispherical coverage.
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I
INTRODUCTION

This is the second report on a study to determine the possibility of developing
a broadband VHF azimuth and elevation direction finder. In the first report (Sengupta,
et al, 1965) we discussed theoretically the possibility of using an antenna array con-
sisting of individual elements placed on the surface of a sphere, The present report
discusses in more detail the different aspects of the radiation characteristics of
such a spherical array. The plan of the report is as follows.

Chapter II deals with the radiation patterns produced by antennas placed on the
surface of a.sphere. It is assumed that each antenna element produces circularly
polarized variation. With an assumed expression for the individual pattern, the
general expression for the radiation pattern as given in the previous report is recast
into a form suitable for numerical computation, Calculated radiation patterns in two
orthogonal planes and for different scan angles are given. The effects of increasing
the diameter of the sphere (which increases the spacing between the elements) on the
radiation patterns are also investigated. It is found that for wide spacing between the
adjacent elements large subsidiary lobes appear in the pattern. A few patterns are
given for the case when no phasing is introduced into the individual elements. The
chapter closes with a discussion on the expected directivity of the array.

In Chapter II an attempt is made to understand the behavior of large subsidiary
lobes in the pattern produced by an array when the elements are widely spaced on a
curved surface. The model chosen for the study is a circular array of isotropic
elements with the spacing between the adjacent elements being of the order of or
larger than a wavelength. We have developed an approximate procedure to predict
the dominant subsidiary maxima in the patterns. It is hoped that the results of the
investigation will be of use in understanding the case when the antenna elements are
widely spaced on a curved surface.
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The bulk and inertia of microwave and VHF phase shifters have stimulated an
investigation of a signal processing method which does not require an individual
variable phase delay for each antenna element. Chapter IV describes briefly the
principle of such a system which eliminates the phase shifters at the cost of a certain
loss in signal-to-noise ratio.

Chapter V gives the results of some experimental work. The results of a
study of the VSWR properties of a log conical spiral antenna are given. A VHF
power dividing circuit is developed for feeding a number of elements from a single
transmission line. Its performance is discussed briefly.
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RADIATION CHARACTERISTICS OF THE SPHERICAL ARRAY

The radiation characteristics of a spherical antenna array are discussed in
this chapter. The array consists of circularly polarized antenna elements placed
on the surface of a sphere. The radiation pattern expressions for such an array
are discussed briefly at first. Numerically computed patterns produced under
different cases are then discussed. On the basis of the calculated patterns the
expected directivity of such a type of array is also discussed.

2.1 Theoretical Expressions for the Radiation Pattern

The theoretical basis of analyzing the radiation patterns produced by a spherical
antenna array has been discussed (Sengupta, et al, 1965). It was shown that the com-
plete expression for the total electric field f; (6, §) produced at the far field point
P(R, 0, ¢) by an array of antenna elements placed on the surface of a sphere of radius

a, is given by

> - - v dn.lkacos o'
E<e,¢)-zn: Zm: s E__(6',9e , 2.1)

1(wt-kR)

where the factor e /R has been omitted. The notations used in eq. (1) are:

the fixed coordinate system (6, §) and the dummy system (6', §') were
as discussed in the First Quarterly Report ,

cos §' = sin a_sinf cos(f-B _ )+cos o cos 6 , (2.2)
n nm n

o, Bnm are the coordinates of an antenna element on the spherical
surface; they are determined by the particular choice of element
distribution,

6nm is a conditional on-off switch which will be discussed later,
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fnm(e’, g") 1s the element pattern to be discussed below,

k = 27 /x 18 the propagation constant.

Each antenna element is assumed to produce circularly polarized radiation
fields. The individual antenna field is assumed to be given by

Enm(e', gn= (69,-1 3¢')-cos 6" e-i¢' ) (2.3)

6
6' is restricted to the range -7 /2 < 6'< 7 /2 . This means that the individual pattern

is a unidirectional cosine type. A pair of crossed dipoles excited in phase quadrature

where € and €¢' are unit vectors in the corresponding directions. In (2. 3) the angle

and placed A/4 above a conducting ground plane will produce a field pattern which is
approximately given by (2. 3). Helical and log-conical antenna radiation patterns

may also be approximated by (2. 3) under some special circumstances. Equation (2. 3)
may also be expressed in (6, §) coordinates as follows:

- "i(¢'+Vnm)
' dn= (& -ia 1
E 6" gn= (e“9 ie¢)0086 e , (2.4)

where cos 6' is given in (2. 2),

sing sm(¢-3nm)

8in 6 cos ancos(¢-Bnm)-cos 6 sin a

tang" (2. 5)

sin oznsin(¢ B,

nm sina cos §cos(§-B__)-cos a_sinb (2.6)
n nm n

tan v

Let§ =¢'+v___ . Then it can be shown that
nm nm
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(cos a_+cos 6) sin(g-f )

tan g m™ Bin a_8in 6+(cos 6 cos an+1)cos(¢-8nm) @7
Thus, (2.1) can be written as
E (6,p=-(8 ot 8¢)A(6, n (2.8)
where
AG.9-) IR e1 [kwnm-g‘“"] , (2.9)
T E

where Y m=C08 6'. In (2. 8) ‘A(e, ¢)| may be looked upon as the pattern produced by
the array.

If the antenna elements are phased such that the pattern produces a maximum in
the direction 6, §,, then the pattern expression should be modified into

‘ i ka(d/ -( -n..)
P [ e .
n m
where
Anm= wnm(eo, ¢o)=cos 6,C08 a+8in6 sin ancos(ﬂo-Bnm) , (2.11)
sina sin(¢ -B

o 'nm
Mam™ nm S0 ¢ )=tan’ I:ina cos 0 cos(¢ B -cosansinej . (2.12)

A detailed description of the element distribution may be found in the first quarterly
report (Sengupta, et al, 1965).
The quantities governing the distribution are

a = 90°- n 15° |, (2.13)

(o]
72 m (2. 14)
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with the exceptions BOm=Blm and Bﬁm= 0 and where -6<n<6and m is an integer

ranging from 0 to values as high as 25 depending on n .

2.2 Calculated Patterns of the Spherical Array
When the element distribution given by (2. 13) and (2. 14) is introduced to the
array factor in (2. 10) we obtain

6 ikat _-A  )-(E  -n )
A(s, §)= ZE %:) 5. e Eﬂ nm “nm’ “nm nnm] (@. 15)
n:— m:

where
M(n)=5(6- [n])-1, forn=11,*2 +3 t4,t5
M (¥6) =0
M(0) = M(1) .

The value of M(n) is fdund from (2. 14) and the two exceptions, ﬁOm and BGm‘ govern
M(0) and M(* 6).
The on-off condition switch § is controlled by the factors Yy and A .
nm nm nm
For a hemisphere aperture distribution centered at 90, ¢o

1, ifA > O0Oandy >0
nm nm=
= (2.16)
nm

0, otherwise

Physically, in (2.16), ¢ > 0 means that only those elements which are visible from
point 6, § contribute to the sum in (2. 15). The quantity A > 0 means that only
those elements which lie within 90° of the point 6 _, ¢o contribute to (2. 15). The size
of the activated aperture is controlled by Anm' Another example of an activated
aperture is Anm> .86 which is an  aperture that covers 30° in all directions from
point (6, ¢0). It is noted that the physical meaning of A - and Vg 0 (2.16) is
completely independent of their meaning in (2. 15) even though they are the same

parameters.
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Equation (2, 15) has been computed in two orthogonal planes. Cut I is the
polar plane which always passes through 6=0° and is determined by
¥=go

6=6,+p 5° P=01,2,...,72 (2.17)

The second pattern (Cut II) is taken along the oblique cut which is a great
circle orthogonal to the plane defined by (2. 17) and is described by

v =p5°
6 = cos~1(cos v cos §,) (2. 18)
d-= ¢o+sin"1 (sinvy/sing)

When 6=0° in Cut II, it is necessary to specify that §=§,. Both of these cuts pass
through the center of the patterns (6, §,).

Equation (2. 15) and all its related conditions have been programmed for com-
puter evaluation. The output of the program gives A(6, §) real, A(6, §) imaginary,
L A6, 9 and |AGe, 92/ |A(6,, §)|* in db. 1t is important to arrange the program in
an efficient manner because the time required to evaluate (2. 15) could be prohibitively
long. Currently, it takes about 8 seconds to compute A(6, §) 72 times for one pattern
over Cut I or Cut II.

2. 3 Patterns with Phase Control

Figures 1 - 4 show the normalized patterns with phase control according to
eq. (2.15). A hemisphere aperture distribution (Anm > 0) which has between 76 and
80 active elements was excited for the data in the first four figures. The small
variation in the number of active elements is due to the slight change in element
distribution seen from different positions (8, bo)-

A comparison between Cuts I and II is presented in Fig. 1 for the case a/ =1.5,

602900, and Q)O:OO. Here the polar cut follows a path along the meridian Q:Q)O and the

oblique cut follows a path along the equator, 6 =90°. The 3 db difference in the first
sidelobe levels in the two patterns of Fig. 1 is unusually high compared to the cases
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FIG.2: Variation in Patterns with Phase Control for Beam Steering Over
6 =00, 35° and 90° (Cut I, a/x=1.5, and §_=00).
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when 6,=0° and 6,,=35° (Fig.2). This discrepancy is due to a difference in element
distribution along the meridan and the equator. Steps are being taken to correct
this variation in the element distribution.

There are minor changes in the patterns as the beam is steered over the
hemisphere. Figure 2 shows three patterns for the polar cut when 60=0°, 35° and
90° while the rest of the parameters are held constant. The main beam is the
same for the three patterns, but the first sidelobe for 90=90° differs by 3 db from the
other two cuts.

Figures 3 and 4 illustrate the effect of a/) or ka on the radiation patterns
for Cut I when 6_=0° and §,=0°. In Fig. 3, a/x is 1.5 and 3.0 which correspond
to 0. 41 and 0. 8 surface spacing between the elements respectively. A subsidiary
lobe of amplitude -14db resembling a grating lobe appears near 6-60=90° when
a/x = 3.0. More subsidiary lobes are present when a/A=8.0 (2. 13\ surface spacing)
as seen in Fig. 4 where a/\ is 3.0 and 8. 0.

After studying the computed patterns of the spherical array we conclude that
typically the first sidelobe level is -18 db and the second is -24 db. For a/x >3
additional subsidiary lobes appear in the pattern.

2. 4 Patterns without Phase Control

Figures 5, 6 and 7 show the patterns produced by the array when no systematic
phasing is introduced into the individual antenna elements. This means that Anm=nnm=
in the exponent of eq. (2.15). However, the term Anm is retained in (2. 16) as the
condition governing the aperture position and size or the number of activated elements.
The parameters 6, ¢o in this case specify the axis of symmetry of the activated
aperture. The following table gives the number of active elements as Anm is varied.

=00 ¢ =0°
Anm(eo 09, §,=0° No. of Active Element
>0 76
>0.70 26
> 0. 86 16

12
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FIG. 7: VARIATIONS IN PATTERNS WITHOUT PHASE CONTROL FOR
BEAM STEERING OVER 90:00, 35° and 90° (CUT I, a/x-=1.5,
p =0° AND A _=0.86)°.
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It can be seen from Figs. 5 and 6 that when 6=0 0=0° a sharp minimum occurs
at the position 6-6,=0° of the patterns. This is in contrast to the case with phase
control when there is a maximum along 0-90=0°. The position of the minimum is
found © be independent of a/A but it is dependent on the section of the sphere which
is activated. This can be seen from Fig. 7 which shows the patterns in arbitrary
scale when different portions of the sphere are activated. This suggests that by
rearranging the angular position of each element about its own axis, it may be pos-
sible to produce patterns which become less dependent on the position of the activated

area. This needs more investigation.

2.5 Directivity
According to Kraus (1950) the directivity D of an antenna is defined as

2
41 A__ (6,9
D = max . (2.19)

21 o7
j j IA(, $)l%sin6 do dg
0 0

The array factor A(6, §) in this case is too complicated to integrate, so the following

approximation is made.

2
D= 2lAmax(e)‘ (2. 20)

180°
A6 iﬁ IA(G)I2 sind

00

where it has been assumed that A(6) is symmetric with respect to §. The constant
increment A9 must be chosen smaller than the angular width of major pattern fluctuations.
If most of the power is in the main lobe of the pattern, a simpler expression for

directivity is

D = 41, 253/9B¢B (2.21)

16
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where GB and ¢B are the half-power beam widths of the two cuts measured in

degrees.

Directivity calculations have been made for the two patterns in Fig.3. For
the case afA=1,5, D = 19,13 db according to eq. (2.20) and 20 db according to (2. 21).
For the pattern with a/x=3.0, D=20.5 db by (2. 20) and 26 db by (2.21) . Due to the
subsidiary lobe in the case of a/\=3 the simplified expression in (2. 21) is not valid.
It is also noticed that the width of the subsidiary lobe is broader than the main beam.
This can be explained by the fact that the aperture has decreased in size because
part of it is no longer visible at §-6, near 90°,

17
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m
SUBSIDIARY LOBES IN THE PATTERNS OF NONPLANAR ARRAYS

In Section 2. 3 it has been found that large subsidiary lobes resembling the
grating lobes in the case of uniform planar or linear arrays appear in the patterns
of the spherical array for wide spacing between the elements. The behavior of these
large amplitude lobes is different than those in the planar uniform arrays. In this
Chapter we report on the results of a study of the space factor of a circular array
of isotropic elements when the spacing between the adjacent elements is of the order
of or larger than a wavelength. Although the particular case discussed below is
idealized, it is hoped that the results of the investigation will be useful in understanding

the case when the elements are widely spaced on a curved surface.

3.1 Circular Array Pattern

During the past few years many papers have been published on the patterns
produced by circular arrays of isotropic elements (Knudsen 1956; Neff and Tillman
1960). However all of them were concerned with the case when the spacing between
the adjacent elements is less than \/2 or in other words, for a given diameter of the
array, the number of elements is chosen to be sufficiently large so as to satisfy
this condition. This condition amounts to replacing the array of discrete elements
by a continuous current ring of appropriate phase whose pattern does not have any
grating lobe. The above approximation breaks down in cases when the element spacing
is of the order of or larger than /2. In the following sections we investigate the pat-
tern under these circumstances. Only the pertinent results are reported here; the
details of the analysis may be found in Sengupta (1966).

The array is assumed to consist of isotropic elements, placed uniformly along
the circumference of a circle. The elements are excited with equal amplitudes but
their relative phases are so adjusted that the resulting pattern has a maximum along
a certain direction. Let us assume that the number of elements used is M and the
radius of the circular array is8 a. The plane of the array is in the xy-plane of a

18
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Cartesian coordinate system xyz with the origin at the center of the circle which

is also taken to be the phase center of the array. It can be shown that the pattern
produced by such an array s given by

A(6, ¢)=Jo(r)+2 :JMn(r)cos I:Mn(g - E)-J , if M is even , (3.1)
n:

a
AG, DTz D I, (r)cos [2Mn(]-E)]
n=1

@
n
+21 § Iygizasn) P08 (M1 -8)], M 18 0dd,  (3.2)

where

J Mn is the Bessel function of the first kind and order Mn,

r2=(ka)? sin®0+sin®g -2 sin 6 sin eocos(¢-¢o)—_] , (3.3)

sind sing-sing sind,
tan § = [: ] , (3.4)

sinfcosf-sind cosf

6, ¢0 specify the position of the maximum in the pattern.

If M is sufficiently large, both (3. 1) and (3. 2) may be well approximated by the
first term J o(r) only; the rest of the terms are referred to as the correction terms
and are usually negligible if M is very large. Note that the spacing in wavelengths
between the adjacent elements is given by 8)= ka/M . When the element spacing is
comparable to or larger than a wavelength the effects of the correction terms in

(3. 1) and (3. 2) cannot be neglected.

19
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If 6,=7/2 and 6-7/2, i.e. we wish to find the pattern in the plane of the array,
then it can be shown that (3. 1) and (3. 2) reduce to

g-9 -
A(§)=J,(2ka sin -:-2—9 M2 : JMn(2ka sin ¢—222)cos [Mn L‘;’:’ ] , (3.5)
n=

when M is even,

A(P)=J o(2ka sin g—-zg? M2 J 2Mn(2ka sin S-‘%&))com EVIn(Mo)]
n=

-21 S J (2kasin¢ fo
x; M(2n+1)

when M is odd . (3.6)

)sin Ew(z 1) (e ¢+¢° ]

s

It should be mentioned that the exact pattern in this case for both M even and odd
is given by

M ika{cos(%m-sl)-cos (%-gm—glo)}
Ag= D e

m=1

3.7

Analytically one can obtain more information about the pattern from eqs (3. 5) and
(3. 6) than from (3.7). In the next section we study eq. (3.5) in greater detail.

3. 2 Pattern in the Array Plane : M even

Consider the case when ¢°=0 . Thus we obtain the following from (3. 5)
i g ? o Mnf
A(§)=J,(2ka sin 5 )+2 2 JMn(Zkasin 5 Jeos == . (3.8)
If M>> 2ka then the pattern can be approximated as follows

A(f) == J (2kasin g ) . (3.9)

20
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In this case the sidelobes in the pattern correspond to the secondary maxima of
the zeroth order Bessel function in (3,9). The tale below gives the positions and
levels of the first few sidelobes compared to the main beam at ¢=0.

Position Sidelobe Level
(2ka sin §/2) (db)
3.8 - 7.90
7.0 -10.45
10,2 -12,05
13. 3 -13.22

The half-power beamwidth defined as the angle between the two half-power points
of the pattern as predicted by (3. 9) is

1.13

= -1 ——
4 sin (2ka

(3.10)

2¢1'2
It can be shown that the beamwidth is given by the same expression (3.10) when the
beam maximum is adjusted to be along the direction ¢=¢O. One finds in this case the
beamwidth is independent of the steering angle ¢o'

Figure 8 shows the exact pattern calculated by using (3. 7) with =0, M=8 and
ka=m (i.e. a=\/2). The spacing between the elements is sl=0. 3925. The approxi-
mate pattern calculated from (3. 9) is also shown in Fig.8. The agreement between
the two is very good except for values of ¢ near 7. For the same values of ka if
M is made larger, the approximation should be better. Thus it may be concluded
that if s, <<1/2 the pattern will not have any maxima other than those predicted

A
by the zeroth order Bessel function in (3. 9).

3.3 Pattern for Large Spacing

Figure 9 shows the exact pattern with 6 =7 /2, ¢ =0, M=8 and ka=27(a=).
In this case the spacing between the adjacent elements is sA= 0.785 and M < 2ka.
As compared to Fig.8 (s)t < 1/2) the pattern in this case develops some large
subsidiary maximum. The zeroth order term can only explain fairly well the main
beam and the first sidelobe but it becomes a very poor approximation beyond the

first sidelobe. The pattern calculated by taking the first two terms in (3. 8) is
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also superposed on Fig.9. The agreement between the two is found to be good. The
rest of the terms in eq. (3. 8) contribute very little because of the fact that for all
those terms the arguments of the Bessel functions are progressively smaller than the
orders. Hence, for constant M as 'ka' is made larger, more and more terms will
be needed for better approximation. This suggests that by studying the variation of the
first few terms the locations and the amplitudes of the dominant subsidiary lobes
may abe approximately predicted.

The correction terms in (3. 8) take on large values whenever the argument
(2ka sin g ) takes on values comparable to Mn. We may then expect to have subsidiary
maxima in the pattern in the region of § where one of the correction terms become large.
With large M and ka one needs tables of higher order Bessel functions which are
not readily available. We need to investigate the functions particularly in the region
where both the order and argument are large and nearly equal. In this region we
can make use of the Fock approximation to Bessel function developed in diffraction
theory (Logan, 1957). For large order and argument we can write

Ai(t)
2ka sin g > 3.11
( )% (-"))73 ( )
where

p = 2ka 8in g (3.12)

¢ = Moop

175
(2)

and Ai(t) is the Airy function defined as

Ai(t)= }r / cos (3‘3—3+tx)dx , (3.14)
0
Tables of Airy functions are available in the literature. Thus, in the neighborhood
of a subsidiary maxima the pattern can be presented as
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> Alt)  Mn
Alf) I (2ka sing)+2 :ﬁ; 5 o 2_9‘ : (3.15)

®

Equation (3. 15) is a highly convergent series. The first two maxima of Ai(t) are
given by
Ai(t_)=40.5356 t, = -1.02

1 1 (3. 16)
Ai(t2)=-0.4174 t2 = -3.25 )
Using the values of t1 or t2 , we can solve (3. 13) for values of p where there may
be a subsidiary maximum,. Taking t1=—1.02, the required p will be obtained from
the real root of the following cubic equation

y3-3py-2q =0 , (3.17)
where
1.02
p =ﬁ—' , q=Mn/2 , (3.18)
273
p=yS . (3.19)

The real root of (3.17) is

y = Zﬁ‘cosh g , cosh 1 =/_.—-—g—- . (3.20)
p

For each value of n, p will be different, thus we may account for the positions of the

various subsidiary lobes by using (3. 12). If for some value of n, eq. (3. 12) predicts

a complex value of §, then we should solve (3. 17) for p withp = 3.25/21/3- 3 (.e.

ty= -3.25) and thereby obtain the position of the maximum. Once the location of the

maximum i8 determined we obtain the approximate maximum value of A(§) by summing

the first two or three terms. The positions and levels of the subsidiary maxima as

calculated in the above manner are shown in the following table for the case when

ka = 47, M=8 .
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Subsidiary Approximate Exact
Max. Position Amp, Position Amp,
1 45°48'  0.861 460 0. 863
2 92056'  0.891 92° 0. 881
3 - - 136° 0. 862

Figure 10 shows the exact pattern produced for the case M=8, ka=4r (a=2)).

In this case the spacing between the elements is s_=1.57. Here the subsidiary

A
lobes are almost equi-amplitude and are quite large in value.

3. 4 Discussion

In the .above we have discussed the pattern produced by a circular array of
even number isotropic elements when the element spacing is comparable to wave-
length. From the analysis and study of a few exact patterns computed, we make
the following comments.

3. 4.1.

For element spacing s, <1/2 the space factor may be approximated by the

zeroth order Bessel functionkof proper argument. In this case the pattern is deter-
mined by the radius of the array only and is independent of the number of elements
M, as long as M is large. The half-power beamwidth of the pattern is independent
of the beam steering angle ¢o- This is in contrast to the uniform planar case where
the beam deteriorates with more and more steering.

3.4.2.

Subsidiary lobes resembling the grating lobes appear in the pattern when
s)t >1 /2 . These lobes grow in amplitude as s is increased by keeping M constant.
We have calculated the pattern for various values of ka with M=8, As ka is increased
more and more subsidiary lobes appear in the pattern but their amplitudes at first

grow, and than again fall down for larger values of s There appears to be some

X

particular value of s, for a given M where the subsidiary maxima take on their

A
largest value. This needs more investigation. There is no case, however, where

the subsidiary maxima is as large as the main beam.
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FIG. 10: RADIATION PATTERN OF A CIRCULAR ARRAY. M=8, a=2x .
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3.4.3.

For the same value of s>L if M is increased the maxima of the subsidiary lobes
are decreased. This is because the first maximum value of JM(p) decrease with
increasing M (c.f. eq.(3.8) ).

3.4.4.

We have discussed the pattern produced in the plane of a circular array of
isotropic elements, Only the case of even number of elements has been discussed.
From eq. (3. 3) one may expect the pattern to be better when M is odd. This will
be investigated in the future.

For spacing between the elements of the order of or greater than A / 2 there
appear subsidiary maxima in the pattern resembling the familiar gra{ing lobes in the
uniform planar arrays with large element spacing. However, the behavior of these
subsidiary lobes are different from the latter case. We have developed an approxi-
mate procedure to predict subsidiary maxima and plan to investigate this method

further.
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CORRELATION PROCESSgG OF THE OUTPUT DATA

The bulk and inertia of microwave and VHF phase shifters have stimulated an
investigation of a signal processing method which does not require individual
variable phase delay for each antenna element. In this chapter we shall describe
briefly a system which eliminates the phase shifters at the cost of a certain loss
in signal-to-noise ratio.

It is customary to specify the directional properties of an antenna array by
its 'radiation pattern’ obtained by calculating the field intensity produced at a distant
point by the sum of the contributions from all the antenna elements. By reciprocity
this pattern also specifies the performance of the array for receiving purposes. How-
ever, for the present analysis it 18 preferable to derive the array properties from its
response to an incident plane wave,

If the antenna elements are distributed over a conducting spherical surface,
the direction-finding problem involves three different steps:

1) Solution of the boundary-value problem of a plane wave incident on a con-
ducting sphere for all desired angles of incidence, frequencies and polarizations.

2) Sampling of the field along the spherical surface by a finite number of antenna
elements.

3) Processing the output from all the elements in order to obtain the angle of
incidence and general performance characteristics, such as resolution, antenna
pattern, etc.

We are concerned here with the third item, the first operation of which can
be described as calculating from the array signals an approximate value of the
correlation between the unknown incident signal and a standard signal of known
angle of incidence and the same frequency as the incident signal. The square of
this approximate correlation is identical to the corresponding value of the conven-
tional radiation pattern of the array.

The data for the standard waves are permanent parts of the program or memory

of the signal processing equipment,
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In order to present the principle of the correlation processing as simply and
clearly as possible, we shall consider scalar waves and isotropic antenna elements
only, i.e. disregarding individual element patterns and polarization effects. An
extension to a more general and realistic treatment is straightforward and is
strictly analogous to the analysis presented in the first quarterly report (Sengupta
et al, 1965).

4,1 Correlation Analysis of the Oufput Data

Let ai j be the matrix of elements distributed over the array surface and X j(t)
the output voltage of each element, which is assumed to be approximately mono-

chromatic, i.e.

xij(t) = Zijcos (wt +¢ij ) (4.1)

where Zij is a constant or a slowly varying function of time, This output voltage

X j(t) is correlated with two unit voltages 90° out of phase but having the same
frequency as the incident wave. The resulting correlation components

L (t) cos wt dt (T >> 27 /) (4.2)
151 T | Xj
T
1
Yij- —,i.—/xﬁ(t)sin wtdt (4. 3)
T

contain all the amplitude and phase information about the incident wave. This
general approach was already implied by Woodward (1953) and has more recently
been suggested by Kendall (1963).

Now let

(t)=Si jcos(w t+ +90) (4. 4)

843 ij

be the signals produced by a wave of known angle of incidence and known amplitude.
Then, also the 'weighting factors'

1
pij- Ey 4sij(t)ws wtdt (4.5)
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1
Qlj = /s j(t)sim.at dt (4. 6)
T

are known functions of the angle of incidence.

The correlation between the incident wave and the reference wave is then
proportional to

- 1 :
R= D T / WUTUY (4.7)
T

1]

Because of the unknown phase difference 6, between the two waves, we need also
a 'conjugate' correlation

R = 1 r
R = ZT /xu(t)sij('r%»%)dt (4.8)

1] T
Considering Z i and S iy as time invariants we obtain the following relations
_1
xij_ 5 Zijcos ¢1j (4.9)
Y =iz sin ¢ (4.10)
iy 274§ i) ’
1
P1j isijcos (] j+G )=- S jsin(eij+60+ 5 Ty (4.11)
Q.= -3 S, 8in(6, +6 )= - - S, cos(9, +0 +7T) (4.12)
iy 271 ij "o 2 1 ij o 2 ’

R= % X, P+, Ql;l (4.13)
R- Zﬁ:z[}(uQﬂ Y Pil] (4. 14)

In order to remove the dependence on 60 the following alternate expressions may be
derived.
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R=cos 6, gé Z,; ijcots(¢ -6, )+sin6 %; i usin(si

=A cosf +Bsing = p sin y (4. 15)

ﬁ:coseozi;. Lz i 1jsm(¢ij -6, )-8inf Z Zij ljcos(¢1j -6,.)

=B co86,,-A sinf = pcos Y . (4.16)

Except for a normalizing factor, the amplitude of the correlation coefficient of the

two waves consequently is

12 12
p= [Rz Rz]l [:“2”32] =2 Z [1j 1j+Y1jQ1j—J Zz [xijQij Yijpia(

(4.17)
and its phase is

-1

| >

- -1 R
¥ =6, ttan tan R . (4.18)
The quantities R and R are simply weighted sums of the data X ., and Y,,. The

1) 1j
weight factors P,  and Q,, provide the means for scanning.

Complete sequentiizjl search of the whole hemisphere is accomplished by an
appropriate program of Pij(t) and Qij(t)' The maxima in p or p2 observed during
scanning indicate the peaks of the main lobe or side lobes of incident signals.

Equations (4. 17) and (4. 18) represent a transformation back from Cartesian
to polar variables; the radius vector p represents the correlation that would have
been obtained if the phase discrepancy 6, were made equal to zero.

It is important to note that p is independent of the phase difference 6,. As
long as all data are processed simultaneously, a small frequency difference or phase
slip can be tolerated. The reciprocal of this frequency difference should be large in
comparison with the integration time T. The square of p plotted versus scanning
angle traces exactly the conventional radiation pattern of the antenna array, except

for a scale factor,
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Figure 11 shows a block schematic of a correlation system for direction finding.
A certain amount of errors in the radio-frequency circuits can easily be compensated
for if the weight factors P and Q are determined by calibration rather than by
theoretical computation.

4. 2 Discussion

The advantages of this signal-processing procedure are;

1) A minimum of rf plumbing. No rf phase shifters are required. All phase
adjustments are performed by means of the (Cartesian) weight factors P and Q.

2) all-electronic scanning is obtained by varying P and Q by electronic means
(analog or digital computer). Since a number of correlators may operate in parallel,
more than one 'scanning spot' may be operating independently at the same time. The
scanning speed depends (at each frequency) primarily on the integration time in egs.
(4.2) and (4. 3).

It appears advisable to perform the first correlation (4. 2) and (4. 3) at inter-
mediate frequency so that the two reference voltages with 90° phase difference have
a fixed frequency.

The primary disadvantage of this system is that each and every antenna element
requires a certain amount of equipment, converter, correlator and possibly ampli-
fiers. This affects not only the cost and complexity but also the overall noise level
of the system, since independent noise sourced are introduced into each element
channel. However, a competitive system based on wide-band variable phase shifters
is not without reflections and other channel losses which reduce the signal-to-noise
ratio. In addition, the individual channel control equipment increases cost and
complexity.

Some quantitative or semi-quantitative conclusions regarding the signal-to-
noise ratio at the output of an antenna array can easily be formulated in terms of the
antenna gain. If the main-lobe signal-to-noise ratic at the output of the system were
predominantly determined by a uniform 'sky noise' of distant origin, the signal-to-
noise improvement over an isotropic antenna would be equal to the antenna gain.
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On the other hand, if the signal-to-noise ratio were limited by the noise generated
in the first electronic components in each channel, an improvement of the square
root of the antenna gain could be expected, since in the main lobe the signal contri-
butions add coherently while the independent noise powers add noncoherently.

An ideal phase-shifting array with all the electronic components in a single
common channel would theoretically realize an improvement equal to the antenna
gain also when the receiver noise predominates. For the correlation system the
actual improvement is somewhere between the two above extremes, tending toward

the higher one at the lower frequencies and vice versa.
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EXPERIMENTAL STUDIES

5.1 Log Conical Antennas

Two log conical antennas have been assembled and tested with various balun
configurations. Only VSWR data has been collected and in general the results are
similar to those discussed in the first quarterly report by Sengupta et al (1966). A
typiocal plot of the data is shown in Fig. 12.

The two log conical antennas constructed differed from the previous log conical
in that the conductive filaments were fabricated from conventional hook-up wire. If
we designate these antennas A and B, the filament of A was No. 16 plastic insulated
hook-up wire, and the filament of B was No. 16 uninsulated hook-up wire. Both of
these antennas were tested using Duncan-Minerva tapered baluns. The data for antenna
B tended to be slightly better and is shown in Fig. 12,

Presently it is felt that it will be difficult to improve the VSWR of the conical
antenna much below 3:1/50 ohms without a complex impedance transformation net-
work. To obtain a better insight into the feasibility of matching the conical antenna
over a broadband (5:1 or 10:1) to a VSWR of less than 2:1/50 ohms, it will be neces-
sary to obtain additional impedance data. This could best be obtained by the use of a
simple narrow band balun configuration that can be tuned to several of the frequencies
within the desired band. The impedance obtained at these spot frequencies would be
employed in an investigation of matching techniques which would be applicable to ob-
taining the desired VSWR characteristics (< 2:1/50 ohms) for the log conical antenna.

It appears that the log conical antenna is not ideally suited for use on the azi-
muth elevation directionfinder antenna because of its physical configuration. It is felt,
however, that the above impedance study is warranted, since electrically the antenna
has some desirable features. Because of the limitations of the log conical antenna for
the present application, an order has been placed to obtain a commercially available
10:1 band flat spiral antenna.
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FIG. 12: VSWR CHARACTERISTICS OF LOG CONICAL ANTLENNA (B) WITH

DUNCAN-MINERVA BALUN
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5.2 Development of a Power Divider
An eight-way power divider has been designed, fabricated and tested. The

power divider was fabricated from copper clad laminate material (copper clad both
sides) and is shown in Figs. 13 and 14. The design is based on strip transmission
line theory. The input of the strip transmission line is located at the end with a single
connector. To achieve the 8:1 power division, a tapered transition (balf-wavelength
long at the lowest frequency of interest) is employed. At the input the tapered section
is designed to be 50 ohms and the output is designed to be 6.25 ohms. At the 6.25 ohm
section of the tapered line, eight 50-ohm arms are attached. A typical set of VSWR
data for the 8-way power divider is shown in Fig. 15. This data shows the power
divider to have a VSWR of less than 2:1 over a 10:1 band, a performance considered
to be satisfactory for the present study.
5.3 Discussion

Because of the problems that are expected to be associated with broadband
circularly polarized antenna elements, consideration is being given to the use of
narrow band circularly polarized crossed dipole antennas as the elements for an ex-
perimental model of a section of the azimuth elevation direction finder. Since the
characteristics of circularly polarized crossed dipole antennas are well known, it is
felt that a better comparison between experimental and theoretical data can be achieved.
Essentially, circularly polarized crossed dipoles consist of two dipoles oriented nor-
mal to each other and fed in quadrature. This antenna configuration is relatively simple
and is well documented in the literature, and therefore will not be covered in further
detail here. The principal advantage of the crossed dipole is its well-behaved elec-

trical characteristics over a relatively narrow band of frequencies.
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FIG.15: MICROSTRIP 8-WAY POWER DIVIDER (TERMINAL SIDE)
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