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Abstract

For a plane wave incident on a cavity-backed gap in a perfectly conducting plane,
the coupled integral equations for the induced currents have been solved numerically
and the far field scattering computed. The results are compared with a quasi-analytic
solution previously derived, and for a narrow gap the agreement is excellent for all

cavity geometries and for all material fillings that have been tested.
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1. In ion

A topic of some concern in radar cross section studies is the scattering from
the gap or crack that may exist where two component parts of a target come together.
Even if the crack is wholly or partially filled with a material, it can still provide a
significant contribution to the overall scattering pattern of the target, and it is then
necessary to develop methods for predicting the scattering.

One method for doing this was described recently [1]. For a plane wave of
either principal polarization incident on a narrow (kw << 1) resistive strip insert in an
otherwise perfectly conducting plane, the low frequency approximations to the integral
equations for the currents induced in the strip were solved in a quasi-analytic manner,
leading to expressions for the far zone scattered field that are accurate for almost any

resistivity R of the insert. If, instead, the insert is characterized by a surface impedance

n, the results differ only in having R replaced by /2 and the scattered field doubled,

and this suggests that for a narrow gap backed by a cavity, the scattered field can be

obtained by identifying n with the impedance looking into the cavity.

An alternative approach is to use the equivalence principle [2] to develop
coupled integral equations for the electric and magnetic currents which exist on the
walls of the cavity and in the aperture, and this is the method employed here. For an
incident plane wave either H- or E-polarized, the integral equations are derived for a
cavity of arbitrary shape filled with a homogeneous material. The equations are
solved by the moment method and data for a variety of simple cavities are presented.

For gap widths which are electrically small the results are compared with those



obtained using the previous method. The agreement is excellent, and confirms the

utility of the original method [1] as an accurate and simple design tool.

2. Formulation

The problem considered is the two-dimensional one shown in Figure 1. The
plane y = 0 is perfectly conducting apart from the aperture A: - w/2 < x < w/2, which

forms the entrance to a cavity whose walls S are also perfectly conducting. The cavity

is filled with a homogeneous dielectric material of permittivity €, = £,€ and permeability

14 = UM, where the quantities without subscripts refer to free space. A plane wave of

either principal polarization is incident on the surface y = 0 from above, and we choose

—i A -k(xcosd,+y sind,)

H=ze (1)
for H-polarization, and

—i a -ik{xcosd,+y sind

E l =Ze ° o (2)

for E-polarization, where k is the propagation constant in the free space region above
the surface. A time factor e-i®t is assumed and suppressed.

In the far zone of the gap the scattered field can be written as

=85 A /2 i (kp - w4)
H=z |—e Py (0, ¢,)
ntkp



Fig. 1. Gap geometry.



for H-polarization, with a similar result for E-polarization, and the task is to determine

the far field amplitudes P g (9, ¢,) with particular emphasis on the case of a narrow

gap (kw < 1).

2.1 H-Polarization
We consider first the free space region y > 0. Using Green's theorem in

conjunction with the half space Green's function

G, = ';i; {HS) (k Joex) + gy ) +Hy (k Jex) s (y+y')2)> !

the scattered field can be attributed to a magnetic currentJ = - y x E in the aperture, and

the total magnetic field is then

w2

My ) = H (o) + H ) -5 [0 060 S (i o) 1 y2) ¢
-w/2

where

Hr _ -ik (x cosd, - y sind,)

Zz

is the reflected plane wave and Y (= 1/Z) is the intrinsic admittance of free space.

Hence,

w2

P, (0, ¢°)=-52Y- sz x)e " Pax (3)
-w/2



and in the aperture

-ikx eosq;°
H, (x,0) = 2e J' 3 () HY (Kix-x]) dx' . (4)
We now turn to the region y < 0 occupied by the cavity. In accordance with the

equivalence principle [2] it is assumed that the gap is closed with a perfect conductor,

-

and that a magnetic current - J is placed just below, thereby ensuring the

continuity of the tangential electric field in the open gap. The magnetic Hertz vector is

therefore

_(xy)—l— .J (x) ”(kﬂ/ (X-X +y)dx (5)

4kp,

and since J = z J, , the magnetic field produced is

w2

A" xy)=vxVxI ..z— J ( \/(x-x')2+y2)dx'

W2

where k, =k ./ €4, is the propagation constant. The electric current J = nxH

on the cavity walls S and in the (closed) aperture A also implies an electric Hertz

vector

M{xy) = —fe— 36K (koo ) & ®)

and the corresponding magnetic field is



(2 -
H' (xy) =-KY e, V x IT

- [ (k1 J e + (y-y')z) xJ (s) ds'
S+A

A A A

where the tangential unit vector s is such that n, s, z form a right-handed system

with directed into the cavity. Clearly, J (s) = § Js (8), and in the aperture, = X .
PE— — (2
The total magnetic field is H=H " + H °, and by allowing the

observation point to approach the boundary of the closed cavity, we can construct an

integral equation for the currents. We find

w2
J(s) = (nx2) k4—Ys, j J (x) HY (k1 Joxx) + yz) dx’
-w/i2

J, () VH (k1 Jxx)? + (y-y')z) xs'ds'

. A i
+ lim nxz
(X,Y)“’S"'A S+A

giving

w2
KY T on M 2 2 ,
S &) ="e [ 9000 H (k1 (xx) +y )dx
-w/2

ik
+ l—21— IJS (s") siny' H(11) (k1 \/ (x-x')2 + (y-y')z) ds' (7)
S+A

where

siny =2 (x-x') x2+ (y-y')); o
J )+ (y-y)

?

valid at all points of S and A.



The only remaining task is to enforce the continuity of H, through the aperture.

When the observation point is in the aperture

 (x,0) = _[J ) (K, x-x]) dx
Ilm A i 1 A
+ z — J‘Js (S')VHf))(k1 (x-x‘)2+y2)xs' ds'
y—0 4 SA

and therefore

w2
H, (x, o)-ﬁe J’J' (x) Hy (k, [x-x]) dx’ +EJ (s)

ik
" jJ ) siny' H (1 (x-x')2+y2)ds' . 9)

When this is equated to the expression (4) for H, (x,0) on the outside of the gap, we

obtain
" w2 w2
-ikx cosd,, * 1 * 1
2e =k2—Y J 5V Hy (kex]) dx+ 5, sz () HY (K, [x-x]) dx’
w2 -w/2
1 ik, A} 2 2 ,
r5d 0+ [ @) siny HY (ko) +y?) as (10)

S+A

valid for - w/2 < x < w/2. Since (7) is also valid in A, it can be used to simplify (10) by

eliminating two of the integrals. The result is



S (=2e e kY J 5 ( (k jx-x|) dx (11)

valid for x in A, and (7) and (11) constitute a pair of coupled integral equations for
J; (x) and Jg (s). These are the equations that will be used, and we note the
similarity of (11) and (4).

When the maximum dimension of the cavity is electrically small, the Hankel

1
function Hf) ) can be replaced by its logarithmic approximation, and though

this does not significantly simplify the numerical solution of (7) and (11), the fact that

-ikx cosd, .
e can also be replaced by unity shows that J, (x) and J, (s) are aspect

independent. The same approximation to (3) then leads to a far field amplitude which

is independent of ¢ and ¢, and this is a feature of the low frequency situation.

2.2 E-Polarization
The procedure is similar to that given above. For the regiony > 0 Green's

theorem in conjunction with the Green's function

="< 0 \/(x x) +(yy)) ( \/(X-X')2+(Y+Y')2)}

gives

1
E,=E +E, +—— JJ ”( ,/(x_xv)2+y2)dx'

where J =x J, is the assumed magnetic current in the gap and



r -ik (x coso, - y sind,)

Z

is the reflected plane wave. Hence

w2
k . * o _kx'cosp
Pe (0, 05) =~ 5-Sing J.Jx(x)e x| (12)
w2
. iy oE, .
and since H, = - ?-a—— , the tangential component of the magnetic field in the
y
aperture is
ikx 1 2\ "
-ikx cos¢, .
H, (x,0) = - 2Y sin, e -kz—Y(“;'z“aLz) _[Jx (x)Hy (kxx1) dx' . (13)
X
w2

In the region y < 0 occupied by the cavity, the field can be attributed to the

magnetic Hertz vector (5) with J = x J, and the electric Hertz vector (6) with J = 2 J, .

The magnetic field is therefore

w2

H(xy)=VxVx Y 7 (x') Hg) (k1 J (x-x')2 + yz) dx'

4ku, wp

+—;- IV HS) (k1 \/(x-x')2 + (y-y')z) xJ(s)ds' |
S+A

and by allowing the observation point to approach the boundary of the closed cavity,

we obtain the integral equation



L f J,(s)sinyH, (k1 J xx)? + (y-y')z) ds' (14)

S+A
where
Sin7=£.(x-x)x+(y-y)y X (15)
, "2 2
(x-x) + (y-y)

valid at all points of S and A.

When the observation point is in the aperture,

19
Hx(x,o)=k4Y (1 ‘15_5) .[J k1 |xx|) dx’' +1§J (x)
-+ [0 sinyHﬂ”(k, (x-x')2+y2)ds' ,
S+A

and on equating this to the expression (13) for the magnetic field on the outside of the

gap, we obtain

2 K

w2
+k4—Y£Y(1+_ ) j k1 x-x'|) dx'
w2

; z(X)+"‘“ _[J s)smyH (k (x-x')2+y2)ds' (16)

w2
ikx cos 1
“2Ysingge ﬁ( —5—2') J'J HY? (k 1x-x1) dx

10



valid for x in A. This can be simplified using (14) and the result is

w2
-ikx cosd, 1 52
J,(x)=-2Ysing e 52!(1+?—a—5) IJ ) HOY (k xx)) dx (17)

for x in A in accordance with (13), and (14) and (17) constitute a pair of coupled
integral equations for J, (x) and J, (s).

There is a third integral equation that can be developed and this has some
advantages for numerical purposes. In the region y < 0 the electric field produced by

the electric and magnetic Hertz vectors is

(s) Hg) (h \/ (x-X)’ + (y-y')z) ds' z
;—ai jJ (x)H ()( \/(x-x')2+y2)dx'£ ,

and when the boundary condition on the perfectly conducting surface is applied, we

find

w2
LK =5 j J. (x) 59; HY (k1 J xx)’ + y2) dx’
-w/2

LKk Joer) + gy’ o (18)

valid on S + A. Of course, J, (x) is non-zero only in A, and (17) and (18) are the

pair of intégral equations used to compute J, (x) and J, (s).

11



3. i-Analytical Solution
An alternative approach was proposed by Senior and Volakis [1]. In effect, the

problem which they considered is a uniform impedance insert in an otherwise perfectly

conducting plane. If i is the surface impedance, the integral equations for H- and

E-polarizations are identical to (4) and (13) respectively, with

H, (0) = J, (x), H, (x0)=-—d. (x) (19)
1 n

at the insert. At low frequencies for which kw << 1 the integral equations can be

simplified, and for H-polarization it is found that

9

~Jr@en-gar=1ras© (20)
3
for-1 < { < 1 with
2i Z

Jo (€) is a modified current in terms of which

-1

A 1
P (6,00 =in{ A+ oy (22)
with
1
K (@) == [, © o€ (29)
n3
and



kw
W X
Al’/n..4+y|2

where y=0.5772157.... is Euler's constant. We observe that P (9, ¢,) is independent

of ¢ and ¢,, and since K (a) is real if a is,

P 0| <2

for real a.

Similarly, for E-polarization the low frequency approximation to the integral

equation is

1
2
2L [y @enit-gde=1-b4 © (25)
of T3
for-1 <{ <1 with
ikw Z
b=-—2-; (26)

where the modified current J3 (£) is such that J3 (+1) = 0. In terms of J3 ({)

Pe (9, &) =- 'Tn (kw)2 sing sing, Kg (b) (27)

with

13



1

ke () =T [ds @ dt . (29)
T

-1

and the angle dependence is explicit in the expression for Pg (¢, ¢,)-
Computer programs were written to solve (20) and (25) by the moment
method and, hence, compute Ky (a) and Kg (b) for all complex a and b. From an

examination of the results it was found that K (a) can be approximated as

K, (@) =- (a+0.15) (a + 0.29) (29)

(5 +tn2) (a+0.15) (a+0.29) +0.10a (a +0.20)

for all a apart from those in the immediate vicinity of the portion -1.1 <a < 0.3 of the

real axis is the complex a plane. In this region an empirical expression for K (a) is

Ky () =- ‘ (30)

%a—+l’/r\,2+0.1

and since, for other a, (30) differs from (29) by no more than 3 percent, it is sufficient to

use (30) for all a. Similarly, for E-polarization the approximation is

__0.62  (b+4.08) (b+7.26) (b +10.37) (b + 13.43) (b + 16.46)
“b+1.15 (b+4.27) (b + 7.37) (b + 10.45) (b + 13.49) (b + 16.50)

Kg (b) (31)

valid for all b not in the immediate vicinity of the negative real axis. For positive real b,

Ke (b) < 1/2 and hence
|Pe (6,00

2 .
sg-(kw) sing sing, . (32)

In their regions of validity, the estimated accuracy of (29) - (31) is about three percent.

14



To use these results to predict the scattering from a narrow gap, it was

proposed that n be identified with the impedance looking into the gap, with n
calculated using a simple transmission line (or other) model that takes into account the
geometry and material filling of the gap. To show how this is done, consider a crack
such as those illustrated in Figure 2. For H-polarization the cavity supports a variety of
TE modes, but since the width w is small, the only mode which is not evanescent is the
TEM mode, and this is the main contributor to the field in the gap. Under the

assumption that this is the only mode that must be considered, the effective surtace

impedance n can be deduced from the input impedance Z4,, of a parallel plate

transmission line. The voltage across the gap is

w2
V= I E, (x) dx = wkE,
-wi2

and since the current | is proportional to the tangential magnetic field,

s—=— —=— (33)

For a parallel plate transmission line whose plate separation is w, the inductance and

capacitance per unit length and width are L = p,uw and C = g,e/w respectively, and

the characteristic impedance is Z, = Z, wwith Z, = Z . [ u /g,

The L-shaped gap in Figure 2(b) can be viewed as two cascaded lines. The

first line has length d4 and characteristic impedance Z., whereas the second (of length

15
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W,) has characteristic impedance Z, = Z,d, and is shorted. As a load its impedance

is

The junction of these lines can be modelled as a lumped parameter pi-network whose

reactance and susceptance elements are [3]

X = kZ,w d,

d
K [_% 2

k [_W 2
Bz=z(d2+w)(1"%2) :

T

The input impedance of the first line cascaded with the pi-network and the second line

is then

Z, -iZ_ tan k,d,
2, =2, —— (35)

where

Z,-iX(1-iB,Z,)
(1-B,X) (1-1B,Z)-1B,Z,

ZL=

Similarly, the T-shaped gap in Figure 2(c) can be treated as a transmission

line loaded with two shorted lines in series. For the shorted lines of lengths w, and

w3, the load impedance is

17



2, =-i2, <tan kw, +tan k1w3> . (37)
The junction is modelled with a shunt susceptance and a series reactance in series
with ZLI

k| 9
Ba=7-| Gew) 07822

where the constant was determined empirically, and the input impedance Z is then

given by (35) with

T1-iBy(Z-iXg) (38)

2,

The rectangular gap is the special case d» = 0 of either of the above structures, and for

this

Finally, for the V-shaped gap in Figure 2 (d), the inductance and capacitance per unit
length of the line are functions of position, but when the coupled differential equations

for the voltage and current are solved, we obtain

Jy (kyay)

Zin =123 dy)

18



where J, and J4 are Bessel functions.
For E-polarization all of the modes are evanescent, but if we again assume
that the first mode dominates in the gap, simple formulas for the surface impedance

can be found. In a parallel plate waveguide of width w

v %
* kZp 3y

and for the lowest order mode the propagation constant is ikp where

12
2
= L 1
P= {( ZW) ) 8r“r} ' (41)
Since E,/H, is independent of position, a transmission line analogy can be made. The

characteristic impedance of the line is -iZu/p, which is also the impedance looking into

the gap, and the results previously obtained for H-polarization are now applicable if k4

is replaced by ikp and Z4 by -iZu/p. Thus, for a rectangular gap

Zuw
Z, =-i tanh kpd, (42)
P

and for a triangular gap

Zuyw 1i(kpd,)
Z1n =-1 , (43)
P lolkpdy)

19



where Z4, and m are related via (33) and lg and 11 are modified Bessel functions [4].
Formulas for L- and T-shaped cracks can be deduced in a similar manner, but since
the modes are evanescent, the shape of the lower cavity has little or no effect on the

impedance.

4. Numerical Resulis

The integral equation pairs (7), (11) and (17), (18) for H- and E-polarizations
respectively were programmed for solution by the moment method, using pulse basis
and point matching functions as described in Appendix A. In the case of (17), the
derivative was applied to the kernel, and because of the order of the resulting
singularity, the contributions from two cells on either side of the self cell were
evaluated analytically, in addition to the contribution of the self cell itself. Comparison
with the results of a finite element method [5] for H-polarization showed excellent
agreement, and for purposes of comparison with the quasi-analytical solution, the
moment method data will be regarded as exact. The computer program used to
implement the expressions for the quasi-analytical solution is listed in Appendix B.

Considering first the results for H-polarization, Figure 3 shows the

backscattering from a rectangular air-filled gap as a function of aspect for three gap

widths. The aspect variation decreases with w. It is less than 4 percent for w/A = 0.15,

and since aspect independence is a feature of the quasi-analytic solution, we will

henceforth confine attention to this case. It is then sufficient to take ¢ = ¢, = /2

corresponding to normal incidence backscatter.

20
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In Figures 4 and 5 the amplitude and phase of the far field amplitude
P (w/2, n/2) are shown as a function of depth for a rectangular air-filled gap of width

w/A = 0.15. We observe the cyclical behavior with zeros at d/A =0, 0.5, 1.0, ...,
resulting from the periodicity of the impedance looking into the gap. From (39) and

(21) the corresponding a are real and vary from -« to « over each cycle. Over the

entire range of d/A the agreement between the quasi-analytic and moment method

results is excellent, but in spite of this the computed aperture impedances do not
agree. This is evident from Figure 6 where |E,/H,| is plotted as a function of x for w/A =

0.15 and d/A = 0.20. The U-shaped behavior is in accordance with the edge condition
172

2
at x =-w/2, and the data fit the curve C {1 - (%v_x) } with C = 860 ohms. The

average value is therefore nC/2 = 1350 ohms, compared with which (36) gives

In] = 1160 ohms. A similar discrepancy was found with all gap geometries.
Nevertheless, the quasi-analytic solution provides an excellent approximation to the
far field, and this is illustrated in Figures 7 through 10 showing |Py| for a material-filled

rectangular gap and for air-filled L-, T- and V-shaped gaps.

Turning now to E-polarization, Figures 11 and 12 show the amplitude and
phase of Pg (n/2, /2) as functions of w/A for a rectangular air-filled gap having
d/A = 0.1. The quasi-analytic and exact data diverge with increasing w/A, but the
difference is less than 4 percent in amplitude and 5 degrees in phase for w/A < 0.20.

24
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Fig. 8(a). Modulus of the far field amplitude Py for an air-filled L-shaped gap of
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dy/dy = 3: [Jj exact, —— analytical.

27



2.6

1.6

IPyl

00 0.1 " 02 03 04 0.5
Gap depth d/A

Fig. 8(b). Modulus of the far field amplitude, Py, for an air-filled L-shaped gap of
varying depth dy + d; = d with ¢ = ¢, = /2, w/A = 0.15, and dy/d, = 1:

wo/A = 0.05 W exact, analytical
wo/A =0.15 @ exact, -—-—--analytical.
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Fig. 9(a). Modulus of the far field ampiitude Py for an air-filled T-shaped gap of
varying depth d, + d = d with ¢ = ¢, = /2, W/A. = 0.15, wo/A = wy/A = 0.075,
and d/d, = 3: [JJ] exact, —— analytical.
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Fig. 9(b). Modulus of the far field amplitude, P, for an air-filled T-shaped gap of
varying depth d, + d, = d with ¢ = ¢, = /2, w/A = 0.15, and d,/d, = 1:

Wo/A = Wo/A = 0.025 B exact, analytical
Wo/A = wa/A = 0.075 @ exact, —---analytical.

30



28

0.8- T

v A 2 w v 1 § - P ———

0 P ——————————
0.0 0.1 0. 0.3 0.4 0.8

Gap depth d/A
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I exact, analytical.
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Fig. 12. Argument of the far field amplitude Pg for an air-filled rectangular gap of
varying width with ¢ = ¢, = /2 and dA = 0.1: [Jj exact, analytical.
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For a rectangular gap with w/A = 0.15, the quasi-analytic and exact resuits for

Pe (% ' 12r_) as a function of d/A are presented in Figure 13. The agreement

is excellent, and as a consequence of the mode attenuation, the scattering is

independent of the depth for d/A 2 0.15. A similar comparison for a triangular gap is

given in Figure 14.
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Fig. 13. Modulus of the far field amplitude Pg for an air-filled rectangular gap of
varying depth d; = d with ¢ = ¢, = /2 and w/A = 0.15:
B exact, analytical.
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Fig. 14. Modulus of the far field amplitude Pg for an air-filled V-shaped gap of
varying depth dy = d with ¢ = ¢y = /2 and w/A = 0.15:
B exact, analytical.
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5. nclusion

The quasi-analytic method described in [1] is based on the low frequency
solution of the integral equations for a constant impedance insert in a perfectly
conducting plane, and when used in conjunction with an estimate of the impedance
looking into a gap, it provides a simple approximation to the far field scattering from the
gap. To determine its accuracy, we have analyzed the problem of a plane wave
incident on a gap backed by a cavity of arbitrary shape. The equivalence principle
was used to develop coupled integral equations for the induced electric and magnetic
currents, and the equations were then solved by the moment method. When the

impedance looking into the cavity was determined using a transmission line model, it

was found that for gap widths w/A < 0.15 the quasi-analytic and moment method
results for the scattered field were in excellent agreement for both polarizations and for
all gap configurations that were tested. It therefore appears that the quasi-analytic
method is an efficient and effective tool for predicting the scattering from the junction

where two component parts of a target come together.
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Appendix A Moment Method  Solution of the Coupled
Integral Equations

The integral equation pairs given by (7), (11) and (17), (18) are solved by
the moment method. Using pulse basis functions in the moment method, the
aperture A and the cavity walls S of Figure 1 are segmented into N cells of size
As. The magnetic and electric currents are assumed to be constant over each
of these segments. When the integrations of the coupled equations are taken
over each segment, the current expressions can be removed as constants from
the integrals. With the contour of integration discretized, the (x',y') coordinates
become (x,y;), i = 1,...,N, which describe the location of each of the segments.
The Hankel functions can then be expressed in terms of rotated coordinates
(s,n) for the observation position and (s;,n;) for each segment or source position
since the integration is with respect to the tangential vector s as shown in
Figure 1.

The expressions for the numerical solution of the coupled equations are
developed in the following sections for the H- and E-polarization cases.
Applying point matching, the magnetic and electric currents in the aperture and

on the cavity walls are determined, and the far field amplitude is calculated.

A.1 H-Polarization
For the discretized contour of integration, (7) and (11) become

Jyfsn) = KX ﬁ: 5is) [Ho )(k1, [(s-s)% + nz] ds.
AS. )

jm1

—ziz.Js(s n)jsmyH [ (s-s) +(nn)] s, (A1)



. M
-iks coso, M
J (s) = 26 i -“21 ) Jys) J' H (kIs-s)) ds, (A.2)
i=1 ASi

where M are the number of segments across the aperture and

(n-n)
sin ¥y, = : : (A.3)

(s-si)2 + (n-ni)?'

Applying point matching over the N segments of the aperture and cavity walls,

, " [siny H(k R )
] 1| J,—é---J'snnyLiH1 k R,) ds,
im1 ]-l ASI
N+M
kY M .
+—2—s,ZIiIH°(k1 R,)ds =0 j=1,.N  (A4)

i = N+1 As,

N+M ;
1 -iks, cosg,
! 1| +52-Y~J'H:,)(kﬂii)dsi =26 ' j=N+1,..N+«M (AS5)
i m N1 jmi As, '

where

R, = \/ (sj-si)z + (ni-ni)z , (A.6)

The coordinate (s;,n;) is the observation position at the midpoint of the jth
segment. Hence, fori,j=1,...,M,N+1,...,N+M, the segments are located in the

aperture, and for i,j = M+1,...,N, the segments are located on the cavity walls. |,
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in (A.4) and (A.5) are the electric currents, fori = 1,...,N, and the magnetic

currents, i = N+1,...,N+M, to be determined.

In matrix form, (A.4) and (A.5) become
[ Zj.i] [ Ii] = [ Vj] (A7)

The impedance matrix is given as

z. iz
o1 : m1
[z,]=]......... b, (A.8)
292 Zm2
where the sets of elements are as follows:
ky ¢ LM o
< j siny H, (k, R )ds, j#i
Z, = As, (A.9)
-1 j=i
fori=1,..,Nandj=1,...,N;
[ kY (1) o
—2-8'.[“° (k1 Rj'i) dsi j#i-N
Z =3 " (A.10)
m kY _ [i2 . o
|2 {T[z(si-sp!m (R)-(2-A'(k,)) (si-sp]} j=iN

fori=N+1,...,N+Mandj=1,...N;
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0 j#i+N
Z = A11
62 1 j=i+N (A1)

fori=1,.,Nandj=N+1,.. . N+M;

(

KY [, R ) s j#i
Z =< A‘T‘a (A12)
m2 \ l_<2x {%[z(si-sj)%(RLi)-(Z-A'(k)] (si-sj)]} j=i

fori = N+1,...,N+Mand j = N+1,...,N+M. In (A.10), the expression for A'is
A'(k)-2(bnk—1+ i)
1= 2 *11%

n (A.12), A' is a function of k. For the self-cells in (A.10) and (A.12), s; is taken to
be the endpoint of the ith segmént. The self-cell expressions were derived

analytically, and a numerical integration is applied to the other segments.

In the case of the V-shaped gap, the adjacent cells needed to be

evaluated in the vicinity of y = -d, for R;; less than one cell size. The analytical

expressions for the impedance elements of the adjacent cells are

1 i2 (1) (si'si}
Z =— -—(n -n) s+~ atan i=jt1  (A.13)

o1 2 | n| |nj-ni|
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m= 2 -n
i

KY i Si-S.
z e 7| 2(578) ¢n (R)-(2-A'k,))s, + 2Inen, atan |n-nj|

i-N = j+1 (A.14)

where s; is evaluated at the endpoints of the it segment. The adjacent cell
expression for Z, is given by (A.14) with A'(k,) replaced with A'(k) for i = jt1.

The source matrix is given by

0 j=1,..,N
V=) ks cost (A.15)
l 2e j=N+1,.,N+M .

The currents |; are determined by solving (A.7), given that [Z; ] is nonsingular.
The aperture impedance is defined in terms of the total fields as

E,(x,0)
M=’
i Hz(xj,O)

where the total electric field is equal to the magnetic current in the aperture, |; for

j = N+1,...,N+M, and from (4), the total magnetic field is now expressed as

-ikx. cos¢ 1
H,(x,0) = 2e j 0080 sz_ % ! J'Hﬁ, ’[k |xj-xi|) dx (A.16)
im N1 Ax,

forj = N+1,...,N+M. From (3), the far field amplitude at the angle ¢ is now

43



R -ikx, cosd
Pudo) =1L > 1 [ T o AT7)

i=N+1 Axi

A.2 E-P rization

The integral equation pair given by (17) and (18) was solved in the same
manner as described for the H-polarization case. The elements of the

impedance matrix defined in (A.8) for the E-pol case are as follows:

1) o
LZZ_ 0, J' Ho (K, R ) s j#i

z, = s, (A.18)
1 j=i

fori=1,.,Nandj=1,...,N;

Z =9 M (A.19)

fori=N+1,..,N+Mandj=1,...,N;

0 j=i+N
Z. = A.20
2 -1 j = i+N ( )

fori=1,...,Nandj=N+1,.. N+M;
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(kY [_1_ O
-5 | g H, kR)ds, i
As, b
Zm2=< (A21)
\%{%[ (s78) LR ) - (2-A'(K) (s, s)]-— [k|s sl]}

fori = N+1,...,.N+M and j = N+1,...,N+M. As for the H-polarization case, in the
self-cell expressions, s; is evaluated at the endpoint of the ith segment.

Because of the sensitivity of the impedance element Z,,, to the 1/R;,i term
for segments near the self-cell, the adjacent cells needed to be evaluated

analytically, as follows:

sS
+ 2(s-s)f!/n. (R - @-A'k))s, +2|n-n| atan( ’] (A.22)

inen

fori=jt1, where s; is evaluated over the ith segment.

The source matrix is given by

o j=1,..N

V.= ks, cost (A.23)
2Y sing, e j= N+1,. ,N+M .

Given that [Z; ] is nonsingular, the currents |; can be calculated.
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The aperture impedance for the E-polarization case is defined as

where the total electric field is equal to the magnetic current in the aperture, |; for
j = N+1,...,N+M, and from (13), the total magnetic field in the aperture is now

expressed as

-ikx; cosa, kY ( )
2 klx x| g ¢

Hx(xj,O) = - 2Y sing, e k|x -X. |) dx. (A.24)

for j = N+1,...,N+M. From (12), the far field amplitude at the specified angle ¢ is

now

3: |kxi coso
Pc(6.0,) =- k sm¢ dx. . (A.25)

i=N+1 Ax

A3 Program n

The expressions for the impedance and source matrices, the aperture
impedance, and the far field amplitude were programmed for solution, as shown
in the program listing of GAPSCAT.FTN below. The subroutines used in the
program are contained in the file GAPSUB.FTN listed below also.

In running the program, the user is prompted for the polarization of the
incident field, angle of incidence, angle of far field observation, and the relative
permittivity €, of the gap cavity. For the relative permeability, it is assumed that

i, = 1, although this need not be the case. A menu is provided for the choice
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of shapes as shown in Figure 2. The dimensions are requested according to
those defined in Figure 2. An arbitrary shaped gap may also be evaluated by
specifying the coordinates of its corner points. The user is also prompted for the
maximum segment size As; to be used for the pulse basis functions. A segment
size of As/A = 0.01 was used for the results of Figures 3 to 14.

The impedance matrix [ Z;; ] is solved for the H- or E-polarization case
using the expressions (A.9) to (A.14) or (A.18) to (A.22), respectively. The
numerical integration is done for the appropriate segments using Simpson's
three-point composite integration over each segment. With the source matrix
[ \J ] calculated from (A.15) or (A.23), the electric and magnetic currents
contained in [ ;] can then be determined. As listed, the program calculates
the far field amplitude as a function of the gap depth using (A.17) for
H-polarization or (A.23) for E-polarization, where the number of iterations is
specified. For one iteration, the program also outputs the aperture impedance

calculated from the total fields in the aperture.
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GAPSCAT.FTN

This FORTRAN program computes the far fleld scattering due
to a narrow gap of arbitrary shape in an infinite ground
plane. The moment method is applied to solve the currents
of two coupled equations.

INPUT The user is prompted from the subroutine
GAPROM for the polarization and angle of the
incident field, angle of far field observation,
relative permittivity of gap filling, shape and
dimensions of gap, segment size, and number of
iterations with respect to gap depth.

OUTPUT FILES
GAPDAT Contains input data.
IMPDAT For one iteration, field or impedance
in the aperture of gap.
AMPDAT Contains the magnitude of the far field.
PHADAT Contains the phase of the far field.

SUBROUTINES
HANKZ1 Computes the Hankel functions of the first

kind of orders zero and one.

CHANK Computes the Hankel functions of the first
kind of orders zero and one given a
complex argument.

CGECO Factors a complex matrix and estimates the
condition of the matrix.

CGESL Solves the complex set of linear
equations [A](x] = [b].

a0 oaoaaaaaaaaaaQ Qa0

integer pn
parameter (pn=500)
integer EorH,N,noS,gN,szN(50)

real pi,k,phi,phio,w,d, maxC,q(50,2)

real dstp(50),wstp(50),p(pn,2),m(pn,2),s25d(5S0),psi (50)
real posiX,posiY,spaceX, spaceY, stepX

real ni,si,nd,sj,x3j,yj,DelS,R,Rm,tanf

complex czero,ci,ctemp,er,ur,Ao, A, kl
complex 2 (pn,pn), LHO,LH1,LH2,aLH0,Ii(pn),V3(pn)
complex eta(pn), Hi(pn) Hs(pn) B(pn) Lsca,Psca

integer ipvt (pn),iretrn

real rc,krho

complex wk (pn),HO,Hl,HOo,Hlo, ckrho

logical Epol,Lossy,side, neg(50)

common /prompts/ EorH,phio,phi,er,igap,wstp,dstp,w,d,nos,
&

q,maxC,nolter
1 format (11)
2 format (15)
3 format (gl6.8)
4 format (a4)
6 format (2g16.8)

open(l, file=’gapdat’)
open(2, file='impdat’)
open (3, file=’ampdat’)
open (4, file=’phadat’)

c...Declaring constant values
czero=cmplx (0.0,0.0)
ci=cmplx(0.0,1.)
pi=4_.0%atan(1.0)
k=2*pi
Eo=1.0
Ho=1.0
Zo=3qrt (4.e-07*pi/8.854e~12)
‘m-l./fo(1 0.0)
ur=cmplx(l.,0.
gam=0,5772157
Ao=2*(log(k/2) +gam-ci*pi/2)
iprg=1

c...Setting default values
EorH=1
phio=90.0
phi=90.0
er-cmplx(1.,0.0)
w=0.,1
d=0.2
noS=3
maxC=0,01
nolter=30
adj=0.00001
Epol=.false.
Lossy=. false,
side=.true.
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C...Promp
cal

1£¢
phi
phi
dra
k1=
A=2

ting user for input data
1 gaprom(iprq)

EorH .eq. 1) Epol=.true.
o=phio*pi/180.0
=phi*pi/180.0
t=dstp(l)/d

k*csqrt (er)

* (clog(kl/2)+gam-ci*pi/2)

if(aImag(er) .ne, 0.0) Lossy=.true.

dmin=0.025

1f(Epol) dmin=0.025

dmax=d

if(nolter .ne. 1l)then
dstep= (dmax-dmin)/ (noIter-1)
d=dmin

endif

DO 700 iter=1,nolter

c...Determining coordinates of corner points given gap type

i

f(igap .eq. l)then

c RECTANGULAR

noS=3
q(3,1)=w/2
q(3,2)=-d
q(4,1)=-w/2
q(4,2)=-d

else if(iqap .eq. 2)then
c L-SHAPED

nosS=7
dstp (1) =d*drat
dstp(2) =d* (1-drat)
q(3,1)=w/2

q(3,2) =-dstp (1)
q(8,1)=-w/2
q(8,2)=-dstp(l)
q(4,1)=w/2+wStp (2}
q(4,2)=-dstp(l)
q(7,1) ==w/2-wStp(3)
q(7,2)=q(4,2)
q(5,1)=q(4,1)
q(5,2)=qg(4,2)~dstp(2)
q(6,1)=q(7,1)
q(6,2)=q(5,2)

else if(igap .eq. 3)then
c V-SHAPED

noS=2
q(3,1)=0.0
q{3,2)=-d
adj=0,75*maxC

else 1f(igap .eq. 4)then
c T-SHAPED

noS=5
dstp (1) =d*drat
dstp (2) =d* (1-drat)
q(3,1)=w/2
q(3,2)=-dstp(l)
q(4,1)=w/2+wStp(2)
q(4,2)=-dstp (1)
q(5,1)=q(4,1)
q(S,2)=q(4,2)-dstp(2)
q(6,1)=~w/2
q(6,2)=q(5,2)

ndif

c...Corner points of gap at y=0
q{l,1)=-w/2
q(l,2)=0.0
q(2,1)=w/2
q(2,2)=0.0
q(nosS+2,1)=-w/2
q(nos+2,2)=0.0

A AAAASELARAR RSl Al sl il l sl il d]

ci*tﬁﬁi.t

bbb A Current segment locations (xi,yi)

(2222222222222

c'i"t.i‘tﬁitt'.tttﬁ..t!i.’.t'i'itti'tit'i'ii"t'ﬁittﬁﬁitﬁ't.tttﬁtt'ﬁ

N=0
do
C...Size

&
c..Angle

175 1=1,noS+1

(lenqth) of lth side of g

szSd(l)-sqrt((q(1+1 1)-q(l 1))**2
+(q(1+1,2)-q(1,2))**2)

of rotation for each side with respect to x axis

if(q(l+1,1) .1lt. q(l,1))then
psi(l)=asin((q(l,2)-q(l+1,2))/szSd (1))
neg(l)=.true.

else
psi (1) =asin((q(l+1,2)-q(1,2))/szsd (1))
neg(l)=.false.

endif

szN (1) =int (szSd (1) /maxC) +1
N=N+szN (1)
spaceX={q(l+1,1)-q(1l,1))/szN(1l)
spaceY={(q(l+l,2)-q(l,2))/szN(l)
posiX=q(l,1)

posi¥Y=q(l,2)

49



c...ENDPOINTS of each segment are p, MIDPOINTS are m in (x,y)
c coordinates
do 170 i=N-szN(l)+1,N
p(i,1)=posiX
p(i,2)=posiy
m(i,1l)=posiX+spaceX/2.0
m(i, 2) =posiY+spaceY/2.0
posiX=posiX+spaceX
posiY=posiY+spaceY
170 continue
175 continue
P(N+1l,1)=-w/2
p(N+1,2)=0.0
c...Number of segments in the aperture
gN=szN (1)
c...Number of current coefficients to be calculated
NgN=N+gN
print *, * d ="',d4,” N=',N,’ gN = ’,gN
c...Initializing matrices to zero
do 190 j=1,NgN
do 180 i=1,NgN
2(3,1)=czero
180 continue
Vi(3j)=czero
190 continue

cﬁ‘*ﬁ*t*t*ﬁ***tit*"*'*ﬁ*ii****'ﬁ**t‘h***ﬁﬁ*iii********ﬁ**iﬁitit**ﬁ*i*
ctti***ﬁ'ﬁiﬂ*ﬁtﬁ't*t Impedance' Source’ e e e o e e e e de e e de e e W v e o o W o
ChRhRkkhkkhrhhk i dd and Current Macrices e o de e e e e e e v o g e e e ke e
c*tﬁﬁﬁtﬁti*ﬁ*iiiﬁit'iﬁ*ﬁti'ﬁitiﬁtt*ﬁftiiiiitﬁ*tiﬁi"ﬁﬁﬁﬁ*#ﬁi'ﬁii*ii

VARIABLES:
HOo,HO Hankel function of zero order in free
space and in material er, respectively.
Hlo,H1 Hankel function of first order in free
space and in material er, respectively.
Green’s Function integrals:
LHO Integral of HO.
LH1 Integzal of Hl for H-pol, of dHl1l/dy for
E-pol.
LH2 1Integral of HOo for H-pol, of dHlo/dy
for E-pol.
aLHO Analytical integral of HOo for evaluation
of adjacent cells for LH2, E-pol case.

The integration is done one side at a time, for j=i,...,N,
in the clockwise direction, starting at (x,y)=(-w/2,0).

aooaaaaaaaananaaan

istart=1
istop=szN (1)
C...Source point is 1 of the 1lth side, observation point is J
do 230 1=1,noS+1
do 220 i=istart,istop
do 210 j=1,N
c Coordinate rotation for observation point
sj-mtg, 1) *cos(psi (1)) +m(3. 2)*sin(psi(l))
nj=m(3,1) *sin(psi(1))-m(3, 2) *cos (psi(l))
if(neg(l))then
Si=-g
ni=-n
endif
c...Integration over ith segment
LHO=czero
LHl=czero
LH2=czero
aLHO=czero
¢ Magnitude between midpoints Rm=|r-r’|
Rm=sqrt ((m(J,1)=-m(i,1)) **2+(m(3,2)~-m(1,2))**2)
1f(j .eq. L .or. Rm .le. adj)then
c SMALL ARGUMENT APPROXIMATION integral for self-cell

c and adjacent cells
do 200 ip=i+i,i,~-1
c Coordinate rotation for source segment points

si=p(ip,1)*cos(psi(l))+p(ip,2)*sin(psi(l))
ni=p(ip,1)*sin(psi(1))-p(ip,2) *cos (psi (1))
if(neg(l))then

Siw-s

ni=-ni
endif

Re=sqrt ((8j~8i) **2+ (nj=-ni) **2)

1f(J .eq. 1 .or. abs(nj-ni) .eq. 0.0)then
tanf=pi/2
absf=1.0

else
tanf=atan({(si-sj)/abs(nj-ni))
absf=abs{nj-ni)

endif
LHl==k1**2/2* (n4j-ni) *si

& +ci*2./pi* (nj~ni) /absf*tanf-LH1
LHO=ci/pi* (2% (si-s]) *log(R)

& -{(2-A)*si+2.0*abs(nj-ni)*tanf)~-LHO
LH2=ci/pi*(2*(si~-s]) *log (R)

& - (2-A0) *si+2.0*abs (nj~-ni) *tanf)-LH2

1£() .eq. i) GOTO 202
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200 continue
202 1£f(J .eq. i)then
LHO=2* (LHO+ci/pi* (2-A) *s3)
LH2=2* (LH2+cil/pi* (2-A0) *sJ)
1f(Epol)then
krho=k*abs (sj-si)
call Hankzl (krho,1,HO,H1)
LH2=LH2-2./k*H1
endif
endif
else
c SIMPSON’S THREE POINT COMPOSITE INTEGRATION
do 204 ip=i+1,4,-1
c Coordinate rotation for source segment endpoints
si=p(ip,1)*cos(psi(l))+p(ip,2)*sin(psi(l))
ni=p(ip,1)*sin(psi (1)) -p(lp,2)*cos(psi(l))
if(neg(l))then
Si==-si
ni=-ni
endif
stepS=si
c HANKEL FUNCTION evaluation at endpoints of segment
R=sqrt ((sj-si) **2+ (nj-ni)*+2)
if(Lossy)then
ckrho=k1l*R
call cHank{(ckrho, 2,HO,H1)
else
krho=Real (k1) *R
call Hankzl (krho, 2,H0,H1)
endif
krho=k*R
call Hankzl (krho, 2,HOo, Hlo)

LHO=HO+LHO
if(Epol)then
LHl=kl*m(J, 2) /R*H1+LH1
1f() .eq. (i-1) .or. J .eq. (i+l))then
if(abs(nj-ni) .eq. 0.0)then
tanf=pi/2
absf=1,0
else
tanf=atan((si-sj)/abs(nj-ni})
absf=abs(nj-ni)

endif
aLHO=ci/pi* (2* (si~s]}) *1log(R)
& -(2.0-A0)*si+2.0%abs (nj-ni)*tanf)-aLHO
else
LH2=Hlo/k/R+LH2
endif
else
LH1=kl* (nj-ni) /R*H1+LH1
LH2=HO0o+LH2
endif
204 continue
c Coordinate rotation for source segment midpoints

si=m(i,1)*cos(psi(l))+m(i,2)*sin(psi(l))
ni=m(i,1)*sin(psi(l))-m(i,2)*cos(psi(l))
if(neg(l))then
Sim-si
ni=-ni
endif
stepS=abs (stepS-si)
DelS=2*stepS
c HANKEL FUNCTION evaluation at midpoint of segment
R=sqrt ((sj=-si) **2+(nj-ni)**2)
1f(Lossy)then
ckrho=k1*R
call cHank (ckrho, 2,H0,H1)
else
krho=Real (k1) *R
call Hankzl (krho, 2,H0,H1)
endif
krho=k*R
call Hankzl (krho, 2,HOo, Hlo)
c GREEN’S FUNCTION INTEGRALS
LHO=stepS/3* (4*HO+LHO)
if(Epol)then
LHl=gtepS/3* (4*k1*m(J, 2) /R*H1+LH1)
1f() .eq. (1-1) .or. J .eq. (i+l))then
L LH2=-ci*8./3/pi/k**2/ (DelS) -aLHO
e

se
LH2=stepS/3* (4*Hlo/k/R+LH2)
endif
else
LHl=stepS/3* (4*kl* (nj-ni)/R*H1+LH1)
LH2=stepS/3* (4*HO0+LH2)
endif
endif
1f(i .ne. j .and. Rm .le. adj)then
LHO=~LHO
endif

if(Epol)then

c E-POL IMPEDANCE MATRIX
Z(3,1)=k*20*ur/2*LHO
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if(i .le. gN .and. j .ne. i)then
2 yN+i)==ci/2*LH1
else 1f(i .le. gN .and. j .eq. i)then
Z(3, N+1)--1.
endif

if(j .le. gN)then
(j .ne. i)then
2 (N+3,1)=czero

se
Z(N+3,1)=-1.
4

endi
1f(1 .le. gN)then
Z (N+J,N+1)=-k*Yo/2*LH2
endif
endif

else
C H-POL IMPEDANCE MATRIX

if(j .ne. i)then
2(j,1)=ci/2*LH1

else
2{3,1)=-1.

endif

1f(L .le. gN)then
2(j,N+i)=k*Yo*er/2*LHO

endif

if(j .le. gN)then
1£() .ne. i)then
Z(N+j i)=czero

1s
Z(N+j 1)=1.
endi
if(i .le. gN)then
Z(N+j,N+i)-k'Yo/2*LH2
endif
endif
endif
210 continue

c...Incident Field (Source) matrix elements
xj=m(4,1)
yi=m(4i,2)
Vi(i)=czero
if(i .le. gN)then
if(Epol)then
c E-POL INCIDENT FIELD Hx
le(N+i)-Z'Yo'sin(phio)*cexp(-ci*k*xj‘cos(phio))
else
c H-POL INCIDENT FIELD Hz
V3 (N+i)=2*cexp (-ci*k*xj*cos (phio))
endif
endif
220 continue
istart=istop+l
istop-istop+szN(l+1)
230 continue

c...Calling subroutines to calculate the current matrix
call CGECO(Z,pn,NgN, ipvt, rc,wk)
call CGESL(z,pn,NgN,ipvt,Vy,0)

print *,’ The condition number is ’,rc
c CURRENT MATRIX
I1(1)=vji(1)
310 continue

if(nolter .eq. 1l)then

cﬁiﬁit'i'l"'i"ﬁ..‘.....'..Qiﬁi'i'i'..'t*t'*ﬁt'!‘"'.ﬁ't'.'ﬁ"'ﬁ.it'

CERRARARAREARAARARRTR erture Impedance L2222 2222222 R RRR R
citii'.i..'.'."t'i‘.’..'..ﬁ.'.'ﬁ.itt"t"t.ﬁ".iﬁtitiiﬁtt"t'ﬁ'ii'
1=1

do 500 3=1,gN
Hs (j) =czero
do 480 i=1,gN
si=m(j,1) *cos(psi (1)) +m(]4,2)*sin(psi(l))
ni=m(3j,1)*sin(psi (1)) -m(J, 2) *cos (psi(l))
ir(neq(l))then
sj=-3
nj=-n
endif

c...Integration over ith segment
LH2=czero
aLHO=czero
1£f() .eq. i)the
c SMALL ARGUMENT APPROXIMATION integral for self-cell

c and adjacent cells
do 470 ip=i+1,41,-1
c Coordinate rotation for source segment points

si=p(ip,1)*cos(psi (1)) +p(ip,2) *sin(psi (1))
ni=p(ip,1)*sin(psi(l))-p(ip,2)*cos(psi(l))
if(nfq(ll)then

Si=-s
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ni=-ni

endif

R=sqrt ((sj-si) **2+ (nj-ni) **2)

if(J .eq. i .or. abs{(nj-ni) .eq. 0.0)then
tanf=0.0
absf=1.0

else
tanf=atan({(si-sj)/abs(nj-ni))
absf=abs(nj-ni)

endif
LH2=ci/pi* (2* (si-s53) *log (R)
& -(2-A0)*si+2.0%abs (nj-ni) *tanf) ~LH2
if(3 .eq. i) GOTO 472
470 continue
472 if(3) .eq. 1)then

LH2=2* (LH2+ci/pi* (2-RA0) *sJ)
1f(Epol)then
krho=k*abs (sj-si)
call Hankzl (krho,1,HOo, Hlo)
LH2=LH2-2./k*Hlo
endif
endif

else

c SIMPSON’S THREE POINT COMPOSITE INTEGRATION

do 474 ip=i+1,4i,-

c Coordinate rotation for source segment endpoints
si=p(ip,1)*cos (psi (1)) +p(ip,2) *sin(psi (1))
ni=p(ip,1)*sin(psi (1)) -p(ip,2) *cos(psi(l))
if(neg(l))then

Si=-si
ni=-ni
endif
stepS=si
R=sqrt ( (sj-si) **2+ (nj~ni) **2)
krho=k*R
call Hankzl (krho, 2,H00, Hlo)
if(Epol)then
1f() .eq. (1-1) .or. J .eq. (i+l))then
if(abs(nj-ni) .eq. 0.0)then
tanf=pi/2
absf=1.0
else
tanf=atan((si-sj)/abs(nj-ni))
absf=abs(nj-ni)
endif
aLHO=ci/pi* (2* (si-s3) *1log(R)
& L -{2.0-A0)*si+2.0*abs (nj-ni)*tanf)-aLHO
else
LH2=Hlo/k/R+LH2
endif
else
LH2=H00+LH2
endif
474 continue
c Coordinate rotation for source segment midpoints
si=m(i,1) *cos(psi(l))+m(i,2)*sin(psi(l))
ni=m(i,1) *sin(psi(l))=-m(i, 2) *cos (psi(l))
if(neg(l}))then
si=-si
ni=-ni
endif
stepS=abs (stepS-si)
R=sqrt ((sj-si) **2+ (nj-ni)**2)
krho=k*R
call Hankzl (krho, 2,H0o, Hlo)
if(Epol)then
1f() .eq. (i-1) .or. 3 .eq. (i+l))then
lan LH2=-ci*8./3/pl/k**2/ (2*stepS)-aLHO
e
LH2-stepS/3*(4'Hlo/k/R+LH2)
endif
else .
LH2=stepS/3* (4*HO0+LH2)
endif

endif
c SCATTERED MAGNETIC FIELD IN THE APERTURE
Hs (J)=k*Yo/2+*Ii (N+i) *LH2+Hs (J)

480 continue
c ELECTRIC FIELD IN THE APERTURE
E())=I1 (N+))

xj=m (3, 1)
yJ=m(3,2)
c INCIDENT MAGNETIC FIELDS
if(Epol)then
Hi(Jj)=2*Yo*sin (phio) *cexp(-ci*k*xj*cos (phio))

lse
dgi(j)-Z'cos(k'yj'sin(phio))'cexp(—ci'k'xj'cos(phio))
en
c APERTURE IMPEDANCE
eta (3)=E(3)/ (Hi (J) +Hs (]))
write(2,*) m(j,1),cabs{eta(]j))
500 continue
endif
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ctit*ttﬁttit*t.titt Far Field Amplitude LAA R AR X222 2222222 2]
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Psca=czero
DelX=w/gN/2

do 600 i=1,gN
c...Simpson’s three point composite integration over each
c segment in the aperture
Lsca=DelX/3* (cexp(-ci*k*p(i,1)*cos (phi))
& +4*cexp(-ci*k*m(i,1) *cos(phi})
& +cexp (~ci*k*p(i+1,1) *cos(phi)))
Psca=Ii (N+1i) *Lsca+Psca
600 continue
if(Epol)then
Psca=-k*sin (phi)/2*Psca
else
Psca=-k*Yo/2*Psca
endif

write(3,*) d,cabs(Psca)
write(4,*) d,180/pi* (atan2(almaqg(Psca),Real (Psca)))

print *,’ Exact: |Psca| = ’,cabs(Psca),’ arg Psca = ',
& 180/pi*(atan2(almag(Psca),Real(Psca)))
d=d+dstep
700 continue

800 call exit
END
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GAPSUB.FTN

This file contains the subroutines and functions used by
GAPSCAT.FTN and ANAGAP.FTN.

cttﬁﬁﬁ***iﬁ*itt*ﬁ**tﬁ*‘hii‘ﬁ*"t*tﬁtt**tt***iit*******ﬁ*iitt*ﬁ*ﬁﬁ*****ﬁ

SUBROUTINE GAPROM(IPRG)

Ctﬁiiﬁ*i'ﬁtﬁ'ﬁi*ﬁ*ﬁt*iQttt*tt"tﬁ'iht*"tittitﬁﬁ*ﬁ'*ﬁﬁ*ﬁﬁ'ﬁﬁﬁt*ﬁﬁﬁ**t

aonoaan

[of Called to prompt user for the input parameters.
c

integer EorH,N, noS,gN

real phi,ph io w, d,maxC q(50,2)

real dstp(50), wstp(SO)

complex er,ctemp

common /prompts/ EorH,phio,phi,er,igap,wsStp,dstp,w,d,nos,
& q,maxc nolter

format (11)

format (15)

format (gl6.8)

format (2¢g16.8)

open(l, file- gapdat’)

print *,’

20 write(* 25) EorH

25 format(/'Polarization of incident field:’/
& 1) E- or 2) H-pol ({’,11,’12 )
read(*,1,err=20) itemp

if(itemp .eq. 2) EorH=2

AWN

30 write(*,35) phio

35 format (/,’Angle of incidence = ’,gl2.6,’degrees ’)
read(*, 3,err=20) rtemp
if(rtemp .ne. 0.0) phio=rtemp

36 write(*,37) phi

37 format (/,’Angle of observation = ’,gl2.5,’degrees ’)
.read (*, 3, err=30) rtemg
if(rtemp .ne. 0.0) phi=rtemp

38 write(*,39) er
39 format (/,’Relative permittivity = (’,gl2.6,’,’,912.6,’)")
read (*, 6,err=36) ctemp
if(ctemp .ne. 0.0) er=ctemp
print *,er

40 write(*,45)
45 format (/’ Type of gap:’/
& * 1) rectangular, 2) T-shape, 3) triangular,’/
& ’ 4) L-shape, or 5) arbitrary 2 ’)
read(*,1,err=20) igap

if(igap .eq. 2 .or. igap .eq. 4)then
if(igap .eq. 2)then
now=3
else
now=2
endif
do 47 i=1,now
write(*,*) ’Enter width w’,1
read{*,*) wsStp(l)
1f(i .ne. 3)then
write(*,*) ‘Enter depth d4d’,1i
read(*,*) dstp (1)

endif
47 continue
w=wStp (1)
d-dStp(1)+dstp(2)
else if(igap .eq. .or. 1qaf .eq. .0r.
& (igap .eq. .and prg .eq. 1))then
90 write(*,95) w
95 formac(/,'Gap width = ’,g12.6, ’wavelengths ’)

read(*, 3,err=30) rtemp
if(rtemp .gt. 0.0) w=rtemp

100 write(*,105) d

105 format (/’Gap depth = ’,gl2.6, ’wavelengths ’)
read(*, 3,err=90) rtemp
if(rtemp .gt. 0.0) d=rtemp

if(igap .eq. S)then
110 write(*,115) noSs
115 format (/,’Number of sides (excluding aperture) = ’,12)
read(*,*,err=30) rtemp
if(rtemp .gt. 0.0) noS=int (rtemp)
print *,’Enter the following coordinates, beginning ’
print *,’ with (-w/2,0) and going cw: ’
do 127 i=1,noS+1
120 write(*,125) 1
125 format (/’Corner ’,11,’ (x,y) *)
read(*, 3,err=110) q(i,1)
read(*,3,err=110) q(i,2)
127 continue
nolter=1
endif

else
GOTO 40

55



endif

if(iprg .eq. l)then
130 write(*,135) maxC
135 format (/’Max segment size = ’,gl2.6,’ wavelengths ’)
read(*,3,err=110) rtemp
if(rtemp .gt. 0.0) maxC=rtemp

endif
if(igap .ne. S)then
140 write(*,145) nolter
145 format (/’Number of iterations = 7,13, ‘)

read(*, *,err=130) rtemp
if(rtemp .gt. 0.0) nolter=int (rtemp)
endif

c...Writing input data to file GAPDAT
write(1l,2) EorH
write(1l,3) phio
write(1,3) phi
write(l,6) er
write(1,2) igap
if(igap .eq. 2 .or. igap .eq. 4)then
do 150 i=1,2
write(1l,3) wstp(i)
write(l,3) dstp(i)
150 continue
else
write(1l,3) w
write(1,3) d
if(igap .eq. S)then
write(1l,2) noS
do 160 i=1,noS+1
write(1,6) q(i,1),q(i,2)
160 continue
endif
endif
if(iprg .eq. l)then
write(l,3) maxC
endif
write(l,2) nolter
close(l)
return

end
CER AR AR R R A AR AR AN A A A A T AT R A AN N AN N A A RN RN ANARNRANTNRNNNNN NN TR N Aohr oo

COMPLEX FUNCTION CTAN (CARG)

cﬁi*i*ﬁii**tﬁ'ﬁiiiﬁiiit*iit'*iﬁ*iiiiiiitittthﬁ*ii'hﬁ'*titi.Qtttﬁiﬁi**

(o] Calculates the tangent given a complex argument
Cc

complex ci,carg

ci=cmplx(0.,1)

ctan==ci* (cexp{ci*carg)-cexp(-ci*carg))

& / (cexp (ci*carg) +cexp(~-ci*carg))

return

end
ct*it.itﬁt*tﬁtittititt"ttttttttiittﬁ'Qiﬁ"'t.tiﬁ**tititttt*tiltﬁt*c
[of C

SUBROUTINE HANKZ1 (R, N,HZERO, HONE)

C
c*tﬁ.ﬁi.tttittt.ﬁﬁﬂ.ttititttt'ﬁ"iﬁ"'ﬁ*tﬁ"ﬁ.....titttt'ﬁﬁ*ﬁ'ﬁi.'ic

Called to compute Hankel functions of the first kind
for orders one and zero. The argument is variable R

and must be positive.

....HANKEL FUNCTIONS ARE OF FIRST KIND==J+IY
N=0 RETURNS HZ2ERO (H-zero)

N=1 RETURNS HONE (H-one)

N=2 RETURNS HZERO AND HONE
.SUBROUTINE REQUIRES R>0

«...SUBROUTINE ADAM MUST BE SUPPLIED BY USER

DIMENSION A(7),B(7),C(7),D(7),E(7),F(7),G(7),H(7)

COMPLEX HZERO, H E

DATA A,B,C,D,E,F,G,H/1.0,-2.2499997,1.2656208,-0.3163866,
£0.0444479,-0. 0039444 0. 00021 0.36746691,0.60559366,-0.74350384,
€0.25300117,-0. 04261214,0.00427916,-0.00024846,0.5,-0.56249985,
£0.21093573,-0.03954289,0.00443319,-0.00031761,0.00001109,
£-0.6366198,0.2212091,2.1682709,-1.3164827,0. 3123951,-0 0400976.
§0,0027873,0. 79758456,-0 00000077, -0, 0055274,-0 00009512
&0, 00137237 -0.00072805,0.00014476,-0.78539816,-0. 04166397,
&-0.00003954,0.00262573,-0.00054125,-0.00029333,0.00013558,
§0.79788456,0.00000156,0.01659667,0.00017105,-0.00249511,
&0,00113653,-0.00020033,-2.35619449,0.12499612,0.0000565,
&-0.00637879,0. 00074348 0.00079824,-0.00029166/

IF (R.LE.0.0) GO TO 5

IF (N.LT.0.OR.N.GT.2) GO TO 50

IF (R.GT.3.0) GO TO 20

X=R*R/9.0

IF (N.EQ.l) GO TO 10

CALL ADAM(A, X, BJ)

CALL ADAM(B, X, Y)

BY=0.6366198*ALOG (0.S*R) *BJ+Y

HZERO=CMPLX (BJ, BY)

IF (N.EQ.0) RETURN

10 CALL ADAM(C,X,Y)

anaaanNnOanNnaaan
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BJ=R*Y
CALL ADAM(D, X, Y)
BY=0.6366198*ALOG (0.5*R) *BJ+Y/R
HONE=CMPLX (BJ, BY)
RETURN

20 X=3.0/R
IF (N.EQ.1l) GO TO 30
CALL ADAM(E, X, Y)
FOOL=Y/SQRT (R)
CALL ADAM(F,X,Y)
T=R+Y
BJ=FOOL*COS (T)
BY=FOOL*SIN (T)
HZERO=CMPLX (BJ, BY)
IF (N.EQ.0) RETURN

30 CALL ADAM(G,X,Y)
FOOL=Y/SQRT (R)
CALL ADAM(H,X,Y)
T=R+Y
BJ=FOOL*COS (T)
BY=FOOL*SIN (T)
HONE=CMPLX (BJ, BY)
RETURN

50 WRITE(6,90) N,R

90 FORMAT (32HOSICK DATA IN HANKZ1 *QUIT* N=,I2,2X,2HR=,E11l.3)
CALL SYSTEM

[t g R R R T T o)
C
SUBROUTINE ADAM(C,X,Y)

c**t*tti*tt**ttti*i'ﬁi'tt"'iit*"'*ﬁ*ﬁiﬁﬁﬁ."ﬁtﬁﬁﬁtﬁ'iit*it*ﬁtﬁ*tﬁc

C
C Called by subroutine HANKZ1 to compute the value of a 7th
(o} order polynomial whose argument is X and coefficients are
Cc contained in vector C.
C

DIMENSION C(7)
C

Y=X*C(7)
C

DO 10 I=1,5
Y-x*(C(7—I)+Y)
10 CONTINUE

C

Y=Y+C (1)

RETURN
cﬁtttttt."ttt'tttttQttti'it*tt't'tttQttittitittttt'tt'iitt*'tttﬁﬁtc

[

SUBROUTINE CHANK(Z,N, HO,Hl)
C c
cttitﬁtﬁiﬁttiﬁﬁ*tﬁi'tﬁttt*"tt*'*tﬁﬁt't#aiwﬁtﬁtttttttiitﬁﬁ*#ﬁttitiic
C CALCULATES HANKEL FUNCTIONS ZEROTH AND FIRST ORDER

C OF THE FIRST KIND OF COMPLEX ARGUMENT HO=J0+I*Y0, Hl=Jl+I*Yl,
THE ACCURACY IS VERY GOOD UP TO |2|<10. ABOVE THAT THE
ACCURACY IS TO THE ORDER OF LARGE ARGUMENT EXPANSION.

N=0 RETURNS HO
N=1 RETURNS Hl
N=2 RETURNS HQO AND H1l
N=3 RETURNS JO AND J1

aaaaaoan

COMPLEX JO,YO,J1,Y1,2,TERM
COMPLEX I,HO,Hl

I=(0.0,1.0)

PI=4 *ATAN(l.)

IF(N.EQ.1)GOTO10

IF (CABS (2) .GT. 12.)THEN

JO=CSQRT (2/ (PI*Z)) *CCOS (2-PI/4.)
§O-CSQRT(2/(PI*Z))'CSIN(Z—PI/4.)
ELS

100 MeM+1
SUM=SUM+1. /FLOAT(M)
AONE=AONE* (-1.)
TERM=TERM* ( (Z/2)/FLOAT(P“ )**2
JO=JO+AONE* TERM
YO=YO+AONE*TERM*SUM
IF(M.LE.10 .OR. CABS(FLOAT (M)/(2/2)).LT. 5)GOTO 100
Y0-2 * (JO* (CLOG (2/2) +0. 57721)-Y0)/?I
ENDI
IF(N EQ.3) THEN
HO=J0

ELSE
HO=J0+I*YO
ENDIF
IF(N.EQ.0) RETURN
C COMPUTATION OF J1l AND Y1
10 IF (CABS {2) .GT. 15.) THEN
JI-CSQRT(Z/(PI'Z))'CCOS(Z 3.*PI/4.)
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{éECSQRT(Z/(PI’Z))'CSIN(Z-B.'PI/4.)

AONE=1,
TERM=(1.0,0.0)
Jl=(1.0,0.0)
Yl=(1.0,0.0)
SUM=0.0
M=0

200 M=M+1
SUM=SUM+1./FLOAT (M)
AONE=AONE* (-1.)
TERM=TERM* (2/2) **2/ (FLOAT (M) *FLOAT (M+1})
J1=J1+AONE*TERM
Y1=Y1+AONE*TERM* (1./FLOAT (M+1) +2.*SUM)
IF(M.LE.10 .OR. CABS(FLOAT (M)/(Z/2)).LT. 5)GOTO 200
J1=J1*Z/2.
Y1=(2.*J1*(CLOG(2/2)+0.57721)~2./2-Y1*2/2.)/PI

E

ENDIF
IF (N.EQ.3) THEN
Hl=J1

ELSE
Hl=J1l+I*Y1l

(AR ARER AR SRR ARt il st iRl sttt ittt llld

C
SUBROUTINE MODBESS (X, IO, Il)

C
Ci**ii'ttt*ti**ﬁ*i**ﬁﬁ***iﬁﬁiitittﬁtﬁ***ﬁﬁﬁiﬁtt*tﬁﬁ*ﬁitiiﬁi*ﬁ*ﬁﬁ**t*

C CALCULATES THE MODIFIED BESSEL FUNCTION OF THE

C ZEROTH AND FIRST ORDER. ARGUMENT X IS POSITIVE AND REAL.
C SEE PAGE 378 ABRAMOVITZ

[of

REAL IO,Il

T=X/3.75

IF(T .LT. -1)THEN

PRINT *,’ERROR’

STOP

ELSE

ENDIF

IF(T .GE. -1 .OR. T.LE.l)THEN
I0=1+3,5156229*T**2+3.0899424*T**4+1.2067492*T**6+

& 0.2659732*T**8+0,0360768*T**10+0.0045813*T**12
I1=0.5+0.8789059*T**2+0.51498869*T**4+0.15084934*T**6+
& 0.02658733*T**8+0.00301532*T**10+0.00032411*T**12
Il=X*I1
ELSE

I0=0.39894228+0.01328592/T+0.00225319/T**2-0.00157565/T**3
+0.00916281/T**4~-0.02057706/T**5+0.02635537/T**6
-0.01647633/T**7+0.00392377/T**8

IO=IO*EXP (X) *SQRT (1/X)

I1=0.39894228-0,.03988024/T7-0.00362018/T**2+0,00163801/T**3

& -0.01031555/T**4+0.02282967/T**5-0.02895312/T**6

& +0.01787654/T**7-0.00420059/T**8
ENDIF
RETURN

ND

ctttﬁtﬁttt'ttﬁiitttﬁitﬁttt*'ﬁ#'it*tiitittiiﬁtittititﬁtﬁttiittti.titc
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The following subroutines are standard LINPACK routines
to perform L-U decomposition and back substitution on a
single precision complex matrix. See CC-Memo 407 sec 2.1
for documentation on these routines.
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SUBROUTINE CGECO(A, LDA, N, IPVT,RCOND, Z)

c."."'.".'iﬁ.'..iiitt"'.."'i'"""ﬁﬁ""ﬁ.'iitﬁ‘.i'ﬁi'ﬁ".i'ﬁﬁc

(eI eloNeReNeNe e Xe!

a

C
C NAASA 2.1.042 CGECO FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
c

INTEGER LDA,N, IPVT (1)
COMPLEX A (LDA,1),2(1)
REAL RCOND

CGECO FACTORS A COMPLEX MATRIX BY GAUSSIAN ELIMINATION
AND ESTIMATES THE CONDITION OF THE MATRIX.

IF RCOND IS NOT NEEDED, CGEFA IS SLIGHTLY FASTER.
TO SOLVE A*X = B , FOLLOW CGECO BY CGESL.

TO COMPUTE INVERSE(A)*C , FOLLOW CGECO BY CGESL.
TO COMPUTE DETERMINANT(A) , FOLLOW CGECO BY CGEDI.
TO COMPUTE INVERSE(A) , FOLLOW CGECO BY CGEDI.

ON ENTRY

A COMPLEX (LDA, N)
THE MATRIX TO BE FACTORED.

LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .

N INTEGER
THE ORDER OF THE MATRIX A .

[eleleTeNeReloNoReNe e Ne Ko oo XaXeXe s Xe!

58



[eXe ik oke oo o oo NoNe Yo e e o o e o e e Na e Yo e Ne o R oo oo o e toTe e N e e

[e]
a

oo aan

10

20

30

40

50

ON RETURN

A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
WHICH WERE USED TO OBTAIN IT.
THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.

IPVT INTEGER (N)
AN INTEGER VECTOR OF PIVOT INDICES.

RCOND REAL
AN ESTIMATE OF THE RECIPROCAL CONDITION OF A .
FOR THE SYSTEM A*X = B , RELATIVE PERTURBATIONS
IN A AND B OF SIZE EPSILON MAY CAUSE
RELATIVE PERTURBATIONS IN X OF SI2E EPSILON/RCOND .
IF RCOND IS SO SMALL THAT THE LOGICAL EXPRESSION

1.0 + RCOND .EQ. 1.0

IS TRUE, THEN A MAY BE SINGULAR TO WORKING
PRECISION. 1IN PARTICULAR, RCOND IS ZERO IF
EXACT SINGULARITY IS DETECTED OR THE ESTIMATE
UNDERFLOWS .

Z COMPLEX (N)
A WORK VECTOR WHOSE CONTENTS ARE USUALLY UNIMPORTANT.
IF A IS CLOSE TO A SINGULAR MATRIX, THEN 2 IS
AN APPROXIMATE NULL VECTOR IN THE SENSE THAT
NORM(A*2) = RCOND*NORM(A)*NORM(Z) .

LINPACK. THIS VERSION DATED 07/14/77 .
CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LABS.

SUBROUTINES AND FUNCTIONS

LINPACK CGEFA
BLAS CAXPY, CDOTC, CSSCAL, SCASUM
FORTRAN ABS,AIMAG, AMAX1,CMPLX,CONJG, REAL

INTERNAL VARIABLES

COMPLEX CDOTC, EK, T, WK, WKM
REAL ANORM, S, SCASUM, SM, YNORM
INTEGER INFO,J,K,KB,KP1,L

COMPLEX 2DUM, ZDUM1, 2DUM2, CSIGN1

REAL CABS1l !

CABS1 (ZDUM) = ABS (REAL(ZDUM)) + ABS (AIMAG(Z2DUM))

CSIGN1 (ZDUM1, ZDUM2) = CABS1 (ZDUM1) * (ZDUM2/CABS1 (ZDUM2) )

Compute 1-NORM of A

ANORM = 0.0E0
DO 10 J = 1, N

ANORM = AMAX1 (ANORM, SCASUM(N,A(1,J),1))
CONTINUE

Factor
CALL CGEFA(A,LDA,N, IPVT, INFO)

RCOND = 1/(NORM(A)* (ESTIMATE OF NORM(INVERSE(A)))) .
ESTIMATE = NORM(Z) /NORM(Y) WHERE A*Z = Y AND CTRANS(A)*Y = E .
CTRANS (A) IS THE CONJUGATE TRANSPOSE OF A .

THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
GROWTH IN THE ELEMENTS OF W WHERE CTRANS(U)*W = E ,
THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.

SOLVE CTRANS(U)*W = E

EK = CMPLX(1.0E0,0.0E0)
DO 20 J =1, N
Z2(J) = CMPLX(0.0E0,0.CEO)
CONTINUE
DO 100 K =1, N
IF (CABS1(2(K)) .NE. 0.0E0) EK = CSIGN1 (EK,-Z(K))
IF (CABS1 (EK-Z(K)) .LE. CABS1(A(K,K))) GO TO 30
S = CABS1 (A(K,K))/CABS1 (EK-2(K))
CALL CSSCAL(N,Ss,2,1)
EK = CMPLX(S,0.0E0)*EK
CONTINUE
WK = EK - Z(K)
WKM = -EK - Z(K)
S = CABS1 (WK)
SM = CABS1 (WKM)
IF (CABS1(A(K,K)) .EQ. 0.0E0) GO TO 40
WK = WK/CONJG (A (K, K))
WKM = WKM/CONJG (A (K, K))
GO TO S0
CONTINUE
WK = CMPLX(1.0E0,0.0EQ)
WKM = CMPLX(1.0EQ,0.0EO)
CONTINUE
KP1 = K + 1
IF (KPl1 .GT. N) GO TO %0
DO 60 J = KP1, N
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SM = SM + CABS1 (2 (J) +WKM*CONJG (A (K, J)))
Z(J) = Z2(J) + WK*CONJG(A(K,J))
S = S + CABS1(Z(J))
60 CONTINUE
IF (S .GE. SM) GO TO 80
T = - WK
WK = WKM
DO 70 J = KP1, N
Z2(J) = 2(J) + T*CONJG (A (K, J))

70 CONTINUE
80 CONTINUE
90 CONTINUE

2 (K) = WK

100 CONTINUE
S = 1.0E0/SCASUM(N,Z,1)
CALL CSSCAL(N,Ss,Z,1

[
ccce Solve CTRANS(L)*Y = V

DO 120 KB = 1, N
K=N+1 - KB
IF (K .LT. N) 2(K) = Z(K) + CDOTC(N-K,A(K+1,K),1,2(K+1),1)
IF (CABS1(2(K)) .LE. 1.0E0) GO TO 110
S = 1,0EQ0/CABS1 (Z(K))
CALL CSSCAL(N,Ss,2,1)
110 CONT INUE
L = IPVT(K)
T = 2(L)
Z(L} = Z(K)
Z(K) =T
120 CONTINUE
S = 1.0E0/SCASUM(N,Z,1)
CALL CSSCAL(N,S,2,1)

YNORM = 1,.0E0
C
ccce Solve L*V = Y
c

DO 140 K = 1, N
L = IPVT(K)
T = 2(L)
Z(L) = Z(K)
2(K) =T
IF (K .LT. N) CALL CAXPY(N-K,T, A(K+l K),1,2(K+1),1)
IF (CABSI(Z(K)) .LE. 1.0E0) GO TO
S =1, OEO/CABSl(Z(K))
CALL CSSCAL(N,S,Z,1)
YNORM = S*YNORM
130 CONTINUE
140 CONTINUE
S = 1.0E0/SCASUM(N,Z,1)
CALL CSSCAL(N,S,2,1)
YNORM = S*YNORM

c
cce Solve U*Z = V

DO 160 KB = 1, N
K=N+1- KB
IF (CABS1(2(K)) .LE. CABS1(A(K,K))) GO TO 150
S = CABS1 (A(K,K))/CABS1 (Z(K))
CALL CSSCAL(N,S,Z,1)
YNORM = S*YNORM
150 CONTINUE
IF (CABS1(A(K,K)) .NE. 0.0EQ) Z(K) = 2Z(K)/A(K,K)
IF (CA?S}(A(K,K)) .EQ. 0.0E0) Z(K) = CMPLX(1.0E0,0.0EO)
T = -Z2(K
CALL CAXPY(K-1,T,A(1,K),1,2Z(1),1)
160 CONTINUE
c MAKE ZNORM = 1.0
S = 1.0EQ0/SCASUM(N,2,1)
CALL CSSCAL(N,S,2,1)
YNORM = S*YNORM

[

IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM

IF (ANORM .EQ. 0.0EQ) RCOND = 0.0EO

RETURN
Cttttt§§20iiitttﬁtttﬁﬁttttﬁttiit""ttt'ttttttttttﬁtﬁttiiittttﬁt'tﬁc
C C

SUBROUTINE CGEFA(A,LDA,N,IPVT, INFO)
C
LR R R 2]
[¢ c
C NAASA 2.1.043 CGEFA FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
[

INTEGER LDA,N, IPVT (1), INFO
COMPLEX A (LDA,1)

CGEFA FACTORS A COMPLEX MATRIX BY GAUSSIAN ELIMINATION.
CGEFA IS USUALLY CALLED BY CGECO, BUT IT CAN BE CALLED
DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
(TIME FOR CGECO) = (1 + 9/N)*(TIME FOR CGEFA) .

ON ENTRY

aaaoaannn
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COMPL

EX (LDA, N)

THE MATRIX TO BE FACTORED.

THE LEADING DIMENSION OF THE ARRAY A .,

THE ORDER OF THE MATRIX A .

PER TRIANGULAR MATRIX AND THE MULTIPLIERS

WHICH WERE USED TO OBTAIN IT.

THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.

AN INTEGER VECTOR OF PIVOT INDICES.

LDA INTEGER
N INTEGER
ON RETURN
A AN UP
IPVT INTEGER (N)
INFO INTEGER

=0
= K

NORMAL VALUE.

IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
CONDITION FOR THIS SUBROUTINE, BUT IT DOES
INDICATE THAT CGESL OR CGEDI WILL DIVIDE BY ZERO
IF CALLED. USE RCOND IN CGECO FOR A RELIABLE
INDICATION OF SINGULARITY.

LINPACK. THIS VERSION DATED 07/14/77 .
CLEVE MOLER, UNI

VERSITY OF NEW MEXICO, ARGONNE NATIONAL LABS.

SUBROUTINES AND FUNCTIONS

BLAS CAXPY, CSCAL, ICAMAX
FORTRAN ABS,AIMAG,CMPLX, REAL

INTERNAL VARIABLES

COMPLEX T
INTEGER ICAMAX,J, K,KP1,L,NM1

(o
COMPLEX 2DUM
REAL CABS1
c CABS1(ZDUM) = ABS (REAL(ZDUM)) + ABS (AIMAG (ZDUM))
gCC Gaussian elimination with partial pivoting
INFO = 0
NMlI = N -1
IF (NM1 ,LT. 1) GO TO 70
DO 60 K = 1, NM1
KPl = K + 1
C
o] FIND L = PIVOT INDEX
C
L = ICAMAX(N-K+1,A(K,K),1) + K~ 1
IPVT(K) = L
C
cce Zero pivot implies this column already triangularized
c IF (CABS1(A(L,K)) .EQ. 0.0E0) GO TO 40
cce Interchange if necessary
[
IF (L .EQ. K) GO TO 10
T = A(L,K)
A(L,K) = A(K,K)
A(K,K) = T
10 CONTINUE
gcc Compute multipliers
T = -CMPLX(1.0E0,0.0E0) /A(K,K)
CALL CSCAL(N-K,T,A(K+1,K),1)
C
gcc Row elimination with column indexing
DO 30 J = KP1, N
T = A(L,J
IF (L .EQ. K) GO TO 20
A(L,J) = A(K,J)
A(K,J) = T
20 CONTINUE
CALL CAXPY (N-K,T,A(K+1,K),1,A(K+1,J),1)
30 CONTINUE
GO TO SO
40 CONTINUE
INFO = K
50 CONTINUE
60 CONTINUE
70 CONTINUE
IPVT(N) = N
IF (CABS1(A(N,N)) .EQ. 0.0E0) INFO = N
RETURN
END
(o) C
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C

c
SUBROUTINE CGESL(A,LDA,N, IPVT,B, JOB)

c.ﬁﬁt*ﬁﬁt'iﬁﬁ"'ﬁitﬁittt'ﬁi*ﬁttttﬁt'*ﬁﬂﬁﬁ'ﬁ**iiﬁﬁﬁtit*t*tiiii**ttﬁic

C
C
c
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C
NAASA 2.1.044 CGESL FTN-A 05-02-78 THE UNIV OF MICH COMP CTR

INTEGER LDA,N, IPVT(1),JOB
COMPLEX A (LDA,1),B(1)

CGESL SOLVES THE COMPLEX SYSTEM
A *X =B OR CTRANS(A) * X =B
USING THE FACTORS COMPUTED BY CGECO OR CGEFA.

ON ENTRY
A COMPLEX (LDA, N)
THE OUTPUT FROM CGECO OR CGEFA.
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
N INTEGER
THE ORDER OF THE MATRIX A .
IPVT INTEGER (N)
THE PIVOT VECTOR FROM CGECO OR CGEFA.
B COMPLEX (N)
THE RIGHT HAND SIDE VECTOR.
JOB INTEGER
=0 TO SOLVE A*X = B ,
= NONZERO TO SOLVE CTRANS(A)*X = B WHERE
CTRANS (A) IS THE CONJUGATE TRANSPOSE.
ON RETURN
B THE SOLUTION VECTOR X .

ERROR CONDITION

A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS A
2ERO ON THE DIAGONAL. TECHNICALLY THIS INDICATES SINGULARITY
BUT IT IS OFTEN CAUSED BY IMPROPER ARGUMENTS OR IMPROPER
SETTING OF LDA . IT WILL NOT OCCUR IF THE SUBROUTINES ARE
CALLED CORRECTLY AND IF CGECO HAS SET RCOND .GT. 0.0

OR CGEFA HAS SET INFO .EQ. 0 .

TO COMPUTE INVERSE(A) * C WHERE C IS A MATRIX
WITH P COLUMNS
CALL CGECO(A,LDA,N, IPVT,RCOND, 2)
IF (RCOND IS TOO SMALL) GO TO ...
DO 10 J =1, P
CALL CGESL(A,LDA,N, IPVT,C(1,J),0)
10 CONTINUE

LINPACK. THIS VERSION DATED 07/14/77 .
CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LABS.

SUBROUTINES AND FUNCTIONS

BLAS CAXPY, CDOTC
FORTRAN CONJG

INTERNAL VARIABLES

COMPLEX CDOTC, T
INTEGER K,KB,L,NMl

NMl = N -1
IF (JOB .NE. 0) GO TO 50

JOB =0, SOLVE A * X =238
FIRST SOLVE L*Y = B

IF (NM1 .LT. 1) GO TO 30
DO 20 K = 1, NM1
L = IPVT(K)
T = B(L)
IF (L .EQ. K) GO TO 10
B(L) = B(K)

CALL CAXPY(N-K,T,A(K+l,K),1,B(K+1),1)
CONTINUE
CONTINUE
NOW SOLVE U*X = Y

DO 40 KB = 1, N

K=N+1- KB
B(K) = B(K)/A(K,K)
T = -B(K)

CALL CAXPY(K-1,T,A(1,K),1,B(1),1)
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40 CONTINUE
GO TO 100
50 CONTINUE

JOB = NONZERO, SOLVE CTRANS(A) * X = B
FIRST SOLVE CTRANS(U)*Y = B

DO 60 K = 1, N
T = CDOTC(K-1,A(1,K),1,B(1)
B(K) = (B(K) - T)/CONJG(A( )
60 CONTINUE :

NOW SOLVE CTRANS(L)*X = Y

IF (NM1 .LT. 1) GO TO 90
DO 80 KB = 1, NM1
K= N - KB
B(K) = B(K) + CDOTC (N-K,A(K+1,K),1,B(K+1),1)
L = IPVT
IF (L EQ K) GO TO 70
T = B(L)
B(L) = B(K)
B(K) = T
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE

anaa

[eXeT el

RETURN
END
C
L R R T T el
C

SUBROUTINE CAXPY (N,CA,CX, INCX,CY, INCY)

C
CQ*ﬁiﬁ't.ﬁiﬁﬁiQi.*'*ﬁii'ittiitit'i'it**iii*'Q-ﬁﬁﬁﬁﬁii*'iiﬁi‘.'ﬁiitic

o} . C

C NAASA 1.1.014 CAXPY FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
Cc

C CONSTANT TIMES A VECTOR PLUS A VECTOR.

c JACK DONGARRA, LINPACK, 6/17/77.

o]

COMPLEX CX(1),CY(1),CA
INTEGER I, INCX, INCY,IX,IY,N

C
IF(N.LE.O) RETURN
IF (ABS(REAL(CA)) + ABS(AIMAG(CA)) .EQ. 0.0 ) RETURN
IF (INCX.EQ.1.AND.INCY.EQ.1)GOTO 20
C
ccc Code for unequal increments or equal increments
ccc Not equal to 1
[of
IX = 1
IY = 1
IF(INCX.LT.0)IX = (=N+1)*INCX + 1
IF(INCY.LT.0)IY = (=N+1)*INCY + 1
DO 10 I = 1,N
CY(IY) = CY(IY) + CA*CX(IX)
IX = IX + IN
IY = JY + INCY
10 CONTINUE
RETURN
C
ccc Code for both increments equal to 1
C

20 D0 30 I =1,
CY(I) = CY(I) + CA*CX(I)
30 CONTINUE
RETURN
END

CHA AR R R AR RN R RN R AR AR R TR AR AN RN C N AN AN AR A AN R AR N AR AR ARA R AR AR AR AR R

COMPLEX FUNCTION CDOTC(N,CX, INCX,CY, INCY)

(AR AALAL AR AR R AR ARl it tiis il ldlll] el

[of [+
g NAASA 1.1.012 CDOTC FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
C 582?% THE DOT PRODUCT OF TWO VECTORS, CONJUGATING THE FIRST
[of . .
[+ JACK DONGARRA, LINPACK, 6/17/77.
(o}
COMPLEX CX(1),CY(1l),CTEMP
c INTEGER I, INCX, INCY, IX,IY,N
CTEMP = (0.0,0.0)
CDOTC = (0.0,0.0)
IF (N.LE.O) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GOTO 20
C
CCC Code for unequal increments or equal increments
cce Not equal to 1
o
IX =1
IY = 1

IF(INCX.LT.0)IX = (~N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I =1,N
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CTEMP = CTEMP + CONJG (CX (IX))*CY(IY)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
CDOTC = CTEMP
RETURN

[
ccc Code for both increments equal to 1

2000 30 I = 1,N
CTEMP = CTEMP + CONJG (CX(I))*CY(I)
30 CONTINUE
CDQTC = CTEMP
RETURN
END

cﬁﬁﬁ*'tii"ﬁ*i!‘ti#tt"*"tttﬁfﬁﬁiiittiititi'.ﬁ**ﬁﬁiﬁtti*ti*tttttﬁﬁc

[+
SUBROUTINE CSCAL (N, CA, CX, INCX)

C
c**iii**t*itt*ﬁ*i*ﬁﬁﬁﬁt**ﬁi*t**ii*"*i*iﬁtt****iﬁ"**ii*'*t*i*itt**c

Cc C

C NAASA 1.1.019 CSCAL FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
c

o} SCALES A VECTOR BY A CONSTANT.

C JACK DONGARRA, LINPACK, 6/17/77.

C

COMPLEX CA,CX(1)
INTEGER I, INCX,N,NINCX

Cc
IF(N.LE.0)RETURN
IF(INCX.EQ.1)GOTO 20
Cc
cce Code for increment not equal to 1
Cc
NINCX = N*INCX
DO 10 I = 1,NINCX, INCX
CX(I) = CA*CX(I)
10 CONTINUE
RETURN
Cc
cce Code for increment equal to 1
C
2000 30 I = 1,N
CX(I) = CA*CX(I)
30 CONTINUE
RETURN
END
c*ﬁittttt*tt'itQ*tt#'ttiiitt"tiitttt#iiﬁittttt'ﬁ'*iftttittt'.'ttt'c
(o *C

SUBROUTINE CSSCAL (N, SA,CX, INCX)

C
Cttttt'*t'tﬁQﬁtﬁttttt.’ﬁt'.ittﬁﬁt't**tﬁ"t'tt'ﬁﬂiiﬁii'titii*tﬁi**i*c

C C

C NAASA 1.1.018 CSSCAL FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
C

c SCALES A COMPLEX VECTOR BY A REAL CONSTANT.

[« JACK DONGARRA, LINPACK, 6/17/77.

c

COMPLEX CX(1)
REAL SA
INTEGER I, INCX,N,NINCX

(o
IF(N.LE.O)RETURN
c IF(INCX.EQ.1)GOTO 20
gcc Code for increment not equal to 1
NINCX = N*INCX
DO 10 I = 1,NINCX,INCX
CX(I) = CMPLX(SA*REAL (CX(I)),SA*AIMAG (CX(I)))
10 CONTINUE
RETURN
C
gcc Code for increment equal to 1

2000 30 I = 1,N
CX{(I) = CMPLX(SA*REAL (CX(I)),SA*AIMAG (CX(I)}))
30 CONTINUE
RETURN
END

cti'tﬁ*itiﬁt.t'tﬁtt.tttii.tiiittit#tt'i.tti'itttiittiﬁtQtt'tﬁt'itf‘c

INTEGER FUNCTION ICAMAX (N, CX, INCX)

(b AL AALASARL A AR R AR iR iRl Rttt led

C C

C NAASA 1.1.021 ICAMAX FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
[}

[of FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE.

C JACK DONGARRA, LINPACK, 6/17/77.

c

COMPLEX CX(1)
REAL SMAX

INTEGER I, INCX,IX,N
COMPLEX 2DUM
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REAL CABS1
CABS1(ZDUM) = ABS (REAL(2DUM)) + ABS (AIMAG (2DUM))

ICAMAX = 1
IF(N.LE.1) RETURN
IF(INCX.EQ.1)GOTO 20

cce Code for increment not equal to 1

IX = 1

SMAX = CABS1 (CX (1))

IX = IX + INCX

DO 10 I = 2,N
IF(CABS1(CX (IX)).LE.SMAX) GO TO S
ICAMAX = I

SMAX = CABS1 (CX(IX))
5 IX = IX + INCX
10 CONTINUE
RETURN

ccC Code for increment equal to 1

20 SMAX = CABS1(CX(1l))

DO 30 I = 2,N
IF(CABS1(CX(I)).LE.SMAX) GO TO 30
ICAMAX = I
SMAX = CABS1 (CX(I))

30 CONTINUE

RETURN

END

o}
cﬁﬁtt*ﬁit**‘ﬁt*t*ittiti*'*’tﬁﬁ'*ﬁﬁﬁitiiit*t*tﬁ***'iﬁﬁ*iiiiﬁ**iti*ﬁ'c

REAL FUNCTION SCASUM(N, CX, INCX)

c***i'ﬁﬁQ'tﬁi"*t**'ﬁt.tﬁtﬁﬁt***ﬁﬁﬁ**t*ﬁt*tt'titﬁﬁﬁtﬁitﬁtt*ti'*t***c

c [

C NAASA 1.1.010 SCASUM FTN-A 05-02-78 - THE UNIV OF MICH COMP CTR
c

c TAKES THE SUM OF THE ABSOLUTE VALUES OF A COMPLEX VECTOR AND

(o} RETURNS A SINGLE PRECISION RESULT. ’

C JACK DONGARRA, LINPACK, 6/17/717.

[

COMPLEX CX(1)
REAL STEMP
INTEGER I,INCX,N,NINCX

SCASUM = 0.0EQ

STEMP = 0.0EQ
IF(N.LE.O) RETURN

IF (INCX.EQ.1)GOTO 20

cce Code for increment not equal to 1
c

NINCX = N*INCX
DO 10 I = 1,NINCX,INCX
STEMP = STEMP + ABS(REAL(CX(I))) + ABS(AIMAG(CX(I)))
10 CONTINUE
SCASUM = STEMP
RETURN

C
cccC Code for increment equal to 1

200030 = 1,N
STEMP = STEMP + ABS(REAL(CX(I))) + ABS (AIMAG(CX(I)))
30 CONTINUE
SCASUM = STEMP
RETURN
END
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Appendix B Program Listing for the Quasi-Analytical Solution

The quasi-analytical solution proposed by Senior and Volakis [1] as
described in Section 3 was programmed for solution, as listed in the program
ANAGAP.FTN below. The subroutines used by this program are listed in
GAPSUB.FTN in Appendix A.

As with the program for the exact solution GAPSCAT, the user is
prompted for the following: the polarization of the incident field, angle of
incidence, angle of far field observation, the relative permittivity &, of the gap
cavity, the shape of the gap, and the number of iterations for calculating the far
field amplitude versus gap depth. The choice of shapes and dimensions
requested for the gap are according to Figure 2.

The input impedance of the gap as a parallel plate waveguide is
calculated according to the specified shape. For the L- and T-shaped gaps,
(35) is used, given the other necessary expressions as contained in Section 3.
The input impedance of the rectangular gap is given by (39), and for the V-
shaped gap, (40) is used. These expressions are for the H-polarization case.
As mentioned previously, for the E-polarization case, the propagation constant
K, is replaced by ikp and the characteristic impedance Z, by -iZy, /p, where p is
given by (41). The desired effective surface impedance n is then calculated
according to (33).

For H-polarization, the far field amplitude Py is calculated from (22). Py is
a function of Kyy(a) given by (30). The argument a is a function of the effective
surface impedance as given in (21). For the E-polarization, the far field
amplitude Pg is calculated from (27), where Kg(b) is given by (31). The

argument b is a function of the effective surface impedance as given in (26).
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ANAGAP.FTN

This FORTRAN program computes the far fleld scattering due
to a narrow gap of specified shape in an infinite ground
plane. The far field amplitude is calculated given the
input impedance of the gap, calculated from it’s equivalent

transmission line model.

INPUT The user is prompted from the subroutine
GAPROM for the polarization and angle of the
incident field, angle of far field observation,
relative permittivity of gap filling, shape and
dimensions of gap, segment size, and number of
iterations with respect to gap depth.

OUTPUT FILES

GAPDAT Contains input data.

IMPDAT Effective surface impedance of the gap.
AMPDAT Contains the magnitude of the far field.
PHADAT Contains the phase of the far field.

SUBROUTINES
HANKZ1

Computes the Hankel functions of the first

kind of orders zero and one.
CHANK Computes the Hankel functions of the first
kind of orders zero and one given a

complex argument.

MODBESS Computes the modified Bessel functions of
the first kind of orders zero and one.

FUNCTION
CT

argument.
integer EorH,N, noS,gN,szN(50)

real pi,k,phi,phio,w,d, maxC,q(50,2)
real dstp(50),wStp(50),I0,I1

Calculates the tangent of a complex

complex czero,ci,ctemp,er,ur,kl,kc, carg,ctan,eta
complex 21,21, 2¢,2L,X,Bl1,B2,H0,Hl,a,b,Ke,Kh,A0,Psca

logical Epol,Lossy

common /prompts/ EorH,phio,phi,er,igap,wStp,dstp,w,d,nos,

q, maxC,nolter

format (11)
format (15)
format (gl16.8)
format (al)
format (13)
format (2g16.8)

open (2, file=’impdat’)
open (3, file=’ampdat’)
open (4, file=’'phadat’)

c...Declaring constant values

czero=cmplx (0.0,0.0)
ci=cmplx(0.0,1.)
pi=4.0*%*atan (1.0}
k=2*pi

Eo=1.0

Ho=1.0

Zo=sqrt (4.e-07*pi/8.854e~-12)
Yo=1./Zo
ur=cmplx(l.,0.0)
gam=0,5772157
iprg=2

cia.Settinq default values

EorH=1
phio=90.0
phi=90.0
er=cmplx(l.,0.0)
w=0.15

d=0.5

nos=3
maxC=0,01
nolter=30
adj=0,00001
Epol=, false.
Lossy=,false.
side=.true.

cié.Promptinq user for input data

call gaprom(iprg)

if(igap .eq. S) GOTO 15

if(EorH .eq. 1) Epol=.true.
phio=phio*pi/180.0
phi=phi*pi/180.0

drat=dstp(l) /d

if(aImag(er) .ne. 0.0) Lossy=.true.

dmin=0.05
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1f(Epol) dmin=0.025
dmax=d

if(noIter .ne. l)then
dstep= (dmax-dmin) / {(nolter-1)
d=dmin

endif

DO 700 iter=1,nolter
ctittit'ﬁti*iﬁﬂ'itﬁ**itttﬁ*iﬁttt*it*tﬁi**i’ﬁﬁi*ﬁt*ti*tﬁt*'t"t*ittﬁtﬁ
cti*ttﬁﬁi'ttitt"*iﬁi' Gap Impedance (AR 2 222222222 X2 RR X1
c****w*ﬁt'ﬁtt*ﬁtt'*ﬁ*ﬁ*tt**tiﬁi*ittt***itt.ti**ittitittt*tﬁ*'iﬁtiﬁﬁ

c...Complex propagation constant k1 and characteristic impedance
c 21 of the T-line model
if(Epol)then
kl=ci*k*csqrt ((1./2/w)**2-er*ur)
Zl==ci*Zo*ur/csqrt ((1./2/w) **2-er*ur)
else
21=20*csqrt (ur/er)
kl=k*csqrt (ur*er)
endif
if(igap .eq. l)then
c RECTANGULAR
ETA=-ci*21*ctan (k1l*d)
else if(igap .eq. 2 .or. igap .eq. 4)then
w=wStp (1)
w2=wStp(2)
w3=wStp (3)
dl=d*drat
d2=d* (1-drat)
c Propagation constant and characteristic impedance of
c the arms of the T~ or L-shaped gaps
if(Epol)then
kc=ci*k*csqrt ((1./2/d2) **2-er*ur)
l2c--ci'20'd2'ur/csqrt((1./2/d2)"2-er'ur)
else
Ze=Zo*d2*csqrt (ur/er)
kc=k*csqrt (ur*er)
endif
if(igap .eq. 4)then
c L~SHAPED
2i=-ci*2c*ctan(kc*w2)
X=k*2c*wl
Bl=k/Zc*d2* (d2/ (d2+wl) ) *(1.-2./pi*log(2.))
B2=k/Zc*d2* (wl/ (d2+wl))*(1.-2./pi*log(2.))
2L=(2i-ci*X* (1-ci*B2*2i))

& /((1l=Bl*X)* (1-ci*B2*21i)-ci*B1*21)
else
c T-SHAPED
2im-ci*2c* (ctan(kc*w2)+ctan (kc*w3))
X=2*k*Zc*wl

Bl=k/Zc*d2* (d2/ (d2+wl)) *0.7822
2ZL=(2i-ci*X)/ (1-ci*Bl* (2i-ci*X))

endif
ETA=Z1* (ZL-ci*Z1l*wl*ctan(kl*dl))
& /(21*wl=-ci*2L*ctan(k1l*dl))
else if(igap .eq. 3)then
c TRIANGULAR
1f(Lossy)then
carg=kl+*d
call cHank (carg, 3, HO,Hl)
carg=l.
else
1f(Epol)then
rarg=Real (k1/ci)*d
call ModBess (rarg, I0,I1)
HO=I0
Hl=I1

rarg=Real (k1) *d
call Hankzl (rarg, 2,HO,H1)
carg=l,

endif

endif
ETA=~ci*Z1*Real (H1) /Real (HO) *carg
endif
c write(2,*) d,cabs(ETA)

ci'ﬁ"'iiiﬁ‘.'"ﬁ‘*ﬁ't.tﬁﬁ'ti'i'ﬂit"'ﬁ't'ii'ﬁt"’itt'iitii*tﬁﬁ.""
cttﬁtt't"'titt'.'t Far Fi.ld leitude (222222232222 222 22 R2 22 J
ci"it't'f"'.iti'"'.Qt".'.i'ttﬂ""'.ttt""QQ"Q'.""."#*".Q
i1f(Epol)then
bu~ci*k*w/2*Z0/ETA
Ke=0,62/(b+1.15)* (b+4,08) * (b+7.26) * (b+10.37)
*(b+13.43)* (b+16.46)
/((b+4.27)* (b+7.37) * (b+10.45) *(b+13.49)
*(b+16.5))
N Psca=~ci*pi/4~ (k*w)**2*sin (phio) *sin(phi) *Ke
else
a=ci*2,/k/w*Zo/eta
Kh==1/(pi/2*a+0.1+1l0g(2.))
Ao=log (k*w/4) +gam-ci*pi/2
Psca=ci*pi*Kh/ (1+Ao*Kh)
endif

Snn
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c...Outputting the far field magnitude and phase
print *,’ d = ’,d
print +,’ Analytical: |Psca| = ’,cabs{Psca),
& '’ arg Psca = ’,180/pi*(atan2(almag(Psca),Real (Psca)))
write(3,*) d,cabs(Psca)
write(4,*) d,180/pi* (atan2(almag(Psca),Real (Psca)))

d=d+dstep
700 continue

print *,’ Again (l=yes) 2
read(*,1)ians
if(ians .eq. 1) GOTO 10

800 call exit
END
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