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Abstract

When higher order boundary conditions are applied to an edged structure such as a
wedge or half plane, complications associated with the uniqueness and reciprocity of the
solution generally arise. To illustrate this fact, second order boundary conditions are
introduced and discussed, and then applied to the diffraction of a plane wave by a half
plane. Itis shown that reciprocity must be explicitly imposed, but even when this is done
and the usual edge conditions applied, the Wiener-Hopf solution still contains an arbitrary
constant. The constant is related to the surface values of certain field components at the
edge, and the specification of this information, derived from a consideration of the actual
structure being modelled, is therefore necessary for a unique solution. The generalization
to higher order boundary conditions is also discussed, and for Nth order conditions, the
solution contains N-1 unknown constants which can be related to the surface values of N-1

field quantities at the edge.






I. Introduction

Many targets whose radar scattering is of interest involve non-metallic materials,
possibly in the form of a dielectric or other coating applied to a metallic substrate, and this
makes necessary the development of procedures for simulating the effect of the material.
One method which is now attracting attention is the use of approximate boundary
conditions applied at a single surface. Such conditions may involve field derivatives of
higher order than the first and since they are generalizations of the standard (first order)
impedance boundary condition, they have been referred to as generalized impedance
boundary conditions (GIBCs) whose order is specified by the highest derivative present.

A version appropriate to a plane surface was originally proposed in [1] to study the
surface waves supported by a dielectric coating, and the conditions were subsequently
invoked to simulate a perfectly absorbing surface in a finite element analysis [2,3]. The
generalization to a curved surface and the accuracy with which the scattering from a metal-
backed layer can be simulated are discussed in [4,5], and the diffraction by a wedge subject
to these conditions is treated in [6,7]. Analogous results for a half plane obtained using the
Maliuzhinets and Wiener-Hopf techniques are given in [8 and 9].

A problem closely related to that of a metal-backed layer is the the modeling of a
thin semi-transparent layer using transition conditions applied at a single interface. For a
very thin layer composed of a lossy non-magnetic material a resistive sheet provides an
adequate simulation, but if the layer is not lossy and/or is thicker, the normal component of
the polarization current in the layer is no longer negligible. This component can be
simulated using a conductive sheet [10] or, more accurately, by introducing a "quiﬁed"
conductive sheet [11] distinguished by the presence of a second derivative. The resulting
second order conditions are identical to those developed by Weinstein [12], and have been

used [13-17] to treat the problém of a plane wave incident on a dielectric half plane.



Unfortunately, difficulties arise when boundary (or transition) conditions of higher
order than the first are applied to an edged structure, and because of these, most of the
solutions present in the literature are either incorrect or, at best, incomplete through failure
to impose constraints adequate to ensure uniqueness. As noted in [8,9], the reciprocity
condition concerning interchange of receiver and transmitter is no longer satisfied
automatically and must be explicitly enforced, and the solutions in [6,14] violate
reciprocity. Moreover, the simple specification of an edge condition is not sufficient [9] for
uniqueness, and most of the solutions cited contain one or more arbitrary constants or,
even worse, undetermined functions [18].

Since higher order conditions are better able to simulate the material properties of a
layer or coating, particularly when the thickness is not very small compared with the
wavelength, it is important to address the difficulties that have been found in the case of an
edged structure such as a half plane or wedge, and this is no less essential if the solution
technique employed is numerical rather than analytical. This is the purpose of the present
report. The boundary conditions themselves are discussed in Section 2, and since the
difficulties arise in going from a standard (first order) condition to a second order one, it is
sufficient to concentrate on a second order GIBC. In Section 3 the solution for a linearly
polarized plane wave incident on a half plane subject to the same second order boundary
conditions on the two faces is derived using the Wiener-Hopf technique with particular
attention to the validity of the mathematical operations. Even when reciprocity is enforced,
the standard edge condition still leaves a single constant undetermined, and it is shown how
this can be specified using the physical properties of the structure being simulated. The
implications of this result are discussed in the last section, where the extension to higher

order boundary conditions is described.



2. The Boundary Conditions

The impedance boundary condition generally attributed to Leontovich [19] is a
widely-used means for simulating the material properties of a surface in scattering analyses.
If fiis the outward unit vector normal to the surface, the boundary condition can be written
as

fixixE=-nZfixH (1)

where 1 is the surface impedance normalized to the impedance Z of the surrounding free
space medium. In the special case of a planar surface y=constant in a Cartesian coordinate

system X,y,z, (1) is equivalent to [20]

oE . JH, ik
—éy_+lk11Ey—O, _-a-y_+T1-Hy_0, (2)

and these can be obtained from (1) by tangential differentiation. We caution that even for a
planar surface in other coordinate systems, it is not permissible to replace y by the normal
coordinate.

The boundary condition (1), or where applicable, (2), is well-posed and ensures a
unique solution. The resulting boundary value problem is self-adjoint implying a
symmetric Green's function, and the reciprocity condition concerning the interchange of the
transmitter and receiver is therefore satisfied. In the case of an edged structure such as a
wedge or half plane, the standard edge condition is required and, in particular, a current
component perpendicular to the edge must be zero at the edge.

To improve the accuracy of the simulation and to increase the variety of materials
that can be modelled using a boundary condition applied at a single surface, generalized
versions of the boundary condition (1) and (2) have been proposed. For a planar surface

y = constant, the generic form of these new conditions is [4]
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where I'ry and I'y' are constants chosen to reproduce the desired scattering properties. One

way to choose them is to examine the reflection coefficients. For an incident plane wave

i_ e—ik(x cos ¢ +y sin ¢)

Ey._

the reflection coefficient implied by (3) is
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with a similar expression for the reflection coefficient R'(¢) associated with the component
Hy. The required I'y and I'y’ can be found from theoretical or experimental data for the
actual reflection coefficients of the surface as functions of sin ¢.

There are four points to be observed. Since a knowledge of Ey or Hy alone is not in
general sufficient to determine an electromagnetic field, the constants I', and I'y' cannot be
chosen independently of one another, and when duality is imposed, a specific relationship

is obtained. Thus, for the second order conditions (M = M' = 2) we require that

I+, T, +1

' ' - (4)
I'E+1 I +L,

There is also the restriction imposed by the fact that the surface is passive. For the first
order condition the requirement is Re. I'1, I'' > 0, but for the higher order conditions, one

or more of the I'y, and I'y’ can have negative real parts. Indeed, for the second order

conditions the restriction derived from a consideration of the reflection coefficient is



Re. T Re. T
1 + 2

> 1 )
2, .2 2. .2
IT, 1" +sin®¢ L1 +sin“ ¢

for 0 < ¢ < /2, with a similar result for the I'y,".

To extend (3) to a surface other than y = constant, e.g. a curved surface, it is
necessary to express the boundary conditions in terms of the tangential field components.
The procedure is analogous to that involved in going from (2) to (1), implying a tangential

integration, and when duality is imposed, the second order conditions become

A 5) ( )
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(6)

(see [4], where the third order result is also given). The nature of the generalization of the
standard impedance boundary condition (1) is evident. Finally, there is the matter of
reciprocity. If the boundary condition is of higher order than the first, the boundary value
problem is not in general self-adjoint, and the reciprocity condition is not then satisfied
automatically. This is certainly the case for an edged structure, and since reciprocity is an
essential feature of a physically-meaningful solution, it must be explicitly enforced.
Fortunately, the arbitrariness inherent in the solution when only the standard edge condition
is imposed allows this to be done.

To determine the additional information necessary to specify a unique solution, it is
sufficient to consider the problem of a plane wave incident on a half plane subject to the

same second order boundary conditions on the two faces.



3. Second Order Impedance Half Plane
The half plane occupies the portion x 2 0, -0 < z < oo of the plane y=0 of the

Cartesian coordinate system x, y, z, and is illuminated by the H-polarized plane wave

H (X, y) _ ,\ -ik(x cos ¢, + y sin ¢°) (7)

On the half plane the same boundary condition (6) is imposed on the two faces, and since

the entire problem is independent of z, the boundary condition reduces to

L+l _ | 3
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showing that the problem is a scalar one for the component H,. For simplicity it is

assumed that Re. I'y, I'; > 0.

An integral representation for Hy is

'é—} H, {k\/ (x - x') +y }dX'

Hy(x, ) = H, (x 3) ‘i!{a |

=Hzi(x,y)-1£f-HJ (x)+—IZ-Jx( ) a}Ho (k\/(x-x')z-byz}dx' (10)
0

where
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Jx)=9xHL =%, (11)

is the total electric current supported by the half plane, and

F'oo=9xEl =2gI" =222 %% ' (12)

is the total magnetic current. The solution is required subject to the edge condition
Jx(x) = O{(kx)€1} and J,*(x) = O{(kx)-1 + €2} for small kx where €; >0and 0 <e; < 1.
Accordingly, the integral in (10) converges and the Fourier transforms of Jx(x) and J;*(x)
both exist. Nevertheless, it is not possible to apply the derivatives in (9) to the integrand in
(10), and were we to do so, the application of a Fourier transform to the resulting integral
could not be justified.

To avoid this difficulty, we consider the integrals with respect to x of the various

field quantities. If

X
3, (9 = [ B, y) dx (13)
with similar definitions for the other script quantities, the boundary conditions on H,(x, y)
are (see (9))

d .2 - . H, .+
{$5+k (I‘1 I‘2+1)}3~[.Z + 1k(I‘1+I’2)a—yZ=A (14)
ony =0, x 2 0 where AT are arbitrary constants, and the representation for H,(x, y) is

(see (10))

H(x,y)= Hzi(x, y) - %ﬁ {J:(x') + %—Jx(x') %} H(fl){k\/ x-x)* + yz} dx' (15)

0

where
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By addition and subtraction of the boundary conditions (14), we have
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and when these are applied to the representation (15), we obtain
2 * ) i . -ikx cos 9,
YT, +T)], ) =-A"-A +%{ T, T, +sin? g e
(o]

[ 2 ] -
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(18)

(19)
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(&

valid for x 2 0. These are Wiener-Hopf integral equations for J*(x) and Jx(x) and can be

solved in the usual manner. For simplicity it will be assumed that k has a small positive

imaginary part which can be put equal to zero at the conclusion of the analysis.

Consider (20). We first extend the validity of the equation to -oo < X < eo by letting

®;(x) be the value of the integral portion of the right hand side when x < 0. If the Fourier

transform of a function h(x) is defined as
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application of a Fourier transform to the extended version of (20) gives

2 2 (1 K 1 k
Lk-&)|t+ T 7 1) . 21)
2 T T x
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Let
1
K, ®K, (5 =(%+L] (i=1,2) (22)
i [ 2. §2

where K;(E) is analytic and free of zeros in an upper half plane. If T'; = 1/m, K;(§) is
identical to the function K,(§) given in [21], and when (22) is inserted into (21), the terms

can be separated according to their half planes of analyticity to give

3,

) K K K. (0 0
KOKO | (A+_A_){ OKO KOK )|
k+&  t/n k+& J

k\/— tan {Kl(g) K& K,k cos ) K,(k cos ¢°)}
T, +T) i
E+kcosd, | k+§ k(1 - cos ¢,)

tan ¢,
§+kcosq)0

A"-A) K0 K, 0) +,/= (T, +T,)
k&f’E “ \/—

i K, (-k cos ¢,) K, (-k cos ¢,) T k-§

T-cos 0 IR EK,E) 39

Since the half planes overlap producing a common strip of analyticity -Im.k < Im.§ < min.
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{0, -Im.k cos o}, application of Liouville's theorem shows that each side of the equation

is at most a constant, and from the order of the functions as I§| — oo, the constant must be

zero. Hence

3,8 = \/Z I+, mng, KD KCkeos 00) Ky(-5) K, (k cos ¢)
X ® I, &+kcosg, E(1 - cos o )(k - &)

{€-BE +kcos ) }

where

B = i 1-cos ¢, Kl(O) KZ(O)
2k (I';+T,) tan ¢, K (-kcos ¢,) K,(-k cos ¢,)

-+

A -A").

But from the edge condition Jx(§) = O(IE}-2 - &) for large IE| with €1 > 0, and this is only

possible if B=1, implying

AT-A = - 2ik(T, +T) X tan 9, 23)

27 1-cos o,

with

X - K, (-k cos ¢,) K2(-k cos 0,)

, 24
R 0) K,0) 29

and the final expression for Jx(§) is

T +T - K. (-€) K, (-k cos ¢,) K.(€) K, (-k cos b,)
1 f[2 21772 sin ¢ 1 1 o) B 2 0
S k\/_’: LT, E+kcos o, E(1 - cos O )(k - &) ‘

(25)
This is O(IE|-3) for large 1|, and as will be evident later, it is in accordance with the

reciprocity condition.

11



The solution of the integral equation (19) for the magnetic current can be obtained in
a similar manner. On applying a Fourier transform to the equation extended to the whole

range -o° < X < oo, we obtain

5,0580K0 i -, {KI@) K,® KO K2<0>}
./T(E éf— Jk+§& Jk

] k\/_i [T +sin’ 9, [K@K,E) K (kcos §o) Kk cos o)
T cos ¢, (€ +kcos §,) [k + £ Jk( - cos ¢,)

I, T,+sin?9, K, (kcosd,) K,(-k cos §,)
(AT + A K, O K,0) +,/ 2 L 2
.g,/’“‘ K 2 cos (€ + k cos ¢,) J(1 - cos 9)(k-E)

-kYT T /k-§

V25 937,
! 2K(§>K2(§>J ;

From Liouville's theorem and the order of the functions involved, each side of the equation

is zero and hence

1, &=z [+ 1 1 K, (-8 Kk cos @) Ky(-£) K,(k cos o)
mk T,T, E+kcos, £ (1 - cos o)k - )
I,T,+1 ]
Vi cose < % 1€ + B'(E +k cos 0,) 27)
| 5% )
with
B'= ka ‘/1 - COS 0, (A +A7). (28)

We observe that jz (&) = O(II*?) for large €} in accordance with the edge condition, and

to satisfy reciprocity we write

12
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B'=b-
cos ¢,

where b is independent of ¢o. In terms of b

A"+A = 2ik(T, T, +1-bcosd) .4 (29)
b2 009 cos ¢0,/1—cos 0,
and
Jz* €=z [2 1 1 K, (-8) K, (-k cos §,) K,(-€) K,(-k cos ¢,)
™ DT, Erkoos, &/(1 - cos 9k - &)
. {(1“1 T, + Dk +& cos ¢, - b€ +k cos ¢o)} (30)

whose order is independent of the choice of b. Thus, the standard edge condition does not
serve to specify b.

From (15), on using the Fourier integral representation of the Hankel function

o 1

H& =B -2 | <lkYJz ®- L JX@J>
. C

* eXp 1§x+1|yI\/ \/.___

where C is a path extending from x = -e0 t0 X = oo in the strip of analyticity, and when the

expressions for Jz (§) and ] 7 (€) are inserted, we obtain

L K, () K (-k cos 9) K,(-6) K,k cos §,)

ﬂ{z(x, y)= H’zi(x’ y)+ o
& T, T, € +kcos 0 &/ (1 - cos 9)(k - )k

13



. { (Ty T, + Dk +& cos ¢ - bE + k cos §) - - (1* +T) k(1 +cos ¢o)(k+§)}

* exp 1§x+1|y| (31)
JK \/___

It can be verified that the boundary conditions (14) are satisfied when b is related to
the constants A* as shown in (29). When the differentiations in (14) are carried out and y
put equal to 0, (22) can be used to show that the integrand is analytic in the half plane
above the contour apart from the poles at & = 0 and & = -k cos ¢o. The residue at the
former reproduces the constants A%, the residue at the latter annuls the incident field
contribution, and for x > 0 the contour can be closed in the upper half plane. Finally, since

the integrand in (31) can be differentiated with respect to x, we have

K, (-8) K (-k cos ¢,) K,(-£) K, (K cos §,)
T, T,(& +k cos §) y (1 - cos ¢o)(k - E)k

{(r, T,+ 1k

H,(x, y) = H,(x, y) - 3 J

| |
+ & cos 9 - b(& + k cos §,) - '-i-' (T, +T,) 1 k(1+cos o) (k+E)!

* eXp 1§x +ilyl (32)
NS \/___

This represents a solution of the diffraction problem and we observe that st = Of (kx)12},
Ex’, Ey® = O{ (kx)-1/2} for small kx. The reciprocity condition is also satisfied as evident
from the symmetry in o and ¢ of the non-exponential portion of the integrand when the

variable of integration is changed to o with § =k cos «.

14



4. Specification of the constant
In view of the arbitrary constant b, the solution (32) is not unique, and we now
show how the edge condition must be supplemented to ensure uniqueness.

Using Maxwell's equations, the boundary conditions (14) can be written as

B, =ik([; I, + DH, ¥ ik([, + [ )E, - £ A” (33)

fory =10, x 2 0, and (33) is also evident from (8). Asx — 0

3{2——>H,Zi=-(ikcos¢o)'l, Ex—>£xi=-% tan ¢,

and hence
+ [F1 I+l i N
E, =-z{l—m— F O +T)tang,+1-A J}
where
Ey =lim Ey (x,10) (34)

are the surface values of Ey at the edge. Inserting the expressions for A derived from (23)

and (29), it follows that

1 ot ooy 1+cos¢, 1-cosg,-X
2 & -E")—Z(Fl+r2)\/ 1-cos ¢, cos, (35)

1- -X
%‘(Ey++Ey')=-—Z—{(F1F2+1) ot ”’X}’ G

1 -cos ¢,

and whereas the first of these is independent of b and therefore specified by the boundary

condition, the second is a function of b and can be adjusted.

15



Both are finite for all ¢o, 0 < ¢ < 21. From the expression for K, (&) in (21) of
[21] withm = I/Fi it is found that as cos ¢ — 1, X = Cy(1 - cos ¢o) where Cjis a

constant, implying

- ®-Ey) -0, o€y +E;) - Z(T,T, + D).
Thus, for incidence along the plane, the surface values at the edge are the same and equal to
-Z(I'1)T"3 + 1). They are also equal at edge-on incidence(¢, = T), but near normal incidence

for which Icos ¢ol =€ << 1,

X =1-(C,+1)e +O(?)

with

o1 r-,/ -1 r-,/rj—1
AT 12- r+,/r-1 / i r+,/1“22-1

showing that as cos ¢ — 0

) ] ( )
%(E;-Ey)——)Z(Fl +T,)C,, -%—(Ey++Ey)—->-Z{l(I‘l r,+ 1)(c2+%) +bJ>.

From (30) it is now evident that a unique solution to the diffraction problem is
assured by specifying the (finite) value of % (Ey+ +Ey ) at any one angle of incidence other
than grazing or edge-on. This information should be furnished in addition to the standard
edge condition, and must be derived from a knowledge of the particular structure which the
boundary condition models.

The procedure is applicable to higher order boundary conditions as well, and to

illustrate this fact, consider the third order one. The relevant boundary condition is given in

16



[4] and when specialized to be the case of an H-polarized plane wave incident in a plane

perpendicular to the edge, the condition becomes

L+t . & O i K
+72 > H -
Ex 83 + a z + 1k(a3 + al) ax k2(83 + al) ax2 (37)

ony =0, x 2 0, where
a0=F1F2F3, a1=I‘1F2+F2F3+F3F1
a2=r1+r2+r3, a3=1.

In scalar form the condition is

3 9
%g;*‘k(aﬂa) ay azaz+k(a2+a0) =0, (38)

but to ensure the validity of the solution technique, it is necessary to employ the double

integral with respect to x of all field qualities, e.g.

o)
H, () =kj | ). (39
with a similar definition of other script quantities, The boundary condition for #,? is then

[ ) ( |
<l iz-+k<a3+a)J>a“ l_2+k(a2+a0)m2 =Aj+XA]  (40)

ony =10, x 2 (, where Aozt and A1i are four arbitrary constants.

As a result of the Wiener-Hopf solution, the expressions for the integrated currents
each contain a constant related to (Ag" £ Ag ) + (A" £ Ao1 ) with the upper sign for the

electric currents and the lower sign for the magnetic, and two equations involving A¢ and

17



AT are specified as well. To obtain a unique solution of the problem it is therefore
necessary to provide two additional pieces of information.

The boundary condition (40) can be written as

® @ .
E,=ta,ZH,-K’(1 +a)E, +KZ( +a)H, %— Ay +xAT)

where we have used the fact that a, = 1, and because all of the field quantities on the right

hand side approach their incident values as x — +0, it follows that

( . ]
+ sin ¢o aO + a2 i t
=7Z{+ 1+ - LAY 41
where
B, =lim  E, (x,£0).
Similarly,
EE . | Btay | 4
—2- ¥ ika, By =-1kZ{l(1+a1)tan¢o- s +FA1 J} (42)

and we can specify, for example, E," and E, or

l gt - 1 aEx+ oEy ka, (g+_g-
E(E" +E) and —f[ax +ax]- 2 [Ey Ey)

t

d
Since the left hand side of (42) is simply -(a3 —%y— * ika, Eyi] which closely resembles

the first two terms of the boundary condition expressed as a function of Ey, the extension

of the procedure to boundary conditions of still higher order is evident.

18



5. Concluding Remarks

The problem of the diffraction of a plane wave by a half plane satisfying second
order boundary conditions has been examined with particular attention to the reciprocity
and uniqueness of the solution obtained. Whereas self-adjointness automatically ensures a
reciprocal solution for boundary conditions of order zero and one, conditions of higher
order (greater than or equal to the order of the wave equation) do not in general lead to a
self-adjoint problem. The conditions must then allow for reciprocity to be imposed
explicitly.

Unfortunately, this still does not ensure uniqueness as evidenced by the arbitrary
constant appearing in the solution for the second order problem. In the general case of an
Nth order boundary condition, the solution contains N-1 arbitrary constants, either equally
divided between the expressions for the magnetic and elective currents (if N is odd), or
with the magnetic current having one more than the electric (if N is even). These do not
affect the edge behavior of the spatial fields, and to specify them requires N-1 items of
supplementary information over and above the standard edge conditions. As we have
shown using the second and third order boundary conditions as examples, the information
consists of the values of certain field components on the top and bottom surfaces of the half
plane at the edge, and this must be derived from a consideration of the physical structure
being modelled by the boundary condition.

In addition to these main issues, there are two others worth mentioning. The
rigorous analysis of a GIBC problem using the Wiener-Hopf technique must be carried out
in items of integrated (with respect to x) field quantities to ensure the existence of the
Fourier transforms involved [22]. For the second order problem considered here, a single
integration is required with the boundary conditions expressed in terms of the tangential
field components, but to use the boundary conditions involving the normal field

components, a further integration is necessary. For the Nth order condition, the
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corresponding numbers are N-1 and N respectively. Although it is possible to arrive at the
correct solution without integration, it is not only rigor that is sacrificed; it is then difficult
if not impossible to connect the constants which appear in the solution to the surface values

of the field components at the edge.

In carrying out the second order solution it was assumed that Re. I'y, I'; > 0, but
for the Nth order solution with N>1, one or more of the I';, may have negative real parts

and in general will. If Re. I'; < 0 the corresponding surface wave pole becomes explicit,

and the Wiener-Hopf split must be modified. In particular, if

ol
T~
g
=

R

then

(Re.T’, >0)

| (N
L{ﬁ{a'k l-riz]K.lii\l} (Re. T, <0)

where K;(&, }1—) — Ki(€) is given in (22), and the branch of \/1 - T2 is such that
i

Im. k\ 1 - T2 <0. Provided Im. T # 0 implying \/ 1 - T;? # 0, the non-physical pole
at& = k\j 1 - I" can be excluded from the strip of analyticity. The requirement for this is

1
|{Re k}*lm J1-T, >| > [Im. k|<1+Re 1-1}!

which can be achieved by making Im.k sufficiently small.
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