THE UNIVERSITY OF MICHIGAN
3646-4-T

AFCRL 787

STUDIES IN RADAR CROSS SECTIONS - XLVI
THE CONVERGENCE OF LOW FREQUENCY
EXPANSIONS IN SCALAR SCATTERING BY SPHEROIDS

SCIENTIFIC REPORT NO. 4
CONTRACT AT 19(604)-6655

by
T.B.A. Senior

31 August 1961

Report No. 3648-4-T
on
Contract AF 19(604)-6655

Prepared for

ELECTRONICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS




THE UNIVERSITY OF MICHIGAN

3648-4-T

Requests for additional copies by Agencies of the Department of Defense, their
contractors, and other Government agencies should be directed to :

ARMED SERVICES TECHNICAL INFORMATION AGENCY

ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA services or
have their '""need-to-know'" certified by the cognizant military agency of their

project or contract.
All other persons and organizations should apply to:

U.S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C.

ii




II

111

VI

VII

VIII

THE UNIVERSITY OF MICHIGAN
3648-4-T

STUDIES IN RADAR CROSS SECTIONS

"Scattering by a Prolate Spheroid', F. V. Schultz (UMM-42, March 1950)
W-33(038)-ac-14222. UNCLASSIFIED. 65 pgs.

m

"The Zeros of the Associated Legendre Functions P, (u') of Non-Integral
Degree'’, K. M. Siegel, D. M. Brown, H. E. Hunter, H. A. Alperin and
C. W. Quillen (UMM-82, April 1951), W-33(038)-ac-14222. UNCLASSIFIED|
20 pgs.

"Scattering by a Cone'', K.M. Siegel and H. A. Alperin (UMM-87, January
1952), AF-30(602)-9. UNCLASSIFIED. 56 pgs.

"Comparison between Theory and Experiment of the Cross Section of a
Cone", K.M. Siegel, H. A. Alperin, J.W. Crispin, Jr., H. E. Hunter,
R. E. Kleinman, W. C. Orthwein and C. E. Schensted (UMM-92, February
1953), AF-30(602)-9. UNCLASSIFIED. 70 pgs.

"An Examination of Bistatic Early Warning Radars", K. M. Siegel (UMM-
98, August 1952), W-33(038)-ac-14222. SECRET. 25 pgs.

"Cross Sections of Corner Reflectors and Other Multiple Scatterers at
Microwave Frequencies', R.R. Bonkowski, C.R. Lubitz and

C. E. Schensted (UMM-106, October 1953), AF-30(602)-9. SECRET -
Unclassified when appendix is removed. 63 pgs.

"Summary of Radar Cross Section Studies under Project Wizard',
K. M. Siegel, J.W. Crispin, Jr. and R. E. Kleinman (UMM-108, November
1952), W-33(038)-ac-14222. SECRET. 75 pgs.

"Theoretical Cross Section as a Function of Separation Angle between
Transmitter and Receiver at Small Wavelengths'', K. M. Siegel,

H.A. Alperin, R.R. Bonkowski, J.W. Crispin, Jr., A.L. Maffett,

C. E. Schensted and I. V. Schensted (UMM-115, October 1953), W-33(038)-
ac-14222. UNCLASSIFIED. 84 pgs.

"Electromagnetic Scattering by an Oblate Spheroid', L.M. Rauch (UMM-
116, October 1953), AF-30(602)-9. UNCLASSIFIED. 38 pgs.

iii




XI

XII

XIII

XIv

XVI

XVII

XVIII

THE UNIVERSITY OF MICHIGAN eeemmm——
3648-4-T

"Scattering of Electromagnetic Waves by Spheres', H. Weil, M. L. Barasch
and T.A. Kaplan (2255-20-T, July 1956), AF-30(602)-1070. UNCLASSI-
FIED. 104 pgs.

"The Numerical Determination of the Radar Cross Section of a Prolate
Spheroid'", K.M. Siegel, B.H. Gere, I. Marx and F.B. Sleator (UMM-126,
December 1953), AF-30(602)-9. UNCLASSIFIED. 75 pgs.

"Summary of Radar Cross Section Studies under Project MIRO",
K. M. Siegel, M. E. Anderson, R.R. Bonkowski and W. C. Orthwein
(UMM-127, December 1953), AF-30(602)-9. SECRET. 90 pgs.

"Description of a Dynamic Measurement Program', K. M. Siegel and
J.M. Wolf (UMM-128, May 1954), W-33(038)-ac-14222. CONFIDENTIAL.
152 pgs.

"Radar Cross Section of a Ballistic Missile'', K. M. Siegel, M. L. Barasch,
J.W. Crispin, Jr., W, C. Orthwein, I.V. Schensted and H. Weil (UMM-134,
September 1954), W-33(038)-ac-14222. SECRET. 270 pgs.

"Radar Cross Sections of B-47 and B-52 Aircraft'", C.E. Schensted,
J.W. Crispin, Jr. and K. M. Siegel (2260-1-T, August 1954), AF-33(616)-
2531. CONFIDENTIAL. 155 pgs.

"Microwave Reflection Characteristics of Buildings'', H. Weil,
R.R. Bonkowski, T. A. Kaplan and M. Leichter (2255-12-T, August 1954),
AF-30(602)-1070. SECRET. 148 pgs.

""Complete Scattering Matrices and Circular Polarization Cross Sections
for the B-47 Aircraft at S-band", A.L. Maffett, M. L. Barasch,

W. E. Burdick, R.F. Goodrich, W.C. Orthwein, C.E. Schensted and
K. M. Siegel (2260-6-T, June 1955), AF-33(616)-2531. CONFIDENTIAL.
157 pgs.

"Airborne Passive Measures and Countermeasures', K. M. Siegel,

M. L. Barasch, J.W. Crispin, Jr., R.F. Goodrich, A.H. Halpin,

A. L. Maffett, W.C. Orthwein, C.E. Schensted and C.J. Titus (2260-29-F,
January 1956), AF-33(616)-2531. SECRET. 177 pgs.

iv




XIX

XXI

XXII

XXIII

XXIV

XXVI

XXVII

THE UNIVERSITY OF MICHIGAN
3648-4-T

'""Radar Cross Section of a Ballistic Missile II K. M. Siegel,
M. L. Barasch, H. Brysk, J.W. Crispin, Jr., T.B. Curtz and T. A.Kaplan
(2428-3-T, January 1956), AF-04(645)-33. SECRET. 189 pgs.

""Radar Cross Section of Aircraft and Missiles', K. M. Siegel,
W. E. Burdick, J.W. Crispin, Jr. and S. Chapman (WR-31-J, March 1956).
SECRET. 151 pgs.

"Radar Cross Section of a Ballistic Missile IIT"", K. M. Siegel, H. Brysk,
J.W. Crispin, Jr. and R. E. Kleinman (2428-19-T, October 1956),
AF-04(645)-33. SECRET. 125 pgs.

""Elementary Slot Radiators', R.F. Goodrich, A.L. Maffett,

N. E. Reitlinger, C.E. Schensted and K. M. Siegel (2472-13-T, November
1956), AF-33(038)-28634, HAC-PO L-265165-F31. UNCLASSIFIED.,

100 pgs.

"A Variational Solution to the Problem of Scalar Scattering by a Prolate
Spheroid", F.B. Sleator (2591-1-T, March 1957), AF-19(604)-1949,
AFCRC-TN-57-586, AD 133631. UNCLASSIFIED. 67 pgs.

"Radar Cross Section of a Ballistic Missile - IV The Problem of Defense',
M. L. Barasch, H. Brysk, J.W. Crispin, Jr., B.A. Harrison,

T.B.A. Senior, K.M. Siegel, H. Weil and V.H. Weston (2778-1-F, April
1959), AF-30(602)-1953. SECRET. 362 pgs.

"Diffraction by an Imperfectly Conducting Wedge', T.B.A. Senior (2591-2-
T, October 1957), AF-19(604)-1949, AFCRC-TN-57-591, AD 133746.
UNCLASSIFIED. 71 pgs.

"Fock Theory", R.F. Goodrich (2591-3-T, July 1958), AF-19(604)-1949,
AFCRC-TN-58-350, AD 160790, UNCLASSIFIED. 73 pgs.

""Calculated Far Field Patterns from Slot Arrays on Conical Shapes',

R.E. Doll, R. F. Goodrich, R. E. Kleinman, A.L. Maffett, C. E. Schensted
and K. M. Siegel (2713-1-F, February 1958), AF-33(038)-28634 and 33(600)-
36192; HAC-POs L-265165-F47, 4-500469-FC-47-D and 4-526406-FC-89-3.
UNCLASSIFIED. 115 pgs.




THE UNIVERSITY OF MICHIGAN
3648-4-T

XXVIII "The Physics of Radio Communication via the Moon'", M. L. Barasch,
H. Brysk, B.A. Harrison, T.B.A. Senior, K. M. Siegel and H. Weil
(2673-1-F, March 1958), AF-30(602)-1725. UNCLASSIFIED. 86 pgs.

XXIX "The Determination of Spin, Tumbling Rates and Sizes of Satellites and
Missiles', M. L. Barasch, W.E. Burdick, J.W. Crispin, Jr.,
B. A. Barrison, R.E. Kleinman, R.J. Leite, D. M. Raybin, T.B.A. Senior
K.M. Siegel and H. Weil (2758-1-T, April 1959), AF-33(600)-36793.
SECRET. 180 pgs.

XXX '"The Theory of Scalar Diffraction with Application to the Prolate Spheroid",
R.K. Ritt (with Appendix by N. D. Kazarinoff), (2591-4-T, August 1958),
AF-19(604)-1949, AFCRC-TN-58-531, AD 160791. UNCLASSIFIED. 66 pgs.

XXXI "Diffraction by an Imperfectly Conducting Half-Plane at Oblique Incidence",
T.B. A. Senior (2778-2-T, February 1959), AF-30(602)-1853. UNCLASSI-
FIED. 35 pgs.

XXXII "On the Theory of the Diffraction of a Plane Wave by a Large Perfectly
Conducting Circular Cylinder', P.C. Clemmow (2778-3-T, February 1959),
AF-30(602)-1853. UNCLASSIFIED. 29 pgs.

XXXIII '"Exact Near-Field and Far-Field Solution for the Back-Scattering of a
Pulse from a Perfectly Conducting Sphere", V.H. Weston (2778-4-T,
April 1959), AF-30(602)-1853. UNCLASSIFIED. 61 pgs.

XXXIV 'An Infinite Legendre Transform and Its Inverse", P.C. Clemmow (2778-5-
T, March 1959). AF-30(602)-1853. UNCLASSIFIED. 35 pgs.

XXXV "On the Scalar Theory of the Diffraction of a Plane Wave by a Large Sphere",
P.C. Clemmow (2778-6-T, April 1959), AF-30(602)-1853. UNCLASSIFIED.

39 pgs.

XXXVI '"Diffraction of a Plane Wave by an Almost Circular Cylinder",
P.C. Clemmow and V.H. Weston (2871-3-T, September 1959), AF-19(604)-
4933. UNCLASSIFIED. 47 pgs.

XXXVII "Enhancement of Radar Cross Sections of Warheads and Satellites by the
Plasma Sheath", C.L. Dolph and H. Weil (2778-2-F, December 1959),
ATF-30(602)-1853. SECRET. 42 pgs.

vi




XXXVIII

XXXIX

XL

XLI

XLII

XLIII

XLIV

XLVI

THE UNIVERSITY OF MICHIGAN

3648-4-T

"Non-Linear Modeling of Maxwell's Equations', J. E. Belyea,
R.D. Low and K. M. Siegel (2871-4-T, December 1959),
AF-19(604)-4993, AFCRC-TN-60-106. UNCLASSIFIED. 39 pgs.

"The Radar Cross Section of the B-70 Aircraft', R. E. Hiatt
and T.B.A.Senior (3477-1-F, February 1960), North American
Aviation Purchase Order LOX0-XZ-250631. SECRET. 157 pgs.

"Surface Roughness and Impedance Boundary Conditions',
R. E. Hiatt, T.B. A. Senior and V. H. Weston (2500-2-T,
July 1960). UNCLASSIFIED. 96 pgs.

"Pressure Pulse Received Due to an Explosion in the Atmos-
phere at an Arbitrary Altitude, Part I", V.H. Weston (2886-1-T,
August 1960), AF-19(604)-5470. UNCLASSIFIED. 52 pgs.

"On Microwave Bremsstrahlung From a Cool Plasma', M. L.
Barasch (2764-3-T, August 1960), DA-36 039 SC-75401.
UNCLASSIFIED. 39 pgs.

""Plasma Sheath Surrounding a Conducting Spherical Satellite
and the Effect on Radar Cross Section, ' K-M Chen (2764-6-T,
October 1960), DA-36 039 SC-75041. UNCLASSIFIED. 38 pgs.

Integral Representations of Solutions of the Helmholtz Equation
with Application to Diffraction by a Strip", R.E.Kleinman and
R. Timman (3648-3-T, February 1961), AF-19(604)-6655.
UNCLASSIFIED. 128pgs.

"Studies in Non-Linear Modeling-II: Final Report'", J. E. Belyea
J.W. Crispin,dJr., R.D,Low, D.M.Raybin, R. K. Ritt, O. Ruehr,
and F.B. Sleator (2871-6-F, December 1960), AF-19(604)-4993,
UNCLASSIFIED, 95 pgs.

"The Convergence of Low Frequency Expansions in Scalar
Scattering by Spheroids", T.B. A. Senior (3648-4-T,
August 1961), AF19(604)-6655. UNCLASSIFIED. 143 pgs.

vii






THE UNIVERSITY OF MICHIGAN

3648-4-T

PREFACE

This is the forty-sixth in a series of reports growing out of the study of
radar cross sections at The Radiation Laboratory of The University of Michigan.
Titles of the reports already published or presently in process of publication are
listed on the preceding pages.

When the study was first begun, the primary aim was to show that radar
cross sections can be determined theoretically, the results being in good agreement
with experiment. It is believed that by and large this aim has been achieved.

In continuing this study, the objective is to determine means for computing
the radar cross section of objects in a variety of different environments. This has
led to an extension of the investigation to include not only the standard boundary-
value problems, but also such topics as the emission and propagation of electro-
magnetic and acoustic waves, and phenomena connected with ionized media.

Associated with the theoretical work is an experimental program which
embraces (a) measurement of antennas and radar scatterers in order to verify data
determined theoretically; (b) investigation of antenna behavior and cross section
problems not amenable to theoretical solution; (c) problems associated with the
design and development of microwave absorbers; and (d) low and high density
ionization phenomena.

K. M. Siegel
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SUMMARY

For the scalar problem of the diffraction of a plane wave by a spheroid the
exact solution is known, and at low frequencies the expression for the far field am-
plitude can be expanded in a series of increasing positive powers of ka, where k is
the wave number and 2a is the interfocal distance. This is the Rayleigh series,
and is convergent for sufficiently small values of ka.

In order to determine the range of frequencies for which this expansion is
applicable an essential factor is the radius of convergence, and the paper is de-
voted entirely to the calculation of this quantity. Attention is concentrated on the
case in which the plane wave is incident nose-on, and the radius of convergence is
obtained as a function of the length-to-width ratio for prolate and oblate spheroids,
hard as well as soft. For other angles of incidence it can be shown that the radius

is not greater than this, and in most instances it would appear to be the same.

xi
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INTRODUCTION

In recent years it has become increasingly apparent that one of the most
difficult problems in diffraction theory is the quantitative description of the
scattered field at wavelengths which are comparable with the effective dimensions
of the body. Even in those cases where an exact solution of the scattering problem
exists in the form of a wave function expansion, a large number of terms are
necessary to calculate the rapid variation as a function of frequency which is often
| typical of the resonance region. Moreover, there are as yet no approximate
methods specifically designed for treating this frequency range, and for this reason
attempts have been made to push the high and low frequency approximations as far
as possible in the hope of narrowing the gap. In particular, some success has been
achieved in applying high frequency techniques such as the geometrical theory of
diffraction even when the wavelength is as large as a typical dimension of the body.

At the other end of the frequency spectrum the scattered field can be
expanded as a series of increasing positive powers of ka, where k is the wave num-
ber and a is a dimension representative of the body. This is the so-called Rayleigh
series and for sufficiently small values of ka (that is, for sufficiently low frequen-
cies) the expansion can be shown to be convergent. Nevertheless, for any body the

radius of convergence is almost certainly finite and sets an upper limit on the
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portion of the resonance region to which the Rayleigh series is applicable. It is
obviously desirable to know this radius before attempting to predict the resonant
behavior using a finite number of terms in the low frequency expansion.

The present paper is concerned with scalar scattering by prolate and
oblate spheroids with particular reference to the convergence of the Rayleigh
series. In §2 the series for the sphere is considered briefly and this serves to
illustrate the methods which are available for assessing the convergence. For the
more general problem of the spheroid the expression for the far field amplitude is
derived in §3 and this is followed (§4) by an analysis of the case in which the ellip-
ticity is small (almost spherical bodies). The next two sections are devoted to the
problem of an oblate spheroid whose ellipticity is unity (a disc) or only slightly
different from unity (almost a disc), and in §7 the convergence for oblate spheroids
of intermediate ellipticity is determined. In §8 the convergence is calculated for
a prolate spheroid whose ellipticity is near to unity (a body which is almost a
vanishing rod), and a study of the intermediate ellipticities then completes the
discussion of the prolate spheroid.

In all cases the bodies considered are either soft or hard (Dirichlet or
Neumann boundary condition respectively at the surface), and the resulting values
for the radius of convergence are displayed in §9. It must not be assumed, how-
ever, that these values would also be applicable if the boundary condition differed

from the above.
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I

THE SPHERE

A limiting case of both the prolate and oblate spheroids is the sphere and
it is convenient to begin by considering the Rayleigh series for this more simple
body.

In view of the symmetry possessed by the sphere it is sufficient to take a
field which is incident in the direction of the negative z axis of a Cartesian co-
ordinate system (x,y, z), and if the field is also assumed to be a plane wave, it can
be written as

Vi _ e—ikz (1)
where the time factor e_iwlC has been suppressed. In terms of spherical polar co-
ordinates (R, 6, §) with

x =R sin 6 cos 0, y =R sin 6 sin §, z =R cos 9,

V' has the expansion

00
V' = E (-1" (2n+1) j_(kR) P_ (cos ) (2)
n=0
and if the scattered field is written similarly as
®
S g N
vV = (-i) 2n+1) A h (kR) P (cos9), (3)
n n n
n =

application of the boundary condition at R =a gives
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A jn(p)
An A hn(p) (4)

with p =ka. A is either unity or 8/9p depending on whether the body is soft
(Dirichlet bounaary condition at the surface) or hard (Neumann condition)
respectively.

If each Hankel function of argument kR is replaced by the first term in its

ikR
asymptotic expansion for large kR, the coefficient of €— in the scattered field is
kR

the far field amplitude, and from equation (3) its expression is seen to be

00

+ 1
f(cos 0) =2i E (—1)n 1 (n+ =)A P (cos 9). (5)
2 nn
n=0

This series is absolutely convergent for all (real) values of p. Moreover,
within some neighbourhood of the origin in the complex p plane, each
An (n=0,1,2,....) can be expanded in a series of positive (integral) powers of p and
is therefore an analytic function of p within the region. It then follows that if the
terms in (5) are re-arranged, an expansion for f(cos 0) is obtained which includes
only positive powers of p and is convergent for values of p inside the smallest
circle of convergence of the individual An. This is the Rayleigh series, and for
the sphere the terms up to and including p6 have been given by Senior (1960a).

The calculation of the least circle of convergence is a trivial matter. From
equation (4) it is apparent that the only singularities of An are poles at the zeros of

the spherical Hankel function (or its derivative), and the location of these zeros is
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such that the singularity nearest to the origin is provided by one of the smaller

values of n. Using the expressions for the hn(p) it is found that whereas ho(p) has

no zero, both gp ho(p) and hl(p) have a zero at p = - i, and the zeros of a—i hl(p)
1

and hz(p) are (-i+ 1) and 5 (-3i + V3) respectively. Accordingly, A is infinite

1
on the unit circle and since all the other coefficients are regular inside, the entire
Rayleigh expansion must converge f0r| p| <1. The fact that a singularity exists for
whichl p| =1 shows that the expansion does not converge outside this region, and in
consequence the Rayleigh series for both hard and soft spheres converges only for
ka<1, (6)

The above method is based upon the location of the smallest singularities in
the complex p plane, and for this purpose it is essential to have available the exact
expressions for the individual An' If these are not known, or if their complication is
such that the location of the singularities is not practicable, the method is no longer
applicable, and it is necessary to employ a more intuitive approach. The one which
has proved most valuable involves a comparison of the numerical coefficients in the
low frequency expansions for the An, and although the method cannot be regarded as
rigorous, it is generally sufficient to indicate the radius of convergence with a

reasonable degree of certainty. The new technique will be illustrated with reference

to the sphere.
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The starting point for the analysis is the expansion of the An in the form
0]
m n -ip Y
A =p a4l ( n) (7)
a
r=1 r

where m is some integer and the arn are independent of p. In general, the arn

will be complex and for most bodies only a small number of them will be known.
For the sphere, on the other hand, it is a straight forward matter to determine as
many of the a: as are desired by inserting the series developments of the Bessel
functions into equation (4), and in Tables I and II the values are given for r < 11
and n =0, 1 and 2. If the moduli larnl are now plotted sequentially (r =1,2,3,....)
for each n, the curves shown in Figures I and I are obtained. In reality, each
curve only has a meaning when r is an integer, but it is tempting to join the dis-
crete points by the continuous curves shown; an infinity then implies that the cor-
responding power of p has zero coefficients.

These curves confirm in a striking manner the radii of convergence
previously found. When n =1 (soft) and n = 0 (hard) the curves are asymptotic to
the value unity, and this represents the smallest radius of convergence (and hence
the radius of convergence of the low frequency expansion for f) in accordance with
equation (6). The fact that for the soft sphere AO has no singularity in the finite
portion of the p plane is reflected in the upward trend of the corresponding curve in

Figure 1.
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TABLE I. CONVERGENCE COEFFICIENTS FOR SOFT SPHERE

n=20 n=1 n=2
(a,) 2] | @) |2, 1] (a,?) |a,2]
1 1 0 f0's) 0 100)
2 1.2247 3 1.2910 5 2. 0494
3 5 21
1 1. 4422 -1 1. 4422 0 o
3 3 i
2 1. 6548 3 1.2359 0 -
15 7
2 1. 8639 _2 1.2011 1 2.1411
45 5 45
2. 0703 11 1.1614 5 1.9753
315 27 297
1 2.2746 S 1.1376 2 1.9151
315 175 189
2 67 5
2.4771 = 1.1193 2 1.9518
2835 165 1053
2 1151 5
9.6781 | - —— 1.1054 2 2. 0999
14175 2835 3969
4 8313 2
2. 8780 1. 0943 L 2.92297
155925 20475 6075
2 29543 2
3.0767 | - 1. 0853 L 1.9239
467775 72765 2673
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TABLE I.. CONVERGENCE COEFFICIENTS FOR HARD SPHERE
n=20 n n-=2
- _ _ 9
a7 | lal (a,HT | Jal @7 | a7
1 0 100} 0 ® 0 f0s}
3 3 25
9 2 1.2910 = 1.8258 22 2.2450
5 10 126
3 -1 1.4422 L 1.8171 0 ©
3 6
3 3 5
4 = 1.2359 -2 1. 7479 2 2.3858
7 28 162
5 | -2 1.2011 L 1.5849 I 2.3220
5 10 135
6 11 1.1614 _5 1.8732 185 2.1038
97 216 16038
71
o - 1.1376 _29 1. 7400 - 10 2. 0829
17 1400 1701
8 57 1.1193 89 1.5277 250 2. 0731
165 2640 85293
1151 9
g | -2 1.1054 o923 15202 | - 297 2. 0599
2835 99680 71442
10 8313 1. 0943 1367 1. 6609 _2557 | 9 goa9
20475 218400 2952450
29543 4918 793
1| - 1. 0853 6107 | - .
72765 931392 1.610 1515501 1.9875
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111

THE GENERAL SPHEROID

Having obtained the radius of convergence of the low frequency expansions
for the sphere, we now turn our attention to the more general problem of the
spheroid and seek to determine the corresponding limits on the convergence using
the methods previously described. For this purpose a necessary preliminary is the
derivation of an expression for the scattering function, and since the solutions for
prolate and oblate spheroids can be deduced from one another by a trivial change of
-parameter, the analysis will be given for only the first type of body.

Consider, therefore, a prolate spheroid which is defined in terms of the
prolate spheroidal co-ordinates (£, n, §) by the equation £ = §o. Incident upon the
body is a plane wave travelling in the x z plane of a Cartesian co-ordinate system
(x,y,z) where

X =a[(l—n2) (EZ—I)J 2 cos P, y=a [(1—172) (52—1)]1/2 sin
z =ang,
with 2a as the interfocal distance, and if the direction of incidence makes an
angle ¢ with the positive z axis, the field can be written as
Vi:eik (x sin ¢+ z cos ¢ ) (8)

The incident field can also be expressed as a sum over angular and radial

11
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spheroidal functions, and by postulating a similar expression for the scattered field
v° the unknown amplitude factor can be determined from the boundary condition at

the surface. The details of the analysis are given in Senior (1960a), and it is there

shown th%g o
S (c,cost)
v =2 E E (2-¢ it A R(S) (c,€)S (c,n) cosm @
om N (c) mn mn mn
mn (9)
m=0 n=m
with

(1)
. ARmn(c,So) 0
mn A (3)
R (c, &)
- mn o

where nowd) is unity or 9/09& o depending on whether the body is soft or hard
respectively, and ¢ =ka. The notation is that of Flammer (1957) and the reader is
referred to this book for the definitions of the symbols and functions here used.

In the far field c£ ~ kR, where R is the distance from the center of the

spheroid, and since

. 1
R(S) (e, ) 1 ol {CS i (n+ 1)7T}
c

mn

as cE—3» 00, the far field amplitude is

00 ® Smn(c, cos ¢)
f(n, €) = - 2i § g (2-50m) N 1o A_ S (c.n) cosm . (1)
m-= n-m

For sufficiently small values of c (that is, for sufficiently low frequencies) all the

terms in (11) can be expanded in positive integral powers of ¢, and by re-arranging

12
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the resulting series the Rayleigh expansion is then obtained.

Of the various factors which make up the individual terms in (11), the
angular functions are free of singularities, whereas Amn (see equation 10) has poles
at the zeros of the denominator. In addition, of course, there is the possibility of
singularities arising from the vanishing of the normalization constant Nmn for some
(complex) ¢, but if such a singularity were the nearest to the origin of the c plane,
the convergence of the Rayleigh series would be independent of the precise shape of
the spheroid. This is intuitively unlikely, and it will be shown later that any singu-
larities of Nmn can be discounted as far as the convergence of the series is con-
cerned. The radius of convergence is then specified by the coefficient Amn whose

pole has the smallest modulus, and is given by the smallest zero of the radial

)

functions 4\ R( 3
mn

In the particular case ¢ =7 (incidence along the negative z axis) the expression
for the far field amplitude can be simplified by observing that
S (c, -1)=0
mn
unless m = 0. The summation over m now contributes only the first term and ac-
cordingly

f(n, 7) = - 2i S (c,n). (12)

n=90

Using this equation the Rayleigh series for both soft and hard prolate spheroids have
6
been computed up to and including terms in ¢ , and the results are given in Senior

(1960a).

13
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An interesting feature of equation (i2) is that all the functions which can
affect the convergence of the low frequency expansion also appear in the expression
for f(n, %), € # 7, and it therefore follows that the radius of convergence when
¢ #7 cannot be greater than it is for incidence along the z axis. Since this con-
clusion also holds for an oblate spheroid (as can be seen by replacing ¢ by - ic and
SO by i‘g"o in (11) and (12», it is clear that the convergence of the Rayleigh series is
not directly related to the radius of curvature at the 'point' at which the incident
field strikes the body. This rules out one of the ways in which the convergence
gould depend on ¢ and So.

Because of the complication involved, a detailed study of the dependence of
the radius of convergence on ¢ has not been pursued, and the subsequent analysis
is confined to the case { = 7. The study is then aimed at an investigation of the way
in which the convergence varies with & o and accordingly the results which are found|
represent only the upper bound on the convergence when ¢ #7. Nevertheless, pre-
liminary calculations do suggest that this upper bound is in factthe actual radius of
convergence, implying that the convergence is independent of the angle ¢ at which
the field is incident.

When ¢ = 7 the far field amplitude is given by equation(12) and in the
following sections the radius of convergence of the expansion for f(n, 7) is deter-

mined for certain selected values of EO. From these results it is possible to infer

14
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the convergence for all £ o and to this end we start by considering the problem

of an almost spherical body.
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v

THE SPHEROID OF SMALL ELLIPTICITY

The ellipticity of the (prolate) spheroid £ = go is:'<
e=1/¢ o

and if EO —> 00, ¢ —>» 0 in such a way that CEO tends to a finit limit p, the spheroid
degenerates into a sphere of radius p/k. The amplitude function defined in equation
(12) then reduces to the sphere amplitude shown in equation (5), and this fact is
most clearly seen by expanding the radial spheroidal functions in terms of the
spherical Bessel functions.

From Flammer (equation 4. 1. 15) we have

00 !
1 ,r-n _on .
™ (o R(Ori (c,8) = g T (e) § (c) )

r=0,1

00 !

on on -
where o (c) = E dr (c) and the summation extends over even or odd values of
r=0,1

n according as n is even or odd (denoted by a prime attached to the summation sign).

Similarly,

[00) 1

on (3) ~ .r-n _on

o (@R _ {c.8)= g im d 7 (dh (cE) (14)
r=0,1

1

\!g(2)+1 ‘

’I\The analogous formula for an oblate spheroid is e =

e 16
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and since
a ™(c)= Srm)+ 0(c?)

for small c, it follows that as ¢—= 0 the spheroidal amplitude coefficient AOn re-

duces toq\

A jn(CS)
" A n(cE)
n

in agreement with the spherical coefficient (4). Morever,

o0
Son(c,n)= E dron(c) Pn (cos 0)

r=0,1

—_—> P][1 (cos 9)

and
Z e}’
(c) =2
2r +1

2

2n+1°

which completes the reduction of equation (12) to equation (5).

A consequence of this identification is that in the sphere limit the
convergence of the Rayleigh series for the soft body is determined by the
smallest zero of Rf)gl) (c, &) as a function of c&, and for the hard body by the

smallest zero of % Ryo (c, €). This suggests that when the ellipticity is

small but not zero a possible method for assessing the convergence is to expand

" From henceforth we shall omit the suffix 'o' from the radial variable specifying
the spheroid.
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(3)

Ron (c,f) in terms of the spherical Hankel functions, and calculate the perturba-
tion of the zeros of hn (c€) by retaining only the leading powers of e and c. Although
it would appear that two small but unrelated quantities are now involved, this is in
fact not so, and the requirement that the spheroid goes over into a sphere of

radius p as ¢c—0 implies that

e=c/p

for all values of ¢ under discussion.

Let us therefore begin by considering the soft spheroid and attempt to locate

(3)

on

the smallest zero of R~ (c,&). From the recurrence relations defining the

o
spheroidal coefficients dr n, we have

on B n 2 4
g = g TO0(e)
don _ 1Jr0an2+0(04)
n n
on n 2 4
= +
dn—2 o o 0(c?)
and in general
don - 0(c [n-r| ),
r
where
n (n+1) (nt+2)
a = -
n+2

5 (2n+1) (2n+3)°
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2:_(2n-1)(2n+ 3)

“n 2 2 (+ forn Zd(in )
2(2n - 1) (2n+3) Y
and
A - n(n-1)
n-2 2(2n—1)2(2n+1)
. ' on
with CN— 0 if n <2. Bearing in mind that the factor c o is cancelled by a like

. . 1
factor in the expression R(ozl (c, &) and can therefore play no part in the con-

vergence analysis, equation (14) now gives

c(z)n(C) R((i)l (c,&) =(1+ az %) h (c§) - ¢’ a2_2 h _o(cE)
2 n 4
and since
(n+1) (2n-1) 2n-1
h (ct) = -{l - ——————} h (c&) + h' (c&)
n-2 (cE)? n ce M

X (c£) {1 n(2n+3) } b (cE) on+3 b (ct)
cg) = -4l - ———— cg) - e
n+2 (C§)2 n ok n

where the prime attached to the Hankel function denotes differentiation with respect

to the whole argument, we have

n
n+

() R(jri (c,&) = [1+ ¢ (@ jtal+tal )+ e { (n+1) (2n-1)a_
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+nemd)d }J h (&) - ce |(2n-1)a

n \ 4
- (2n+3) ozn+2} h n(c%’) + 0(c").

The zeros of R((:i:l (c, €) are therefore given by the roots of

2 4
hn(p) e { (2n-1) arrl1—2— (2n+3) a2+2} ph'n(p) + 0(e”), (15)

and the smallest root in the complex p plane determines the smallest radius of
convergence of the expansions for the individual Aon’ and hence the radius of con-
vergence of the Rayleigh series.
In passing it should be pointed out that to order e equation (15) is simply
h (p) =0 (16)
and consequently a first order analysis will not reveal any change in the radius of
convergence. This is otherwise obvious from the fact that the ratio of the major to

2 )_1/2 =1+0 (e2 ), which implies that the first order terms

the minor axes is (1-e
in e or ¢ correspond only to a change in the radius of the sphere but not to any de-
formation of shape.

To obtain the solution of equation (15) it is assumed that

2
o) :pn-i-te +O(e4)

where Py is a solution of (16). If this is inserted into (15) it follows immediately

that
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n+2

_ _ no n
T pn % (2n-1) a/n_2 (2n+3) o }7
and since

n n -1 ————————l
(2n-1) @ o (2n+3) Y2 Z{l B (2n-1)(2n+3)} ’

the perturbed root is therefore

2
- e 1 4
P by {” T {1' mﬂ "ot ()

It will be observed that the terms in braces are real, so that the effect of
the perturbation is merely to change the magnitude of the root whilst leaving its
~ phase unchanged. Moreover, the terms are also positive for all integer n (including
zero) and thus the magnitude of the perturbed root exceeds that of the unperturbed,
showing that the effect of the perturbation is to increase the radius of convergence
of the expansion for Aon' For a fixed ellipticity the percentage change increases
with increasingn > 1.

To determine the smallest radius of convergence it is only necessary to
recall that |pn| also increases with increasing n > 1, and whereas Po =00, Py = i.

Accordingly, the smallest perturbed root is that corresponding to Aol’ and is
e2
p:—i(1+—§)+0(e4). (18)

The modulus of this represents the value of ¢ & specifying the radius of convergence

and consequently for a soft prolate spheroid of small ellipticity the Rayleigh series
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converges for

cE <1 + % +0(s'4)< (19)
5€

When the spheroid is hard rather than soft a similar treatment is possible

based upon the location of the roots of 5(2 R(S)

F on (c,&). By expanding this deriva-

tive in powers of ¢ we have

1 on o _(3) _ n 2, ., 2 n \
—C-Co (¢) -égRon (e,8&) =(1 +a/nc )hn(CS) -c an_zhn_z(cg)
2 n . 4
-ca hn+2 (c&)+ 0(c™),
and since
(c€) (c€)
, [ (n+3)(2n+3)} , ont3 {  n(n+3) JL
hn+2(c§) { 1 — 5 hn (c&) + & 1 5 hn(cg),
(ck) (c&)

the zeros of % R((ii (c, &) are the roots of the equation

ph'n (p) = e2 [(2n—1){(n—2)(n+l) - p2 }ai_z - (2n+3) {n(n+3) - pz}'al;+2 J hn (p)

roee?). (20)

If it is now assumed that

o =p;l+t' ez+0(e4)
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where p]'rl is a solution of the equation
i = 0
hn (p) =0,
the second derivative of the Hankel function can be eliminated using the relation

" ! - n<n+l) 1
hn(pn)__{l_ , 2 }hn(pn)
Pn

to give

1 2 n 2 n n(n+1) -1
T = 5; [(Zn—l){pn - (n-2)(n+1)}a/n_2 - (2n+3){pn - n(n+3)}an+2}{l "3 }

Py

Moreover,

n n2(n+1)2
- n(nt+3) (2n+3) o

n -
(n-2)(n+1) 2n-1) & n+2  (2n-1)(2n+3)

n-2

and hence 9

2 P
e n 4
p=p' |14+ —— { n(n+l) -~ ———— }J+ 0(e™). (21)
n { (2n-1)(2n+3) pnz_ n(n+1)

In contrast to equation (17) the terms in braces involve both e and 9;1’ and con-
sequently the root differs from 9;1 in phase as well as amplitude unless p;l is
either real or purely imaginary.

The final step is to insert the values of pil and select the root of smallest
magnitude. Since
=-i

!
p0

and
I
p'1=—i\/§e— 177'/4,
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with pI‘l increasing as n increases, it is clear that the smallest perturbed root is
now produced by Aoo’ and the fact that p(; is purely imaginary then leads to a per-
turbed root which differs from the unperturbed root in amplitude alone. The root

which therefore specifies the radius of convergence is

62 4
p:'i(1+—§-)+0(e) (22)

(cf equation 18), implying that for a hard prolate spheroid of small ellipticity the
Rayleigh series converges for

cE< + S50 . (23)

3€
Providing £ w, this exceeds the radius for the soft body.

Using the above results it is a trivial matter to deduce the radii of
convergence for the oblate spheroids. The oblate coefficients Aon differ from the
prolate coefficients only in having ¢ replaced by -ic and &€ by i§ and since the pn
and pI; are unaffected by this transformation, the formulae for the perturbed zeros
can be obtained from (17) and (21) by changing the sign of ez. It now follows that

for the soft oblate spheroid of small ellipticity the Rayleigh series converges for

cE< - roE™h (24)

5&

(cf equation 19), and for the hard oblate spheroid, when
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cg <1- +0(§ 7) (25)

3€
(cf equation 23).

It will be observed that both radii are less than unity and whereas the
deformation of a sphere into a prolate spheroid served to increase the range of c&
for which the Rayleigh series converge, the reverse is true when the spheroid is
oblate. On the other hand, it should be noted that c£ is the semi-major axis only
when the spheroid is prolate and since it is more natural to express the convergence
criteria in terms of the maximum dimension of the body, the above limits on the

- convergence for an oblate spheroid are better written as

e+ 1) /2 <1y o™ (soft) (26)

10§2

c@+ 1) <11 —1-2 roE ™Y (hard) (27)
6§

When expressed in this manner it is seen that any deformation of a sphere into a

spheroid produces an increase in the radius of convergence.
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\Y%

THE DISC

A part from the sphere the only other spheroidal body for which precise
results are easily obtained is the disc. This is the limiting case of an oblate
spheroid as £—» 0 (or e —» 1), and has the advantage that the amplitude coefficients
AOn are such as to permit a direct location of the singularities in the complex ¢
plane. In addition, the disc can be treated by methods other than those involving
spheroidal functions, and in recent years several integral equation techniques have
become available. These are particularly suited to the derivation of the low fre-
qguency expansion and since a significant number of terms can be obtained without
undue effort (Bazer and Brown, 1959), the approximate radius of convergence can
be inferred using the intuitive argument described in € 2. This provides a check
upon the conclusions reached from a study of the singularities of the A

In seeking to calculate the radius of convergence it is convenient to begin
with the rigorous method, and for this it is necessary to have an exact expression
for the Aon when £ =0. Bearing in mind that oblate spheroidal coordinates are now

required, the amplitude coefficient AOn is defined as

AR(C}; (-ic, ig)

on ARS’;I) (-ic, iE)
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(see equation 10), and by making the transformation c—»-ic and £ —» if in equation

(1)

(13) an expansion for R o (-ic, i&) is obtained in the form

0
0] 1
R(;Iz (-ic, i&) = —Onl . E ir—n(—ic) jI‘ (c&). (29)
c (-ic)
o r=0,1

But in the limit £ =0,

i (c8) = é(r)

iD=+ S

o0&
and hence for even values of n
on, .
(1) N dO (-ic)
R (-ie,i0) = (-i) (30)
on on , .,
c  (-ic)
o)
9 (1), . .
[ E ROn (-ic, 1§)J =0 (31)
£=0
whilst for odd values of n
R(l) (-ic, i0) =0 (32)
on
™ (~ic)
9 (1), . . _ 1, ..n-1 1
{SE Ron(_lc’ i§ )] = g(-l) on (33)
¢ (-ie)
£=0 o
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Accordingly, for the soft disc the AOn are identically zero for all odd values of n,
and it is only necessary to consider the form of the coefficients when n is even.
And similarly, for the hard disc the expansion for the far field amplitude is con-
fined to odd values of n, so that in this case only the AOn for odd n have to be con-
sidered.

For the radial functions of the third kind the expansion in terms of sphericalf
Hankel functions deduced from equation (14) is not appropriate to the determination
of the functions in the limit € =0, and an alternative expansion is desirable. From

Flammer (equation 4. 4. 19) we have

() RPN ¢ ) R . o S o o
Ron (—10,1%’)—R0n( 10,1’5){1+ 1Qon( ic) (tan " & 5 }+ 1g0n( ic,i&) (34)
where
sk 1 nl 2
Qon(-ic):;{ — n“ — } n even (35)
2 —2- —2—do (-IC)
) 3 (n+1)! 2
:_._{ ) } n odd (36)
c|.n n-1; n on, .
2 —-é-l'—z—-l Cdl (—10)
and 00
. on 2r+1
8n (-ic, i&) ZB oy 3 n even (37)
r=0
00
- E g g2T n odd (38)
2r
r=0
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Since gon(—ic, i0) =0 when n is even, as is the € - derivative when n is odd, an

expression for the B(;nr is not required at this stage, and using the values found

for the radial functions of the first kind it follows immediately that for n even

R (<ic.i0) =R
on

(31 (-ic, 10){ -1 = Q*On (—ic)} (39)

and for n odd

9 _(3), . . _ o (1) .. I PO
[ 5E Ron (-ic, i&) L:o 5E Ron ( 1c,1S)J 5:0{1 i3 Qon 1c)}. (40)
Hence
N PP PR N |
Aon - {1 13 Qon( 10)} (41)

for all n, with the even values applying to the soft body and the odd values to the

hard.

The singularities of Aon are therefore given by the equation

. 1 sk » _ 2
12Qon(1c) 1 (42)

and substituting the expression for Q:)n (-ic), this becomes

on ., _ + ' 77 (43)
do (r) = nn| o 2r
2 — —
2° 2
for n even, and
on + 3(n+1)! 1 [
= — - [— 44
dl () ol n-1| ntl| ry2r (44)
2 2

for n odd, where for convenience the variable r has been introduced in place of -ic.
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The problem of finding the radius of convergence of the Rayleigh series is now
equivalent to the solution of equations (43) and (44), with the required radius
specified by the root of smallest magnitude.

Before attempting the solution it is desirable to give some thought to the
values of n which may provide this root. In the first place, we remark that for
both the soft and hard discs the values differ from those found for the sphere.
Thus, for a soft sphere the amplitude coefficient Aoo has no singularities in the
finite portion of the c&€ plane and the smallest singularity belongs to Aol’ whereas
for the soft disc n is limited to even values. This suggests that for some particular
ellipticity two of the amplitude coefficients must have (smallest) singularities which
are equal in magnitude, and the same sort of transition also occurs for the hard
bodies. Accordingly, the sphere results give no direct indication of the values of
n which must be considered.

On the other hand it is relatively easy to determine the roots of (43) and
(44) when n is sufficiently large. Taking for example equation (43), the spheroidal
coetficient dc:)n(r) can be represented by the first term ot its expansion in powers

of r providing n is large and r <<4nyn, and from the recurrence relations

defining the d(;n it can be shown that

on r 1 2
4y ()~ () 2n+1(n )
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Substituting into (43) then gives

n+l V7 n! n——lé!n+—1§'_

r 2

—_— ~ +

<2> - 2n gl_r_l_'n—lln—ll (45)
22 2 2

and for large values of n the right hand side is asymptotic to

1
+—
+ L (?.E) 7
‘/ e e
Hence
4n 2im7 -1
g oXp {—zm*} (46)
(m=0,1,2,...., 2n), and for n sufficiently large the roots are 2n+1 in number and

spaced equally around a circle of radius ére}_ in the complex r plane. It will be ob-
served that this radius is proportional to n and such that the assumed representation
of d;m (r) is valid. Since it is the smallest root which is required out of the
totality of roots of (43) for even n, it is now apparent that only the lower values
have to be examined in detail, with the probability that the lowest value (i.e. n=0)
will provide the root of smallest magnitude.

For equation (44) the analysis is similar in all respects and the fact that the

difference between the right hand sides of (43) and (44) is precisely compensated

on

by a like difference in the formula for d(z)n and d1

means that the asymptotic be-
haviour of the roots is also given by (46). Once again it is expected that the lowest

value of n will produce the smallest root, but since n is confined to odd values for
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the hard disc, the appropriate value here is n =1,

In Figure III the roots obtained directly from equation (45) are compared with
the asymptotic form for large n, and in interpreting the graph it must be remem-
bered that the even integers refer to equation (43) and the odd integers to equation
(44).

Unfortunately, for the smaller values of n not even the formula given in
equation (45) is sufficiently accurate for our purposes, and whilst both (45) and (46)
would suggest that of the 2n+1 roots one of them is always real, this is true only in
an asymptotic sense, and for all finite n the smallest root of each equation has an
imaginary part which cannot be ignored. This is clearly seen by a study of the
tabulated values of dos(r) and doln (r) for real r (see, for example, Flammer), and

from these it would appear that when n is even

on, .\ . n K
do(r) nn)n 2r
2 - =
27 2

and when n is odd

don( o 3(n+1) ! I ES
1 o n-1} n+ly rV 2r
2 2 -
as r tends to infinity through real values. Indeed, the accuracy of these represen-
T

tations is such that for r > 6- 5, d(:)o (r) differs from V > by less than one unit in

the fifth significant figure. Since d(:)n (r) and dcin(r) are non-negative for real r, it
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FIGURE IIL

THE SOLUTION OF EQUATION (45)
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now follows that equations (43) and (44) can have no real roots in the finite portion
of the r plane, and this immediately rules out the possibility of using tabulated
values for the spheroidal coefficients in the solution of the equations. We are
therefore compelled to rely on the series developments of d(;n(r) and d(;n (r) in
powers of ¢, with enough terms included to ensure an accurate determination of the
roots, and we shall begin by examining the problem of the soft disc, for which n is
restricted to even values.

When n is even the relevant equation is (43) and taking first the case n =0,

the equation from which to calculate the singularities of A00 is

00 T
=4 —_
d o (r) =+ 4/ or (47)
In Appendix A it is shown that

0o

_ o2 04 06 o8 o010 12)
d0 (r) =1 a T +a2r - T +a4r +a5r +0(r

where

o -2

o) = 5555555556 x 10
0 -3

o) = 4+ 135802469 x 10
ag - 9. 125500406 x 10~ ¥
o -6

o', =3-903827192 x 10
7

ag - 3.787031007 x 10~
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and writing r = sele, (47) splits up into the two real equations

o 2 4 6 10
1—a1s cos29+ags cos49—ags cos66+aZcos89+ags cos 106

_|_
+ 0(512) = - 1/ 218 cos —g— (48)

2 1
ofl’s sin 29—a‘2’ st sin 46 + ozg s° sin 69—aZ s® sin 89—ags 0 sin 106

12 +
o) =t Vo sin —’29- (49)

- in which either the upper or the lower signs must be taken in conjunction with one

another.

A casual examination of (48) and (49) shows that if a root of these equations
exists for some particular value of 6, a further root can be obtained by changing 6
into 27 -6, and consequently it is sufficient to confine attention to the range 0<6<7.
In addition, the magnitude of the coefficients is such that for the equations with the
upper signs the smallest root will almost certainly occur withinthe range 0<6<7/2,
and for the equations with the lower signsthe corresponding range is 7/2 <0 <.

After a few trial calculations it is found that the smallest root has 6

approximately 80 and a magnitude somewhat greater than 3-2. Unfortunately, for
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values of s as large as this the convergence of the series for dooo(r) is extremely
slow, and even the terms is given in (48) and (49) are insufficient to determine the
root with reasonable accuracy. Although the labour involved in deriving
additional terms in the expansion for do(())is such that it seems unprofitable to pur-
sue the matter further, it is possible to use the tabulated values of dos (r)for real r
(see, for example, Flammer) to estimate the coefficient of 012, and this turns out
to be negative and of order 2-7 x 10—8. With this additional coefficient available,
the calculation of the smallest root can be refined to give

r=325 exp{i 0-044 ﬂ},
and greater accuracy is only possible by including still more terms in the expan-
sion for a*° .

o
For the reasons stated previously it is to be expected that this is the

smallest root of equation (43) for all (even) values of n, but in the interests of

completeness the equation for n =2 has also been investigated. We have

2
02 T 2 2 2 4 2 6 2 8 10
= - - + +O
do(r) E }Llalr azr +a3r oz4r (r' )

with X
a? = 5- 668934252 x 10

2 -3
ozz =2-394192749 x 10

) -5
o = 5248224599 x 10

ai _ 8.783406504 x 10
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which can be inserted into equation (43) to give

l—a? s2 cos 20 - 0‘; s4 cos 40 + ai s6 cos 66 + ai s8 cos 86

10, + 45 1 [7 50
+0(s" ) = > 52 P cos 5

a? s2 sin 260 + 0‘3 S4 sin 40 - ag s6 sin 60 - ai s8 sin 89

10 + 45 1 T . 56
+ = - = - {— -
O(s ) 5 S2 5 sin 5

and whilst the number of terms in d(())z is not sufficient to permit an actual calcu-
- lation of the roots, it has been verified that no root exists whose magnitude is less
than 3-5. We are therefore led to the conclusion that the smallest root of equation

(43)(and hence, of (42) for n even) is provided by the case n =0, and is

=325 exp{ £ (0.5 = 0. 044) w} (50)
corresponding to a singularity of Aoo' The magnitude of this root represents the
smallest radius of convergence of the expansions for the individual Aon’ n even,
and accordingly for a soft disc the Rayleigh series converges for

c < 3-25. (51)
In comparison with the above, the problem of a hard disc is relatively easy.
When n is odd the relevant equation is (44), and taking first the case n =1 the

is

equation with which to calculate the singularities of Aol
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ol _+ 3 7
c\1 (r) = Vs (52)
As shown in Appendix A,
ol, . _ 1 2,14 16, 1.8 10
dl(r) = 1 o, r +oz2r mogr +a/4r + 0(r )
where
ot = 6x 1072
1
1 -3
@y = 2-216326531 x 10
1 -5
a/S =4- 316150166 x 10
1 -7
o, = 2:412282939 x 10

and equation (52) then splits into the two real equations

1—ai s2 cos 26 +oz12 s4 cos 49_(2; s6 cos 66 + aéll s8 cos 86
1 +
+oist?y - ——-B—\/icosﬁg, (53)
s 2s 2
al s2 sin 26 - a/l s4 sin 46 + a/l s6 sin 60 - 011 88 sin 860
1 2 3 4
1 +
votdy = &3/ gy 36 (54)
s 2s 2

Once again it is sufficient to restrict attention to 0<6<7, and the magnitude of
the ai are such that the smallest root almost certainly lies withinthe ranges
0<6<7/3orn/2<6<2r/3 depending on whether the upper or lower signs are

chosen. It is now a straight-forward matter to show that
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r=2-1255 exp{i 0.62456 ﬂ}
and because the modulus is so much smaller than that found in the case n =0, even
the fewer terms shown in (53) and (54) give the root to a high degree of accuracy.
For completeness the corresponding equation for n = 3 has also been

investigated, and since

03 3 2 3 2 3 4 3 6 3 8 10
d1 (r) = 5 T {l+alr — T —QSI' +a4r + 0 (r )}

with

3

o =8 888888889 x 10

4

o. =2-504052873 x 10

5

@2 =1.111387425 x 10~

Ww N Wk~ Ww

ai - 1-961434362 x 10 )

the equation specifying the singularities of A03 can be written as

1+a/3 52 cos 260 - ozS s4 cos 40 - a3 s6 cos 69+a3 58 cos 860

1 2 3 4
10, _+ 525 [ [,
+0(s ) =— _53 5g ©08 5

- a:f s2 sin 26 + ozg s4 sin 40 + ag 36 sin 60 - ai s8 sin 86

10, _ + 525 7
+os )= = 2 [T 2

Since the number of terms is insufficient, a precise root has not been obtained, but
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it has been verified that no root exists whose amplitude is less than 4:5. Bearingin
mind the asymptoticbehaviour of the roots as a function of n, it is now concluded
that the smallest root of equation (44) (and hence, of equation (42) for n odd) is
provided by the case n =1, and is

¢ = 2- 1255 exp {1 (0-5 = 0. 62456) w}, (55)

corresponding to a singularity of AO Accordingly, for a hard disc the Rayleigh

1
series converges for

¢ <2.1255 , (56)
which is significantly smaller than the radius of convergence for the soft disc.

As a final check, the radii of convergence have also been determined from
the actual coefficients in the Rayleigh series using the alternative approach refer-
red to in §2, and the details are given in Appendix B. Such a check is desirable in
view of the fact that in applying the rigorous method there is always the possibility
that a dominant singularity may have been overlooked, and it is therefore pleasing

to find that the results agree with those obtained above.
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VI

THE OBLATE SPHEROID OF ELLIPTICITY NEAR TO UNITY

It is convenient to follow up the discussion of the disc by considering the
problem of the oblate spheroid which is almost a disc, and for which the ellipticity
is almost unity. This implies that

0<& <<1,
and by obtaining the expansions of the amplitude coefficients AOn in terms of &, it
is possible to investigate the perturbation of the singularities consequent upon the
- presence of the non-zero parameter £. It is then a trivial matter to deduce the
changes in the radii of convergence.

The expression for the Aon is shown in equation (28), and taking first the

(1)
on

radial function R’ (-ic, i§), the Bessel functions in equation (29) can be replaced by

the leading terms in their series expansions for small c€ to give

on on
d " (-ic) 2 d
R(jr)l<—ic,i§>=<—i)n o {1- ‘%5’ Q+ 2 —20?> +o<§4)}, (57)

e (-ic) 0 a
on on
2 d (-ic) d
0 (1), . ..._, .02 cE o 2 2 3
gg Ron (-ic, i&) =(-1) 3 ) On(_ic)<l + '—5— d0n> +0(§7) (58)
(0]

when n is even, and
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d?" (-ic)
R (rie,ie) = (0" £ Ly o, (59)

o on , .
c  (-ic)
0

4% (-ic)
2 B iei) (™ L L o?) (60)

con (~ic)
o)
when n is odd.

For the radial functions of the third kind we have from equation (34)

R(il)‘l (-ic, 1§) :R(;r)l (ic, 18){1-1 % Qt,n (—ic)< —% + 0(53)>}+ ig, (-ic,i8)

where

on 3
SBO + 0(§7)

8on (-ic, i&)

for n even, and

on 2.0on
+
B0 EB2

g__ (ic, i) + ot

for n odd. Moreover, from Flammer (equations 4. 4. 25 to 4. 4. 27)

o 2
o n 1 Cuio) d> (-ic)
R —_— 1—cQ0n(—ic)~{ U }
° ¢ a™ (-ie) ¢ (-ic)
o » o
for n even;
on (-ic)
on .nt+l 1 Co
B =3i — ,
0 2 on, .
c d1 (-ic)
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d. " (-ic)
-2 QT (-ie) !
3 on .
Co (-ic)

for n odd, where kon(-—ic) is the eigenvalue, and consequently when n is even

1y, . . on, . -1
R " (-ic,i&) ¢ (-ic)
_%__: {1—1271 (-ie) (1--— + £i o gn—z)%——-+0(§3) }
R " (-ic,i&) (-ic)

on o

o (1), . . on on, .

EH Ron (-ic, i€) _ icz‘é’ 2 d2 * on o (-ic)
o _(3),. ..., 3 5 n)|Q (-ie) +1 on , .
EH Ron (-ic, iE) do do (-ic)
don =1
ic & 2
o

and when n is odd

1y, . . on , . on, .

Ron (-ic, i&) _ in_z ct d1 (~ic) [Bon . I in_2 d 1 (-ie)

R(jr)l (-ic, i&) 3 c(;n (-ie) ° 3 c(())n (-ic)

-1
111 Q" (ic) b+ 0(ED)
=1 —2 Qon (—10 (g )
( ) on, .
( -ic, i€) e ¢ (-ic)
ag ( ) (1-1-2”— Q_(-ic) +2i§’{Q (-ic) + 3171 c;n ——&1—-—-}
( -ic, i&) cd1 (-ic)

8%’

-1
+ O(EZ)J :
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It now follows that for a soft spheroid of ellipticity ~1 the amplitude

coefficient Aon has the form

_ _‘_ZT_ sk
Aon [1 19

con (-ic) 2
(-ic) + ik l{—o———} +0(g3)J

1

(61)
“ La™-i0)
o

for even values of n, and in the disc limit this reduces to the expression given in

equation (41). When n is odd

on

L0l 2
A 1035 dl(—IC)} .
on 9

on, .
¢ (-ic)
o

(62)

-1
+ 0(52)J

and is zero when § =0, which agrees with the original finding that only even values

of n contribute towards the soft disc solution.

ellipticity near to unity
3 on

A = L€ 13
on 3

d (-ic) 2
c n(—ic)
0

Similarly, for a hard spheroid of

on on, . 2
2 32_>{1+103§{00n(_1c)}
5 don 3 don(_ic)

o) o)

on

-1
d B
Q+ % ;%) {1 ik q (—ic)}+ 0(52)J (63)

for n even and

(o)

2 -1
9ign (-ic) [ (-ic)
oz { 0 } +0<§2)J

(64)
c d(;n (-ic)
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for n odd, and here again the limiting values are in agreement with those employed
in 85,

In order to find the radii of convergence for the individual Aon’ and hence
the radius of convergence of the Rayleigh series, it is necessary to locate the
smallest singularities of the AOn in the complex c plane. Taking first the case of
the soft body, the singularities for even values of n are given by the roots of the

equation.

on, 2
T ig °o (-ic) 3
1-1 E QOD ("iC) + ? T— + O(S ) =0, (65)
dO (-ie)

and as such can be obtained by a perturbation analysis based onthe singularities for

adisc. If ¢c= c, is a solution of (65) with £ =0, and if
—e + v £+ 0EY) (66)
c=c, o

is the corresponding solution of (65) with the term in & retained, substitution of (66)

into (65) gives immediately

0 on -1
con (-ic) o d o (—1cn)
t = - 1+ Cn n ,
n a° (-ic) a®® (-ic )
0 o) n
and consequently the roots of (65) are -1
9 on, .
on, . — d  (~ic )
ie co(-lc) acn 0 n 5
c=e¢ |1- = —m—m— 1+2c¢ + 0(E ). (67)
n (6] on . n on, .
n d n(-lc) d (-ic
o o n
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In view of the restriction to small values of £, the smallest root is almost
certainly produced by the smallest c and from the results in §5 it is known that
for n even

c <c , n=2,4,6,.....
0O n

The value of c, is shown in equation (50) and using now the expansions for d0: t)
and c(())o (t) / 4°° (t) (see Appendix A) with t replaced by —ic0 , the perturbation of
o)

the singularity can be computed. From equation (67) it is found that

c=c, { 1- & (1-027 + 0-1992 i)}+0(§2) (68)

and thus the effect of the non-zero parameter § is to modify c, in both phase and
amplitude. Of most importance, however, is the reduction in the amplitude, im-

plying a reduction in the radius of convergence, and from (68) the actual radius is

3:25(1-1-027 §). (69)

This formula is valid as long as terms in § 2 are negligible, or until another
singularity becomes smaller in magnitude, and bearing in mind that for even values
of n >0 the c exceed <, by 0- 25 at the very least, it seems reasonable to regard
(69) as holding for £ as large as 0-1 or even 0- 2.

All this is based on the assumption that the coefficients AOn for odd n have

no singularities which are smaller in magnitude that the one whose expression is
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given in (68). If such a singularity were dominant, the radius of convergence of the
Rayleigh series would change discontinuously in the limit as the spheroid became a
disc, and although this is intuitively unlikely, it is necessary to investigate these
other singularities to make sure that they do not include the smallest.

From equation (63) it is clear that the only singularities of Aon for odd n
are those which correspond to the vanishing* of c(z)n (-ic), and using the expansions
derived in Appendix A it has been verified that the smallest root of the equation for
n =1, namely

ol

. ol , . ol . _
d1 (~ic) + d3(—1c) + d5(—1c) +..... =0,

is approximately 5- 2 exp{ i(0-5 + 0-083) 77} . Since this exceeds c, in magnitude
and the singularities for higher (odd) values of n are even larger, it follows that
for the soft body the singularities of the odd coefficients have no effect on the con-
vergence, and accordingly the radius of convergence is as shown in (69).

Turning now to the case of the hard body, it is convenient to consider first

the coefficients Aon for odd n, the singularities of which are given by the equation

on 9
sk glgk (—iC) C ('iC)
1-i5 Qu (He) + —=% { — l + 0% =0. (70
c d1 (-ic) J

“In passing we note the interesting fact that any singularity of Agpy for n even or odd
is simultaneously a zero of the coefficient of £ in the denominator for n odd or
even respectively.
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Here again a perturbation analysis is applicable, and writing

c=c +T £ +O(€2)
n n

where c][1 is defined as before, we have

1 C(())n (_icn) ° 2 a—aé dlon (—icn) B
T' =3in_ (-ic )4—2— 142, Zn
n on n 3 n

on, . On , .
cndl( ic d1 ( lcn)

and consequently the roots of equation (70) are

SiSXn(—icn) cgn(-icn) 2 5 8—8 dfn (-ic ) -1 5
c=c |1+ ° |+ 2 2on 2 +0(g%).
n on, . 3 n on, .

c c d. (-ic d. (-ic

n n 1 n 1 n

When n is odd the c of smallest magnitude is provided by n =1 and if the

1
value for ¢ shown in equation (55) is inserted into the expansions for d(; and c(())1 ,
the corresponding singularity of Aol is found to be
c=c, {1—5(0-2615—0~5719i) } ro(e?). (72)

It will be observed that as a result of the finite ellipticity ¢ 1 is modified in both

phase and amplitude, but since the amplitude is decreased, a deformation of adisc
2

serves to decrease the radius of convergence. Providing terms in & are negli-

gible, the actual radius is

2.1255 (1-0-2615&), (73)
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and it only remains to verify that no coefficient Aon for even values of n has a
smaller singularity to assert that (73) is the radius of convergence of the complete
Rayleigh series.

The singularities of the AOn when n is even are given by the zeros of

c(;n (-c), and the smallest root of the equation for n =0, namely

% (Lic) + a%(-ic) + -0

00
- +
d0 (-ic) d2 4 (ie) .

is approximately 4- 1 exp{ i(0.5 + 0-05) 77} . This is greater than ¢, in magnitude

1

and since the singularities for higher (even) values of n are still larger, the even
coefficients can be discounted as far as the overall convergence is concerned. It
follows that for the hard spheroid of ellipticity almost unity the radius of conver-
gence is as shown in (73).

In keeping with the form of presentation used in §4, it is convenient to
express the above results in terms of the maximum dimension of the body. For an
) . . . 2 1/2 . .
oblate spheroid the semi-major axis is ¢(§  + 1) , which differs from c only

by terms 0(§ 2) for small §, and consequently the radii shown in (69) and (73) are

equivalent to the following convergence criteria:

o2+ )2 < 325 (1-1.0278) + 0D (soft) (74)

1/2

e+ )% < 2.1255(1-0.26158) + 0(£2) (hard) (75)
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It will be appreciated that these two equations summarize the conclusions of §5 as
well as of the present section, and it is of interest to note that whilst the soft body
gives the larger radius of convergence, its convergence decreases more rapidly
with increasing £. This is eminently reasonable in view of the fact that both soft

and hard spheres have radii of convergence equal to unity.




THE UNIVERSITY OF MICHIGAN
3648-4-T

VII

THE OBLATE SPHEROID OF INTERMEDIATE ELLIPTICITY

In order to complete the discussion of the oblate spheroid it is necessary
to consider the convergence of the Rayleigh series when the ellipticity is neither
small nor near to unity. Unfortunately this is a difficult task and whilst it is
possible to obtain several different integral expressions for R(()i) (-ix, if)

(see, for example, Flammer equation 5. 4. 1), no expansions are available by
means of which the zeros can be determined analytically. Moreover, the zeros
almost certainly correspond to complex values of 02, so that any attempt to dis-
cover them by purely numerical means (i. e. by computing an integral expression
for a variety of ¢ and £) would be an extremely laborious undertaking.

Nevertheless, it is important to have some estimate of the convergence for
these ellipticities, and this is particularly true in view of the change in the domi-
nant singularity which takes place somewhere within the range 0 < e < 1. Thus,

for a soft spheroid, the coefficient A0 specifies the convergence as long as the

1
ellipticity is small, but by the time that the body has become disc-like (e ~ 1) the
coefficient AOO has taken over; and with the hard spheroid the behaviour is just

the opposite. As a consequence, the 'curve' giving the radius of convergence as

a function of £ may well possess an abrupt change of slope for some value of the

ellipticity, and the nature of the 'transition' is therefore a problem of some interest,
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In the absence of any other method with which to explore this region, it is necessary

to rely on a numerical comparison of the coefficients in the expansion of the Agps

with the hope that sufficient terms can be included to give a reliable estimate of
the convergence.

For the values of £ under consideration it is convenient to write the ratio

of the radial functions as
00)

1
on on

-1

l [
Ron( )(—ic, i£) :

=01 9r

(0.0)
(-iC)Qr(iE) + gl dp/r

(-ic), _,(i€)

Rmf3k-m,ﬁ)

8.0) |
D, dy (-ie) P (i€)
r=0,1

.
(76)

(see Flammer, equations 4.2.3 and 4.2.7), where Qon*(—ic) is as defined in

equations (35) and (36), and Pr(i%’ ) and Qr(iE) are the Legendre functions of the

first and second kinds respectively. Attention will be directed only at the cases

n = 0andn = 1, and since the solutions for the hard body can be obtained from

those for the soft by differentiating the functions of the radial variable, it is

sufficient to write down the expansions for the soft body alone.

we have

Taking first the coefficient A
Qy (-ie) = -

so that™

ol

1

(¢

cdl01 (-ic)

(77)

>ﬁUnless otherwise stated, the argument of the Legendre functions is i£.
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— 0 ol 0 ol
§ dy _Q£+§ dp/r P
d ol Q d ol Q
3 P = 1 - 1 1
B C_(dol)z__l_+ r= I r=1
9 17 g ® 4% p
R
— ol
i r=1 d1 P1

Q

3 P @
c ol
9 Ql r=0
1
0
1 P 1 <_1.’_3__ f?i)
2.3 Q 52 \P; Q1
iR
32
i L R
— B - -
52 2 2.5 q 2232 q
1 Pl
3.5° @

53

+ 2 <£3. __3
2 4
.55 \P  Q

P
ot P
32 5,72 P

Qs
Q

e

-

(78)

and the expansions in Appendix A can now be used with t replaced by -ic to give

(79)
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_ 1 2 3 1 Py 53 P
Bg = = (B+ B2> 5 5 B 32 3
5 325 P 3.7 P 278577 q
N 1 P, s 1 P, 229 <P3 i Q3>
5.7 @ 2.3%.7 @ 325721 \p g
4 P 1
i 5 %), %
32527213 \p 335.7.11.13
2547, . Q 25.7.11. P Q
82
B, = - : gl
7
3.5.472 Ql
1 229 P
B = — (B + B ————-———B> -3
8 52 \'6 3252 T4 42537217 2 P,
1 4 P
S Bt B)
325.7 5213 P,
) 1 ] R, 1L B 2 B 1 P,
Z 2 5 4.3 .22
3%5.7.11.13 P, 2.3.5°7 q 3%5° q 350111 q

1 12542
_ Fs <P3 _ Q3>+ 586 <P5 i Q5>

394 282 4.4.4

2935.7.11 Q  3Y5T71L13 \p Q)Y 3BT ‘P q
; 2 <P7 ) Q7> ) : <P9 ) Qg)
33597.11.13.17 ‘P Q 3%527.1213.17 ‘P Q
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31211 P

B = :
36567 Q

Hence

3 w
C 1,2 P . \T
A, = —(d,° —
o= @ > (o) @ (80)
r=0

where the a, are given by the equation

% asBr_s:O, (81)
S:

For 0 £ r < 9 the «, have been computed for a sequence of values of &
spanning the range from a disc (§ = 0) to a point at which the convergence shown in
equation (26) can be assumed to be applicable. The values of the Legendre functions
were obtained from the N.B.S. Tables (1945), reinforced where necessary by direct
calculation of the functions from their formulae, and the results are shown in Table
III. It was then a trivial matter to determine the convergence coefficients |a rl ]

defined as
-1/r

1.
lar| ) ’arl

1/2
and these are also tabulated together with the values of (§ 2 4 1) / \arl\ indicating

the convergence measured in terms of the semi-major axis of the spheroid. This
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£=1.2 £=0.6 £=0.4
L 2, (W2, 1 1 2 W2t 1 219/ 1
e NI IR N RN e
1.20254 0.91190 1.4244 5.23870x1071{ 1.3816 1.6112 3.81764x10-1] 1.6184 1.7431
8. 01696 xlO_1 1. 0765 1.6815 1.74623x1071| 1.7891 2. 0864 8. 48364x10‘2 2.2758 2.4511
1.52720 0.89955 1.4051 2.45103)(10'1 1,4212 1.6574 1.15639x10‘l 1.7148 1. 8469
1.83195 0. 88597 1.3839 1. 62005)(10'l 1.4391 1.6783 5. 45946)(10'2 1.7888 1.9266
2.54840 0.85565 1.3366 1. 43436x10'l 1. 3822 1.6119 4,11153 xlO_2 1,7022 1,8333
3.38311 0. 84020 1.3124 1. 12973x10'1 1. 3655 1.5924 2.48936x10-2] 1.6948 1.8254
4. 58890 0.82658 1.2912 8.22250){10"2 1. 3665 1.5936 1. 59641 x 1072 1,6773 1.8065
-2
6.12600 0.81770 1.2773 7.51219 xlO'2 1.3333 1.5549 1. 05680x10 1.6579 1.7856
€=0.3 £=0.2 £-0.1
o ladl €+ 12t o jad] |2 % ot |€@e1H2a )|
3.24571x10-1 | 1, 7553 1.8326 2.75740x10-1 | 1,9044 1.9421 2.34498 x10-1 2, 0651 2. 0754
5.40952x1072 | 2.6441 2,7605 3. 06378x10_2 3.1958 3.2591 1. 302’76x10_2 4,2499 4,2711
7. '71550)(10'2 1.8974 1.9809 5.0507Lx1072 | 2.1094 2.1512 3. 24774)(10'2 2.35566 2.3673
2.86240x10721 2, 0355 2.1251 1.32196)(10—2 2.3755 2,4225 4, 54659x10-3 2.9408 2.9555
2.02689x10721 1.9151 1.9994 9.28174);10"3 2.1814 2,2246 3.85537x10-3 2.5254 2.5380
1. 02668 X].O'2 1.9234 2. 0081 3.64290x 10'3 2.2303 2.2745 9. 34045)(10'4= 2.7090 2,7225
7.43396 x1073| 1.8455 1.9268 1.90913 x1073| 2.1872 2,2305 4, 735’78}(10'4 2.6036 2.6166
3,33953x10-3| 1,8843 1,9673 8.67370;{10'4 2.1888 2.2321 1.53654x107% 2.6529 2.6661
£=0,05 £=0,01 £=0.0
2 2 1 2 21,1 1 2 2y, 1
N 0 G T | AP N B G| I GRS
2.16460)(10'l 2.1494 2.1521 2.03171x10°1 2,2185 2.2186 2.00000x10-1| 2,2361 2.2361
6. 01278)(10'3 5, 4993 5, 5062 1.12873x1073 9. 6044 9.6049 0 @ ©
2,58893x1072 2.4930 2, 4961 2.15442 xlO_2 2.6102 2.6103 2. O5’714x10‘2 2.6405 2.6405
1.88152x107°| 3.5083 3.5127 3.23203x10-4] 4,9901 4,9903 0 ® ®
2.372467{10'3 2.7382 2.7416 1.,5692].}(10‘2 2.9335 2.9336 1.41037)(10_3 2.9861 2.9861
3. 28993 x1074 3.1444 3.1483 4, 92560){10'5 4,1244 4.1246 0 W feo)
2. 00580)(10'4 2.8958 2.9024 8.81922x10_5 3.2123 3.2125 6. 99710){10_5 3. 3066 3. 3066
4,33278 x10—5 3. 0535 3.0573 5. 28150)(10'6 3.8580 3.8582 0 o) @
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last set of data is plotted as a function of (1 + 1/ ’52)1/ 2 in Figure IV, and it will be
observed that as £ decreases the overall level of the curves increases accompanied
by a build-up of oscillations. In the main, the maxima and minima occur at odd
and even values of r respectively, and when § is less than 0. 2 the first few minima
for each curve increase in magnitude as r increases, whereas the maxima decrease|
In other words, the amplitude of oscillations decreases with increasing r. As &
becomes smaller, the maxima increase in size, and are infinite in the limiting
case of the disc. Since an infinity corresponds to the absence of that power of c,
the result implies that no odd powers of ¢ occur in the expansion of Ap; far a disc,
a fact which is otherwise obvious when equation (80) is compared with (62). Indeed,
when € = 0 the @,. are merely the coefficients of (-t) in the expansion of {cgl (t)}_l,
and our previous consideration of this function showed it to be regular for |t|] <5.2
approximately.

To find the convergence of the expansion for Aol when £ is not zero, we
have to determine the limiting values of the quantities (£ 2 4+ 1)1/ 2 ‘ar1| as r - o,
and in practice the most convenient way of doing this is to express them as multi-
ples of the corresponding convergence coefficients for the sphere (see Table I).

Taking for example the case § = 0.4, the resulting ratios are

r=4 1.4944
r=5 1.6040
r=6 1.5785

e o8
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r="17 1. 6046
r=8 1.6140
r=9 1.6153

the limit of which is estimated to be 1.62. Bearing in mind that for the soft sphere

the A01 converges when c(«‘;32 + l)l/2

< 1, the radius of convergence for £ = 0.4 is
therefore 1. 62.

This procedure proved effective for all except the smallest values of £, and
here the interpretation of the ratios was made easier by the fact that the successive
minima on each curve increase with increasing r, whilst the maxima decrease.
Since the trend is relatively uniform, it is possible to obtain a reasonable estimate

of the convergence even when the mean level of the curve is still increasing at

r = 9, and the results are shown in Table IV.

TABLE IV. RADIUS OF CONVERGENCE FOR Aol (SOFT)

€ 1.2 0.6 0.4 |0.3 0.2 | 0.1 0.05 | 0.01 0

c(§2+1)1/2 1.16 | 1.42 | 1.62 | 1.78 | 2.0l | 2.42 | 2.76 | 3.38 |5.2

It is believed that these are accurate to within 190 for the larger &, but the error

could conceivably be as much as 5% for &€ as small as 0. 01
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For the hard body the expression for the amplitude coefficient Agy differs
from that in equation (78) in having all functions of £ replaced by their first deriva-
tives, and consequently the expansion can be decuded from the above by the simple
process of differentiating each Legendre function. In this instance, however, the
o are required only to indicate the convergence for those values of £ between the
ranges for which either the near-disc formula (75) or the near-sphere formula
(derivable from (21) with n = 1) is valid. Even then an accurate determination is

1/2

unnecessary unless the curve of convergence against (1 + 1/%’2) is found to dip

below the one for A and this is indeed fortunate in view of the almost random

00’
nature of the results.
The calculations have been carried out for £ = 1.2, 0.6, 0.4 and 0.3, and
the . are given in Table V together with the convergence coefficients larll and
(52 + 1)1/ 2 larll deduced therefrom. The last of these represent the convergence
measured in terms of the semi-major axis of the spheroid, and are plotted as a
function of (1 + 1/€ 2)1/ 2 in Figure V. If anything, the curves are notable only for
their lack of uniformity, and any attempt to deduce the ultimate level of each curve
as r — oo is largely a matter of guesswork. Nevertheless, by concentrating on the
minima and comparing these with the values for the sphere (see Table II), it is

possible to come up with some approximate values for the radius of convergence,

and these are shown in Table VI.

- 60
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TABLE V. CONVERGENCE COEFFICIENTS FOR A 1 (HARD)
0

=1.2 £=0.6
a, |2 (§2+1)1/2Ia;| @, lag| (€2+1)1/2|a11,|

4,84690x10-11 1.4364 2.2437 1.49754x10-1] 2.5841 3. 0136
-5.47521x10°1] 1.92224 1.9094 |-1.88580x10-1| 1.7438 2. 0336
-4.36995x10-1| 1.2209 1.9212  |-7.88932x10-2| 1.8869 2. 2005
-4,65054x1071] 1.1655 1.8206 |-3.38517x10-2| 1.9683 2. 2954
2.13025x10-2| 1.8993 2.9668 2.67026x1072| 1.8291 2.1331
4.00194x107L| 1.1362 1.7748 3.07891 x1072| 1.6442 1.9174
5.74060x107L| 1.0718 1.6742 1.50781x1072| 1.6893 1.9700
3.26687x10°1] 1.1324 1.7689  1-2.42565x1073| 1.9524 2.2769

£=0.4 £=0.3
1/2 1/2

Ay 'arll (52"'1) / ‘arll @y ‘arll (§2+1) / iarll

8.15714x1072| 3.5013 3.7710 | 5.48205x1072| 4.2710 4. 4591
1.31421 %1071 1. 9669 9.1184 |-1.10656x1071| 2.0829 2.1746
-3.78142x1072| 2.2677 2.4424  |-2.43580x1072| 2.5313 2. 6428
-5.66945x1079| 2.8138 3. 0306 1.14628x1073| 3.8738 4., 0444
1.69996x1072| 1.9721 2.1240 | 1.30692x1072| 2.0604 2.1511
1.05818x1072| 1.9152 2.1627 5.62521x1073| 2. 0961 2.1884
1.80478x1073| 2.2027 2.3724  |-2.50891x10°%4| 2.8188 2. 9429
-2.60133x10-3] 1.9373 2.0865 |1.90734x10-3| 2.0053 9. 0036
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TABLE VI. RADIUS OF CONVERGENCE FOR AOl (HARD)

3

1.2

0.6

0.4

0.3

c(E2 + 1)1/2

1.6

1.8

1.9

1.9(5)

The accuracy of the above results is hard to estimate, but to judge from the way

in which they agree with the formulae for § ~ o0 and § ~ 0, they cannot be too

much in error.

On the other hand, it is comforting to find that the convergence

of the Rayleigh series for a hard spheroid is not determined by them.

Turning now to the case n = 0, the expression for the amplitude coeificient

A, for the soft body can be obtained from equation (76), and since

Qoo (-ic) = ys 9 (82)
c{do (—ic)}
we have —_
@ 00 Q @ dOO ) l
r T, > plr r-1
dOO Q dOO Q
P P =0 0 =9 0 0
Ago = - cld®)? 0 | ¢(a2%? 20 + X .
°Q ° Q ° p
dr I
_ 00
r=0 dg PO ~
(83)

This can be written as
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© -1
oozP r
A =-c(d%0)f L (-ic) B (84)
00 [¢] Q r
0 r=0
-1
5
_1-—
Qy
1 P 1 (P Q2>
oLl (2-
2 q 3% \P  Q
__ i By
32 Q
1 P 2 P 1 B 2 Py Qo
:_2B2 F 2 _347 T A
3 P, 3.5 @ 2%.5 q P, Q
(-
h p)
3.5. P, Q
325% q
:L(B _LB)E_ 1‘ B Py > _Pl_+_1_i
32 T4 321 2 p 35’1 2y 223371 qp 3%5¢
1 P5 13 Pz Q2 + 4 P4 Q4>
+ - - —_ i S
2 ) < > 3.2
2.3%5.7 @, 385527 \Pp  q 33527.11 \p, q

1 P
M (6_Q6>
P, Q
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The coefficient A
00

in which the @, are related to the B,. by equation (81).

for the soft body is analogous to the A

65

3648-4-T
L 1581 B,
1 6~ 2
3%5.7% Qg
1 2 13 1 4 P
Bg = — (B - B B,) —2 - (By - ——B,) %
87732 6 327 4 34527 2 P 3.527 4 335172 B
1 P 41 P, 16 P,
¥ By~ e =S
335.7211 ° P 2.39527 @ 325211 Q
0 0 0
1 P 1 P, 46 P, Q
+ , 5 + __7. +_8 __.2_ - _%
323
355.7.13 qp 23335.7.11.13 q, 3°5.7.11 ‘P, Qg
2408 P, Q 9 Qg
+ <_-— —_ (2.8
5cdn2 5:272
3252721113 "B, Qg 35527211 Qg
36527.11.13 <p0
. 199i 7
O 385t q
and hence [0'0)
Ago © (0100)2 il ; (-ic)' o (85)
Q -0

for the hard
ol

in that each provides the smallest radius of convergence for the appropriate disc
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(or near-disc), but neither is important when the spheroid is almost a sphere.
Indeed, for the soft sphere the expansion of the coefficient A,  has an infinite radius
of convergence, and consequently any calculations of the « r based on the above
formulae are concerned only with indicating the manner in which the radius
approaches infinity for values of § greater than those for which the expression in
equation (74) is applicable.

The calculations have therefore been limitedto £ = 1.2, 0.6, 0.4 and 0. 3,
and the corresponding «,, are shown in Table VII. Also listed are the convergence
coefficients |ar°l and (§’2 + 1)1/ 2 | aro‘ , and the latter are plotted as a function of
(1+ 1/52)1/ 2 in Figure VI. It will be observed that none of the curves show any
signs of turning over and are effectively straight lines as far out as the largest r
considered. This almost certainly implies a radius of convergence in excess of
2.5, and even the possibility of an infinite value (as in the sphere limit, & = o)
cannot be ruled out entirely. Under these circumstances it would be a risky
undertaking to try to estimate the convergence, but it is clear that for £ > 0.3 the
radius is too large to play any role in the analysis.

When the body is hard the coefficient A j differs in having all the functions
of the radial variable replaced by their first derivatives, but if an attempt is made
to differentiate the Legendre functions in equation (83) a difficulty arises owing to

the occurrence of a factor Pé (i&) = 0 in the denominator, where the prime denotes

9/9E.
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TABLE VII. CONVERGENCE COEFFICIENTS FORA (SOFT)

g=1.2 £=0.6
, |20 (§2+1)1/2lar0| a, |2,°] (§2+1)1/2|ar0]
1, 43939 0.6947 | 10852 9.70516x10-] 1.0304 | 1.2016
1. 49609 0.8176 | 1.2771 7.47798x107 1.1564 | 1.3486
1.16479 0.9504 | 1.4846 4.29535x107Y 1.3254 | 1.5457
7.42627x107F | 1.0772 | 1.6826 2.06231x10 1| 1.4830 | 1.7305
4.02260x1070 | 1.1998 | 1.8741 8.51713x10 | 1.6366 | 1.9086
1.89628x1071 | 1.3193 | 2.0608 3.67042x10 7 1.7870 | 2.0840
7.01543x10 - | 1.4367 | 2.2442 9.80720x10 | 1.9361 | 2.2579
2.95953x1072 | 1.5527 | 2.4254 2.79074x10| 2.0859 | 2.4326
9.99243x107° | 1.6682 | 2.6059 7.08031x10 ] 2.2387 | 2.6107
£=0.4 £=0.3
o, 2,0 |62+ 12]a @ 2,0 |€2+11/%a |

8.40131x1071| 1.1903 1.2820  |7.81653x10°1| 1.2793 1.3356
5.93803x1071| 1.2977 1.3977  |5.32816x1071 | 1.3700 1.4303
3.11415x1071 | 1.4753 1.5889 | 2.68529x1071| 1.5500 1.6182
1.37798x10 | 1.6413 1.7677 1.14727x1071| 1,7182 1. 7939
5.27307x10 > | 1.8013 1.9401 | 4.25182x1072] 1.8806 1. 9634
1.75955x10 | 1.9068 2.1199 | 1.37261x1072| 2. 0437 2.1337
5.19818 x10™° | 2.1199 2.2832  |3.92111x107°| 2.2070 2, 3042
1.36373x10 - | 2.2812 2.4569  |9.93377x107%| 2.3733 2. 4778
3.16332x10 ] 2, 4484 2.6370  |2.21463x1074[ 2.5473 2. 6595
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P
The difficulty is most easily overcome by multiplying through by P2 prior
0

to the differentiation, and the expression for A, in the hard case is then

- 400 -
_.l'_ 8_'1; + _EL_. P -1
P! do® Q = dy  Q
_ 092 "2 009 r= do” Qg r= 0 0
Ago ~ C(d ) Q c(d, ) + o) 00 P! (86)
0
i Z; d°° P' |

which can be written in the form

3 p, [ -1
Aoo ™~ 5 (a29? o [ Z (ic)” Br] (87)
0

r=0
with
B, - 1
B1 =0
B l(.%_+ii'>_l Q 1P
_i P2‘
B3 @
0
1] P' P'
B 5 3 % 1 13 4 4 1 g
By == By(-=+— + -
7 32 52 pr 3.5.7 335  5.11 Pp' T7.11 P
2 2 2
] 2Q'2+3Q4 1 P1'+1P3>
2 (7— R -\ " 9
3' 3 1 5 1 3.5 1 2 1
7 QO QO QO Q
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1
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5 7.
¥ Q)
| 2 ! 1 13 4 B 1 K
B,==B,(—+ >+ B - _ )
6 7 4 9 2 2 3
32 5% pr 3.5.17 335 5,11 p'  7.11 P
9 9 2
1 <46 . 2498 PP o2 K 1 B
335.7.11 V33 537.13 B, 5.7 B 3.5.13 P

3

L1 < 13 9 s 9 1 % >
1 1 1
5 @ 51l @ T

P!

1 5 1 B 1 P

S .3 < 2 — + —+ - >
\] 1 1
3 207 Q) 3.5 Q 2.3.5.7 QY

. P!

_ 231 9
T2 g
) 0

It will be noted that as a consequence of the differentiation two terms of the series

have been 'lost', and the expansions given in Appendix A now serve to determine

the Br up to and including B7 .

From equation (87) it follows immediately that
c3 00 2 P2'
_ . \T
A= - ry ()" — % (ic)” a, (88)
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where the o are related to the B. by equation (81). These have been computed for

£=1.2, 0.6, 0.4, 0.3, 0.2, 0.1 and 0. 05, and the values are given in Table VIIL
. - o 2 12 o

Also listed are the convergence coefficients a. and (§°+1) ‘ar ! , and the

latter are plotted as functions of (1+ l/%’z)l/ 2 in Figure VII. The regularity is at

once apparent, and by comparing the coefficients with those for a sphere it is

possible to estimate the convergence with a reasonable degree of accuracy notwith-

standing the smaller number of the \arol available. The results are shown in

Table IX.

TABLE IX. RADIUS OF CONVERGENCE FOR A__ (HARD)

£ 1.2 o6 |04 | 03 |02 | 01 ] o005
c@2+1)Y2 | 108 | 121 | 1.32| 1.43 | 1.56| 1.82] 2.10

This completes the discussion of the oblate spheroid, and in combination with
the formulae of §§4, 5 and 6 the radii of curvature obtained above are sufficient to
specify the convergence of the Rayleigh series for both hard and soft spheroids of
any ellipticity. Rather than summarize the data here, however, we shall now go on

to consider the prolate spheroid and reserve the presentation of the final results for

§9.
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TABLE VIII. CONVERGENCE COEFFICIENTS FOR Ago (HARD)

E-1.2 £-0.6 o4
e G 00 (€2 a0 o |29 |(€2+1H7a,0]
2| 1.35095 0.8604 1.3439 | 6.65151x107%] 1.2261 | 1,4299 5.15654%10°1] 1.3926 1. 4999
3| 9.76000x107Y 1. 0081 1.5747 | 2.72000x107}| 1.5434 | 1.7999 1.54667x10-1| 1.8630 2. 0065
41 1.95652 0.8453 1.3205 | 4.12168x107Y 1.2481 | 1.4555 2.22677x107Y| 1.4557 1.5678
5| 2.52862 0.8307 1.2975 | 3.31620x107Y| 1.2470 | 1.4542 1.42324x107Y 1.4769 1.5907
6| 3.74135 0.8026 1.2537 | 3.29480x107Y| 1.2033 | 1.4033 1.20057x10°Y 1.4238 1.5335
7| 2.65924 0.7876 1.2303 | 3.07444x107Y| 1.1835 | 1.3802 9.40407x1073 1.4018 1.5097
£=0,3 £:0.2 £=0.1
r e I arol (§2+ 1)1/2131‘0, A ]arol (£2+ 1)1/Zl arol Ay |aro| (52 +1)1/2|ar0'
2 |4.52337x1071 | 1.4869 1.5524 | 3.94778x107Y 1.5016 1.6231 | 3.41084x107Y 1.7123 1.7208
3 |1.00000x10°1 | 2.0934 2.1856 | 6.93334x107% 2.4342 2.4824 | 3.36667x1074 3.0969 3.1123
4 |1.58031x107 | 1.5860 1.6558 | 1.07294x107Y 1,7473 1.7819 | 6.69587x10°3 1.9658 1.9756
5 |8.64984x1072 | 1.6316 1.7034 | 4.70389x1072 1.8429 1.8794 | 1,92256x1074 2.2041 2.2151
6 |6.63515x10 2 | 1.5717 1.6408 | 3.22539x107% 1.7724 1.8075 | 1.31898x104 2.1079 2.1184
7 [1.70346x1072 | 1.5476 1.6157 | 2.03886x1074 1.7439 1.7784 | 6.25585x10°3 2. 0645 2.1748
£ - 0.05

tl |20 [€2+ 1M

2| 3.14966x10°!| 1.7818 | 1.7840

3| 1.67083x1072] 3,9116 3.9165

4] 4,98593x107%| 2.1162 | 2.1188

5| 8.66864x107| 2.5847 | 2.5519

6| 4.65610x107°0] 2.4472 | 2.4503

7| 2.34398x1073 2.3753 | 2.3783
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VIII

PROLATE SPHEROIDS

For a prolate spheroid, £ is confined to the range 1 £ £ < 00 and the lower
limit (€ =1) represents a rod of zero thickness joining the foci of the coordinate
system, whilst the upper value (€ =00) again corresponds to a sphere. Inspite ofthe
change in the coordinates, some of the analysis for the oblate spheroid is imme-
diately applicable here. In particular, when the ellipticity is small (§ large com-
pared with unity) the convergence of the Rayleigh series has already been

determined (84), and if the body is soft the series converges for

cE <1+ —-1—2 o™, (19)

5

whereas for the hard body the criterion is

cE<l+ —1—-2 +oe™h, (20)
3&

where c€ is now the semi-major axis of the spheroid.

At the other extreme (£~ 1) the spheroid approaches a 'vanishing' rod and
since the volume of this is zero it is not surprising to find that each term in the ex-
pansion of the far field amplitude is zero in the limit § =1, leading to a null Rayleigh
series. On the other hand, for all & # 1, no matter how close to unity, the Rayleigh

series exists, and it is therefore meaningful to consider the convergence as &—» 1.
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When € =€ -1 is small, the most convenient representation of the radial

functions is

Q0

E )" (c yE2-1)* (n even)
(c

(89)

r:

00

E r on ( )(E ) (n odd)
— (90)

(Flammer, equations 4. 4. la and b), both of which are equivalent to

R (e 8 -

on
(1) ¢y ()
R (c,§&) = + 0(e) (91)
on (1)
( c)
for small €. Here,
on n n|n
Cy (c) ] 2 —ZI—Z_l on
D = : do (c) (n even)
k' (c) n
on
of ‘%1‘ %’y
= c dlon (c) (n odd)
3(nt+1)!

and is finite for all finite c. In addition,

(1)
. (c)
R(iil (c, &) =R((1)zl{ 1- L { } log ——gti] + igon (c, &) (92)
2c co (c)

(Flammer, equations 4. 4.9 and 4. 4. 6) where
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®
gon(c’g) = & g b(;_n (c) ('52-1)r (n even)

r=0
Q0
- g b (e) (€71 (n 0dd)
and both of these imply r=0
g,,(c:8) = b0 (e) + 0(e) (93)
when € is small. Accordingly, for a soft spheroid of ellipticity almost equal to
unity -
1) 1
i k(on (c) €+1 on ki)n)(c)
A _=-]1-=— log=— + ib  (c) + 0(¢)
on 2c | on E-1 o) on
c_ (c) c, (c)
(94)
and the singularities are given by
2 on C(:)n(C) con(c) : -
log — - 2Cb0 (e) M + 2ic _(T + 0(e) = 0. (95)
€ k' (c) k "(c)
on on

The first term in this equation is infinite inthe limit € =0, whereas the
It is therefore apparent

third term does not contain € and is finite for all finite c.

that when € = 0 the only possibility of obtaining a finite root is to have the second

o
term become infinite, and such an infinity must then arise from the factor b n (c)

The expression for this gives

on C(())n () Xon (c)
cbo (c) 0 Elra— (96)
k' ""(c) c_ (c)
on o
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where 0o o1 00
- on 4r-4s-1 on
Xon(c) Z\ d2r E 2r-s)2s+1) —2_ dp/2r (n even)
r=0 s=0 r=1
00 r 0
4r-4s+1 on
Z d2r+lz 2r-s+1 z dp/2r—1 (n 0dd)
r=1

(see Flammer, equations 4. 4. 16a and b), and though Xon(c) is finite, b:n (c) is
infinite at all zeros of c(())n(c). As shown in§6, the zero for which| ¢) is smallest is

provided by n =0 and is approximately

c=4-1expit i0-057r:}

which now represents the limiting value of the smallest root of (95). Consequently
when €e— 0 the radius of convergence of the Rayleigh series for the soft body
approaches 4-1, and the criterion for convergence is therefore
cE<4.1, (97)

It is of interest to note that as in the case of a soft disc (an oblate spheroid of
ellipticity e =1) the convergence is dictated by the amplitude coefficient Aoo’ and
for the next coefficient, Ao 1’ the radius is approximately 5- 2, corresponding
to the smallest zero of c?)l (c).

When € is small but not zero, some idea of the way in which the convergence
varies as a function of € can be obtained from a perturbation analysis applied to

equation (95). For this purpose let
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c=x + f(e)
n

be a root of the equation when € # 0, where f(e) tends to zero with € and X is a
0

zero of ¢ on (c). If this is substituted into (95) bearing in mind that the first two

terms are the dominant ones, we have approximately

X (e)
2 2 oh B
log-e— - f—(—G) ( _—__chx =0

98/ oc ¢ (c)
o

n
giving
. X
fe) = n n
logz-
where
X (c)
T = 2 ___c_>n____
n cB/Bccon(c) c=X
o n
Hence,
T
n
C —Xn (1+ (98)
log—e-

for small €, and as required the second term is zero inthe limit € =0,
Into (98) we now insert the value of X corresponding to the smallest zero

of c(;o (¢). This is

x =41 exp {i i 0-05 77} (99)

and consequently for € # 0 the radius of convergence for Aoo is
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T
1+ 0

5 (100)

cE = ‘XOI (1+ €) g2
€

If € is sufficiently small this is also the radius of convergence of the Rayleigh

series, and under these circumstances equation (100) can be written as

1
c€ = 4'1<1+ 5 Re @;} (101)
log—g

where Re denotes the real part.

Unfortunately the expansions in Appendix A do not contain enough terms to
~ enable us to calculate 'z(') with the accuracy desired, but using the terms which are
available it is found that

R T, =~ 1'5.

Although it would be unwise to rely on the second figure, the result does give some
indication of the convergence for € # 0, and accordingly for a soft spheroid of

ellipticity almost equal to unity the convergence criterion is taken as

-1
ok < 4.1{1_1-5(10;; EJ_’D ]f . (102)

It will be observed that the radius is always less than 4-1 and approaches the

limiting value extremely slowly. Indeed, for & =1 + 10_10 the right hand side of

(102) is still only 3- 8.
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In the case ofthe hardbody the analysis is similar to the above in most

respects. For the radial functions of the first kind we have from (89) and (90)

on ()
R NN 121——3 £ 0e) (n even) (103)
o¢ “on KU e)
on
_ 1 on on
= m) {:c O(c) -2 cq (c%+ 0(e) (104)
on (n odd)
and since
B 1 O 2 ) on (
02 =- gz, e co (c) n even)

_ 1 2 on
- 4(>Lon ¢ 2)Co

(e) (n odd)
(Flammer, equations 3.2.11a and b), where kon is the eigenvalue, (103) and (104)

are both equivalent to

COD (C)
0 (1) 1 2
—=R (c,§) == A_-c") —— +0(e). (105)
9& “on 2 “on k(1) (©)
on
Also,
8_?5 gon(C,%;) = bor; (c) + Zb?n (c) + 0O(e) (n even)
=2b°f(c) + 0(¢) (n odd)

(c) for n even

but here again the differences are compensated by differences in b(l)][1

and odd, and inserting the expresions for b(l)n(c) (Flammer, equations 4. 4. 6a and b)

we have
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(1)
d _ 1 2.} on 1 kon (C)}
aego gon(c, g) = _2 ()ton‘c ){bo (C) - _C- on + 0(6) (106)
¢ (e)
o}
o 2
for all n. Hence . c n(c)
ic 2 0
_Z(Kon— ) (1)
kon ()

A =

on Con (©)

1
—— - 1 (xon—c2) log &1 4 i(xon- ) cb(:)n(c) —(‘1—)— - 1}+ 0(e)
&£ -1 4 £-1 2 k" (c)
on
the singularities of which are given by
Con ()
1 1 2 2 2 on 0 _
<3 ()ton—c ) log < + ()Lon—c ){cb0 (c) m - 1}+ O(e) =0, (108)
on

The first two terms of this are infinite when c=0, but owing to the markedly
different rates at which 1 / € and log % approach infinity as e—> 0, it is obvious
that the only possibility of having a finite rootis to have the thirdterm become infinite,
and this again leads us to the zeros of c(;n (c). Since the smallest zero is provided
by cgo(c) and has a magnitude 4- 1, the radius of convergence of the Rayleigh series
for the hard spheroid must tend to 4- 1 as e—» 0, and the convergence criterion (97)
therefore applies to both soft and hard bodies. In each case the convergence is
dictated by the amplitude coefficient Aoo’ and for the coefficient Aolthe radius is
approximately 5- 2.

When € is small but not zero, the variation in the radius of convergence as a

function of € can be determined in the same manner as for a soft spheroid. Bearing
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in mind that in equation (108) the dominant terms for small € are the first and

third, the root which corresponds to c = X when € # 0 is

c=x (1+€7y,) (109)
where 5
{{x () - c }x (c) }
2 - Llon on
" c 8/dc c(;n (c) c=x

n

and the smallest of these is obtained by taking n =0 with X, as shown in equation

(99). The radius of convergence for A00 is therefore

c§=4-1(1+€ReZo) (110)

(cf equation 101), which is also the radius of convergence for the Rayleigh series
providing € is sufficiently small.

Using the formulae in Appendix A, '[(; has been computed and its real part
found to be

' == 42,

e o
Although the accuracy of this leaves much to be desired, the value is as good as
can be obtained without including a significantly larger number of terms in the ex-

pansions (particularly for the dp /r)’ and in consequence for a hard spheroid of

ellipticity almost equal to unity the convergence criterion will be taken as
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c& <4. 1{1—4-2(&’-1)}. (111)
It will be observed that the radius differs negligibly from 4- 1 for e< 10_3, and
as such the result is in marked constrast to that for a soft spheroid.

In order to bridge the gap between the ranges of & for which the criteria (19)
and (23), (102) and (111) are applicable, it is necessary to resort to a numerical
comparison of the actual coefficients in the expansions for the Aon' This is a sim-
ple matter for the hard spheroid, and since the amplitude Aoo specifies the con-
vergence of the Rayleigh series as £~ o and £ ~1, it is not surprising to find that
- this is true for all £. What is more, as £ decreases from infinity the radius of
convergence rapidly assumes the value indicated in (111).

For the soft spheroid, on the other hand, the convergence is determined by

the amplitude Ao for large £ but by Aoo in the limit as £—1. and the value of &

1
at which A00 takes over differs from unity by an extremely small amount. In con-
sequence there is a wide range of §& for which no formula is available for calculating
the convergence, and here the numerical approval is indispensable. We shall
therefore begin by considering the case of the soft spheroid.

For a soft oblate spheroid the expansion of the amplitude coefficient A01
is given in equation (80) and from this the analogous result for a prolate spheroid

can be obtained by changing c into ic and § into - i§. The expansionthen proceeds in

powers of (-c) and the coefficients have been calculated for a sequence of £ ranging
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from 1.7 down to 1. 00001, These are listed in Table X together with the
convergence coefficients lai l and £ larl‘ l which can be deduced therefrom, and the
last-named are also plotted in Figure VIII. The regularity of the curves is at once
apparent and it is interesting to compare them with the curves for the oblate co-

efficient AO (see Figure IV). As the oblate € increases from zero the oscillations

1
rapidly die down, and this process continues systematically as § passes through
infinity and then decreases through prolate values to unity. Such a correspondence
between the two sets of curves is typical of the amplitude coefficients A00 and A01
for both the soft and hard bodies, and may well be true of the AOn in general.

The radius of convergence for a given £ is represented by the limit of the
curve & larl| against r as r—» 00, and notwithstanding the fact that r =9 is the
largest value for which numerical data is available, it is possible to estimate the
limit by comparing the § Ialrl with the convergence coefficients for the sphere

(£ =00). The radii of convergence obtained in this manner are shown in Table II,

and it is believed that they are in error by no more than 2 o/o .

TABLE XI. RADIUS OF CONVERGENCE FOR Ay (SOFT)

g |1.7 (1.5 |1.2 | 1.1 | 1.05(/1.01(1.001} 1.0001 | 1.00001

cE | 1.09)1.12 | 1.24| 1.35| 1.47|1.7211.98 | 2.15 2.31
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TABLE X. CONVERGENCE COEFFICIENTS FOR Aol (SOFT)

€=17 £=1.5 £=1.2
r| o« afl | glafl , orl | Elag] % NN
2 {- 1,35650 0. 85860 1. 4596 - 9.65819)(10_1 1.0175 1,5263 -4, 55854)(10'l 1.4811 1.7773
3] il1.28114 0.92073 1,5652 18.04850x10"1 1.0751 1.6126 i3, 03903x10_l 1,4874 1.7849
4 2,41991 0.80177 1. 3630 1.27498 0.94107 1.4116 3.27106x10"1 1,3223 1,5867
5 |-13.62948 0, 77274 1,3137 -i1. 65126 0, 90456 1. 3568 -13.13539;{10_1 1,2611 1.5133
6 |- 5.74246 0. 74728 1.2704 - 2.23329 0.87467 1,3120 - 3.05722x10_1 1,2184 1.4620
71 18.98530 0, 73077 1.2423 i2, 99614 0.85491 1,2824 12.97658x10_1 1.1890 1, 4268
8 1,40864x10} 0,71846 1.2214 4, 02445 0. 84026 1.2604 2.89798){10_1 1.1675 1, 4009
9{-12.20773x10 | 0. 70904 1,2054 -i5, 40489 0. 82905 1.2436 —i2.8215.':’>x10_1 1.1510 1,3811

g=1.1 £=1.05 g=1.01
r %y larll %’]arll %p o} | E"‘1r1| ar la, | S[arll
2 |- 2. 96522x10'1 1.8364 2. 0201 - 2.10609}(10'l 2.1790 2.2880 - 1.19178x10"l 2.8967 2,9257
3 il.81208x10'1 1.7672 1.9439 il.22855xl(T1 2.0116 2,1121 i6. 68718;{10_2 2.4637 2.4883
4 l.57735x10_l 1,5870 1,7455 9.13523;{10.2 1.8190 1.9099 3. 9674:6x10-2 2.2406 2.2630
5 |-il. 29209><IO"l 1,5057 1,6563 -i6. 64917);10"2 1,7197 1.8057 —i2.39639x10_2 2.1091 2.1302
6 |- 1.06255)(10_1 1,4530 1,5983 -4, 82729x10_2 1.6572 1. 7401 - 1,44379;{10—2 2. 0265 2, 0468
7118, 74495)(10'j 1,4164 1.5580 i3. 50924x10'2 1.6137 1.6944 i8, 70589xlO_2 1.9693 1.9890
8 7.19562;{10‘2 1.3895 1,5285 2.53083x 1079 1.3819 1.6609 5.25093){10_2 1,9274 1.9467
9 -15.92080x10'2 1, 3690 1.5059 -il.85407x10_2 1.5575 1.6354 -13.16‘664x10_2 1.8955 1,9144

£ =1,001 £ =1,0001 £ =1,00001
r o 23] | ey o o | el @ IS
2 |- 7.13139){10_2 3.7447 3.7484 -5, 06039 xlO—2 4, 4454 4, 4458 - 3.91919){10_2 5.0513 5.0513
3 i?).96k’)85x10-2 2.9324 2,9353 i2.81161x10_2 3.2886 3.2890 i2. l7735xlO_2 3.5812 3.5812
4 2.01798){10_2 2,6532 2. 6559 1.32610){10_2 2,9468 2.9471 9.82237){1()_3 3.1765 3.1765
5 [-il, 04154);10—2 2.4915 2.4940 I-i6. 21950 x 10_3 2,7622 2.7624 -id, 31950x10.3 2,9711 2.9711
6 |- 5. 39444){10_3 2.3879 2.3902 -2, 92904);10_3 2.6437 2.6440 - 1.90090;{10—3 2,8412 2.8412
7 12.79962)(10-3 2.3158 2,3181 11.385le10_3 2,5607 2.5610 i8. 40880){10—4 2.7500 2,7500
8 1.45428x10_3 2,2629 2.2652 6. 56370x10—4 2.4995 2, 4998 3. 73397){10_4 2,6821 2.6821
9 [-i7. 55322x10_3 2.2227 2.2249 -13. 11101x10—4 2.4529 2,4531 -il.65941x10_4 2,6303 2.6303
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Even when £ is as small as 1- 00001 the radius of convergence is still only
2.3, and this is far short of the value 5- 2 (corresponding to the smallest zero of
ol

co ) which is reached when £ = 1. It is also much less than the radius for Aoo

and in order to determine the convergence for AO out to at least the neighbourhood

1
of the cross-over point there are two possible methods of attack. The first of
these would appear to be the most logical and is based on the formula (98). By
taking n =1 and X, ® 52 exp{ +10-083 W} , the formula gives immediately the de-
crease in the radius of convergence as a function of £ in terms of the factor T 1, but
unfortunately the expansions in Appendix A are not sufficient to compute Xol(c)
when | cl is as large as 5-2. In addition, there is reason to doubt the validity of
(98) unless £ -1 is vanishingly small (less than, perhaps, 10_50). We shall have
more to say about this in a moment.

The second method is merely to extend Table X to smaller values of £ and
in this connection the computation can be simplified somewhat by analyzing the be-

haviour of the a as £ —1. From the expressions for the Legendre functions

Pn(%’ ) and Qn(E ), we have

1+ 0(e)

g

SA

i
i

n

1 1
Qn(g) -§+ i = + 0(e)
r:

for small € where 8= 2/log % and hence
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3
37
B4=———-— § +0($)
577
B, - 125 +0(e §)
3.5
. 24854 £ +0(6)
37577
82
B7=—1 7 25+O(€5)
3.5.7
1
p o SO gy
3”5 7°.11
B, =i ;1261 5 +0€f).
37 5° 7
The coefficients ozr are therefore
a =—15+O(€5)
2 75
0 == §+0(€d)
372
3
7 1 2
a4=375+ -—25+0(e5)
5°7 5
2
g == 125 -i 2254-0(65)
3.5 3% 5
6484 10369 1 3
%" 155 - _4—21’"&2' — & +0eh)
3% 577 3%5°7 5
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g = 8228+i 21136 82+i——1263+0(68)
3577 3 577 3.5

312401 S 77083 52 + 7372 53 +—14—é4 +0(e8)

o = + ——

8 33567311 345572 33557 5

0 =1 361261; ¢ 256655022 2 . 5461923 $3 . 24354 + 0(e9)
357 3517 3°5°7 35

from which the convergence coefficients [ ar;! can be determined as before. By
comparing thela; | for €= 10_5 with the values shown in Table X it is found that the
error produced by the terms in € § in less than 50/0 for r> 3 and decreases rapidly
with €.

Using the above expressions the arhave been computed for § =1+ 10—2m’
m = 3,4(2)12(4) 20, and these, together with the lall‘ l are shown in Table XII. The
corresponding radii of convergence are given in Table XIII, and though it is difficult

o
to estimate their accuracy, it is believed that the error is not more than 5 /o at

the very most.

TABLE XIII. RADIUS OF CONVERGENCE FOR Aol (SOFT)

-32 -40

1078 | 10 10 10 10

c§ 2.45 | 2.62 | 2.90 | 3.12 3.30 | 3.44 3.66 3.81
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TABLE XII. CONVERGENCE COEFFICIENTS FOR Agq (SOFT)

e=10"0 e=10"8 e=10"12 e=10"16
o lag | o la,t| oy la,| @, lag

o 75697x10 0 6.0226 |- 2.09273x10° 6.9126 |- 1.41222x109 8.4149 |- 1.06569x10 | 9.6869
11.53165x10 2 4.0267 |il.16263x10°| 4.4142 | i7.84568x10°7] 5.0326 | 15.92048x10 " 5.5277

6.58912x 100 3.5000 | 4.86257x10°0| 3.7869 | 3.18528x10° 4.2083 | 2.36673x10° 4.5338
Li2.68253x 10 3.2681 Lil.88176x1070 3.5082 |-il.16308x10° 3.8626 |-i8.36645x10°1 4.1256
1 os140x10 31213 L 7.12431x10 %] 3.3461 |- 4.07009x10° 3.6733 - 2.79274x10° 3.9114
1437865 %10 3.0186 |12.69942x10°%| 3.2346 | i1.41159x10°] 3.5485 |i9.13964x10°| 3.7758

1 78423%10° 7 2.9415 | 1.03072x10 | 3.1508 | 4.92791x10°7 3.4548 | 3.00042x10°| 3.6758
Li7.98965x10 ] 2.8820 |i3.95440x10°°| 3.0847 |-il.73403x10°] 3.3806 19.94001x10 0| 3.5962

€ =10"20 e-1024 € =10732 € =10740
QI‘ Iarll ar IaI‘l! aI‘ ‘arll aI' | arll

_.55700x10° 10,810 |- 7.14858x10°] 11.828 |- 5.37809x10" 13.636 |- 4.31051x10° 15.231
14, 75394x 100 5.0472 | 13.97143x10°5 6.3147 | i2.98783x10°| 6.9430 | i2.39473x10° 17.4745

18824410 4.8000 | 1.56252x10°| 5.0205 | 1.16601x1G°| 5.4115 | 9.29945x10°7 5.7265
Li6.51833x 101 4.3368 |-i5.33352x 1074 4.5144 |-13.90677x107] 4.8044 |-i3.08012x10° Y 5. 0383
9.10759x10 1 4.0002 | 1.68544x10°%| 4.2548 |- 1.19716x10] 4.5044 |- 9.32618x10°7| 4.6958
16.61960x10°  3.9530 | i5.13286x10°0 4.1003 | i3.49108x10°| 4.3323 | i2.62118x10°| 4.5133

o 07570x107 3.8401 | 1.55274x10°7| 3.9913 | 1.01505x10°| 4.2091 | 7.24215%10°| 4.3906
i6.56738x10° ] 3.7657 |-14.73362x10°0 3.9053 |-i2.88338x10°| 4.1264 |-i2.00485x10°°| 4.2963
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From a study of these results it is seen that the radius is still increasing
even at the smallest value of €, a fact which is otherwise obvious from the form of
the expressions for the ar' On the other hand, not all of the change in the ozr is
automatically reflected in an increase in the radius, and for sufficiently small &
the changes in the a/r for r less than some fixed number have no effect on the con-
vergence. This is most easily seen by dividing the o, by and examining the con-
vergence indicated by the remaining coefficients. As r increases, the contribution
of the higher powers of § becomes more important due to their relatively larger co-

- . A2 , . -40
efficients, and even for r £ 9 the terms in§ may still dominate when € =10 ~ .

_ . 2 s . _ =40
Thus, for r =9 the ratio of thes “and § contributions is 1- 3 when € = 10 and does
-507
not fall to 0-1 until € =10 20 |
Under these circumstances it is questionable whether a formula such as (98)
2

in which terms in§ are neglected can be expected to hold unless € is extremely

small, and it is therefore not too surprising to find that even for € = 10_4O the rate
at which the radius increases is not yet consistent with a formula of the type

5.2 (1-28).
Ultimately, however, the radius must assume this dependence on 4, but it may
well be necessary for € to be appreciably smaller than the values considered in
Tables XII and XIII, and possibly of order 10-500. To pursue the analysis of the

convergence to such values would be a trifle academic.
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In view of the above results it is clear that the radius of convergence for
the amplitude coefficient Aoo is of no concern until € becomes extremely small
(less than, perhaps, 10—70) and one may hope that the criterion (102) is then appli-
cable. Nevertheless, in the interests of completeness we have computed the co-
efficients in the expansion of A00 in powers of (-ic) for £€=1.7, 1.5, 1-2 and 1.1,
and the results are displayed in Table XIV. The convergence coefficients | al?l
are plotted in Figure IX, and the extent to which the curves resemble those for the
oblate body (see Figure VI) is quite striking. In the prolate case, however, the
curves turn over somewhat sooner and minima occur for r < 9 with the smaller
values of €. Although it is impossible to obtain any reliable estimates of the con-
vergence from these curves, the radius would appear to be of order 4 for & =12
and 1-1,

For the hard body, the problem of finding the radius of convergence of the
Rayleigh series is more straight forward. We have already seen that when & is
large or near to unity the convergence is determined by the amplitude coefficient
AOO and as §—»1 the radius rapidly approaches its limiting value 4- 1. Since the
corresponding limit for A01 is 5-2 and is approached at a comparable rate, it is
natural to expect that the coefficient Aoo will specify the convergence for all &,

and this is indeed the case.
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TABLE XIV. CONVERGENCE COEFFICIENTS FOR AOO (SOFT)

£=1.17 £=1.5

% |2, 2, % 2] {2,

-i1, 48156 0.6750 | 1.1474  |-il.24267 0. 8047 T.2071
- 1,35548 0. 8589 1.4602 |- 9.22893x10°] 1.0409 1.5614
i9.28991x10 |  1.0249 1.7423 5.12812x10 | 1.2493 1.8740

4.94757x10] 1.1924 |  2.0270 2.18152x10 1| 1.4632 2,1948

Li2.11560x10°] 1.3643 2.3193  |-i7.25571x10 ] 1.6899 2. 5349
- 7.39309x10 ] 1.5436 2. 6241 _1.88449x10 | 1.9385 2.9078
12.10389x10 9  1.7361 2.9513 i3.55228x10 ] 2.2384 | 3.3575
4.72423x10] 1.9530|  3.3202 3.39789x10 ] 2.7139 4, 0709

L7, 4171210 1 2.2272 3.7862  |-i6.30718x10 7 2.9288 4, 3932

£=1.2 £=1.1

@, |2.°| £l e |2.°] £la,l

|18, 34063 x 10-1] 1.1990 1.4387  |i6.56918x10-1 1.5223 | 1.6745
| 3.62036x107] 1.6620 1.9944 |- 1.90671x107 2.2901 2.5191
i1.16371x107 2.0483 2. 4579 i4,00143x10°] 2.9237 3.2160
2.62887x10 2| 2.4835 2. 9802 4.91704x10 | 3.7764 | 4.1540

-3.37001x10°°| 3.1221 3.7466  |-i3.95666x10°] 4.7922 5,2714
- 7.91241x10 | 4.8263 5.7916 |- 2.60938x10] 3.9550 | 4.3515
2. 04309 x10°%| 3. 3659 4. 0391 i8.06818x10 | 3.8437 4, 2280
6.22227x10°| 3.3555 4, 0266 1.15107x10 ] 4.1435 4.5578

9. 79192 x10°°] 3.6022 43227 |-i7.58100x10 | 4.7866 5. 2653
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The expansion of the oblate coefficient Aoo is given in equation (28), and
by changing c into ic and £ into -i€ the analogous result for the prolate coefficient
is obtained. The expansion then proceeds in powers of (-c) and the coefficients a,
have been computed for € =1.7, 1-5, 1.2, 1.1, 1-05 and 1.01. These are listed in
Table XV, together with the convergence coefficients [ai] and & [a(;‘ deduced
therefrom. The last named are plotted in Figure X. Once again the similarity of
the curves for the prolate and oblate coefficients (Figure VII) is apparent, and by

comparing the coefficients with those for the sphere (£=m) the radius of convergence

’ has been estimated as shown in Table XVI.

TABLE XVI. RADIUS OF CONVERGENCE FOR AOO(HARD)

g 1.7 1-5 1.2 1.1 1.05 1.01

c§ 1-16 1.22 1.48 1.76 2-10 2-95

The error in these values is probably less than 20/0, but as § decreases
the less regular nature of the curves may increase the error to some extent. In
particular, for & =1-01 the radius could be out by as much as 50/0, and for £=1-001

o) .
the & Iarl with r £ 7 are too scattered to give any reliable indication of the

convergence.
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To complete the discussion of the hard spheroid it is only necessary to

consider the convergence of the expansion for Ao and verify that the radius is

1
nowhere less than the radius for Aoo' This is known to be true for &£ large or near
to unity, and for the intermediate range the analysis in 87 can be used to compute

the coefficients a, in the expansion of Ao in powers of (-c). The results are

1
1

given in Table XVII and the convergence coefficients & [arl are plotted in Figure XI.

As in the case of the oblate spheroid (cf Figure V), the curves are characterized by

an irregular set of peaks which make difficult any accurate estimate of the con-

vergence, but by comparing the levels of the minima with those for the sphere

curve, the values shown in Table XVIII have been deduced.

TABLE XVIII. RADIUS OF CONVERGENCE FOR A ol (HARD)

c€ 1. 56 1.62 1-85 2-09

Although the errors associated with these results are impossible to assess, the
radii are in good agreement with the formula for large £, and their trend is not

inconsistent with the general formula for the convergence when £ is close to unity.
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TABLE XVII. CONVERGENCE COEFFICIENTS FOR Aol (HARD)
E=1.7 £=1.5
1 1
. |lar | Elap | . Iar1| 'é’]ax}l
—8.01283X10_1 1.1171 1.8991 -6.07163x10-1] 1.2834 1,9250
-i4.94909x10-Y 1.2642 2.1492 -i2.81094x10-1} 1.5266 2.2899
—5.27131X10—l 1.1736 1.9951 -2.61935x107Y 1.3978 2. 0967
i8.52514x107Y 1,0324 1.7551 13.75071 x10-1 1.2167 1.8250
4. 96922 XlO—l 1.1236 1.9102 2. 09175 x107Y 1.2979 1.9469
i1,04854x10"4 1.3801 2.3462 i4.13844x10-4 3.0431 4. 5646
7.49680Xl0_l 1. 0367 1.7623 1.73763 x107} 1.2445 1.8668
-i1,04910 0.9947 1.6910 -i2.31610x10"Y  1.1765 1.7647
€=1.2 £=1.1
1 1 1 1
Ay |, Elay | Py lay | £lay |

-3.56897x107L| 1.6739 2.0087 -2,81934x10-1| 1.8833 2.0717
-i7.27010x1072| 2.3960 2.8752 -i2.99021 X10_2 3.2218 3.5440
-5.33162x1072| 2. 0811 2.4973 -2.06402x1072| 2.6383 2.9021
i6.06176x1072 1.7518 2.1021 i2.04491x1072| 2.1770 2. 3947
3.19757}{10_2 1.7750 2.1300 1.06186x1072| 2.1330 2.3463
-i8.31925x1073] 1.9821 2. 3785 1i3.40594x10-3| 2,2518 2.4770
4.15955X10—3 1.9844 2.3812 -1.4:1363X10_4 3. 0284 3.3312
-17.17694x1073| 1,7307 2. 0769 i7.26718 x1074 2.2322 2,4554
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X

DISCUSSION OF RESULTS

The analysis in the previous sections is sufficient to specify the radius of
convergence of the Rayleigh series for a spheriod when a plane wave is incident
nose-on, and we shall now gather together the results of the various calculations.
Before doing so, however, a few words are necessary about the style of presenta-
tion to be adopted.

The quantity of interest is, of course, the radius of convergence and this is
“inversely proportional to the wavelength. Since it is also dimensionless, it must
be proportional to ¢, and the factor of proportionality ié then at most a function of
the spheroid's shape. From the physical point of view a convenient choice of factor
is one which associates the radius with the semi-major axis of the spheroid and
this has the advantage of being non-zero for all ellipticities. The radius of con-

l/ 2 for

vergence is therefore defined as the limiting value of either c& or c(& 2+1)
which convergence exists, with the first and second applying to prolate and oblate
spheroids respectively, and in any graphical presentation it is natural to choose this
as the ordinate.

Having taken the frequency dependence into account via the choice of ordinate,

it is desirable to have the abscissa independent of k (and hence c) and a function

only of the variable £ specifying the spheroid. In addition, the abscissae for prolate
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and oblate bodies should correspond to one another as much as possible, but
because of the different ranges of the variable it is apparent that the mathematical
description of the two scales will almost certainly differ. The formal analogy
between the two types of body is one in which £ 2 is replaced by -§ 2, suggesting that
the horizontal scale should be a function of 52 rather than of £, and ultimately log
(1+1/ 82)1/ 2 was chosen as the function, where the upper and lower signs refer to
prolate and oblate respectively. This satisfies all the required conditions, and
since (1+ 1/ 2)1/2 - yly_ where w and { are the maximum dimensions perpendicular
and parallel to the direction of the incident field, the abscissa is continuous through
the transition from prolate to oblate bodies.

Turning now to the actual results, it will be recalled that for both types of
spheriod, hard as well as soft, the radius of convergence of the Rayleigh series is
specified by the convergence of the expansions for one or other of the amplitude
coefficients A j and Ay1- In Figure XII the radii of these expansions for a soft
oblate spheriod are presented. When § 2 is much greater than unity, the conver-
gence of the A ; expansion can be obtained from the formula (26), and it will be
observed that the curve goes smoothly into the values deduced from a numerical
comparison of the coefficients in the expansion and listed in Table IV. The result-
ing graph is almost a straight line on the logarithmic plot, but ultimately a small

amount of curvature becomes apparent (£ < 0.1 approx) and the radius finally
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reaches (at & = 0) the value 5.2 corresponding to the smallest zero of cgl.

For the amplitude coefficient Ay, the radius of convergence is infinite
when £ = o (the sphere), and though it is presumably finite for all other £, the
curves in Figure VI suggest that the radius is still in excess of 2. 6 by the time
€ has decreased to 0.4 (w = 2.69{). If & is still smaller, say € < 0.2, the formula
given in (74) becomes applicable, and this indicates a radius of convergence which
increases slowly towards a maximum value of 3.25 at £ = 0. It would therefore
appear that the radius has a minimum for £ somewhere near 0. 3, but since the
level is in excess of the corresponding radius for Ag1, it does not affect the overall
convergence of the Rayleigh series. This last can be found by selecting the smaller
of the radii for A, and A,;, and accordingly the convergence of the Rayleigh series
is determined by the convergence of Ay out to the point at which the two curves
cross. This occurs when & = 0,017 (i.e. w = 59L), and thereafter the radius for
Ay, s the dominant one. The final curve showing the convergence of the Rayleigh
series is given in Figure XVII, and the kink at § = 0. 017 is at once apparent. It is
not known whether this has any significance beyond the obvious one implied by the
mathematics.

When the oblate spheroid is hard the results are even more detailed and are

presentedin Figure XIII. Taking first the amplitude coefficient Ayos the radius of

convergence is specified by (27) for ’52 > > 1 and is in excellent agreement with
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the radii for smaller £ deduced in §8 and listed in Table IX. The curve is concave
upwards at least as far as % = 20, but the curvature is quite small and since the
limiting radius for £ = 0 is only 4. 1 (corresponding to the zero of cgo) it must
reverse itself somewhere beyond the point § = 0. 05.

For the coefficient A, the radius is V2 when € = o and providing § 2 >>1
the variation as a function of £ can be obtained from equation (21) with n = 1, The

resulting formula is

e+ 12 - 3 1+ 5L§2-> + o™ (112)

and the curve is shown in Figure XIII. This can be assumed to cater for values of
£ greater than (about) 2 and for smaller £ it is necessary to rely on the calculations
in§8. Notwithstanding the difficulty in deducing radii from the convergence coeffi-
cients in Figure V, the estimates appear remarkably accurate and these bridge the
gap between the regions for which the formulae for large and small § are applicable.
When £ << 1, (75) gives a radius of convergence which increases slowly with
decreasing £, attaining a value 2.1255 at £ = 0. The crossover point at which

the radii for Ay, and A, are equal is 0.053 (w = 191), and by selecting the smaller
of the two at each value of &, the radius of convergence of the Rayleigh series is
obtained. This is shown in Figure XVII and, like the curve for the soft oblate, is

characterised by a kink at the point where the dominant coefficient changes. For
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all ellipticities, the radius for the hard body is less than that for the soft, and
whereas with the former the dominant coefficient changes from Ao to Aj; as
decreases, the reverse is true for the latter.

In the case of the prolate spheroid the results are not quite so complete,
and this is particularly true when & is close to unity. From the physical standpoint
it is not surprising to find that difficulties arise as £ — 1 since the entire Rayleigh
series vanishes in the limit, but more important mathematically is the fact that
the values of |c| corresponding to the radii of convergence are of order 4 or
greater, and for such large values the spheroidal function coefficients are
extremely hard to compute. In addition, the rate at which the radii approach their
values for € = 1 is so slow that any uncertainties in computation are reflected in
errors over a wide range of §, and under these circumstances the numerical
approach described in §2 is indispensable.

For the soft body the radii of convergence of Aoo and AO are plotted as

1
functions of (1 - 1/ 52)1/ 2 in Figures XIV and XV with the latter providing an
abscissa which runs through 20 orders of magnitude. If 'g"z is large compared with
unity, the convergence of the expansion for A ; is given in (19), and when § is such
that the formula no longer holds (say, £ < 2) the convergence can be found from

Table XI. It will be observed that the values deduced by the numerical technique

are in excellent agreement with (19). As £ decreases, the radius continues to
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increase but at a slower and slower rate (see Table XIII), and even when £ - 1 has
fallen to 10740 (corresponding to w/t = 10720 Figure XV) the radius is still far
below the limiting value of 5.2 appropriate to the 'vanishing' rod (£ = 1), and does
not yet have the logarithmic dependence on £ which equation (98) possesses.
Ultimately, this dependence must obtain, but it probably does not do so before the
radius of convergence of the amplitude coefficient Ay, takes over.

For the coefficient Aoo the radius is infinite when & = o and of order 4 when
£=1.2and 1.1. As § - 1 the radius approaches its limiting value 4.1 according
to formula (102), but here again £ - 1 may have to be extremely small before (102)
can be assumed to be applicable. Nevertheless, it is almost certain that the
radius of convergence exceeds that for Aol until the latter crosses the 4.1 level,
and some preliminary calculations suggest that this occurs when w/{ is approxi-
mately 10_37. For all practical purposes, therefore, the convergence for the
soft body is determined by the amplitude coefficient Ay alone, and the resulting
radius is given in Figure XVII.

When the prolate spheroid is hard some of the above difficulties do not occur,
but there is now a range of § which cannot be treated adequately by the numerical
technique, and for which no formula for the convergence is applicable. Fortu-
nately, however, the same amplitude coefficient specifies the radius at both ends

of this range, and the end points of the two curves can be joined up without too much

possibility of error.
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The radii of convergence for Agpand A ol are shown plotted as functions of
(1 - 1/52)1/ 2 in Figure XVI, and taking first the amplitude coefficient A, the
radius is unity when £ = . Its value increases with decreasing & and is initially
given by (23), but this no longer holds if & 2 is not large compared with unity, and
thereafter the radius must be obtained by the numerical technique. It will be
observed that the formula (23) goes over smoothly into the values listed in Table
XVI. When £ is near to unity the radius is given by (111), and although it would
appear that this should be applicable for £ - 1 as large as 1072 (i.e. wi¢ = 0.14),
~ the curve does not then join up with the tabulated values. The discrepancy, how-
ever, can probably be attributed to the computation of Rg ’Z'O'. The number of terms
used in the expansion for X0 (c) is insufficient to give a reliable determination of
TO' forlcl as large as 4.1, and from a consideration of the signs of the subsequent
terms it can be shown that to include them would increase the magnitude of Z(;',
possibly by as much as a factor 2. Such an increase would restore the agreement
between the results of the two methods for calculating the convergence, and it is on
this basis that the continuation of the curve shown in Figure XVI has been arrived
at. For values of £ less than (about) 1074 (i.e. wit < 1072) the change in R0
has no significant effect on the convergence, and with further decrease of the radius
remains constant and equal to 4. 1.

For the amplitude coefficient AOl the limiting value of the radius is 5.2

(corresponding to the smallest zero of 001) and is approached with a rapidity
0
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comparable to that for A jas § & 1. When € is large compared with unity the
radius can be found from equation (21) with n = 1 (or, alternatively, from (112) by
deducing c& and changing the sign of § 2), and is consistent with the values for
smaller £ listed in Table XVIII, but for € lying between 1071 and (say) 10—2 no
information is available. Nevertheless, it is unlikely that the radius is anywhere
less than the radius for A00 (if it were, there would be two hard prolate bodies for
each of which A and AOl had the same convergence), and it seems probable that
the curve for A ol is more or less parallel to that for A ol The convergence of the
Rayleigh series is then specified by the coefficient A 00 for all ellipticities.

The final results are shown in Figure XVII in which the radius of conver—
gence for the soft body is represented by the solid line, and the radius for the hard
body by the dashed line. All bodies, prolate as well as oblate, are encompassed
by this graph and since the horizontal scale is logarithmic, the mid-point corre-
sponds to the sphere (w =£), with the prolate bodies occupying the portion to the
left (w <{), and the oblate bodies the portion to the right (w >£). Thus, for the
oblate spheroids the radius of convergence for the soft body everywhere exceeds
that for the hard, and with the prolate spheroids the reverse is true except in the
limit of a 'vanishing' rod, where the two radii are equal. With this exception, the
only case in which the two radii are equal is the transitional body, the sphere.

In Figure XVII the ordinate is k times the semi-major axis, and is therefore

c€ or c(& 2y 1)1/ 2 depending on whether the spheroid is prolate or oblate
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respectively. The discontinuity in slope at the mid-point occurs entirely as a
consequence of this change in ordinate, and if it is taken as c€ (for example)
throughout, the curves for both the hard and soft bodies are continuous in all their
derivatives atw ={. On the other hand, for the oblate bodies the quantity which is
plotted would then be zero in the limit of a disc, and would no longer provide a
meaningful measure of the convergence of the Rayleigh series.

The radius of convergence is essentially the upper bound on the frequency
for which the low frequency approximations are valid, and it will be seen from
Figure XVII that of all the spheroidal bodies the sphere has the least radius. For
a thin prolate spheroid, however, the radius can be as large as 4.1, and this is
sufficient to include the first two minima in the pattern for the backscattering cross
section as a function of c€ (see Siegel et al, 1956). With this body, therefore, it
is possible to penetrate the 'resonance region' to a significant extent by using* low
frequency techniques, whereas for a sphere the radius of convergence corresponds
only to the first maximum in the pattern.

It may be desirable to end with a word of warning. All of the above analysis
has been carried out for bodies which are hard or soft in the sense that a Newmann

or Dirichlet boundary condition respectively is applicable at the surface, and if the

*However, as c§ approaches the radius of convergence, the number of terms
which must be included in the low frequency expansion to get a reliable estimate
for the field may become impossibly large.
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boundary condition is other than one of these, the radii of convergence which have

been found no longer apply. This is easily seen by considering a partially reflec-

ting sphere whose boundary condition is such that*

9 )
(1+iQ —)(VI+vVvS)= 0
9p

(113)

at the surface. For a sphere which is predominantly hard or soft, 2 > > 1 or << 1

respectively, and under the condition (112) the amplitude coefficients AOn are given

by the formula

9
iglp) +iQ — j
n'P 55 in(p)

A = -
on 5
hp(p) +iQ — h(p)
9p
When n = 0 the denominator is simply
eikp q
(1+iQ - —)

[y P

which has a zero at p = p where

and the modulus of this is less than unity for all 2, whether real or complex,

a\This is the analogue of an impedance boundary condition in electromagnetic

theory (see, for example, Senior 1960b).
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providing Ly Q <1/2. Indeed, p — 0 as 2 = 0 indicating a radius of convergence
for the exapnsion of A which approaches zero with Q. In the limit 2 = 0, however,
the above zero disappears and the radius for the entire Rayleigh series reverts to
the value found in §2.

Such discontinuities are a direct consequence of the fact that under a mixed
boundary condition the coefficients AOn have no expansions which are uniform in 2.
This is equally true for bodies other than the sphere, and it is to be expected that
for a spheroid a similar behaviour will obtain. In general, the singularity provided
‘by the 'joining' parameter Q will be the dominant one, thereby producing a reduction
in the radius of convergence. The convergence may then bear little resemblance to

that for the corresponding 'perfect' body.
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APPENDIX A

SPHEROIDAL COEFFICIENT EXPANSIONS

Apart from the eigenvalues AOn’ the most fundamental quantities are the
spheroidal coefficients dgn, and their expansions are involved in much of the pre-
ceding work. The derivation of the expansions is, in itself, not a trivial task, but
if the corresponding terms in the expansion for kOn are known, the task is at least
straightforward. Unfortunately, not all of these terms are known to the required
accuracy, but by assuming in advance the form of the expansions for the dgn it is
possible to derive simultaneously the expansions for the spheroidal coefficients and
the appropriate eigenvalue. The process will be illustrated in reference to the case
n = 0.

The prolate spheroidal coefficients 4on (t) are defined by the recurrence
r

relation

(r+2)(r+1) 2r(r+1)-1
2 a0 4 {}(wl)—x + tZ} ar

(2r + 3)(2r + 5) r+2 (2r -1)(2r+3)

+ t2d

(2r -3)(2r -1)

=0 (A.1)

r{r-1) On
r-2

together with the normalizing conditions
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ZOO '(-1)¥/2 4 o DY
n
—_—d z — (A.2)

< 2" XL * ohilnl

r=0 2.9. 2 2
for n even, and
r-1 n-1
© (-1) 2 (r+1) (-1) 2 ((n+1)}

1
a® - (a.3)
E 3 -2 - 5 T2

for n odd. From these equations it is apparent that all the expansions proceed in

even powers of t and, in addition,

dgn — §(r-n)

ast — 0. Whenn = 0 it is therefore assumed that

00 4

_ T 2
= + '+ L .
dr t (Dr t Dr t D, ) d0 (A.4)
with D, =1 and D,', D.'', . . ... = 0. The coefficients D, D ',. . ... are
0 0 0 r “r
independent of t.
If (A.4) is substituted into (A. 1) with r = 0, we have immediately that
> 4 15 2
1" = —_ —
Dy +t"Dy' +t7 Dy ... 2124(>L00 ) (A.5)
and hence
2
¢ 4
KOO = — + 0(t™).
3
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Knowing this one term we can now derive all the D, and D' by merely inserting the

00

0
expansions for drO and dr ", into the recurrence relation and equating the coeffi-

2
cients of t¥ and t¥ ~2. It is found that
r-1

D =- D . (A. 6)
(r+1)@r-3)2r-1) F~

from which all the Dr can be calculated, and

r-1 1 2r(r+1) -1 1
e —— e
r

(r+1)2r-3)2r-1) © ° r(r+1) L@r-1)@r+3) 3

which can be shown to imply
r
Dy! == ——— D, (A.7)
9(2r+3)
thereby specifying the Dr' .
It will be observed that a knowledge of D, and D2' specifies Aqq through t6.

Moreover, from the recurrence relation with r = 4,

D, +t2D, +t*D," + :——E——(fs-x +£t2)(D+t2D')
4 4 4 ..... 4 00 2 2
4t 21
2
. Do +uuunn )+;3—} (A.8)

and since D 4 and D4' are known, Dz" and D2"' can be calculated, which in turn
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specify )\0 Othrough ¢10, Similarly, from the recurrence relation with r = 6 we obtain

D4" and D 4‘" and hence, from (A. 8), D iv and D.V, which then give A . through t14.

2’ 00

10
To calculate the expansion for the d00 correct to O(t ) it is only necessary
r

to carry this process one stage further (in the course of which the terms in AOO are

determined through t18), and the resulting expansions are

13 46 85648
dOO ———{- - g4+ ——— 6 _ t8

5
3457 355.7.11 3554731113

+ o(tlo)} dgo,

i 4 4 2498 2608 .
q00 = {1- 5 t2- tdd —— +0(t8)}d°°,
4 3527 311 34%527.11.13 38527213 0
6
¢ 2
2 00
dg():——— {1- — - +o(t6)}
335.7211 325 355217
8
¢ 8
d§0= {1 2 ront 1 a0,
36527.11.13 3219 0

10

¢
a0 _ > {1 + 0(t2)}d00 ,
10 34527.11213.17.19 0

= O(tlz) dOO for r > 12. Substitution into the normalizing condition (A.2)

with dO
r
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with n = O then gives
. 1 e , 3087 o looas o
GO0 =1 - 24 Ao b ¢
9. 32 233452 94365272 5./385472
89075591701 1 o
t 10+ ot *4).
T
583105 %7211 213 17 19

(A.9)
Before leaving the case n = 0 it is convenient to gather together the other

expansions which are required in the course of the analysis. The coefficients

dg;lr for r > 0 are defined in Flammer (p. 27), and whenn =0
o . 20 2 5 s a4 o 28
d 1 t + 3 t 5 5 t + 73 t
P2 2 3.5 2.3°7 37527 2.3./5°11
+ O(tlo)}doo
0
w b 4, 64 8lz o o9 g
4, =—5— {1_____1; +— t* - —¢ t +0(t)}d0,
/4 9735 33 345,11 3°5.11.13
6
i 2 173
4 o {1 - — 12 the o(tG)} a’ .
pl6  9.3%.7 13 92325213
8
t 8
q%0 - ; {1-—-t2 + 0(t4)} ng ,
/8 2337%5,7,11.13 3.17
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10

£
00 00
d/10=— 1 {1+0u2{}d0.
& 2.32537,11.13.17

The function 080(1; ) is

d d
dy 4 6
cg%)=dm){;+ + + +"f}

0

and has the expansion

1 11 2 571
c00t) = ng {} - 2+ — 44+ - £ _ £8
0 3 3.5 355, 72 38547
1924952
10
+ 5 t +(Xt12{}; (A.10)
38547°11°13
N (¢)=2(a% <1+ = <—2—— P <i> P
00 0 00 00
5 \dj 9 “dj

6 8.4

1 4 47
= 2(dg%)2 {E+~—Z—t4 . g6 =1 48
3.5 355.7 3.5.7

872 1587878 y
t 10—t 0t )} : (A.11)
39547, 11 3105 7751113
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From an examination of this last result it would appear that N(t) can have no

zeros for which |t} < 4.

When n = 1 the appropriate expansions can be obtained in a similar manner

to the above, and because the coefficients now fall off more rapidly with increasing

powers of t, a smaller number of terms proves to be sufficient. We have

2 12542
¢ 2 229

dgl=-—2 {1+ 2t2- ¢4 - £6 + o(tg)}dfl ,
5 325 32537211 32557211.13

01 - 4 2 386 4 6 01

O - {1+ 12 —— t4 4 0(t8) +q01

5 32572 5213 32537213 1

01 6 6 2 4 01

afl = - ———— d1+ ——tZroeh
345.7.11.13 5217

8

¢
a0t ————s {1+ 0(1:2)} d‘fl ,
9 33527.11213.17

with d% = 0(t19) d?l forr > 9, giving
T

d 1 ———-2t +-———3 5 t 2. 4.6 t- + 7 3. 7.4 9 t
1 2.5 23547 92345 52 2./3°5.'7.511

e 126

+ 0(t
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Also,
01 1;2 2 2 53 4 11 6 8 01
d = - t + t - 5 t + O(t ) d E}
Pl 9.3 3.5 2.3.537 527 1

4
o1 ¢ 4
d =- {- t2+ t4+ O(tG)} d01 s
pl3 9232 5.7 1
6

¢
o {1-—-—t2+0(t )} 01
o5 5 3357 5.11

.8
O = - {1+ 0(1;2)}0101 ,
p/T 95335, 7.11 1

2
t 3 226 2187259
001(t)=d(1)1 {}-——+—-—-—t4+——-—-—t6+___ t8+0(t10ﬁ

7}
0 52 5.2 345572 33587402

(A.13)

4 1147

537 3.557 3,557

69336
T 0+ 0(t12) (A.14)
51074 13

and from this last result it is obvious that NOl(t) can have no zeros for which

It] > 5.
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APPENDIX B

THE RAYLEIGH SERIES FOR A DISC

As noted in8§5, the problem of diffraction by a circular disc (and the related
problem of diffraction by an aperture) can be solved by methods other than those
involving spheroidal coordinates, and this is particularly true at the low frequency
end of the spectrum. Thus, for example, using an integral equation approach first
proposed by Jones (1956), Bazer and Brown (1959) have derived a sequence of
terms in the low frequency expansion for a circular hole and from this the solution
for diffraction by a disc can be found by Babinet's principle.

For a plane wave normally incident on a hard disc the expression for the

far field amplitude is

1
fln, ) =- 270 S sinh (ct cos 9) gl(t) dt (B.1)
0

(see Bazer and Brown, 1959) where gl(t) is given by the integral equation

1

1| ]sinh [c(t—s)]_ cosh ct sinh cs} (s) d
i t-s s S g,ls)ds,
-1

. . 3
and since the kernel is of order ¢” for small ¢, it is a straight-forward matter

tgl(t) =t sinh ct +

to obtain the expansion

2 3 4 5 2
2t 2ic 1 4 t 2ic 4 t
g,(t) c[ c” = - g te Tt <225 +90>
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6 t6 4 2107 1 t2 ’E4
te (- — |+ — | + == + =—
(5040 2) © Tx \735 T 525 2520
817
+08< t© 28 2 tz) +§c9(8
362880 © L o0 2 o 2 ™ 127575

4 6
31 9 ¢ ¢ 10
*Togas0 v T 1t 13608() + 0le )]'

If f(n, 7) is now written in the form
00

f(n, 7) = - 2i g A P (cos0)
n n

n=0
-the integral relation

1
ct cos 6 N (R
S e P_(cos ) d(cos 0) =2(-i)" j (ict)
-1 n n

can be combined with equation (B. 1) to give

>

1
_c Ao+l n . s
- (2n+1) (-1) { 1-(-1) } J Jn(1ct) gl(t) dt,

0
implying that

for n even, and

1
(2 n+1)(—i)n+lf jn(ict) gl(t) dt
0

A =
n

3]0

for n odd. Moreover,
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4 6 8
j (1ct)-i£-t-{1+<0t) pler Let) o (et) +0e?) }

3 10 280 15120 ' 1330560
2 4 6 8
(ct){ )’  (et)®  (ct) (ct) 10 }
jget) =-i 75 1 1+3g  * %5 * Brre T Taiso T %C )
5 4 6 8
ey . (et) (ct) (ct) (ct) (ct) 10
jstict) =1 15395 {1+ 26 * 1560 ' 156120 ' 24186240 T ¢ )

and hence, by substitution of (B. 3) into (B. 6),

3
~ e 4 2  2i 3 3 4 2i 5 1
Al-—lg{l'l‘ -2"5—0 +—9-;-TC +-2—EC +7C '—225
_4) 6, 217 _403
1 15 2 T 91875
3 4 8, 2i 9 1 (1824 4 10
45(847 2> +70'_77§<6125—;2)+0(0 )}
e 10 2 . 2i 3 28 4 2i 5 61
2'17 {H T Tt tTT ¢ 303
1 (360 _ 4\ 6 2i 7 31583
81 \ 11011 ~ 2 T 7858620
, 88 225 _ 4\ B+ 219 1 (321171 4 Y 10)
18225 \ 104104 ~ 2 T 729\1226225 =2 ¢
- m
~ e 56 2 2i 3 7 4 2i 5 29
A5=—1———66157T{1+§-EHC+9—7;C+7—1—50 +—7TC-§7—5

130




THE UNIVERSITY OF MICHIGAN
3648-4-T

1/.36 4\ 6 +g_ic7 5087
81\ 14365 = 2 c - 1289925

1 8 . 9

* o5 (6182;0 i ;4'2> R < 9575 f2> wotet )}

The corresponding convergence coefficients Iar;l defined in the manner of
equation (7) are shown in Table XIX and plotted in Figure XVIII. It will be ob-
served that for n =1, 3 and 5 the curves are almost identical. This is also true for
larger values of n, and for large r it would appear that the common asymptotic
limit lies somewhere between 2-0 and 2- 3. It is therefore concluded that all the
Xn for odd n have the same radius of convergence for their low frequency expan-
sions, and accordingly the radius of convergence of the Rayleigh series for the
hard disc lies within the range 2- 0 to 2- 3.

The significance of this result in terms of the amplitude coefficients Aon
is most easily seen by observing that

:

S (-ic,-1)
or “or

A d 7)
72 % TN o for (B
or

r=1

as a consequence of equations (12) and (B.4). Since Sor is free of singularities
in the complex c plane, whilst Nor has no zeros which can affect the discussion,
the radius of convergence of the low frequency expansion for Kn is equal to the smaH

lest radius of convergence for the individual Aor (r=1,3,5,....), and the fact that
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TABLE XIX CONVERGENCE COEFFICIENTS FOR A HARD DISC

al [ag a5
r r r
(00} (e 0] (0 0]
2-500 2-512 2:504
2-418 2-418 2418
3- 006 3-126 3.179
2-191 2-205 2-211
2- 466 2-452 2- 447
2- 317 2- 346 2- 352
2-200 2.178 2-184
2- 802 2-714 2-686
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this is true for all (odd) n accounts for the similarity of the various curves shown
in Figure XVIII. It follows immediately that one of the Aor must have a radius of
convergence between 2- 0 and 2. 3, which is in agreement with the results of the
more rigorous analysis of §5.

Turning now to the problem of a soft disc, the far field amplitude for a

plane wave which is normally incident is

1

f(n, 7) =- 2—; [ cosh (ct cos 0) gz(t) dt (B. 8)
0

where gz(t) is given by the integral equation

gz(t) =cosh ct + g2(s) ds. (B.9)

1 ! sinh [c(t-s)]
i-s

7i -1
The integrand is here of order c for small ¢, so that a solution by iteration is
again possible, and though it proves desirable to calculate a somewhat larger num-
ber of terms than Bazer and Brown (1959) have provided, it is a straight forward

ma tter to show that

oro2ic 2l a4l 2l a2
& 7 2! 2 T |3 2773

m

6 4

+<_1_64_ 162+725;)}+C6{%_ t 2+t2< 84_ 342>
T 97 307 3 1357
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+t2<8_ 44, 11><§g_32+ 4 4)}
s 4 1g.2 1513) \ BT 4" 37 2205
sf t° O 4( 2 5 2/ 32 8
el g ettt (T o) v T
" 12607 157 3187 37 S

, 746 ?>+ (2586 i 4486 , 1856 Jgmits >}
141757 7 97 6757 330757

2icg{ ¢ t6< 1 1 >+ t4< 2 16, 23 )
- 9 " ~ 17010 -
T |9 126072 1701 157%  oa5,2 26709

DO

_t2< 32 256 _ ) (256
37r6 1357r‘l 5677r 19845 97r
8
7936 2864 >} ‘e { ot
1
szt soraie’ PO 10 907204
7
th6(14:_ t4( 4+ 40 2)
3157°  340207° 157° 31570 141750 7
2 128 1184 22448 3844
- R z ~ z)
37 1357 425257 496125 7
{102;;_ 25;5 . 142726 78224 - 2852 2>}+0(C11) (5. 10)
7 70 6757 1215757 6268757
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If the far field amplitude is written in the form (B. 4), the coefficients An

for the soft disc are given by the equation

1

A = A+l n L.
An = 2_7T (2n+1) (-i) { 1+ (-1) }J Jn(lct) gz(t) dt
0
and hence
1
1 =C A0+l o
An = (2n+1) (-i) j Jn(lct) gz(t) dt (B. 11)
0
for n even, and
A =0
n

for n odd. Since

9 4 6 8 10

.. (ct) (ct) (ct) (ct) (ct) 12
= 1= +

Jliet) = 1+ + o5 + =570 * 362880 T 39916800 T °¢ )

8
e oo @ @0 et L e’ (e
Jg 15 14 504 33264 = 3459456

10
(ct) 12
* Siso18a00 * °l° )}
8
ey @] e @ e’ (ct)
4 945 52 1144 " 102060 ' 14002560

10
(ct) 12
* 3ggoaggao0 T % )

we have, by substituting (B. 10) into (B. 11)
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(84 32 4 4 6, 2ic (64
4 2 2205/ © T 6
T 37 97 T
112, 464 _ 278> +(256 _ 512
9774 67572 330735 778 97r6
7936 2864 2 8
2 " 5 T 25518, ©
2025 71 35721 7
2ic (256 64 , 39568 19556 713)
T 7r8 7r6 6757r4 1275757r4 826875

‘<1024 2560 + 18496 36928 + 254684

210 9,8 67570  357214F 99395625 12

4 10\ 11
" 1715175 °>+0(° )}

;gz_._iﬁgl_?_%s_i_ﬁ 2+2_i°3i_2_3
2 - 273/ ° - 2 863
97 T

m

16 40 . 5\ 4 2ic°(16 148 38
+("71' 2+147)C "7 <_4' 2 525)

T 637
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7

(ﬁ;_704 , 1048 8>CG+_2_10 <§5

L esat  1a75.% 42 d 70
212, 182 18377) <256 3712 - 20048
2o17® 175,70 181912 6370  47257°
33412 2 >c8 i _2_ic9<256 _ 4160
3638257° o o0 T \z% e3g
, 16064 48392 60638>

28357°  2806657° 00000

10 8 6 4 2
T

_<1024 2048 + 137728 11255488 + 295857592
(& 47257 98232757 22347950625 7

8 10 11
_558967§>C + Ue )}
i [ zic (4 30\ 2, 2ic’ (4 3
T 5257 p 2 1 T 7Tz 99

L(16 _ 64 140 4_g_i_c5_1_6__g§g+5627
Z 5T 3861 © - 2 2 " 75075

T 337 T 97
1
<64 _ 1120 94228 8 > 2ic <gg
20 99x®  184215.% 71 T \g
144 20872 _ 5) (256 5888
11 7r4 27027 7 2425 99 7r
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2925856 449536 1 8
* 2 " 5 30111, ©
675675 7 4729725 1
) 2_icg< 256 6592 11693936 906316
T \7% 9975  20270257% 510810372

35155667 > _(1024 9728, 2223808

33432534135 CHRDUE B
SRR+ apaisea4 2 ) 10
127702857570 Lo 2 T 1962225
11
+ 0(c )}

The corresponding convergence coefficients l ai‘ll defined in the manner of
equation (7) are shown in Table XX and plotted in Figure XIX. Forn =0, 2 and 4
the curves are far less regular than the analogous ones for a hard disc, and even
when terms in 010 are included the curves still remain apart. It is therefore dif-
ficult to estimate the radius of convergence with any certainty, but bearing in mind
that for sufficiently large r the curves must all approach a common limit, the more
regular curve for X 4 can be used to indicate the limit. It would appear from this

that the radius of convergence of the Rayleigh series lies somewhere between 3. 0

and 3. 4.
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TABLE XX CONVERGENCE COEFFICIENTS FOR A SOFT DISC

r 2’ az a4
r r r
1 1-571 1.571 1-571
2 2- 336 4.003 7-863
3 2-795 3-393 3. 679
4 3- 106 3.710 3-973
5 3-870 4. 081 3-681
6 3-903 3-634 3- 499
7 4. 280 4.138 3-836
8 4- 458 4. 223 4-258
9 4.033 3-631 3-9521
10 4-230 3-563 3- 459
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The relationship between the coefficients An and Aon is given by

(00}

'or Sor(_ic’ ~1)
AfE D N_ia Por (B.12)
or
r=0

(cf equation B.7) and by the same argument as before it follows that the limiting
value of the| a?_[ for large r represents the smallest radius of convergence of the
expansions for the individual Aor' It will be observed that this is in good agreement
with the radius of convergence of Aoo found by the more rigorous analysis of 85,
and this confirms that the singularity of A00 is the one which dictates the radius of
convergence of the Rayleigh series for a soft disc.

Unfortunately, for the particular problem of the soft disc difficulties are
experienced with both the available methods for estimating the convergence, and it
comes as no surprise to find that these have a common origin. In seeking the solu-
tion of equation (47) it was found that a large number of terms must be included in
the expansion for dc:)O in order to determine the root, and even when terms as high
as 012 are taken into account it is still not possible to find the solution with an er-
ror of less than about 1 0/o. This is due to the fact that for values of| c | of the same
order of magnitude as the root the leading terms in dc;o do not decrease rapidly and,
indeed, the convergence coefficients for d(z)o behave in a similar manner to those
shown in Figure XIX. Such a behaviour is reflected in all the d(;o and hence, through

equation (B. 12), in all the Kn for n =0, 2,4..., which then leads to difficulties in
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applying the intuitive method. This is in marked contrast to the case of the hard

disec.

143




UNIVERSITY OF MICHIGAN

SRR RIRA

15 03525 2009




