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Summary: A combination of approaches – gene mapping, biomarker
analysis, and studies of signal transduction – has helped to clarify the
mechanisms of age-related change in mouse immune status and the
implications of immune aging for late-life disease. Mapping studies
have documented multiple quantitative trait loci (QTL) that influence
the levels of age-sensitive T-cell subsets. Some of these QTL have effects
that are demonstrable in young-adult mice (8 months of age) and others
demonstrable only in middle-aged mice (18 months). Biomarker studies
show that T-cell subset levels measured at 8 or 18 months are significant
predictors of lifespan for mice dying of lymphoma, fibrosarcoma, mam-
mary adenocarcinoma, or all causes combined. Mice whose immune
systems resemble that of young animals, i.e. with low levels of CD4þ

and CD8þ memory T cells and relatively high levels of CD4þ T cells, tend
to outlive their siblings with the opposite subset pattern. Biochemical
analyses show that T cells from aged mice show defects in the activation
process within a few minutes of encountering a stimulus and that the
defects precede the recognition by the T-cell receptor of agonist peptides
on the antigen-presenting cell. Defective assembly of cytoskeletal fibers
and hyperglycosylation of T-cell surface glycoproteins contribute to the
immunodeficiency state, and indeed treatment with a sialylglycoprotein
endopeptidase can restore full function to CD4þ T cells from aged donors
in vitro.

Introduction

The immune system is the gerontologist’s playground.

Immune systems fail with age in clinically significant ways,

can be dissected in vitro and re-assembled in vivo, and are the

obsession of legions of professional immunologists who,

because they do not care that much about aging, are often

willing to share cell lines, mouse stocks, antibodies, and ideas.

This article presents illustrations of ways in which the momen-

tum and accomplishments of the immunological community
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can be brought to bear on three problems in aging research:

genetic control of late-life changes, pathobiology of aging and

cancer, and the cell biology of immune failure.

Genetic dissection of T-cell subset changes in aging mice

Our genetic analyses employ mice of a stock called UM-HET3,

created by a four-way cross in which CB6F1 females are mated

to C3D2F1 males. The individual animals are the genetic

equivalent of full siblings; no two pups are the same. Each

individual shares a random 50% of its genetic endowment

with every other animal in the population, receiving

approximately 25% of its alleles from each of the four grand-

parental strains, BALB/cJ, C57BL/6 J, C3H/HeJ, and DBA/2 J.

DNA from each mouse is genotyped at 100–300 polymorphic

alleles to acquire a moderate resolution picture of which

chromosomal segments it has inherited from each of the

four grandparents. Each mouse is then evaluated for pheno-

typic traits of interest, for example, levels of age-sensitive T-cell

subsets, and a permutation-adjusted regression analysis then

looks for loci at which one of the alleles has a greater than

random level of association with a trait of interest.

We have used these methods (1, 2) to document genetic

controls of seven T-cell subsets: CD4þ and CD8þ cells, CD4þ

and CD8þ memory cells (using CD44 level as an index of

memory cell differentiation; abbreviated CD4M and CD8M),

CD4þ naı̈ve cells (using CD45RB as index), and subpopula-

tions of CD4þ and CD8þ cells that express P-glycoprotein

(referred to as CD4P and CD8P). These latter two subsets are

of special interest, because their proportions increase drama-

tically with age (3), even in naı̈ve T cells in T-cell receptor

(TCR) transgenic (Tg) mice in which conversion of naı̈ve to

memory cells is greatly slowed (4), and because CD4P cells are

anergic in tests of proliferation, cytokine production, and

calcium signal generation (5–7). Catalogs of alleles that mod-

ulate each of these T-cell subsets (1, 2) are now available, and

they will be of use in studies of genetic controls of late-life

immune function and susceptibility to neoplastic and auto-

immune illnesses and immunodeficiency states. Here, we use

them to illustrate two broader themes: (i) stage-specific effects

on age-sensitive traits and (ii) use of composite indices of age-

dependent T-cell patterns.

The top panels of Fig. 1 show examples of loci that influence

age-sensitive T-cell subsets, but they do so through actions

that affect mice in the first third of the lifespan and remain

consistent at least through 18 months of age. The upper left

panel, for example, shows that mice that inherit the B6 allele

linked to the chromosome 12 marker D12Mit105 tend to have

higher levels of CD8M cells. This difference is apparent in mice

evaluated at 8 months of age, and it is still present, and to the

same degree, when the mice are tested at 18 months of age.

The upper right panel shows another genetic polymorphism

between BALB/c and B6 mice, this one linked to the D12Mit34

marker, which modulates CD4M levels at both ages tested. In

this case, it is the BALB/c allele that is associated with the

higher memory cell levels. In both these cases and in others

tabulated in the references cited, the levels of the T-cell subsets

differ in young adult mice and then shift in an allele-

independent way as the mice get older. In contrast, the

bottom two panels of Fig. 1 show examples of loci where

polymorphisms have no influence on subset levels in young

adults (i.e. 8-month-old mice), but instead modify the rate at

which the subsets change in the ensuing 10-month period.

The left panel shows the effect of a chromosome 9 quantitative

trait locus (QTL) on CD4P cell levels, in which the polymorph-

ism is inherited from the (C3H�DBA/2) F1 parent, and the

right panel shows a maternal locus that influences the rate of

change of CD8þ cells in aging mice. Similar analyses have been

used to map polymorphisms that regulate age-sensitive B-cell

subsets in the same population of UM-HET3 mice (Labrie et al.,

manuscript submitted), T-cell proliferation responses (Miller

et al., unpublished observations), and a wide range of other

phenotypes including hormone levels (8), cataracts (9), bone

fragility (10), and lifespan (11, 12).

T-cell subset levels as predictors of lifespan and cancer risk

The experimental protocol used to monitor T-cell subset levels

in aging UM-HET3 mice does not require that the mice be

killed, and thus it permits a test of the idea that those mice

whose immune systems show the most advanced signs of

aging are indeed likely to die at earlier ages than those mice

with younger looking T-cell subset patterns. There are two

underlying models, not mutually exclusive. The ‘biomarker’

model imagines that individual mice age at different rates, so

that mice with faster rates of aging will show more rapid

changes in T-cell subset patterns and also more rapid acquisi-

tion of lethal diseases, as well as rapid accumulation of other

signs and symptoms of aging. The ‘immune protection’ model

imagines that the immune systems of young mice confer

protection against a wide range of late-life diseases and that

those mice that retain youthful immune systems into old age

are thereby protected against ill health.

Initial evidence from a group of 173 mice showed that the

proportion of CD4M cells in 18-month-old mice was a sig-

nificant (P< 0.003) predictor of longevity in the UM-HET3

population (13); several other subsets showed suggestive
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associations that did not reach statistical significance

(0.05< P< 0.1) in this preliminary analysis. Consistent with

the working hypothesis, mice with the highest levels of CD4M

cells, i.e. mice whose immune system resembled that of older

animals, tended to die at relatively early ages. A second report

extended this analysis to a total of 559 mice (14). In this larger

group, five age-sensitive T-cell subsets among the seven stud-

ied were each found to be a significant predictor of lifespan

when measured in blood at 18 months of age. In each case, the

sign of the regression coefficient was consistent with the

hypothesis that mice whose immune system resembled that

of younger animals would tend to have longer lifespans. A

cluster analysis method showed that when 18-month-old mice

were divided into two groups based solely on similarity of

T-cell subset patterns, one of the clusters resembled young mice

(with relatively low levels of CD4M, CD8M, and CD4P cells

and relatively high levels of CD4 and CD4 naı̈ve cells), and that

mice in this cluster were long-lived compared to the remain-

der of the population. The ability of the cluster approach to

predict lifespan on the basis of T-cell subset patterns was

equally apparent in virgin male mice, virgin females, and

females that had given birth to multiple litters as young adults,

and can thus be considered to be replicated in these three non-

overlapping groups.

A statistical approach based on principal components analy-

sis was then applied to this data set in an attempt to develop an

overall index of age-sensitive T-cell subset pattern changes that

might be more informative than looking at each T-cell subset

separately (15). The algorithm forms a composite index as a

weighted average of the values of each of the seven measured

T-cell subsets, with weights chosen so as to maximize the

amount of variation explained by the calculated index among

the mice in the population. The calculated ‘immune subset

factor’ was correlated strongly with the age-sensitive subsets,

and indeed mice with high values of the calculated factor were

those with relatively high CD8, CD4M, CD8M, and CD4P

levels, and relatively low CD4 and CD4 naı̈ve populations; in

other words, mice with high-factor scores looked older in

immunological terms. We then tested the prediction that

mice with high levels of this factor would die young. Fig. 2

shows the relationship of principal component scores (termed

‘F1_18’ to indicate that it is calculated from data obtained at

18 months of age) to age at death in groups of mice that died

of each of the three most common lethal illnesses, lymphoma

(left), mammary adenocarcinoma (middle), and fibrosarcoma

(right). Mice with young looking immune systems (low levels

of the factor score) were likely to survive longer in each of the

three diagnostic groups, as well as in the group of mice that

died of some other cause (data not shown). The association

between factor score and mortality risk was statistically sig-

nificant for all four population subgroups, and reached

P< 0.0001 for the mouse population as a whole. Thus these

data suggest that mice whose changes in age-related T-cell

subset pattern are either delayed or decelerated tend to be

healthier in old age and survive longer. The association does

not apply merely to a single cause of death, as would be
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Fig. 1. Illustrations of quantitative trait loci

(QTL) that modulate T-cell subset levels in
UM-HET3 mouse populations. Four QTL are
shown, two (top rows) whose influence on
subset levels is apparent in 8-month-old mice
and is maintained at least through 18 months,
and two others (bottom row) whose effects
are not apparent until 18 months of age. Each
symbol shows mean level of the indicated
subset (with standard error) in the population
of mice bearing the indicated allele (example:
BALB/c or B6 alleles for the D12Mit105 locus
shown in the upper right panel). Each of these
effects reaches statistical significance using
experiment-wise criteria as explained
previously (1, 2).
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expected if, for example, preneoplastic changes in T-cell

developmental pathways led both to lymphoma and to subset

shifts. We favor the idea that mice with relatively rapid

immune aging will also show rapid aging in other non-hema-

topoietic systems, and there is some support for this notion

from evidence that aged mice with advanced subset shifts also

have relatively weak muscles (16). We cannot yet rule out,

however, the immune protection hypothesis that rapid

immune aging predisposes to multiple forms of late-life

neoplastic disease.

A similar composite index of age-sensitive T-cell subsets was

also found, in the same study (15), to be able to predict

remaining longevity when measured in mice as young as

8 months of age. These data are consistent with the hypothesis

that age-dependent changes in T-cell subsets may be initiated, at

least in some mice, at ages less than 8 months of age.

A more recent study (17) evaluated T-cell subsets as predic-

tors of longevity in an independent replicate population of 539

UM-HET3 mice. Three of the tested subsets (CD4, CD8, and

CD8M) were found to be significant predictors of lifespan when

tested at 18 months of age, and CD8M cells were predictive as

early as 8 months of age. A suggestive relationship was also

noted for the CD4M subset (P< 0.07). Composite indices cal-

culated by the principal component method were again found to

be significant predictors of lifespan, whether evaluated at 8 or

18 months of age. Thus the main findings of the earlier studies

(except for results on the CD4P subset, which were not repli-

cated in the most recent population) seem to be fairly robust, at

least for the genetically heterogeneous UM-HET3 population.

We have unpublished evidence that CD4M cells are significant

predictors of life expectancy in female mice of two wild-derived

mouse stocks (18), one derived from mice trapped in Idaho (Id)

and the other derived from mice trapped on the Pacific island of

Majuro (Ma). Fig. 3 shows the relationship between CD4M

levels, measured at 18 months of age, and age at death in

these two stocks. A Cox regression analysis showed that the

risk ratios were respectively 1.58 and 1.61 for all-cause mortal-

ity, both significant at P< 0.03. Similar results were seen in

segregating populations of F2-hybrid mice created by crosses of

Id or Ma to mice of the C57BL/6 J inbred stock. The risk ratios

were 1.42 (P¼ 0.07) for the (Id� B6) F2 population and 1.79

(P¼ 0.02) for the (Ma� B6) F2 population. In each case, high

levels of CD4M cells were associated with an increased mortality

risk as in the UM-HET3 studies. We conclude from this finding

that the association between high levels of CD4M cells and

increased mortality risk is replicable in multiple mouse popula-

tions with different genetic backgrounds, including hybrids

between wild-derived and laboratory-derived stocks.

Mapping the genes for age-sensitive immune subset

patterns

Composite indices of T-cell subset patterns, by combining infor-

mation from multiple, correlated T-cell subset measurements in

each animal, could provide a more informative index of age-

related change than would be provided by any one subset tested

by itself. Indeed, the data in Fig. 2 show that principal compo-

nent factors developed in this way are able to predict lifespan,

even in the relatively small groups of mice that share a specific

cause of death. For this reason, we tested the idea that the

composite scores themselves might be under the control of

one or more polymorphic genetic loci, using the same methods

that we had previously used to map QTL that moderated levels

of specific T-cell subsets in young and old mice. In a population

of >500 UM-HET3 mice, we found evidence for alleles at two

loci, D4Mit55 and D13Mit21, each of which had a significant
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Fig. 2. Plots of mouse lifespan as a function of T-cell subset index
(F1_18 score) measured in UM-HET3 mice at 18months of age.

Three separate groups of mice are shown, representing (left to right)
those destined to die of lymphoma, mammary adenocarcinoma, or
fibrosarcoma. High scores of F1_18 represent mice with higher levels of

CD4 and CD8 memory cells, lower levels of CD4 cells, and higher levels
of CD4 cells with P-glycoprotein expression. Each symbol represents one
mouse, and the lines are calculated by linear regression. F1_18 score is
significantly associated with differences in longevity for each of the three
mouse subpopulations. Additional details shown in Miller & Chrisp (15).
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association with immune subset pattern as expressed in the

principal component factor score (2). Interestingly, neither of

these loci had reached experiment-wise significance in the QTL

screen that evaluated single subsets, consistent with the idea that

the factor score, representing a combination of age-sensitive T-

cell subsets, might itself be regulated by polymorphisms whose

effects on individual subsets were substantially diluted by

subset-specific genetic or nongenetic controls. An analysis of a

separate population of UM-HET3 mice has provided independent

support for the conclusion that genes on chromosomes 4 and 13

exert effects on age-sensitive T-cell subset patterns (17).

T-cell activation defects

The data presented above show that age-related shifts in T-cell

subsets are intimately associated with lifespan and disease risk and

that they are under the control of genes that are polymorphic

within the commonly used stocks of laboratory mouse, but they

provide no insight into the alterations in cell biology that might

contribute to diminished immune responses in old age. We have

addressed the latter problem by studies of T-cell signal transduc-

tion. An earlier review (19) summarized studies through 1997

showing age-related declines in early aspects of T-cell activation

including development of calcium signals, phosphorylation of

elements of the TCR–CD3 signal transduction complex, and acti-

vation of downstream kinases including extracellular-regulated

kinase (ERK) and mitogen-activated protein kinase (MAPK)/ERK

(MEK). Further work on downstream signals subsequently

revealed parallel age-related declines in activation of Raf-1 kinase

(20) and in c-Jun N-terminal kinase function (21, 22).

Defects precede TCR-antigen recognition

A turning point in these studies was the observation that T cells

from young and aged mice had equal amounts of z-associated

protein of 70 kDa (Zap-70) enzyme activity, tested in lysates,

in the first few minutes after exposure to an activating signal

(23); tyrosine-specific phosphorylation of the Zap-70 mol-

ecule was equivalent in activated CD4þ T cells of both young

and old mice. This lack of age effect was surprising in view of

the clear evidence for age-dependent differences in most

downstream-signal events, including phosphorylation of the

Zap-70 substrate linker of activated T cells (LAT) in intact T

cells (24). The paradox was resolved by microscopic analysis,

using confocal immune fluorescence methods, of conjugates

between T cells and hybridoma cells presenting anti-CD3 anti-

body as a polyclonal activator. CD4þ T cells from young mice

were able to form immunological synapses containing LAT,

Vav, protein kinase C y (PKCy), and other components of the

T-cell signal complex in about half of the conjugates formed

with anti-CD3 hybridoma cells as polyclonal antigen-presenting

cells (APCs) (24, 25), but only 25% of CD4þ T cells from

aged donors were able to generate immunological synapses. A

similar discrepancy was noted in a system in which the T cells

expressed a TCR specific for a peptide antigen derived from

pigeon cytochrome C, using peptide-bearing lymphoma cells

as APCs (26). Synapse formation was an ‘all-or-none’ reaction,

in the sense that those T cells from mice of any age that moved

LAT into the synaptic region almost always also moved PKCy
as well and vice versa, and then proceeded to translocate the

DNA-binding factor, nuclear factor of activated T cells into

their nucleus as well (24). The ability to form synapses was

strongly associated with subsequent steps in T-cell activation, in

that those CD4þ T cells which failed to form synapses were

predominantly members of a T-cell subset detectable by expres-

sion of the multiple-drug resistance pump P-glycoprotein,

of which previous work had shown was functionally anergic

(5–7). Thus, these results supported a model in which poor

signal transduction in CD4þ T cells from aged mice was the

result of an accumulation of cells that were unable to form

functional synapses necessary for kinase-mediated activation of

downstream stages of the activation process.

Defects in cytoskeletal activation

Where, then, lay the key defect(s) in the synapse formation

process? New information came from the observation that the

defect in T cells from aged donors preceded recognition of

antigenic peptides by the TCR. The protocol made use of a

system in which naı̈ve CD4þ T cells from TCR-Tg mice were
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allowed to form conjugates with lymphoma APCs bearing

either agonist peptide (derived from pigeon cytochrome C

sequence) or an antagonist peptide that differed from the

agonist at a single amino acid. Others had shown previously

that antagonist peptides induced a presynaptic response char-

acterized by movement of the cytoskeletal protein talin, but

that formation of a fully functional synapse with LAT, Vav,

actin, and other components in addition to talin depended on

recognition of the agonist peptide sequence (27). Evaluation

of talin rearrangements in the TCR-Tg system then showed

that while about 60% of CD4 cells from young mice were able

to relocate talin to the APC contact zone in response to agonist

or antagonist peptide, the proportion of responsive cells from

aged mice was much lower, i.e. about 15% in response to

antagonist peptide and at most 31% in responses to agonist

(28). Fig. 4 shows summary statistics from a series of three

experiments using six young and three aged donors (28). The

top panel shows the proportion of unresponsive cells in con-

jugates containing agonist peptide; as expected, 70% to 80%

of the CD4þ T cells from aged donors are unresponsive

whether the reactions are monitored by talin or by actin

movement, and in contrast most young CD4þ T cells are

responsive to agonist peptide. When antagonist peptide is

used (bottom panel), as expected, neither old nor young

cells respond by actin relocation (>80% unresponsive cells).

The response of talin in antagonist-challenged cells (right bars,

lower panel) is much stronger in young cells than in old cells.

The failure of CD4þ T cells from aged donors to relocate talin

to the synapse in response to antagonist peptide shows that at

least one age-sensitive step in the activation process involves a

step prior to the discrimination, by the TCR, between agonist

and antagonist peptides.

This age-sensitive defect in talin relocation focused attention

on other aspects of cytoskeletal remodeling in the T-cell acti-

vation cascade. An assay in which CD4þ T cells from young or

old mice were allowed to attach to glass slides showed that

slides coated with anti-CD3 (but not with anti-DNP or anti-

CD28 antibodies) stimulated many T cells to form pseudopo-

dia and spread out onto the glass surface. Such interactions

involve reorganization of the cytoskeleton and polymerization

of actin into a ring at the edge of the spreading cell, but do not

involve construction of a complete immunological synapse.

The data in Fig. 5, excerpted from a more comprehensive set of

experiments using a range of doses and time points (28),

illustrate that CD4þ T cells from aged mice are less likely

than those from young mice to spread out after attachment

to anti-CD3-coated slides, whether the cells are derived from

CB6F1 mice or (right panel, Fig. 5) from TCR-Tg mice in

which most of the CD4þ T cells remain in the naı̈ve subset

throughout life.

A third line of analysis involved detection of translocation of

CD3z chains from the soluble to the cytoskeletal compartment

after stimulation of T cells by cross-linking CD3 to CD4 and

CD28. Stimulation of CD4 cells from young mice induced a

rapid (5 min) increase in the amount of CD3z associated with

the cytoskeletal fraction, with a corresponding decline in CD3z
in detergent-soluble form. CD4þ T cells from aged donors,

however, showed neither effect. Fig. 6 illustrates this difference

for the p16 form of CD3z, and the original study (28) shows

similarly large and significant changes for the p21 and p23

forms of CD3z as well.

All three lines of experiments suggest that CD4þ T cells from

aged mice show defects in cytoskeletal reorganization after
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encounter with TCR-specific stimuli, defects that precede anti-

gen recognition (Fig. 4), do not require interaction with costi-

mulatory molecules present on APCs (Fig. 5) and modulate

interaction of CD3 components with the cytoskeleton (Fig. 6).

These results are consistent with models in which alterations in

TCR-cytoskeletal connections contribute to defects in immu-

nological synapse organization and T-cell commitment to

cytokine production and blast formation.

Age-dependent changes in CD43 translocation and CD4

glycosylation patterns

Activated T cells use cytoskeletal motors not only for assembly

of elements of the immunological synapse but also for move-

ment of surface molecules to the distal pole complex (DPC),

i.e. to the area of the T-cell membrane opposite from the point

of contact with the APC (29). CD43, a large, heavily glycosy-

lated protein prominently represented at the T-cell surface, is

among the molecules that are moved to the DPC after T-cell

activation (30). The large size of the CD43 molecule, along

with evidence that CD43 knockout mice are hyperresponsive

in some tests of T-cell function (31, 32), has suggested that

removal of CD43 from the area of immunological synapse

formation might help to promote functional interaction

between the T cell and APC.

To see if age-dependent changes in cytoskeletal function

might hinder removal of CD43 from the zone of T cell/APC

contact, we used confocal microscopy to count the number of

CD4þ T cells from young or old mice that were able to remove

CD43 from the area of T-cell/APC contact using TCR-Tg T cells

and peptide-bearing APCs. Fig. 7 shows an image of one such

T-cell/APC conjugate in which CD43 (upper left panel) is

excluded from the synapse area, identified (upper right

panel) by staining for LAT. The proportion of T cells able to

exclude CD43 from the synapse decreases dramatically with

age (33) (Fig. 7), consistent with the idea that CD43 molecules

might interfere with the T-cell/APC interactions in T cells

from aged donors.

Analysis of CD43 glycosylation patterns (33) revealed

another difference in CD43 properties between T cells from

young and aged mice. Although immunoprecipitation data

using an antibody specific for cytoplasmic determinants

showed no difference in the total amount of CD43 in young

and old T cells, flow cytometry showed an increase with age in

expression of determinants detected by antibodies (S7 and

1 B 11) specific for the glycosylated forms of CD43. Although

nearly all CD4 cells showed some expression of S7 and 1 B 11

determinants, the proportion of cells expressing higher levels

of these two molecules increased substantially in the older

mice. High-level expression was noted in both naı̈ve and

memory T cells (using CD44 levels as an index of memory

cell differentiation), suggesting that the acquisition of the

heavily glycosylated forms did not require a history of antigen

exposure and clonal expansion to memory cells. Interestingly,

100

80

60

CB6F1 TCR-Tg
%

 S
pr

ea
d 

ce
lls

40

20

0
Young Old Young Old

Fig. 5. Percentage of splenic CD4þ T cells that spread after attachment
to glass slides coated with anti-CD3 antibody. Left panel: cells from
CB6F1 mice; right panel: cells from AND stock mice transgenic for the
pigeon cytochrome C-specific T-cell receptor. Bars show mean and
standard errors of the mean for at least three pairs of young and old mice
tested on separate days. A cell was scored as positive for spreading if its
area, at the point of attachment to the glass, was greater than an area
achieved by only 5% of T cells from old mice on slides coated with a
non-stimulatory control antibody (28).
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Fig. 6. Densitometric analysis of CD3z levels, detected by

immunoblotting, in cytoskeletal and detergent-soluble fractions of
CD4þ T cells either prior to or 5min after stimulation with cross-

linked antibodies to CD3, CD4, and CD28. Bars show mean and
standard errors of the mean for five young and five old donors tested
individually in two independent experiments; changes are significant
(P< 0.05) for young mice in both fractions but for old mice in neither
fraction. Values are normalized so that 1 unit represents the level of the
p21 form of CD3z in the non-stimulated young CD4þ T-cell sample for
each experiment. Data are from Garcia & Miller (28).
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80% or more of the CD4þ T cells with heavily glycosylated

CD43 determinants were found to have high levels of surface

P-glycoprotein, associated in previous studies with anergy

among CD4M cells in both young and old mice (5–7). This

finding suggested the hypothesis that the accumulation of

heavily glycosylated forms of CD43 might contribute to the

hyporesponsiveness of the P-glycoprotein-positive subsets of

CD4þ T cells, which become progressively more prominent in

aging mice (3).

Enzymatic cleavage of surface glycoproteins restores synapse

formation and improves activation of T cells from aged mice

The increase with age in CD43 glycosylation together with the

decline in the proportion of T cells that can exclude CD43

from the immunological synapse suggested a model in which

glycosylated forms of CD43 contribute to the decline in acti-

vation of T cells from aged donors. As one test of this idea, we

exposed T cells to an enzyme O-sialylglycoprotein endopepti-

dase (OSGE) that cleaves the protein backbone of molecules,

such as CD43 that carry O-linked polysaccharide chains (33).

The results (Fig. 8) showed that brief exposure to OSGE

treatment restores the ability of T cells to form synapses

when conjugated to peptide-bearing APCs. In cells not

exposed to OSGE, positive responses were obtained from

approximately 50% to 70% of the young T cells and 16%

to 27% of the old T cells; OSGE had little or no effect on the

proportion of positive T cells for young CD4 cells, but

increased the proportion of responding old cells to a level

nearly equivalent to that seen in untreated young cells. Similar

results were seen when synapses were scored using antibodies

to talin, F-actin, CD3z, or Grb2 (33). Treatment of the T cells

with sialidase from Vibrio cholerae had no effect on synapse

formation [not shown in Fig. 8, refer to Garcia & Miller

(33)], suggesting that the restoration of responsiveness was

not due simply to removal of terminal sialic acid residues

present on CD43 or other OSGE-sensitive T-cell surface

glycoproteins. Furthermore, OSGE treatment of CD4þ T cells

from aged donors restored their ability to translocate talin to

the APC contact zone in response to antagonist peptide

(Fig. 8, right panel), showing that the enzyme treatment affects

age-sensitive steps in T-cell/APC interaction that precede

recognition of agonist peptide determinants by the TCR.

The effects of OSGE on aged T cells are not limited to

synapse formation: OSGE-treated CD4þ T cells increase their

ability to respond to anti-CD3 by activation of the CD25 and

CD69 surface antigens (33), by increases in calcium signal

generation, and by production of interleukin-2 (IL-2) and

other cytokines (Berger et al., manuscript submitted). Fig. 9
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Fig. 7. Age-related decline in proportion of CD4þ T cells that exclude
CD43 from the immunological synapse. CD4þ T cells from T-cell
receptor-transgenic mice were allowed to form complexes with APCs
bearing agonist peptide (PCCF) and then were stained for both linker of
activated T cell (LAT) and CD43. Top panel shows an example of a
T-cell/antigen-presenting cell conjugate in which CD43 (left image) is
excluded from the immunological synapse localized by LAT-fluorescent
signal (right image). The bar graphic shows the proportion of T cells
from young and old mice in which CD43 was excluded from the synapse
(filled bar) or was not excluded (unfilled bar) (33).
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Fig. 8. O-sialylglycoprotein endopeptidase (OSGE) restores synapse

formation in response to agonist or antagonist peptides in CD4þ T
cells from old mice. Each bar shows mean and SD for experiments using
six young and three aged donor mice, as the percentage of T-cell/
antigen-presenting cell (APC) conjugates that became synapse-positive
using Grb2 (left panel) or talin (middle panel) as indicator for synapse
formation in response to agonist peptide-loaded APCs, or which moved
talin to the area of APC contact (right panel) when APCs were loaded
with antagonist peptide fragments. Control samples (black bars) were
processed in parallel omitting the treatment with OSGE.
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shows levels of CD69 expression in OSGE-treated and control

CD4 cells evaluated 6 h after activation by anti-CD3 antibody.

CD4þ T cells from old donors (filled bars) are less responsive

than young cells prior to treatment. Sialidase from Vibrio cholerae

(VC) does not affect responsiveness of either young or old

cells, but OSGE treatment increases the proportion of respond-

ing cells in both young and old mice. There is no age differ-

ence in levels of responsiveness after OSGE treatment, and both

naı̈ve and memory T cells (gated based on expression of

CD44) show the effects of OSGE exposure (Fig. 9, top and

middle panels). The figure also depicts CD25 expression meas-

ured at 24 h after stimulation; in this case, naı̈ve and memory

cells could not be separately evaluated due to the stimulus-

induced increase in CD44 levels. It is noteworthy that OSGE

improves CD69 and CD25 activation of CD4 cells from young

mice, even though it does not increase the proportion of

young CD4þ T cells that can form immunological synapses

in APC conjugates (Fig. 8); presumably this outcome is a con-

sequence of OSGE-cleavage of surface molecules that would, if

intact, interfere with stages in the activation process subse-

quent to or independent of synapse formation.

Fig. 9 also shows that a second sialidase, CP-sialidase, derived

from Clostridia perfringens can mimic the effect of OSGE on CD69

and CD25 expression, and Sadighi Akha et al. (34) show that

this reagent also increases calcium signal generation in CD4þ T

cells of both young and old mice. This enzyme has similar but

not identical substrate specificity with the sialidase from V.

cholerae, shown to be ineffective both in the synapse assay (33)

and in tests for T-cell activation antigens (Fig. 9). Both siali-

dases cleave sugar/sugar bonds; in contrast, OSGE cleaves the

peptide backbone of CD43 and other glycoproteins with O-

linked glycan groups. More work will be needed to determine

to what extent the ability of OSGE and C. perfringens sialidase to

facilitate various stages in the T-cell activation cascade depends

upon removal or modification of the same (or overlapping sets

of) T-cell surface molecules.

T-cell activation: current status and future goals

The evidence reviewed above suggests a working hypothesis

for future studies, in which activation defects of T cells from

aged mice are attributed at least partly to hyperglycosylation of

CD43 and other surface glycoproteins, coupled to or com-

bined with alterations in the cytoskeletal machinery required

to remove these bulky molecules from the area of interaction

with the APC. The ability of OSGE treatment to restore calcium

signals, synapse formation, and induction of surface antigens

and cytokine production in CD4þ T cells of aged mice suggests

that OSGE-sensitive molecules interfere with an early step or

steps required for a wide range of downstream events in the

activation cascade.

The mechanism by which OSGE improves function of T cells

from aged mice is likely to be considerably more complex than

those implied by this simplified model. We have preliminary

data, for example, to show that OSGE can promote T-cell

activation even when the T cells come from CD43 knockout

mice (Berger, Garcia, Sadighi Akha et al., manuscript in

preparation) suggesting strongly that OSGE can cleave other

O-linked T-cell surface glycoproteins whose destruction facil-

itates T-cell activation. In addition, we have found that T cells

from young and old mice differ substantially in patterns of

100

CD69 in naive CD4

%
 o

f p
os

iti
ve

 c
el

ls

CD69 in memory CD4

CD25 in total CD4

50

100

50

100

50

Control

Young

Old

No
enzyme

VC 
siase

OSGE CP
siase

*

*

*

* * * *

* * * *

* * * *

Fig. 9. Increased expression of CD69 and CD25 in CD4þ T cells
activated after treatment with OSGE or with sialidase (Siase) from

Clostridia perfringens (CP). CD69 levels were evaluated 6 h after activation
with anti-CD3 antibody and CD25 levels after 24 h. Cells were gated for
CD4 expression; for the CD69 study, they were also gated using anti-
CD44 for naı̈ve (CD44 low) and memory (CD44 high) subsets. Each bar
represents mean and standard errors of the mean for eight young (open
bars) and four old mice. Asterisks indicate responses that are significantly
different from the values for young CD4þ T cells not exposed to OSGE or
sialidase. ‘Control’ cultures, shown in the leftmost bars, represent cells in
which isotype-matched antibody was substituted for the anti-CD3
antibody during the 6- or 24-h culture. Sialidase from Vibrio cholerae (VC
siase) was used as an additional control and does not improve
responsiveness (34).
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glycosyltransferase levels and in patterns of binding of lectins

specific for different polysaccharide bonds (34) as well as in

relative levels of mRNA for specific glycosyltransferases

(Berger et al., unpublished data). Thus, much more work will

be needed to determine which T-cell surface molecules are

differentially glycosylated in specific cell subsets in older mice

and to learn which of these alterations leads to functional

consequences.
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