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ABSTRACT

The analysis of a nonuniform transmission
line is formulated as a one-dimensional scattering
problem by transforming the transmission line equa-
tions into an integral equation. Approximate solu-
tions of the integral equation for the input reflec-
tion coefficient of a nonuniform line terminated in
an arbitrary impedance are obtained by employing the
Neumann and Fredholm series expansions. Two exam-
ples in the application of these solutions are given.
It is shown that the Fredholm solution leads to
Orlov's synthesis formula by means of which the im-
pedance variation of a nonuniform line can be calcu-
lated in terms of the input and output reflection
coefficients.
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THE SCATTERING APPROACH TO THE SYNTHESIS
OF NONUNIFORM LINES

1. TNTRODUCTION

The analysis Qf nonuniform transmission lines can be approached
in several different ways. However, only one formulation of the solu-
tion has proved generally useful in the synthesis problem. For a loss=-
less line of length "{" this formulation is the well-known Fourier re-
lationship (Refs. 1, 2).

. dinZO(x)
i T (1)

£
T(k) = [ p(x)e ™™™ ax; p(x)

between the input reflection coefficient ['(k) and the "reflection dis-
tribution function," p(x). The independent variable can always be nor-
malized so that the propagation constant in (1) may be taken as k = 2n/x,
where N is the wavelength in free space. This formula, which is approx-
imate, is restricted to gradual tapers for which the reflection coeffi-
cient along the line defined by

V(x)/1(x) - 2 (x)

P& = st s 2_(x) (2)

satisfies the inequality, F(x)2 K 1lfor 0<x< . As a result of this
restriction (1) is not a valid approximation when the line is terminated
by a load impedance corresponding to a substantial mismatch at x = {£.

In many practical applications, such as the broadband matching of crys-

tal mixers or antennas, this case is of interest. The present paper

treats the general problem of a nonuniform line terminated by an arbitrary



load impedance as a one-dimensional scattering problem. By formulating
the problem in terms of an integral equation for the unknown wave func-
tion it is shown that the application of classical perturbation techniques
leads to a useful generalization of (l) valid for any given load imped-

ance.

2. FORMULATION OF THE SCATTERING PROBLEM

The essential assumption in nonuniform line theory is the ex-
istence of a unique voltage V(z) and current I(z) which are related at
any point z on the line by the equations

Wlz) _ _z(z)1(z) (3a)

dz

I

az) _ _y(z)v(z) (3b)

dz

where Z and Y are the series impedance and shunt admittance, respective-
ly, per unit length. The application of these equations to a nonuniform
structure implies that the electric and magnetic fields supported by the
structure at the frequency of interest correspond; within some accepta-
ble approximation, to the principal (TEM) mode. As in the uniform case
a characteristic impedance Zo(z) = ~/£(ZS7§ZZ) and a propagation con-
stant 7(z) = vZ(2)Y(z) can be defined, although the physical interpre-
tation of these quantities is now restricted by the fact that they have
meaning only in the local sense, that is, at the point z. For the loss-
less line considered here y(z) = jg(z) is imaginary and Zo(z) is real.
It will be convenient to normalize (3a) and (3b) by making the following

substitutions:



X = % [ B(z) dz (4)
o

V(x) = u(x)'JZB(x ; I(x) = v(x)/«/Zo(x) . (5)
Then (3a) and (3b) become

M + p(x)u(x) + ka(x) = 0 (6a)

dx

dvix

=t - p(x)v(x) + jku(x) 0, (év)

where p(x) is defined in (1). Combining (6a) and (6b) one obtains the

one-dimensional form of the time-independent Schroedinger wave equation,

2
gggézg + k2U(x) = P(x)u(x) , (7)

where the role of the potential function is played by

P(x) = p7(x) - ) (&)
The application of (7) and its three-dimensional counterpart
to the quantum theory of particle scattering has been treated extensive-
ly in the literature (Ref. 3). The late W. W. Hansen (Ref. 4) appears
to have been first to employ the scattering approach in the analysis of
nonuniform lines. The present analysis parallels the formulation of the
one-dimensional scattering problem with one major difference. In the
transmission line problem under consideration the incident wave is "scat-
tered" by the load which terminates the line as well as by the line it-

self. Accordingly, in the solution of (7) the boundary condition imposed

5



by the load replaces the boundary condition at x = « commonly designated

in the problem of scattering by a central force field. If the load im-

pedance is Zl the continuity of current and voltage at x = [ requires
that
z,(1)
0
V(l) = Z U.(l) ® (9)
L

It follows from (6a) that the solution to (7) must satisfy

Z
e PP C z-ji) (20)

where Z , = Zo(t) and p, = p(£). The boundary condition at x = = will

be satisfied if, as x = -,

u(x) e JEX | Tetikx (1)

Referring to Fig. 1, the incident wave is taken as e"jkx and the reflec-

ka. T'(k) is defined as the reflection co-

ted or scattered wave as [e
efficient of the line at x = 0.
The line is assumed to be continu-

ous for -o» < x < {, although it will

lzo(x) be seen later that this restriction
2 ;'— can be lifted to permit small step
o
Tk : ' discontinuities. The synthesis
JWL~:=° ‘ <=1 > X problem for nonuniform lines can

now be stated as follows: given

the reflection coefficient I'(k),
Fig. 1. Typical impedance varia-
tion for a nonuniform line. - < k < w, solve (7) for P(x)



subject to boundary conditions (10) and (11) with P(x) = 0, x < O. Even
when a solution to this problem exists, it cannot be found in general.
Instead of attacking the synthesis problem directly, we will apply the
perturbation techniques (Ref. 5) commonly employed in the scattering
problem to obtain an approximate relationship between ['(k) and P(x) in
the form of a Fourier integral.

In the scattering formulation of the problem the solution to

(7) is expressed as the sum of two wave functions:
u(x) = ug(x) +u (), (12)

where the "unperturbed wave uo(x) is taken as a solution of the homoge-

neous equation,

dguo(x)

2

+ kzuo(x) = 0. (13)
dx

The scattered wave us(x), representing the unknown perturbation due to

the nonuniformities of the line, consequently satisfies

deus(x)

2

+k2us(x) = P(x)u(x) - (14)
ax

The unperturbed wave in the present problem in general possesses both an
incident and a reflected component owing to the presence of a mismatch
at x = . The unperturbed wave will therefore be taken as

uo(x) =TI, I"Oejkx , (15)



where the constant I; is chosen so that us(x) will satisfy homogeneous

boundary conditions at x = £. It is readily shown that if

Jk Z Y
F - 2 e 2Jk£ , (1-6)
0 P Z
1 —£ + of
Jk Zz

then the scattered wave uS(x) also satisfies (10). Equation 14 can be
expressed as an integral equation by introducing the one-dimensional

Green's function defined as a solution of

2
S00uE) 4 %a(x,e) = - B(x - 8) (17)
ax

which satisfies (10) at x = { and the asymptotic condition, G(x,£&) —

A(g) eI s x o . The desired Green's function can be shown to be

Jk(x - &) ;
E_——EEE_—— (1 + I;eEJkg), x <&

G(x,&) = T ik ( ) (18)
et (L + I;egjkx), x>t .

X 53K

It follows from the theory of Green's functions (Ref. 6) that

)
w(x) = - [ 6(x,8) P(&) u(e) as . (19)

-0
When (19) is substituted in (12) one obtains a Fredholm integral equa-

tion of the second kind in terms of u(x):

L
u(x) = uy(x) - [ o(x,8) P(&) u(g) at . (20)

-=C0



Equation 20 is a convenient starting point for the application of per-
turbation methods. Although the approximate solution of (20) for u(x),
given P(x), will yield the complete voltage pattern on the line, it will
not be necessary to carry through the solution to this extent in order
to obtain the desired reflection coefficient. It will be shown in the
next section that an approximate value of [{k) can be obtained by inspec-

tion.

3. APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION

There are two basic methods in the theory of integral equa-
tions (Ref. 7) for solving equations of the type given by (20). The
Neumann series solution is obtained by a simple procedure of successive

approximations. For example, the first iteration of (20) yields:l

!
w () = ux) - [ a(x,8) B(e) u(t) g (21)

=00

In general,

L
w0 = u(x) - [ oalx,e) P(e) wle) ag . (22)

=00

As would be expected the series obtained by repeated iterations converges
most rapidly when the contribution of the last term in (21) to ul(x) is
relatively small. Substituting (15) and (18) in (21) gives

. R X
ul(x) = eI (e-ka + I;eka ) 5%— j- eV p(¢) u (&) ag

LYyhen this procedure is applied to the scattering problem, (21) is re-

ferred to as Born's approximation.

T



. 1 . .
sl AT L [ (e LTI p(e) u (1) ar| . (23)

o 2Jk < o]

The first-order approximation to the reflection coefficient is obtained

by examining the behavior of (23) as x - w. In the limit the coeffi-

cient of eka is

!

I'k) = I; - ng _f (e'jkg + I;ejkg):P(g) u (&) ag . (2k4)

=00

Substituting (15) in (24) and noting that P(x) = 0, x <O,

2 o 2
- 1 -Jk¢ Jké
M) = T - 55 df (et + Te? ) p(r) ac . (25)
It is not inconsistent with the perturbation assumption to take P(x) =

-p'(x). From (7) and (8) a sufficient condition for the validity of this

approximation is

|p(x)|max << k (26)

With the additional assumption that p, = 0, integration by parts yields

T) = T+ [ A T® e p(z) ac . (27)
o
Even when P, # 0, (27) can be considered a useful approximation since,
by virtue of (26), the constant term resulting from the integration by
parts will be negligible. It can be seen that (27) agrees with (1) when
I; = 0. The second term in the integrand accounts, to the first order,
for the interaction of the wave reflected from the load with the nonuni-

form line.



It will be instructive to apply (27) to the simple case of a

step line terminated in a load having the reflection coefficient

r - Zy = Zop
J Zi + 202

as illustrated in Fig. 2. The ap-

plicability of (27) to this problem

(28)

InZ'

InZy(x) ¢
is questionable because the term
pz(x) which has been neglected in
its derivation has no meaning in
InZ,,

In Zg,

this case at x = 0. Nevertheless,

we will proceed without answering

Fig. 2. Impedance variation for

this question now. Integrating (27)

by parts one obtains

1 ZOE 1 2 ZOQ
=g g ol Lo
01 oL
where I; = e_Esz I}.‘ The exact solution to this problem i
(Zoe'Z01)+F
ZOE + ZOl 0
I = Z . - % .
02 0L
l'+Fo<Z + 2 )
02 0l

Assuming the step is small,

the step line.

(29)

(30)



., -2 Z

293_:7525 ~ % ™ 292 <1. (%1)
02 * “o1 01

Expanding (30) in powers of I; and neglecting higher-order terms in

Zop = %01
G
Zop * 201
there results,
2. -2z 7 -z 7 -2\ °
02 T “01 e[ 02 T “o1 3 “02 01
el |*L-Sleaz | * L\goez ) - (52
02 o1 02 oL o2 T “o1

which agrees with (29) to the second order within the restriction imposed
by (31). Thus it is seen that (27) is applicable in the case of a step
discontinuity when the step is small. This is not suprising since this
type of problem presents no difficulty when the Fourier relation (1) is
derived from the differential equation satisfied by the reflection coef-
ficient (2). The restriction that the step be small is equivalent to

the condition.fe(x) << 1.

There is an inherent limitation in the Neumann series solution
to the scattering problem. This can be seen by considering the above
exasmple. When I; # 0 in (30), I(k) will have countable infinity of poles
in the finite k-plane. The larger the discontinuity at the step or the
reflection at the load, the closer these poles will be to the real k-
axis. The Neumsnn series will tend to converge slowly or may not con-
verge at all in the vicinity of these poles. This situation is likely
to prevail in general since we can think of the arbitrary nonuniform line
as consisting of a succession of infinitesimal steps, the input reflec-
tion coefficient at one step providing the load reflection coefficient

10



for the next. This suggests that we should seek an approximation involv-
ing a series expansion of the denominator as well as the numerator, in
this way introducing poles in I'(k). The Fredholm series is such a solu-

tion.

L. DERIVATION OF ORLOV'S RESULT

The Fredholm series solution of

/

u(x) = uw(x) +r [ K(x,€) u(g) at (33)
is given by
l .
OO | Pig-%&uom at (34)
where
P o g g |K(Ep81) K(E)5E5)
D(A) =1 - A K(e. &, )dE, + o Q. dE - ...
"°-°f 1o 1 2 'J "‘;’[ K(gg)gl) K(§2)§2) L2
(35)
and

7 K(x, &) K(x, gl)

D(x,&;N) = K(x,&) - A

-00

dE, +

1

K(g,,8) K(g;5€;)

, K(x, &) K(x, 51) K(x, 52)
,f K(g;,8) K(8,,8,) K(E ,6,) | ABqdE,m -on (36)
K(e,,8) K(E,,61) K(Ey58,)

2 4

11



Comparing (33%) with (20) we will have the desired expansion if we set
K(x,¢) = G(x,&) P(&) and A = -1. It is assumed, of course, that A = -1
is not an eigenvalue of (3%). Although the complexity of this expansion
rapidly gets out of hand, the first-order approximation obtained by cut-
ting off (35) with the second term and (2%6) with the first term is a

simple expression:

£
[ ox,e) P(e) u (e) dt
u(x) = uo(x) - = 7 . (37)
1+ [ o(e,e) p(e) a

-00

Proceeding as in the previous case the reflection coefficient obtained

from (37) is

T, - 55k [ (T +e™8) 2(e) ag

P(k) = o
f (1+T, 258 ) p(x) at
O

It—-‘
=

If we again take P(x) ® -p'(x), integration by parts yields

.
T+ [ e o) ag
T(x) = — : (9)
1T, [ B p(e)ae
0

where the constant term has been neglected by virtue of (26), as in the
derivation of (27). It is evident that within the restriction imposed
by (31), (39) gives the exact solution for the problem of Fig. 2. The
superiority of the Fredholm solution over the Neumann solution is prob-
ably a valid conclusion in general for the reasons discussed above. If

12



condition (26) is also imposed on (16) to eliminate the p,/Jk term, then
(39) becomes identical to a result obtained by Orlov (Ref. 8). Orlov's
derivation was based on an entirely different approach involving a limit
process applied to a step approximation to the nonuniform line. It
should be noted that Orlov did not explicitly make the assumption (26)
although he required Ip(x)[max I << 1 to justify taking only the first
terms of his numerator and denominator series. The somewhat more gen-
eral result (38) does not appear obtainable by his method.

As an example in the application of the Fredholm solution, con-
sider the exponential line of Fig. 3, where p(x) = K = (l/2£)£n(2.02/ZOl),
0 Sx < f. Neglecting terms of or-

der KQ, (%8) yields

|nz§ﬂ“ nZy m——
anoz
K
T
K + 2jk o]
F(k) T =K + 2jk _ K T ’ (MO)
K+2jk K+ 2jk "0
In Zg, o 1 - X

where from (16),

Fig. 3. Impedance variation for

B ] the exponential line.
2'02
K + Jk(z—— - l>
T =- : e EEL (1)
o} Z02
K + Jk(— + l)
£

The exact solution for this problem is

—K +J (k - 2-K2)— + 11'
. 2_2) ©
T(x) = g e s - , (k)
-K+j<k+ ke-K2) + "K+J<k -Vk 2-}{2) '
K+j(k+ kE-KE) K+,j(k +‘\/k KZ)

13



where

Z
K+ J\k %2 - k2-K?
' 2 251 VE® - K°
]'-‘O = - 7 € . (14'5)
K+Jik ZQE + ke-K?
L L -

Equation 40 agrees term-for-term with the exact solution (42) to the ex-

tent that\/ke-K?

Orlov's (Ref. 9) synthesis formula is readily obtained by tak-

n

k‘

ing the complex conjugate of (39) and eliminating the integral involving
the negative exponential. Then, noting that p(x) = 0, x < 0 and defin-

ing p(x) = 0, x > £, one obtains,

2 2
[™ oty o =r(l -ILI%) - (- rlf) .
- 1 - T%

Application of the Fourier integral theorem yields the synthesis formula,

dk  (45)

L [T - IBWIT) - G - TOE)] 2
"2 1= [[(0)]2 [T, (0)]2

(Note that Orlov's equations (16-18) are in error by a factor of 1/2)
Given I'(k) and I;(k) as a function of real k (MS) allows us to calculate
p(x) from which Zo(x) can be obtained by direct integration. However,
as Orlov points out, I'(k) and I; (k) can not be chosen arbitrarily since
the bracketed term in (45) must satisfy conditions which will guarantee
the realizability of p(x) as the distribution function of a sectionally

continuous line of finite length. For this reason it is usually necessary

14



to expand the bracketed term in a series of functions which do satisfy

the realizability criteria. The reader is referred to a recent report

by Cath (Ref. 10) for a discussion of this aspect of the synthesis prob-

lem.
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