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ABSTRACT

A solution is obtained for the electric field at
the air-ferrite interface (Z = 0) in a rectangular
waveguide filled with ferrite in the semi-infinite
half (Z>0) and magnetized in the direction of the
electric field. The field is expressed in terms
of a Neumann series obtained by iteration of a
singular integral equation which satisfies the boundary
conditions at the interface. The equivalent circuit
for the Jjunction is also presented.

iii
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REFLECTIONS IN A FERRITE-FILLED WAVEGUIDE

C. B. Sharpe and D. S. Heim

INTRODUCTION

The mathematical difficulties which are encountered in the solution
of boundary value problems involving gyromagnetic media have been pointed out
by several authorsql’g’5 In most of the problems treated to date some form of
perturbation theory or the assumption of quasi-stationary fields has been
necessary to make the problem tractable. The formulation of these problems is
usually straightforward but the imposition of the boundary conditions at the
isotropic~-to=-anisotropic interface usually introduces serious complications in
obtaining a direct solution. The problem discussed here in which the aniso-
tropic media 1s a semi-infinite slab of ferrite filling a rectangular wave-
guide conforms to the established pattern. This problem appears to present
the essential difficulties common to the solution of many ferrite boundary=-
value problems in a relatively simple form.

Referring to Fig. 1 we consider an infinite rectangular waveguide
which is filled with a ferrite medium for z > O and air for z < 0. The
ferrite region is magnetized in the y-direction with an internal field H. A
TE10 wave is incident from the left at the air-ferrite interface (z = 0). The
problem is to determine the electric and magnetic fields at the interface and
the equivalent circuit for the junction. The ferrite medium is assumed to be
lossless and characterized by a tensor permesbility

/s7u 0O Jk
(p,) = 0 U.O B

:JH 0O M

H

1. P. S. Epstein, Rev. Mod. Phys., vol 28, pp., 3-17; January, 1956.

2. A. Ao Th. M. VanTrier, Appl. Sci. Res. sect. B, vol. 3, pp. 305-370; 1953,

3. H. Suhl and L. R. Walker, BSTJ, Part I: vole. 33, pp. 579-659, May, 1954;
Part II: wvol. 33, pp. 939-986, July, 1954; Part III: vol. 33, pp. 1133~
1194, September, 1954,
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where
2
_E_ - l+r Ms H
= ez 2 ?
Ho [M°8° - w
k- _ol Mg

=
Ko r—' H® - w?

In rationalized mks units, which are used throughout, the gyromagnetic ratior1
is given by

[T = -o0.22x 10° meters/ampere.second.
Mg is defined as the magnetization at saturation using the convention
B = po (H+M) .

All field quantities are taken proportional to exp (jwt).

THE EQUIVALENT CIRCUIT

It has been shown by several authors that in the case where the
electric and magnetic fields are independent of the y variable, the y component
of the electric field in the ferrite medium satisfies the scalar wave equation'

2

0% By . d Ey
St S A tOM e Ey = 0,
where ui_is defined as
2 2
= B -~ K
9% = °
4 K
Assuming the forward traveling electric wave has the form
- (2);
Ey = Ey(X) e )

it follows that the transmitted electric field in medium (2) can be expressed
by

4. see, for example, Ref. 3, Part II.




~———  The University of Michigan « Engineering Research Institute

00
E (8) _ Y p gin BTy ™D , (1)
Y n=1 %8 a
where ( .
2) 2 5
7y = ﬁnn/a) - o

The transverse magnetic field in the ferrite is given by

. 2)

& - (2 w7y @)z

Hx-( ) = 5 TnEmM cos EaEX - Yn ) sin %’E x} e B s (2)
n=1

where we have defined

7 K
M o= X
aw pe - k
(2)
v () Ty
o o |

In the air-filled waveguide [medium (1)] the in%]if}ent and reflected waves are
=z

given by 3 -7
Ey(l) = sin x/a e * ) (3)
Hx(i) = - Yl(-l) sin ux/a eﬁl o (&)
g (r) _ f R, sin nxx/a e n(l) z (5)
Y n=1 . .
0 | (1)
Hx(r) = L Yn(l) R, sin nuax/a REN s (6)
n=1
where [ 2
711(1) - d(%’-‘) - a)zp.oeo and
(1)
(1) . o :
5t - o

The boundary conditions to be satisfied at z = O are

Ey(i) + Ey(r) - EyQt)‘ ,

Hx(i) +H}'<(r)' = ")

|
==
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It now becomes apparent why an infinite number of reflected and
transmitted modes will be required. In effect, the ferrite interface creates
a "discontinuity" due to the presence of the cosine terms in (2). The fact
that the sike and cosine terms are not orthogonal to each other in the interval
0 < x < a necessitates the use of all possible modes as expressed in equations
(1)=(6). The boundary conditions (7) lead to

(oo} [e0]
sin nx/a -+ L Ry sinnmmgx/a = L Tp sinnmx/a (8)
n=1 n=1
=) ° Q) ©
-Y, " sin sx/a + L Y, ' Ry sin nnx/a = L T, |oM cos nnx/a
n=1 n=1

- Yﬁ(g) sin ni'rx/a:l . (9)

It follows from (8) that

1+Ry = Ty -
| (10)
R, = T,3n>1 .
Using (10) Eq. (9) can be expressed in the form
' 1 2 (1 B
El (Yl(‘ ) + Yl( )) -2 Yl( il sin nx/a = 2 oM T, cos nwx/a
) - n=1
(o]
- (Yn(l) + Yn(e)) T, sin nix/a (11)
n =2 ’

Both Epstein5 and VanTriexfS have pointed out that Eq. (ll).leads to an in-
finite system of simultaneous linear equations. Unfortunately, this formula-
tion does not lead to a practical solution. Epstein has used a method of
‘successive approximations to obtain a power series expansion for R; in terms

of k/(u2 - k2). However, this leaves much to be desired, particularly since
k/ (12 - k2) can be very large. In the solution which follows, Eq. (11) will be
expressed as an integral equation in terms of the electric field Ey at the in-
terface. The solution will yield the electric and magnetic fields directly for
almost all values of k/(uZ - k2).

It will be convenient to normalize Eq.. (11). Consider the case where
only the first mode propagates in the ferrite medium. That is,

>, Op. cit.

6, Op. cit.
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(n/2)2< oy ~s:f<(2:t/!—=-)2 .

It is assumed in all cases that only the dominant mode propagates in the air-
filled section. The transmission line circuit illustrated in Fig. 2 will be
equivalent to the waveguide Jjunction if we can identify the voltage and current
waves on the line with the fundamental components of the transverse electric -
and magnetic fields, respectively, in the waveguide. The analogy which we shall
employ here makes the constant of proportionality between current and voltage
equal to the wave admittance for the dominant mode in the corresponding wave
guide, The quantity Re [v(J) 1(J)¥], 5 =1, r, t, (see Fig. 2) Will be
proportional to the power flow in the corresponding wave guide., It should be
noted that with the coordinate system of Fig. 1 the power will flow in the
direction of negative current. In the air-filled section the following
definitions will be convenient:

- Eyl(i) = V(z )(i) sin o~ a 3 .Eyl(r)EE V(z)(r) sin 2?
HX'l(i) = -—Y.l(l)Eyl(i) = 1(z)(1) sinfX 5 B (r) -y (1)Ey (r).. I(z)(r)sin—— -

The subscriptl denotes the first mode. HoYexer, in the ferrite filled section
a f?n?amental difficulty occurs since is not simply proportional to
. Nevertheless, a similar correspondence can be made:

X

(%) () .. 1
R v(z) sin—

1(z) sin’™ = -, (&) Ey_](.t) .

Power flow in the ferrite medium is still proportional to Re [V(t) I(t)*] since
the cosine term in (2) does not contribute to the integral of Poynting's vec-
tor over the cross section of the waveguide, Of course, the continuity of

H, at the junction no longer implies the continuity of current flow in the
equivalent circuit. This discontinuity in current flow at the Jjunction is
accounted for by the current I flowing through the impedance Z. The ideal
transformer is taken as l:1 since the electric field is continuous at the

Junction. Thus at z = O3

¢ g
vt . T,
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From Fig. 2,

v Ly @) )
rAC o B L
Tt follows that - (Yl(l) . Yl(z)) @ 12)
Tt will be useful to make the change of varisble,
§ = nx/a .
Then, at z = O,
Ey(t)(¢) = io Tpsinn g 5 o<@P<n, (13)
n=1
where < (&)
T, = e/nf E, (#)sinng af . (14)
o

Fo%%Swing‘Schwinger and Miles,? we define a normalized field proportional to
2

By
Ey(t)(;é) =181 . (15)
Then,
v T, = 2/n 1 rr E(¢) sin ng ag ,
%
and (t) 7
Z:L—=2/nf E(@) sindad . (16)
I
o]
Ify£(¢) is expanded in a Fourier series
Eg) = DZO (An+jBn)sinn¢ ; 0<fd<=n ,
n=1 '
the impedance Z will be given by
Z = Ay + jBy . (17)

It is shown in the Appendix that for a lossless ferrite medium A; = O. With
the help of Egs. (12)-(15) and the fact that

TOJ.W. Miles, "The Equivalent Circuit for a Plane Discontinuity in a Cylin-
drical Wave Guide," Proc. IRE, voJ_.6 34, pp. 728-742, October, 19Lk6.
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g = 2/n T nfﬂ£(¢") sin n@' cos ng dag' |,
1

n =
o}

Eq. (11) can be written,

, @ (
sin § =ME(P) -2/x T (Y, H + Yn(g))fﬂg(gﬁ') sin n@* sin ng ag* ;

O<P<n . (18)
I
€ (@) denotes the derivative of £ (§) with respect to @,
When all modes are cut-off in the ferrite,
2 12

and Yl(e) is imaginary. The equivalent circuit of Fig. 2 will suffice for
this case also with the understanding that no power is transmitted away from
the junction to the right. We cannot neglect 1\t) gince it gives rise to an
inductive susceptance in parallel with Z. The impedance Z accounts for the
discontinuity in the sinusoidal component of Hy as before. The theory which
follows will therefore be valid for both the case where only the dominant mode
propagates in the ferrite and the case where all modes are cut~off,

THEORY

In order to solve Eq. (18) for €(¢#) it is necessary to make a
commonly used assumption; namely,

(l) (2) A
’)’n = 7n =n1t/a s n>1
| 1 (2)
Then Ypn + Y, can be approximated by
(1) 2)- -
Y +Yn() ¥ -JKn 3 n>1, (19)

where
K = afaw [1/pg + 1/uyl .

Eg. (19) is usually a reasonable assumption to meke for problems where only

the first mode propagates, However, we shall find in the present problem that
this assumption is of critical importance for the case where M/K = 1.

With this assumption, Eq. (18) can be written,
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Csin = ME(P) + jK 2/n i nfngi(gé‘) sin n@' sin ng dag' ,(20)
n=1

O

where

C=l+jK2/1tfﬂ8(¢)sin¢d¢=l-KBl . (21)

Integrating the last term in (20) by parts and employing the identity8

sin nf = 1/x " sin @ cos ny d¥ 5 n=0,1,2, ...
cosﬂr-cos¢
O

one obtains

C sin @ =M E(F) + jK 2/x% sin ¢ § fﬂg'(gje) cos n¢’d¢"fn‘ cos n ¥ gy,

n=1 cos | - cos
o} o
(22)
Interchanging the order of integration and summation in (22) and using the
fact that
, 0 7t , ’
EW) = 2/x X f £(¢*) cos ng* cos ny ag* ,
n=1
o}
we obtain a singular integral equation of the second kind.
Csing = ME(P) + jK/x f EW) sing gy (23)

cos ¥ - cos @

It is convenient to define

€(g)

I

(¢) +J’8i (¢) .

Equation (23) can then be expressed by the system,

Csing = MELP) - K/ f“ Cily) sin g (oh)

cos Y = cos¢

o)

0 = ME|(P) + K/x fé:(wwg o (25)

8, W. Magnus and F. Oberhettinger, Formulas and Theorems for the Functions
of Mathematical Physics, Chelsea Pub. Co., New York, 1954,
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Schmeldler has shown how this system of integral equations can be solved by a
process of iteration when ]M/KI < 1l. It is interesting to note that the ex~
ample discussed by Schmeidler which gives rise to these equations is a problem
in elasticity. The real and imaginary components of &'(f) are analogous to the
horizontal and vertical components of pressure, respectively, at the base of a
dam. The depth of water as a variable has tlie same significance as the
magnitude of the magnetizing field H in the electromagnetic field problem.

Solution for Small M/K

Since a solution is desired for all values of M and K the procedure
which is presented here differs somewhat from that given by Schmeidler. We
shall have need for the following integral equation and its solution:

£(s) = 1/x fﬂ sin s g(t) at (26)
cos t = cos s ,
¢}

gt) = 1/x f g(t) at - 1/nfﬂ f(s) sins oo (27)

cos 8 - cos t
o 0

Recalling that £(@) = O for § = 0, n, the application of (26) and (27) to Egs.
(24) and (25) yields

€£(¢) + M/K Uﬁ "gp (¥) sin ¥ ay = C/KI% L/\ sin® ¥ &y
(o]

cos ¥ - cos @ cos ¥ - cos @

(9]
= «C/Kcos ¢ , (28)
and
1 L 7(81(111) n vy
En(g) = M/K‘?rf cosx[fS:LCOSQS ay - (29)

Solving for é;(¢) ,

1 cos § - cos T cos T = cos V¥
o o

EP) = - /K cos § - (M/K)2 r;{ Jfﬂ sin T dT J/Jtei(W) sin V¥ b (30)

Equation (30) can be identified as an integral equation of the form

9, W. Schmeidler, - Integralgleichungen mit Anwendungen in Physik und Technik,
Geest and Portig K.-G., Leipzig, 1955.

9
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1]

£1(4) = £(¢) + xf“ K(f,r) an"em:) K(r,¥) ay (31)

(0] (0]

by meking the correspondence,

K6,7) = 1% soe g e (52)
f(§) = - C/K cos ¢
A= - (MK)E .
Iterating (31) yields,
b1d
E@) = @) +n [T kb,m) ar [ £(4) K(r,¥) av
e

+ ng/hﬂ K(g,7) dTL/ﬂﬂK(T,G) do L/ﬂﬁK(U;»P) dﬁ/ﬁifi(W) Kp,¥)av.
(0]

(o} o o}

Repeating the process leads to a Neumann series ford?;(¢), It can be showﬁlo
that for the kernel (52), the sbove series converges for IKI < 1. Thus, the
first order approximation to £'(@) can be taken as

£i(d) = £(9)

and the second order approximation as
i n x !
Ei (@) = £(@) + f K(¢4,7) de £(¥) K(7,¥) av . (33)
o} o

We shall obtain only the second order approximation, although the extension to
higher order approximations is obvious. It will be convenient to set

E = -cos ¢, 1 = ~-cos T, £ =-cos V¥ .

Then Eq. (33) becomes,
> +1

LW = 2o-5(%) L) S o

K|] =

With the aid of the definite integral,

[P 20

10 Bchmedllsr, op. cit.

10
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1

2
nﬂnb—ﬂ—d——ﬂ—:é— zn}_..:t__g_ _3‘[2 »
1-nt-n 2 1-¢
-1

it follows that

8;2(¢) = -% l:l +1/2 (%)2:[ cos § - niCK (%)2 . ]l_ “_* Zgz g

2
C M\=2 1l + cos M
- M - < e l"
o % (K) cos ¢ én ‘___%l T oon > 5 ‘K‘ 1 (34)

The solution for EI',(¢) follows in the same menner. Substituting (28)

in (29):

' M 2 > % gin T 4T ﬂe}(\lr) sin ¥
d;r(¢) * (K) L/x b/w cos T - cos § 5 Ccos ¥V - cos T W
5 {

;(CI_{@)[EMHH] s (35)

The iteration of (35) requires the following integrals:ll

f1£n1+3 dp  _ 1 Gn1+§>2_gf

l=méf-n 2
-1

1 2 3 2
1+7 dp _ 1 1+ ¢ __9__:_15 £l+§_2:rt .
S én1.~r) E-n 3 génz.wg> "SRRI T

-1

There results,

A O

11
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It remains to determine C,which is a function of the unknown reactance
By. From (16),

B, = 2fx f“e}{(;é) cos fag . (37)

Applying (21) and (37) to (36) and using the following integrals:

" 1+
f cos ¢ In COS & ag = ox

1 - cos
o
ﬁ0052¢ oy Lt cos 2d¢ I S
f 1 - cos 2 ?
O .
2
Y
7= \K
we obtain, KB = Tane (38)
and
¢ - .22 (KY
Lo\M :

Therefore, the second order approximations to &1(@) and £3.(@) when |M/K| <1
are given by

6:{2(?5) = g‘; l+2(§>2 COS¢+=§]E£1’1 %—'E%Zz—g
- g cos ¢ (b -%—1*—{—22—%)2 59)
Ex,00) = %Bﬁ) +3 (%) v [(%)%@J cos (zn S >

Solution for large M/K.

A Neumann series valid for ]M/Kl > 1 can also be obtained from Egs.
(2k) and (25). By direct substitution,

12
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i _C (K 4 1L +cos @ (K\*1 i sin g ar ﬂé}{(\y)sin«rd
e10) = 5 (B) otn ¢ m Lree . (8L [ v
o

1 - cos § M/ =2 cos § - cos T , cosT-cosV
(41)
C K\2 1 " sin ¢ ar %"(\lr) sin T
ELP) = a sin § - <—) == f L ay . (42)
o

M) =® cos § - cos T cos T = cos ¥
o

Both (41) and (42) reduce to an equation of the same form as (31) if we take,

K(¢)T) -1 Sin¢

wcos P - cos T

SRG

Iteration again yields a Neumann series in terms of A. It can be shown that
the series will converge for |\| < 1, that is for 1 < |M/K|. The proof
parallels that given by Schmeidler for the previous case, Second order
approximations to € (@) and E4(P) are found to be,

e - = @ +g<§)4 sin § 1n Lot cos ¢

1 C (K\* 1 + cos
- = s L
Z3 K(M) sin @ [In T oos ¢> (43)

a ¢ l/x\ .1 (x| ¢ (ke . 1+ cos P\
e = L (G0) 5 () o8- (i) e (0 1——7,3> .

where we have employed the integral,
1 2 2
f (o Ltm) _dan _ + £\ en it
o\ 1-1) E-n o : 5 l-t

With the aid of the following definite integrals:

.
f sin¢cos¢,£nu]l;—u-gs—%d¢ = 2
A -
s
fsin¢cos¢< +cos>d¢=2¢r2,
5 1 - cos

15



———  The University of Michigan + Engineering Research Institute

the constants B; and C are found to be,

() <56 o)

14
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DISCUSSION

The question naturally arises as to the range of frequeney and mag-
Tnetizing field over which the foregoing solution is applicable. One might con-
sider the assumption that no higher modes than the first propagate in the fer-
rite to be rather restrictive in view of the infinite range of values which the
effective permeability u, can take on in the ideal lossless case. Figure 3 il~
lustrates the regions in the f - f, plane which correspond to the permitted TE
modes of propagation for a typical ferrite (Mg = .23L x 100 A/M,vef = 13 eo) in
an x-band waveguide. In deriving these curves we have employed ‘the relation

(£, + £4 )% - 12

My /HO = — 5
folfg +£4) - F
where
t, = [T Hex
£.o= [Tl Myer .

S

It should be noted that the 'no-propagation” region above p; resonance occu-
pies a substantial portion of the graph. Much of this region corresponds to
negative values of p; . There is nothing inherent in the method of the
preceding section which restricts the solution to the case considered. However,
the process of iteration employed becomes exceedingly tedious as higher order
modes are permitted to propagate in the ferrite.

For purposes of illustration the derivative of the normalized elec-
tric field at the air=ferrite interface is plotted in Figs. 4 and 5 for two
different values of M/K. It can be shown that

rf
s

M
K ° 2 °
or” - (£, + £ ) (2f  + 1)

Both (M/K)2 vaiues of L/3 and 5 give solutions for f and fo which lie in the
"no-propagation" region above p, resonance in Fig. 3. The existance of both-a
real and imaginary part to the field at the interface is unique to boundary
value problems involving anisotropic media. Although the field strength at
each position across the waveguide varies sinusoidally with time, the phase

of this variation differs from one point to the next. Thus, the field if

15
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plotted sequentially as in Fig. 5 appears to exhibit a periodic "shimmy."

The value of (M/K) = 1 seems to be a critical point in the analysis.
Not only do the fields display a markedly different appearance for values of
M/K on either side of unity but the series sclution itself probably does not
converge for this critical value. One would suspect the assumption of Eq. (19)
to be the source of the difficulty. The value of (M/K) = O leads to an inde-
terminate solution for the normalized field 6;(¢) because the normalizing fac-
tor I is also zero at this point. This is of little consequence, however,
since for M = O the problem reduces to the case of an isotropic dielectric.
It is interesting to note, again in contrast to isotropic problems, that B,
may be either inductive or capacitive since K can be positive or negative.

16
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APPENDIX

_Ii; Variational Expression for By

The real and imaginary parts of Eq. (20) can be written as,

‘J‘[n__

sin § = Mf;(ﬁﬁ) L Z nf £:(#') sin ng' sin ng ag" (A-1)

o = MEI(P) +g-~IS Z f Er(@*) sin n ¢ sin nQS agr . (a-2)

Multiplying (A-1) by &.(#) and (A-2) by £;(#) and integrating,

Jree o gopou [onhigzos - 2 T aof Touetn s ssn ns € o
n=2
(A-3)

ﬁ |

[T g+ Z T n ] €x#) otn f stn n €5 (e o
n=2

(a-h)

Since, integrating by parts,

[Tew e - [Tedresd - o,

Egs. (A<3) and (A-L) yield,

foﬂé‘r(é) sin fdf = 0

Tt follows from (16) and (17) that A; = O.

-

If one multiplies (A-1) by €i(¢) and (A-2) by@r(gé) and integrates,

o0

T T 2K = . .
[Tesrom gap-u["erpig s - 2 2 nfe1() smupramnp s (fag o
o n=2

@)

(A-5)

17
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Noting that,

foﬂem) &1 (9)ad

The University of Michigan

B)ag +

Engineering Research Institute

2K

@ x
2 nﬁ E,.(¢") sin ng' sin ng €.(4)ag agr .
n=2

(A-6)

k18
- [Tewm ey

Eqs. (A-5) and (A-6) yleld
Jfﬂ . 2K " _ &
o &Ei(f) sin dag = - Z n (5 (¢) sin ng d¢ 1o é‘i(Qﬁ)s:Ln ng ag| ¢

(A-T)

Since we have used the derivative of the field in the foregoing theory it will
be convenient to express (A-7) in terms of 6’1(¢) From (A-2),

J;ﬁgr(ﬁ) sin n ¢a ¢ l/n%J;ngi(ﬁ) sinn@gd@d; n>1.

Dividing (A-7) by

[ eut o e g
Lfoﬁg;(yﬁ) cos 4 (!5]2 ,

it follows that

an m{()[fg dlnngédgzz‘ Uc cosnﬁda}
Ué; cosgéd;é]

1/B;

Alternatively,
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where,

¢(d,f') = K ; 1/n l:(b—é)z sin ng sin n@' - cos nd cos n¢':|

n=2

It can be shown that (A-8) is stationary with respect to variations in 6'(¢ .
The correct field will establish the extremum for Bl . Therefore, thls ex-
pression could be employed to improve the approximations previously obtained
for B;. There seems little point in this, however, since higher order terms
for the field can be obtained more easily by extending the Neumann series.

19
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