AN EXTENSION OF A FIRST-ORDER LANGUAGE
AND
ITS APPLICATIONS

by
Dong-Guk Shin

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1985

Doctoral Committee:

Professor Keki B. Irani, Chairman
Professor Andreas R. Blass
Professor Yuri Gurevich

Professor Arch W. Naylor
Associate Professor Toby J. Teorey

For my mother and father,
my sisters and brother

ACKNOWLEDGMENTS

The author owes lasting debts to many people in completing this endeavor.

My deepest gratitude goes to Prof. Keki Irani for his untiring encouragement,
faithful guidance and occasional role as devil's advocate; to Prof. Andreas Blass for
invaluable discussions and unforgettable aid; to Professors Toby Teorey, Yuri Gure-
vich and Arch Naylor for their tiﬁe and acute critiques; and to Professors Norman
Scott and William Root for their warm support and erncouragement at the early

stage of my graduate study.

My thanks are extended to my colleagues and friends, Chin-Wan Chung,
Mourad Oulid-Aissa, Genesio Hubscher, Carol Luckhardt, Yi-fong Shih, Suk In Yoo,

and Pamela Walters, who made this endeavor more than bearable.

My thanks also go to Elizabeth Olsen and Virginia Folsom who typed a large
section of Part I; to Prof. Thomas Sawyer, Betty Cummings, and my friend

Gretchen Antelman who helped me make the manuscript more readable.

My gratitude is also extended to the people who made available the financial
resources for this endeavor which include fellowships of the CICE graduate program

and grants from AFOSR under contract F49620-82-C-0089.

Finally, my thanks go to my parents, Byung-Sik Shin and Chun-Sco Kim, and
my sisters and brother. Without their endless support, I could neither have started

nor have completed this work. This work is dedicated to them.

D.G. S.

[i
=13
o=

TABLE OF CONTENTS

CHAPTER

I INTRODUCTION ..cuiiiiiienenneenesnntsneenensesesesensesesesessssesssssssessans

L1, MOUIVALION .eecveereenieeerieneeerieesneesseessnsesssenseeesasssssssssesssessssessessns
1.2, ODJECtiVES ...cuveuireieercrnenenccnereneneserenssnsseesessesensnesssssensssenseneans

II. PARTITIONING A RELATIONAL DATABASE HORIZON-
TALLY USING A KNOWLEDGE-BASED APPROACH

. MANY-SORTED LANGUAGE WITH AGGREGATE
7N 7N) 0o

3.1, Syntax of Lyg cccecicciincniincnisinecssnsinasncnennnnsnsescsesesssssessensnes
3.2. Interpretation of Lycccccecrvererccreceennereensensesneeeceseesssnsesssssenes
3.3. L-Extensibility of Lycccocoecvrmvivenenrenererennreeneneeessscsssessesensans

IV. PROBLEM FORMULATIONrrecereernerereeenneseseneeseensnenns

4.1. Modeling a Database and a Knowledge Base
4.2. KBDDBS DeSINcooenurererrrerrenrerenreeenressensessessessesncessessessessosnon
4.3. Knowledge-Based Approach of the KBDDBS Design

12
19

21

21
24
27

37

37
44
51

V. QUERY REPRESENTATION IN Ly oo 57

5.1. Scheduled User QUErIescccceeorerueecrverreerreeesneeseenseereeecseessneens 57

5.2. X-Normal Form as a Query Representation Formalism 60

VI. KNOWLEDGE REPRESENTATION IN Ly .o, 66
6.1. Axiomatic Knowledge Identificationceceeveeeevverureueennnnc.. 66

6.2. X-Horn Knowledge Basecccceceeveeveecrrrrernerseerresnenninreseesseene 71

VII. INFERENCE PROCEDURErrrctrecteeriensressiessseessessesssneones 79
7.1. Inference PrOCCdUre .emreesssseeeseessesssesesseesessessssesssesssmsesseees 79

7.2. Correctness of the Inference Procedurecceevveeeeevennnennen. 98

7.3. Horizontal Partitioningccccceeeeeereeecnnenrecssencsecsensessesssersnseseees 105

7.4. Conclusions and Future Workccooeeceeecevvvevveccnerreecnesnnens 108
PART II 110

VIII. MANY-SORTED RESOLUTION BASED ON AN EXTENSION

OF A ONE-SORTED LANGUAGE ..coootiieiiiiinirscscsscssnssasesssssesssssssnne 111
8.1, IDLPOAUCLION ...ceeeeerieeiiireirercrneecssssescssnsssesssssnssssssessssssesssssssssses 111
8.2. Related LIteraturec.cccceeveeiersceecessrsnresesessecereessonsecssesesssas 114
8.3. OTZANIZALION .cccceeereerrerereeerneecrneesvesssesssesssessssssnsessasssssssnsssassseenes 117

IX. ONE-SORTED LANGUAGE WITH AGGREGATE

VARIABLES L] oretctrecrcstnsssnnssseesesnssssssesssssssssssssssene 119
0.1, SYNLAX Of Lgk coeeeeeeeeereesereeerreeeenesensenessenessesassessssessssesssssansens 119
9.2. Interpretation of Ly ...ccccocceveevirsureernnsisnssnnsnesasncsssssessessssnescones 121
9.3. I-Extensibility of Ll .cooeveeeirevrenresenirsnsesenisnicecnccnencncaes 122
X. PROBLEM FORMULATION ...reeerreernernenreesnessesnssssrnessessenes 130
10.1. Representation of a Many-Sorted Theory in Lg..................... 130
10.2. Finitely Many Most General Unifiersccoceuvururuircicucncnen. 138
XI. UWR-RESOLUTION .erircirrrieeecctecnensnneeseessecsnesssessaeessnessenns 139
11.1. Unification over the Weakest Rangecceveevuvvervevennnnnn...... 139
11.2. Herbrand Theorem for Ly Clausescooveueveevemevernnvnnnnn. 142
11.3. Completeness of UWR-Resolutionccceeueeevennerecueennnennnnnnnn 149

XII. EFFICIENCY OF UWR-RESOLUTION ..ottt 162

12.1. A Hypothetic Many-Sorted Resolutionc.ccceeeueevrveeuernnnnnn... 162

12.2. UWR-Resolution vs Hypothetic Many-Sorted Resolution 169

12.3. Conclusions and Future Workccoccervernereeenneceenercncnvenenennn. 192

XIII. CONCLUSIONS ...uiiiveiircrecrisaesnesnessessesassasssesassssesessasssessessessesseseesesns 194
APPENDICES ..iictineininneisssnnnseensessnesseesessesssessssassssesssessesssesssssssssens 197
BIBLIOGRAPHY itteiiniininicnnnnssnnsnsasessesnssnsssessssssssessessassessesssonsossosencs 223

Figure

2.1.
3.1.
4.1.
4.2.
4.3.
6.1.
7.1.
7.2.

LIST OF FIGURES

Framework of the KBDDBS DeSigncccevueeeeveeeneeeeeceeeeeeeesreeneennnn. 11
Summary of the I-extensibility of Ly ..ccccoovrverrereereererereeeccecenene. 36
Modeling of a Database and a Knowledge Baseccccoeveevervvenennnnn.. 39
A Computer Network of an Auto Corporationcceeeeeeeereennn.n. 42
Horizontal Partitioning System of the KBDDBS Design 56
Derivation of a VDA aXiomcccuvirevvcuseecnnencenesisnnnninnesssesssessenes 75
The URC’s Revealed to the Relation DEALERSccuneueenn... 89
Bipartitions of the Relations DEALERS and SALES ... 106

Appendix

m o aw >

LIST OF APPENDICES

A Relational Database EXampleccoceeveeverreerecvnreeieeesneseeseeseessenne 198
An Intermediate L}-Version of the Herbrand Theorem 200
Refutations by Ry(") and R ") coceeeereerereecreseeeeerreseecenenennes 203
Alternative Approaches of Ry ") .ceceverererrrvicirerereeereeneenenencnnesesenns 208
Translation of a Formulain LJ into L, .ccccoeveveveveeecevesneererennee 215

o0
vil

CHAPTER 1

INTRODUCTION

1.1. Motivation

When deductions are made in certain axiomatic systems involving more than
one category of objects (e.g., points, lines and planes), two approachs are available:
(i) a many-sorted logic in which there are dist;inct kinds of variables for the different
categories of objects, and (ii) a one-sorted logic in which there is only one kind of
variable for all categories of objects, but in which there are special predicates to
effect the range restriction of the variables to the respective categories of objects.
These two approachs are equivalent in the semse that deduction made by one

approach can also be made by the other approacht.

In spite of their equivalence, many-sorted logic offers various advantages over
one-sorted logic. For example, many-sorted logic allows the utilization of sortal
information to enhance the deduction efficiency, and the language for many-sorted
logic allows a more compact expressive power than does the language for a one-

sorted logic. These advantageous features were originally observed by Herbrand who

t Their equivalence is formally shown by the Herbrand-Schmidt theorem [Herb30, Schm38]. Let
T, (n =2, - ,w) be a many-sorted system, and let T {™) be its corresponding one-sorted
system. In [Wang52] Wang mentions “In [5] Herbrand states a theorem which amounts to the following
(see [5], p.64): (I) A statement of any system T, is grovable in T, if and only if its translation in
the corresponding system T "’ is provable in Tl(" . However, the proof he gives there is inade-
quate, failing to take into account that there are certain reasonings which can be carried out in L 1(")
but not in L, . In (1], Arnold Schmidt points this out and devotes his paper to giving a careful proof
of the theorem.”

first proposed many-sorted logic in his thesis [Herb30]. Following him, various ver-
sions of many-sorted logic were proposed and investigated by Schmidt [Schm38,

Schm51}, Wang [Wang52], Hailperin [Hail57], and Idelson [Idel84].

Recently, the advantages of many-sorted logic have been explored in various
areas of computer science including the fields of database design and automatic
theorem proving. In the database design area, many-sorted logic is used as a means
of formalizing the database [McMi77, GaMi78, Reite81], and in the automatic
theorem proving area, many-sorted logic is used to increase deductive efficiency

[Weyh77, Cham78, Cohn83, Walt83, Walt84a, Walt84b).

Although many-sorted logic appezls to various applications of computer science
because of the advantages it offers, usage of many-sorted logic is often restricted to a
certain extent. The following situation is considered: a system involving more than
one category of objects is axiomatized based on many-sorted logic, and the categories
of objects determine the sort structure of the axiomatized system. After the sort
structure is determined and when deduction is made in the system, it turns out that
a new sort is needed that does not exist in the previously determined sort structure.
At this moment, the sort structure determined beforehand can be changed to accom-
modate the new sort, but in some situations it may not be desired to do so for vari-
ous reasons. When the sort structure determined a priori is desired not to be
changed, a variable ranging over a new sort cannot be introduced in the currently

known many-sorted logic.

In this thesis an extended predicate calculus is proposed in which the problem
described previously is avoided. The extended predicate calculus is obtained by

embedding a new kind of syntactic object called an aggregate variable in the first-

order language. Then in this extended predicate calculus, variables whose interpreta-
tions are restricted by arbitrary ranges can be introduced as freely as needed during

deduction without changing the sort structure determined a priori.

Informally speaking, the aggregate variables are syntactically ordinary sort vari-
ables, but semantically they are variables whose ranges are restricted by unary rela-
tions instead of sorts. Therefore, whenever aggregate variables are introduced, the
sort structure does not need to be changed; the system only needs to be augmented
by new unary relations that will be the respective ranges of interpretation of the
aggregate variables. This property of the extended predicate calculus is called L-

eztensibility.

When aggregate variables are introduced as part of the first-order language,
they can be embedded in a one-sorted language as well as in a many-sorted language.
In the former case, the resulting language is called a one-sorted language with aggré-
gate variables , denoted by Lg, and in the latter case, the resulting language is

called a many-sorted language with aggregate variables , denoted by Ly .

1.2. Objectives

The objectives of the thesis are twofold: (i) to provide the theoretic foundation
for the extended predicate calculi, and (ii) to demonstrate their practical usage in

real applications.

Concern for the first part is with the syntax of each of the two languages Ly
and Lg, their interpretations and their L-extensibilities. For the second part, two
applications have been chosen that demonstrate the practical usage of Ly and L3,

respectively. One of these applications is related to the distributed database design

area and the other, to the automatic theorem proving area.

In the first application, Ly is used as a tool to describe the user queries to the
database and the knowledge about the database. Here it is demonstrated that Ly
offers a more compact expressive power than an ordinary many-sorted language,
which therefore allows the development of a methodology to partition relations hor-
izontally in the context of the distributed database design. VIn the second applica-
tion, Ls is used as a tool to describe a many-sorted theory. In this case, it is shown
that L3 allows the introduction of variables whose ranges are restricted to new sorts
in the middle of refuting the many-sorted theory, which implies a more efficient

many-sorted resolution scheme than the currently existing one.

The rest of the thesis naturally divides into two parts: one for the application of
Ly and the other for the application of L{. Part I deals with the application of
Ly in the distributed database design area and Part II, the application of Ly in the
automatic theorem proving area. Part I consists of Chapters I through VII and
Part II consists of Chapters VIII through XII. Conclusions of the thesis are given

in Chapter XIII.

PART 1

In this part, a knowledge-baséd approach is proposed with which the user refer-
ence clusters of a database are estimated which can be used in partitioning a rela-
tional database horizontally during distributed database design. Using the
knowledge about the data, the user queries are converted to equivalent queries by a
proposed inference procedure. The user reference clusters estimated from these
revised queries are more precise than those that can be estimated from the original
user queries. A many-sorted language with aggregate variables (L) is used for the
representation of the user queries and the knowledge base. The types of knowledge
to be used are discussed. An example illustrates the way inference is carried out, and

the correctness of the inference is also discussed.

CHAPTER II

PARTITIONING A RELATIONAL DATABASE HORIZONTALLY
USING A KNOWLEDGE-BASED APPROACH

2.1. Introduction

Since the notion of a distributed system (DS), as distinct from a centralized sys-
tem, was introduced, computer scientists have focused a great deal of attention on
the well-defined problems of a distributed system, such as file allocation and network
design [Chu69, Whit70, Case72, Chu73, MaRi76, IrKh79]. With the advent of distri-
buted database systems (DDBS), especially when the data model is relational, data
allocation in DDBS has been interpreted in a different way from that of file alloca-

tion in a DS [RoGo77|.

In the file allocation problem the main issue is how to transfer the characteris-
tics of a distributed system into the parameters of a cost optimization model so that
the optimum allocation of files could be determined from the model. This view was
based on the assumption that files, or relations, are independent of each other; in
other words, only one file is needed to answer each query issued at each site. That
means that whenever the queried file does not reside at the query site, to answer the
query, eithér the file is transferred to the query site or the query is sent to the file

site and the answer is sent back to the query site.

In the data allocation problem, however, files, or relations, are no longer
regarded as independent. Due to the logical intricacy among the relations, processing
a query involves one or more relations which requires costly intermediate network
processing if all the relations queried are not locally available. Consequently, to
include the network flow caused by the intermediate processing in a DDBS design
model, the logical relationships among data should be somehow reflected in the
model of data allocation. For this reason, the issue of data allocation during the

design of a DDBS is different from that of file allocation.

The current trend in the design of a DDBS is to partition the relations horizon-
tally and/or vertically and to allocate the fragments of relations over a network
[WoKa83, CeNW83, Ouli84]. In these studies, therefore, each local database of a
DDBS consists of horizontally partitioned or vertically partitioned fragments of rela-

tions instead of complete copies of the relations.

The benefits of assigning the fragments of relations have been well understood
[RoGo77, TeFr82]. Partitioned fragments offer a great deal of flexibility in distribut-
ing data so that the user reference clusters (URC's) to the database at each site
-- which means certain portions of the relations, or files, of the database around
which queries are clustered - could be faithfully reflected in the distribution of data.
Thus, with the appropriate replication of fragments, total network flow is reduced
and the probability of parallelism in distributed query processing is increased, while

the update cost induced by replication is confined to the replicated fragments.

In spite of realizing that such benefits accrue from allocating partitioned frag-
ments, not much work has been done in this area, especially in the area of partition-

ing relations horizontally and distributing their fragments. A major difficulty here is

that there is no known significant criteria that can be used to partition relations hor-
izontally. An often suggested practice, for example [WoKa83], is to analyze the
expressions for the user queries at each site. These expressions may reveal the
URC'’s to the database and thus these URC's can be used as a means to partition
the relations horizontally. However, there is a problem even in this approach
because the information contained in the user queries is not sufficient to estimate the
URC'’s precisely. When the URC's are not identified accurately, they may result in
an inadequate partitioning. For this reason, determining the URC'’s as precisely as

possibie is a well-defined issue in the horizontal partitioning problem.

In Part I, an approach is suggested for better estimating URC's by utilizing not
only the user query expressions but also certain knowledge about the data itself.

The intended approach is illustrated in the following example.

Example 2.1.1

A database of a big auto corporation is used in this example. Let DIVISIONS ,
DEALERS , and SALES be the relations where DIVISIONS keeps the information
about all the divisions of a big auto corporation such as assembly plants, parts
plants, and headquarters; DEALERS, the information about all the dealers with
which the corporation has transactions; and SALES, all the sales transactions

between the plants and the dealers.

Suppose there is a query originating frequently at car assembly plants that asks
for information about the purchasers of car items, for instance, ‘“What are the
addresses of the dealers who were supplied item# B47, V01, or V03! " where the

item#'s B47, V01, and V03 stand for some car items. Based on this query, a

DB designer may try to identify the URC's to the relations SALES and DEALERS
and eventually utilize the URC's in partitioning SALES and DEALERS . However,
the URC's cannot be determined precisely enough solely from the query. That is,
although it is determinable that at car assembly plants the references to the relation
SALES are clustered on the fraction of some tramsactions of car items, say
SALES[B47,V01,V03|, no cluster of references can be assessed on DEALERS

because no restrictions have been imposed on the dealers in the query.

Suppose there is a fact about this database expressed in English as, “All car
purchasers should be car dealers,” which implies a relationship between some tuples
of SALES and some tuples of DEALERS, or simply between a fraction of SALES ,
namely, CAR_SALES , and a fraction of DEALERS, namely, CAR_DEALERS. It
can then be postulated that such knowledge can be utilized for estimating better
URC'’s than the previous one which was obtained solely from the query. That is, by
knowing that only car dealers purchase car items, it can be concluded that only the

fraction of CAR_DEALERS would be queried at the car assembly plants.

The preceding example shows that a DB designer can utilize some knowledge
about the data in an effort to identify the URC's as precisely as possible. In Part I,
it is intended to formalize the DB designer’s role by constructing what is called a
knowledge-based system (KBS). The function of the KBS will then be to determine
the URC’s from the user provided query expressions by applying the knowledge

about the database.

Once the URC's are identified, determining horizontal partitions of relations

from these estimated URC's can be done straightforwardly. That is, each relation

10

can be partitioned in terms of the URC's identified for that relation. For instance,
in the preceding example, DEALERS can be partitioned into CAR_DEALERS and
DEALERS -CAR_DEALERS , and SALES , into SALES|B 47,V01,V03] and
SALES-SALES [B47,V01,V03] . This is a legitimate way to partition relations in the
sense that as far as processing the query of the example is concerned, the other frac-
tions of the relations are irrelevant. Once the partioning is completed, the fragments
can be treated as separate objects for an 6ptimal allocation which would assure the

benefits of a horizontally partitioned distributed database design.

The overall DDBS design scheme can be viewed as a conjunction of two
separate subcomponents, namely, a horizontal partitioning system and a mathemati-
cal programming model. The former is a front-end system based on a knowledge-
based approach that produces the unit objects to be dispersed, i.e., the horizontally
partitioned fragments of relations, and the latter, a linear or nonlinear programming
model that determines the optimal distribution of the unit objects. Because the
knowledge-based approach is émployed to determine the unit objects of distribution,
this DDBS design scheme is called a knowledge-based distributed data base design
(KBDDBS design). The schematic diagram for the KBDDBS design is shown in Fig-

ure 2.1.

As a quantitative cost optimization model, the second subcomponent must be

furnished with two key input parameters. They are:
(1) The unit objects to be dispersed over a network.
(2) The frequency with which each unit object is queried at each site.

Then, given a set of queries, the total network flow for each allocation configuration

can be estimated with some distributed query processing algorithm as discussed in

11

[Bern81, Chun83] and, therefore, the optimal configuration of the horizontally parti-
tioned fragments can be determined. As far as developing a mathematical program-
ming model is concerned, however, there has been much work in the context of file
allocation [MaRi76, MoLe77, FiHo80, Ouli84, DoF082]; therefore, some adaptation of
any of these studies would suffice. For this reason, the mathematical programming

model part will not be taken into consideration in this work.

Employing a knowledge-based approach that constitutes the first subcomponent

is, therefore, the major concern in this work. The goal of employing the knowledge-

System Parameters

Q) F ->
Horizontal -> Mathematical
DB ->| Partitioning Programming |-> Optimum
System Model Allocation
——>

KB -> Uo

l |

| <Q,F>

Contribution of
this Work

Figure 2.1. Framework of the KBDDBS Design

12

based system as the front end of a DDBS design is, as stated previously, to exploit
the knowledge of the data for partitioning relations horizontally to best suit distribu-

tion over a network. In realizing such a goal, there are three issues to be addressed:

(1) How the user queries and the knowledge should be expressed so that the

knowledge can be applied to the user queries in a deductive way.
(2) What types of knowledge should be utilized for this purpose.
(3) How the inference should be carried out.

The rest of this part deals with these three issues.

2.2. Related Literature

In this section, the current research which is related to our study is briefly
reviewed. The related research is discussed in three contexts: what techniques of
horizontal partitioning of relations have been developed in designing a database?;
how has the notion of horizontal partitioning of relations been employed in designing
a DDBS ?!; and finally, what are the current techniques of Al and how have the tech-

niques of Al been used in a database design?

Partitioning a relation vertically and/or horizontally is well understood [Ullm80,
TeFr82, Date83]. Much has been made of the vertical partitioning of relations to
achieve efficient and secure data manipulation, for example, removing redundancy
and update anomalies from a database. In the context of designing a database, how-
ever, less attention has been paid to horizontal partitioning. Most recently, although
their applications are limited to some extent, there have been several attempts, to

develop a theory of horizontal partitioning analogous to the well conceived normali-

zation theory, such as [Bern78, Delo78], so that more secure data manipulation can

13

be assured than when only vertical partitioning is applied.

In [Furt81)], a technique has been developed so that a relation, some of whose
key attributes are determined by a non-key set of attributes, may be converted into
Boyce-Codd normal form by partitioning relations horizontally prior to the conver-
sion which is otherwise impossible. In [DePa82), it has been shown that for some
classes of relations, a larger class of functional dependencies could be revealed by
starting with horizontal partitioning and, therefore, with the additionally detected
functional dependencies, more powerful vertical partitioning of the relations may be

accomplished.

In the context of designing a DDBS, the idea of partitioning relations horizon-
tally as well as vertically, has been initiated in the early distributed database design
work [RoGo77]. In [EpSWT78], a query processing algorithm which exploits a parallel-
ism in a distributed environment has been discussed. In their algorithm, the parallel-
ism in a query processing is sought by partitioning relations horizontally and repli-
cating the fragments over several sites except the relation whose partitioning and
replication promises the least storage cost efficiency. Most recently in conjunction
with maintaining a DDBS which composed of horizontally partitioned physical frag-
ments in a distributed environment;, [MaUl83] has suggested some algorithms for

inserting and deleting tuples from the fragments.

As the first significant work in designing a horizontally partitioned DDBS, a
design methodology for a distributed database in which each local database is not a
collection of relations but a collection of the fragments of relations has been initiated
in [Wong81, WoKa83]. In their work, the semantics of the logical schema reflected

in a class of queries are exploited as a means of partitioning relations and from this

14

partitioning, data are distributed in a specific way, which is called “locally suffi-
cient,” in order to suppress network flow by employing a high dég’ree of parallelism
in processing queries. Their method, however, has various shortcomings, especially
when a real environment is not faithfully reflected in their model: first, maintaining
that local sufficiency involves prohibitive levels of update cost unless the database is
strictly static; second, the communication cost of collecting the finaj results at the
site where the query originated would cost more than the benefits gained from paral-
lel processing, unless the communication cost is far less than the processing cost; and
third, while each site’s response time may be shortened, the total system throughput
may be decreased unless system job loads among the nodes of network are evenly
distributed and managed all the time. In short, though it depends on the charac-
teristics of a database and the system parameters, the parallelism in a query process-
ing over a remotely dispersed computer network may not achieve the benefits which
are usually obtained in the parallel processing with a tightly coupled multiprocessors,
mainly because of the high costs of network communication and the maintenance of

local sufficiency at all times.

In contrast to the above studies, the design objective of this work is not con-
fined to parallelism in a distributed query processing. Rather our data allocation
scheme is based on the philosophy that the minimization of total network communi-
cation cost shouid be achieved by appropriate replication of horizontally partitioned
fragments of relations instead of complete copies of relations. By doing so, the

URC's at each site are faithfully reflected; and, therefore, the user queries may be
processed as locally as possible; and, furt.hermore, the parallelism in query processing

can also be achieved because of the high degree of replication. The price paid in this

15

approach is the storage and update cost of the replicated fragments. However, it is
expected that since the update cost of replicated data shrinks as much as the size of
the replicated parts of relations shrinks, there is much more leeway to replicate frag-

ments than when fragmentation is not considered.

The main issue in our approach is how to take advantage of the knowledge
about the data in partitioning relations. As has been pointed out in the previous
section, our approach resorts to Al techniques, i.e., drawing inferences from the
knowledge about the data and the user queries. In the following, it is first briefly
reviewed what techniques have been developed in Al and then it is discussed how the

Al techniques have been used in the context of designing a database.

With the assumption that all the knowledge to be used is known - aside from
the problem of knowledge acquisition - the problem of Al is in general divided into
two parts. One is how to represent the knowledge and the other is how to utilize the
knowledge once it has been represented}. The classical approach to representing the
knowledge has been formal logic. The modification of formal logic from a working
tool for philosophers’ and mathematicians’ into a knowledge representation tool in Al
has been initiated by the development of automatic theorem proving techniques,
such as the resolution principle [RobiGSa]t, Here formal logic is used as a knowledge
representation formalism and the resolution principle is used as an inference mechan-

ism. The important features of logic are the precisenesst in expressing the

t In [McHa69], the problem in Al is differentiated into an epistemological part and a heuristic part.
In his classification, the problem of knowledge acquisition is included in the epistemological part.

$ An algorithm to find an interpretation that can falsify a given formula has been invented by
Herbrand in 1930. Gilmore, in 1960, first tried to implement Herbrand’s procedure on a computer
which turned out to be very inefficient [Gilm60]. Few months later, Davis and Putnam published im-
proved version of Gilmore's program which still was not efficient enough [DaPu60]. A major break-
through was made by Robinson’s resolution principle in 1965 which was much more efficient than any
earlier procedure [Robi65a).

16

knowledge and the correctness in inferring any conclusion. Various Al systems based
on logic have been suggested, including a general-purpose question-answering system
QA3 [Gree69], a robot planning system STRIPS [FiHN72], and a proof checker for
proofs stated in first-order logic FOL [FiWe76]. The current research in logic
includes the development of a more efficient inference mechanism such as theorem
proving via general mating [Andr81}, and an extension of the first order logic, such
as fuzzy logic [Lee72] — in which how common sense and intuition can be handled

are major concerns.

The major consideration of logic as a representational tool was how the
knowledge identified as useful in the problem domain could be adequately and pre-
cisely represented. Departing from this view, a new interpretation about the
knowledge has been initiated by a group of researchers, called proceduralists, who
argue that the way to use the knowledge — how to make inferences - should also be
explicitly included in the knowledge to be represented. A representation scheme,
called procedural representation, has been suggested and its emphasis was on how to
express the procedural knowledge — the control information for inferences -- in a
better way. The advantage of this representation scheme is that the inefficiency in
processing knowledge represented in logic could be avoided. Starting with
PLANNER [Hewi72], a number of procedural representation-based Al programming
language projects have followed, including CONNIVER [SuMc72], QA4 [RuDW72],

POPLER [Davi72], and QLISP [Rebo76].

Another descriptive purpose-oriented knowledge representational formalism,

called semantic networks, has been initiated [Quil88, NoRu75, AnBo73]. The

t In [Haye77], a complete discussion of this issue is presented and the advantage of logic over other
representation systems on these grounds is argued.

17

problem in a semantic network is that no simple set of unifying principles is avail-
able due to its diversified development. Semantic networks, however, became very
popular in Al because of the graphical representation which resembles human
memory association. The first program to use gemantic network techniques in Al
was a question-answering system SIR [Raph68] which was followed by SCHOLAR
[Carb70]. Several semantic network ‘languages” have been proposed which have the
full expressive power of predicate calculus. The examples are network formalism
[Schu786], partitioned semantic network formalism [Hend75], and the SNePS system

[Shap79].

Because of its modular knowledge representation facility - describing the
knowledge about what to do in a specific situation -- what is increasing in popularity
is production system which has been developed by Newell and Simon [NeSi72]. The
basic idea of these systems is that a knowledge base consists of rules, called produc-
tions, in the form of condition-action pairs: “If this condition occurs, then do this
action.” The major problem of this representation formalism is the inefficiency of
program execution. The strong modularity and uniformity of the productions results
in high overhead when they are used in problem solving. Despite the inefficiency of
programming execution, because of its naturalness —~ statements about what to do in
predetermined situations are naturally encoded into production rules - production
systems have been used as the backbone of expert systems like DENDRAL [BuFe78),

MYCIN [ShOr'I'ﬁ], and PROSPECT [DuHN?76].

Most recently a knowledge representation scheme, called frame, which facili-
tates ‘‘expectation-driven processing” has been proposed by Minsky [Mins75]. The

important feature in frame is that the procedural knowledge can be easily incor-

18

porated into the representations in this scheme: procedures can be attached to slots
to incorporate the reasoning or problem-solving behavior of the system. The current
Al systems based on frame include KRL [Bowi77]), NUDGE [GoRo77], and KLONE
[Brac78]. Many researchers in Al, however, have different ideas about what a frame
is: there are many fundamental differences in approach among the researchers who

have designed frame-based systems.

As the two research areas DB and Al grow, the researchers of both areas begin
to recognize the common realm shared by the two areas and start to exchange ideas
and techniques [SAMP81]. In the following, it is briefly reviewed what Al techniques

have been employed in the context of database system design.

Historically Query-Answering(Q-A) system [Chan76, Mink78, Reit78b] has long
relied on the automatic theorem proving(ATP) technique where the query to be
answered is submitted as a conjectured theorem to be proved. With the advent of
database management systems(DBMS), several works, such as LADDER [Hend78],
PLANES [Walt78], and RENDEZVOUS [Codd78], applied Al techniques to the
natural language interfaces as a part of DBMS. Most recently, [HaZd80] and
[King81) suggested semantic query optimization processing which departs from the
conventional approach of [WoYo076, Yao79]. What is noticeable in their work is that
the knowledge about the data and the information about the file structure are expli-
citly used to transform the original query into an equivalent new one which promises

far more efficient processing.

One important aspect to be considered in these systems is the role of the
knowledge-based system which is being employed in each system. In Q-A system,

the whole system itself is viewed as a knowledge-based system, which means all the

19

facts of a conceived real world are represented in some knowledge representation
language to form a database and the resolution principle is employed as its inference
mechanism. In natural language query systems, however, the knowledge-based sys-
tem is just a front-end mediator to support the translation of a natural language
query into a formal form of query. Compared to these, the knowledge-based system
of semantic query optimization is regarded as an expert system which guides the
transformation of the original query into a new one whose processing cost is far less

than the processing cost of the original one.

As distinct from any of these systems, the knowledge-based approach in our

study is to assist the design of a DDBS.

2.3. Organization
The rest of Part | is organized in the following way:

In Chapter I, the theoretical foundation for embedding the aggregate variables
in an ordinary many-sorted language is established. Here a many-sorted language
with aggregate variable (L) is introduced in three contexts: syntax of Ly, interpre-

tation of Ly, and the I-extensibility of Ly .

In Chapter IV, by using the extended calculus, a database and a knowledge
base associated with that database is modeled as a logical structure and a theory,
respectively. Then it is shown how the knowledge-based approach is employed by
constructing. a knowledge-based system (KBS). The issues about constructing the

KBS are discussed in detall.

In Chapter V, the notion of scheduled user queries is introduced as a design

resource. Then Lg is used as a tool to represent the scheduled user queries, i.e., a

20

specific form of Ly called I-normal form is suggested as the representation formal-

ism for the scheduled user queries.

In Chapter VI, the types of knowledge to be used in the knowledge-based
approach are identified in terms of five axiom schemas in Ly . Instances of these
schemas constitute the knowledge base, denoted KB , of the KBS. Also, the notion
of a IZ-Horn knowledge base, denoted KByy , is introduced as a specific class of

knowledge of KB for later use.

Finally, in Chapter VII an inference procedure is suggested as a tool to apply
the elements in the KByy to the scheduled user queries of the I-normal form to
derive the URC's. The soundness of the inference is discussed. How the relations
can be partitioned based on the estimated URC's is also discussed briefly. Conclu-

sions and the direction of future work are also given.

In Appendix A, a fraction of a relational database example is shown that is used

as the master example throughout this part.

CHAPTER III

MANY-SORTED LANGUAGE WITH
AGGREGATE VARIABLES L,

3.1. Syntax of L;

In this chapter, a language of an extended predicate calculus, called a many-
sorted language with aggregate variables (L), is introduced. Ly is a formal
language obtained by embedding a new syntactic object, called aggregate variable, in
an ordinary many-sorted language (L,). In this section the syntax of Ly is first

introduced.

In Ly, two types of variables, called simple variables and aggregate variables,
are available. The simple variables of Ly are the same as the sort variables of L, .
The aggregate variables are syntactically ordinary sort variables, but semantically
they are variables whose ranges are restricted to unary relations instead of sort
domains. Let Ly be with a sort index set I . Formally stated, an aggregate vari-
able of sort i € I is of the form z,=? where @ is a unary predicate symbol of sort
i in Ly. Semantically z,T? ranges over the unary relation indicated by @ which

is a subset of the domain of sort ¢ .

Ly with a sort index set I is formally defined in the following:

21

22

Definition 3.1.1

A many-sorted language with aggregate variables Ly consists of the following:
(1) |/| infinite disjoint sets V!',---, VI/| where the elements of V',
1<i < |I], are called simple variables of sort ¢ ;(2) |/ | infinite disjoint sets
v, -, V"l where the elements of V!, 1<i < |I]|, are called aggregate
variables of sort i ; (3) |/ | disjoint sets C!,---, C!!! where the elements of

C', 1<i < |I]|, are called constant symbols of sort i ; (4) for each n-tuple

iy, o, 4,>, {8, ,,}C1I, aset R<r "> ghose elements are called
predicate symbols of sort <i;,---,i,>; (5) for each n+l-tuple
iy, ey ben>, {1, de e} © 1, a set FT¥ 17 ghose ele-
ments are called function symbols of sort <i;,---, i, ,i4,4.,> ; (8) logical connec-
tives = and — ; and (7) a universal quantifier V. o

When it is convenient, Ly will be represented as a quintuple,
Ly=<P,R,F,C,p> where P is a unary predicate set whose members are
exclusively used in the superscripts of aggregate variables, R is a predicate symbol
set, F is a function symbol set, C is a constant symbol set and p is the arity
function such that p: R UF — N*, where N*t is the set of positive integers. In
the tuple-representation of Ly, P and R may not necessarily be disjoint. If a
unary prediqat'e symbol, say @ , in R is used in the superscript of an aggregate

variable, @ is also a unary predicate symbol belonging to P .

The syntax rule of Ly is given in the following. First, the set of terms of sort

i is inductively defined as follows: (i) any simple or aggregate variable of sort i or

23

constant symbol of sort i is a term of sort ¢ , and (ii) if f is a function symbol of

sort <i,, **, iy ,ipq> and ¢, -, ¢, are terms of sort i, -, i, , respectively,
then f(t,, -, t,)is a term of sort i,,, . An atomic formula of Ly is defined to be
a sequence of the form A (¢,,:--,¢,) where A is an n-place predicate symbol of
sort <i;, --,iy>andt ,1<j <n,isaterm of sort i, . Let the set of atomic

formulas of Ly be denoted by Atom(Lg). The set of well-formed formulas of
Ly, Form(Lg), is then defined recursively as: (i) if « € Atom(Lg), then
a € Form(Lg) ; (ii) if ¢, 8 € Form(Lg), then so are - a, (a — f), and W a where
v is either a simple variable or an aggregate variable ; and (iii) nothing else, except

the expressions obtained by finite applications of (i) and (ii), is in Form(Lyg) . The

definable syntactic objects U, N, &, and 3, and the standard notions such as

sentences are also introduced in the usual way.

The definition of a well-formed formula above guarantees the unique readability
of a formula given a. If a involves many parentheses, sometimes it is possible to
omit certain parentheses in a formula without introducing any ambiguity. By adopt-
ing a standard convention of precedence between logical connectives, some
parentheses will often be left out at our convenience. The logical connectives fall
into three groups; ~, N and U ,and — and %, each of which is considered more
binding than the one succeeding it. For example, according to the convention,

(= ¢ N¢)— (U ¢) can be written as ~ ¢ N ¢ — £ U ¢ unambiguously.
A few more notioxs of a well-formed formula such as the ezistential quantifier
3 (defined as - V-), the ascope of the quantifiers, the bounded variable, the

free variable, and the sentence of Ls are adopted without stating their defini-

tions explicitly.

24

3.2. Interpretation of L

A structure is needed to interpret each formula in Ly. A many-sorted struc-
ture for Lg, denoted by MS, , comsists of: (1) |/ | nonempty sets of objects

Dy, --,Dy; where D,, 1<i < |I],iscalled the domain of sort i of MS, ;

(2) for each constant symbol ¢ € C', 1<i < |I|, an element ¢ ¢ D, ; (3)

for each predicate symbol R, €R<"' "">, {iv,- -+, } €I, a relation
R CD,x --- XD, ; (4) for each function symbol fe F<'1' *h''en>
{51, ,4s , 44} C I, afunction st‘ DX o0 X D, —»D,_“.

When it is convenient, MS, is denoted by a quintuple
MS, =<{D,},¢t ,P,R ,F,C }t where {D,},¢; is a sort domain set, P is a
unary relation set whose members exclusively designate the ranges of aggregate vari-
ables, R is arelation set, F is a function set and C is a constant set.

The interpretation of a formula in the structure MS, requires a variable

assignment function s as follows:

ition 3.
For the set V of variables of Ly and the sort domain set {D;}ies of struc-

ture MS, , s is an assignment function, ¢ : V — (JD, , such that for a simple vari-
1

able z, of sort i, #(z,) = a, where a € D, ; and for an aggregate variable z,Z°
. > . MS, Ms, . . .
of sort i, 8{z% =a , whereif @ (@ * C D,) is the unary relation intended

by @ in MS, ,then s € QMS‘.

t To distinguish the elements of MS, from those of Ly , usually a superscript is used such as

Mse op pM5e, However, the superscript MS, is omitted if the distinction remains clear in the context.

R

25

Assignment function for the terms of Ly is defined as usual. For notational
convenience symbol s is also used for the assignment for the terms. The validity of

each formula is determined by the following interpretation rules.

Definition 3.2.2

For A(t,,---,t,) € Atom(Ls), where A is an n-place predicate symbol of
sort <&, - -,4,> and ¢'s are terms, and ¢, ¥, , ¥ € Form(Ly), the satisfac-

tion of the formulas with respect to s in MS, is defined by,

(1) i:;ls Aty -4y [e] iff <sa(ty), - ,8(t,)>€EA,

Q) e ~wll W B vl

(3) Hs‘ V1 — o [8] ff if HS. Y1 (2] then |:=;‘5. ¥o [e],

(4) for a simple variable z of sort i, |=_ Vo v[s] iff for anmy
s €D, hi,s. vis(z |a),

(5) for an aggregate variable 2,9 of sort i, = V2,22 y [¢] iff for any
0 €Q™, k=, v[s(z™)],

slvy) if vy # v

where for variables v,, and v, , é(vm | a)(ve) = {a i v, =

As a corollary to the definition, the interpretations of U,N, %S, and 3 can

also be easily defined. In the following it is only shown how the existential quantifier

3 is interpreted.

26

Lemma 3.2.1
For an existentially quantified formula Juv, v,

(1) If v, is a simple variable z of sort i, l_—m dz, ¥ [s] iff for some

e €D, , hus. vis(z, |a)] .

(2) If v is an aggregate variable z,Z9 of sort i, = 32,5y [s] iff for

some s € Q' =

¥ [e(z5%) e) .

Proof. First, it is remarked that Jv, ¢ is by definition -~ W, ~ y.

(1) If v, is asimple variable z, of sort i,

l=us, Jz, v [s] iff it not the case that for all 4 € D, , %{s, vis(z, | a)

iff for some a €D, , '=Ms, Vls(z |a).

(2) If v is an aggregate variable z,=9 of sort i,

l-=us, 37,59 [s] iff it not the case that }.—.:MS‘ 2,20 - g [s]
iff it not the case that for all 4 € QMS‘,
s, = (@)
iff it not the case that for all 4 € QMS')
Fs, 10z a)]
iff for some 4 € QMS‘,

s, ¥ a)]. Q.E.D.

27

3.3. I-Extensibility of Ly

As it should be clear now, the difference between Ly and L, isthatin L; a
new syntactic object, called an aggregate variable, is additionally featured. Introduc-
ing an aggregate variable in Ly is often different from introducing an ordinary sort
variable in L, for the reason that an aggregate variable's range is restricted to a
unary relation instead of a sort domain. Let a unary predicate Q , for instance, be
not in the alphabet of Ly . In such a case, the aggregate variables accompanying

Q , for example vZ? |, may not be used in any formula of Ly. However, the fact
that an aggregate variable’s range is determined by the accompanying unary predi-
cate implies that those aggregate variables accompanying @ , such as vZ? | can be
introduced if Ly is extended with the unary predicate @ . In this section, the pro-
cess of introducing the aggregate variables whose accompanying unary predicates are

not in Ly is formally described. The correctness of such process is also shown.

Let Ty be atheory in Ly and let ox € T5 be of the following form:

os= W (o(y)— vi). (3.1)

Assuming that a(z) is a complex formula with z being a free variable, let Q@ be a
defined symbol such as Q(z) 5 a(z) so that oy of (3.1) can be equivalently

expressed in a more compact form, say oy, as follows:

o= V& (Q(z;)— 2,). (3.2)

The preceding way of abbreviating the formula ¢y is not satisfactory in the
sense that @ in oy is not a predicate symbol at all. A more satisfactory way of

doing this is to form what is called an extension of the theory Ty. The first step of

28

this theory extension procedure is to augment Ly by a predicate symbol @ and to

specify the meaning of @ in the form of
(Q(z) 5 afz)) (33)

where a(z) is a formula in Ly that does not contain the predicate symbol @ .
The formula of (3.3) is called the defining axiom of @ . The second step is then to
augment Ty by the abbreviated form o3 in (3.2) as well as the defining axiom of
Q@ in (3.3). It is clear that in the extended theory oy of (3.1) can be replaced by

the abbreviated form og of (3.2).

The preceding theory expansion procedure is described more specifically. Let
Ly be Ly=<P,R,F,C ,p>. Let P of Ly be augmented by a set P,
of new unary predicates symbols. The resulting language, denoted by Ly , is for-
mally called a E-eztension of Ly . Let A be the set of unary predicate defining
axioms of the form Vz (Q(z) & a(z)) where @ € P, and afz) contains only the
unary predicate symbolsin P or R of Ly. The theory Ty in Ly is augmented
with A and in the augmented theory any formula of the form (3.1) is abbreviated
to the formula of the form (3.3) by using respective defining axioms in A . The

resulting theory, denoted by Ty , is formally called a E-eztension of Ty .

For the semantics of the new predicate symbols in a I-extended language
Ly of Ly, the unary relations corresponding to the newly introduced predicates
must be introduced. If MS, is a model of Ty, then it is not difficult to show that
there is a unique expansion by definition of MS, , say MS,’ , which is a model of

Ty . MS,' is formally called an ezpansion by T-definstion of MS, . This process

of expanding the structure for Ly is formalized by the following theorem.

29

Lemma 33.1

For a theory Ty in Ly, let MS, be a model of Ty. If T5 is a &-
extension of Ty, then there is a unique expansion by T-definition MS," of MS,

which is a model of Ty .

Proof. Let Ty have been obtained from Ty by adding A defining axioms and
abbreviating relativized expressions appropriately by using the respective defining
axioms of A. Let Ly be Ly=< P ,R ,F,C ,p>. Without loss of general-
ity, it can be said that for some n >0 A has been constructed in the following
way: (i) A° is the set of all defining axioms of the form Vz (Q(z) 5 a(z)) where
a(z) contains only the predicates in P or R ; (ii) for any j >0, A’ is the
union of A’! and the set of all defining axioms of the form Vz (Q(z) S o(z))

where o(z) contains only the unary predicates introduced in A’ or the predicates
d
in P or R of Lg;(iii) then, for some n >0, A= A".

It suffices to show that when Ty is obtained from Ty by adding A a
model of Ty is obtained from MS, by expansion by I-definitions and the model
obtained in that way is unique. Let &4 be A ={A’:j=1,2, --- n}. Then
it is noticed that there exists the partial ordering called * is a subset of ” in 4 .

The proof is shown by induction on the ordering of 4 .

For j =0, let T2 be obtained from Ty by adding the set A° of unary
predicate defining axioms to Ty and modifying relativized expressions appropriately
by using A. Let MS, be MS, = < {D,},et P ,R ,F ,C > . For each defining

axiom ¢’ € A° which is of the form v =V (Q(z) s a(z)), let P of MS, be

augmented by the unary relation defined by «(z) in MS, ,ie.,

{a: Hs. af(z)[s]}eP --- (1).

Let the augmented structure be denoted by MS,°, and let the defined relation of (1)
be the interpretation of the predicate symbol @ in MS,°. It must be shown that
MS? is a model of T and MS.? is unique as a one that is obtained in the
preceding way. It is first shown that MS,° is a model of T2 . For each formula
' € A%, from the way that MS° was constructed it trivially follows that

I=u5° ¢! . For each formula ¢’ € T2- A%, ¢' € Ty since T2 is extended from

Ts by A°. Since MS.? is an expanded structure of MS, and MS, is a model of
Ty, it holds that for each y'€ T2 - A°, |'==M5', ¢'. Hence MS. is a model of
TR .

Now the uniqueness of MS,’ is shown. Let MS, be also a model of T2 that
is obtained from MS, by expamsion by E-definitions when Ty is obtained from
Ty by adding A°. Since MS, is a model of T3 , it should hold that for each

defining axiom y'¢€ A° "=u ¢! . This implies that for each unary predicate
s,

symbol introduced in A° its interpretation in MS.’ and MS, are identical with
each other. Since both MS? and MS,‘ are expanded from MS, by using A, the

preceding result concludes that MS,.° and MS, are identical.

For j >0, it is assumed that when T{ is obtained from T§&?' by adding
A7 - A’ there is a unique expansion by I-definition MS; of MS/™' which is a

model of T# . The induction step is the following.

Let T{Y be obtained from T§& by adding A - A’ . Let MS! be

31

MS!=< {D,}ies »P’ ,R ,F,C >. For each defining axiom y’'€ A’ -Aa’,
say 9’ = Vz (Q(z) S o(z)), let P’ be augmented by the unary relation defined by

e(z) in MS, ,ie.,
{o: b, ale) el EPY - (3).

Let the augmented structure be denoted by MS;/*', and let the defined unary rela-
tion of (2) be the interpretation of @ in MS;/*' . It can be shown that MS/*! isa
model of T4+ in a way similar to the one that showed MS,? is a model of T2

for j =0.

Showing the uniqueness of MS/*!' as a model of T{* is also similar to show-
ing the uniqueness of MS,° as a model of T2 . If MS. is also a model of T4
that is obtained from T4 by adding A+ - A’ , then it can be shown that for
each unary predicate introduced in A’*' - A’ its interpretations in MS;*' and
MS, are identical with each other. Since both MS;/*' and MS, are expanded
from MS; only by using the defining axioms in A/*'-A’, MS;* and MS,

must be identical. @Q.E.D.

Now it is shown how a formula such as og in (3.2) can be further abbreviated
by introducing aggregate variables. Once the language Ly is extended with the
unary predicate Q , by using the aggregate variable z,%? the formula ¢¢ in (3.2)
can be syntactically t:ranslated into a more compact form, say oy’, in the extended

language Ly of Ly asfollows:

og! = V5,59 2,50 . (3.4)

32

Let ox' replace o2 in Ty . Overall, oz’ € Ty is derived from oz € T by
introducing an aggregate variable along with Ly being extended to Ly . This
characteristic of Ly that allows a more compact expressive power in its extended
language is called XL-eztensibslity of Ly. In the rest of this section, the -
extensibility of Ly is justified, i.e., whether the procedure of translating oy € Ts in

(3.1)into oz’ € Ty in (3.4) is correct or not.

One way of justifying the overall translation procedure is to show the following:
for each formula ¢’ € Ty that contains some aggregate variable(s), say A, whose
accompanying unary predicates are specified in a set A of defining axioms, there
can be derived a formula in Ly which does not contain any aggregate variable in A

and whose meaning is identical with that of ¢’ .

Given a formula ¢’ € Ty that contains some aggregate variable(s), its trans-
lation process into Ly can be done exactly in the reverse way of what a formula
such as og in (3.1) was translated into og’ in (3.4). The first step is to convert
¥’ into its equivalent relativized expression in Ly , i.e., translating a formula of
the form (3.4) into a formula of the form (3.2). Let the relativized expression be
denoted by ¢° . The second step is to eliminate from ¢° the newly introduced
unary predicates by applying their respective predicate defining axioms, i.e., translat-
ing a formula of the form (3.2) into a formula of the form (3.1) by applying the
defining axiom such as (3.3). The resulting formula of the second step does not con-
tain any aggtegate variable and is totally described in Ly. Formally stated, the
resulting formula, say ¢’ ,in Ly is called a translation of ¢' into Ty. The fact

that ' and ¢’ have an identical meaning is shown by the following theorem:

33

Thecrem 3.3.2

Fora y’€ Ty ,if ¢° is a translation of ¥’ into Ty, then ¥’ is true in

Ms,’ iff v’ istrue in MS,.

Proof. There are three kinds formulas in Ty : defining axioms, formulas contain-
ing no aggregate variables and formulas containing aggregate variables. Here the
formulas containing aggregate variables are only concerned. Let '€ Ty be a for-
mula that contains some aggregate variables. Proof is shown by induction on the

length of y'.

First let ¢’ be an atomic formula of the form R(v,’, --- , v, '), and let
¥' be true in MS,” with an assignment function s’ . Then the translation y° of
¢! into Ty is done in the following way: if a variable v/, 1< i < n,is an
aggregate variable of the form z,=?, then replace z,*@ by z, . Also along with
such translation, an assignment function s for the variables in the translated for-
mula is introduced in the following way: if v,’, 1 <i < n,is an aggregate vari-
able of the form 29, then s(z;) =o' (2,59), otherwise #(v,) = &' (v,) [the assign-
ment function ¢ defined in the preceding is used throughout this proof]. Let the
translation ¢’ that is obtained in the preceding way be R(v,, --- ,v,). Since

RMS'I = p¥ , from the way & is defined it follows that

'=Ms' R(vy!, -+ v)] <= <8 (v,), -+ ,8'(0,,')>€RM5'

>
«

<> <s(vy), * - ,0(v)>eRM

<=> t=x:s, R(vy, -+, u)s].

t I A is a formula having free variables v;, -, v, , then sometimes A(v,, --- ,v,) is
written for A .

34

The theorem holds when ' is atomic.

Suppose that the result is true for all formulas of length less than or equal to
h . It is shown that the inductive step holds for the formulas of length &+1. Let
B’ and 7' be formulas of length 4 , i.e., for their respective translations B8’ and
7', let it hold that for any assignment function s’ and its correspondingly defined
assignment function s , |.=m‘, B'ls’] iff ’=us. B’ls] and "::;ws,' v'[¢"] iff

|—_-;!5‘ 4'[¢] . Inductive step is the following.

(Case 1) Let v’ be -~ 8'. It follows that

T s -8 1[s
s, V1] <> s, 8]

= Y
<= béus', B s
<=> %{5, B’ [¢] by the induction hypothesis

<= l=Ms. -8 [s].
Since 9’ is - B’ , the theorem holds.

(Case II) Let 9’ be B’ — 4'. It follows that

F, V' <= s, (6101
= i, B then =, ' [
<= if l:=us. B’ |s], then I'=us, 1" |s]
by the induction hypothesis
<> t_—m. B =1 [s].

Since ¢’ is ' — 4°, the theorem holds.

.

(Case III) Let ¢' be Vz!p' where z/ is a simple variable. It follows that

35

oy V] > by, WA
<=> foranyas €D, , '=Ms , B [3' (2] a)]
<=> foranyas €D, , |=§Js Bls(z’]a)

by the induction hypothesis

<= k:-.—ils V! Be]
Since y' is Vz/ A, the theorem holds.

(Case IV) Let y' be V,T?4' where W (Q(z) %5 o(z)) € T . It follows that

= VI > b, WAL

<=> foranys € Q" , =

'l (27 a)]
by @(z) 5 afz) and @ C D,
<> forany e €D, ,if f, afz)[s' (5 |a)],
then =, A’ [s" (2 | o))
<=> foranys €D, ,if |,=MS‘ o(z,) ¢ (2 | a)],
then l""'x:s, B’ la(z, | s)] by the induction hypothesis
<=> foranyas €D, , p—_-m. (afz,) = B°) [2(z | a))]

<= l'.-_—ws. Ve, (a(z;) = B°) |¢(2, | 8)) -

Since y° is Vz,(a(z,) = B°), the theorem holds. Q.E.D.

The significance of the theorem is phat passing from Ts to Ty does not
really do any mofe than express a formula in Ly more coméactly by using aggregate
variables. In additioq to showing the compact expressive power of Ly, the above
theorem suffices to justify the validity of embedding aggregate variables in a many-

sorted language.

36

L,
Language

Ly — Ly
Theory Ts — Ty
Structure MS, (L) — Ms, (Ly)

Figure 3.1. Summary of the Z-extensibility of Ly

In conclusion, the advantage of Ly over L, isthat Ly offers a more compact
expressive power than L, . While the same advantage can be obtained in L, if
the sort structure of MS(L,) is changed, for Ly its associated structure MS(Ly)
only needs to be expanded by EI-definitions. This characteristic has been called -

extensibilityof Ly . The I-extensibility of Ly is summarized in Figure 3.1.

CHAPTER IV

PROBLEM FORMULATION

4.1. Modelling a Database and a Knowledge base

In this chapter, it is outlined how the knowledge-based approach described in
Chapter I for the KBDDBS design is adopted by constructing a knowledge base sys-
tem. As a preliminary step, in this section, the two notions, a database and a

knowledge base associated with that database, are modeled in formal terms.

Let the terms by Gallaire and Minker be adopted who call data elementary
facts of a real world and the knowledge about the data general facts of a real world
[GaMi78]. In general, there have been two ways of formalizing the elementary facts
of a real world and the general facts of the world. One way is to view both of them
as a collection of homogeneous objects, i.e., a collection of sentences in some
language. In this view, the collection of the sentences describing both of the elemen-
tary facts and the general facts in some language is regarded as a theory while the
real world associated with both of the facts is regarded as a model of the theory.
This view has been generally adopted in Q-A systems [Chan76, Mink78, Reit78b] in
which both the elementary facts and the general facts are considered as sentences in
some language so that the answers to the queries which go beyond the elementary

facts can be derived from the general facts.

37

38

The other way is to view the two types of facts as two heterogeneous objects,
i.e., the elementary facts as a logical structure and the general facts as a theory
whose model is the logical structure. The second view better fits the context of data-
base management systems(DBMS). In DBMS, a database is a collection of structured
and formatted information which means a collection of elementary facts, while the
integrity constraints are neither structured nor formatted information and are above
the elementary facts, and, therefore, are regarded as general facts. Integrity con-
straints are to a database as a theory is to its model. That is, the validity of the
integrity constraints has to be enforced within the database all the time, while the
truthfulness of each sentence in a theory must be verified if the structure is to be a
model of the theory. The elementary facts and the general facts in DBMS, may well

be regarded as two different objects, one a logical structure and the other a theory.

In this work, this latter view is adopted since data and the knowledge about
that data are considered as different categories of objects, i.e., data is a collection of
relations to be distributed over a network whereas the knowledge about the data is
used as a means of such distribution of the relations. The schematic representation

of this view is shown in Figure 4.1.

A database is first formalized as a many-sorted structure. The intention is then
to define a first-order language associated with the structure so that knowledge
about the database and the user demands for the database can be described in this
language. More specifically speaking, the first-order language definedt on the struc-

ture is a many-sorted language with aggregate variables Lg.

t Given any logical structure, a language associated with the structure can be easily defined. One
procedure may be simply to collect all the symbols required and establish an interpretative connection
between each symbol and each relation or function of the structure.

39

Real World

General Facts : KB
{, -~ , ¥}
Theory
Elementary Facts :DB
R,
1
{ "
R,
Structure

Figure 4.1. Modeling of a Database and a Knowledge Base

40

The database formalized here is a collection of relations to be distributed among

the sites of a network. It is formally stated as follows:

Definition 4.1.1

A database application, denoted as DB, is an ordered structure
DB=<{D,},el,{P,},el,{R,},-e,,{Ct'},E,_,eK'> with the associated function

X\: J—NT such that

(1) 1is a domain index set where for each i € I , D, is the set of objects of i* sort

and each D, constitutes the i* universe of DB .

(2) Jis arelation index set where for each j € J , M\(j) is a positive integer and R p

is \(j Jary relation on {D, }, i..,

, €D, X -+ XD

="h ') WeEl.

(3) K, is a(possibly empty) collection of constant names where for each & € K,

b

a distinguished element C} is an element of D, .

(4) P, is a set of unary relations whereif p € P, , then p C D, .

In order to illustrate the preceding definition, a hypothetical distributed data-
base is introduced. Throughout Part I, this database is used as the master example.
Consider one big auto corporation which is going to develop a distributed database
system. The corporation has part plants and assembly plants scattered around a
large area with the headquarters located some distance from the plants. Suppose the

corporation is planning to install three computing sites which will be connected via a

41

computer network as shown in Figure 4.2, one in a parts plant(PP) complex, one in
an assembly plant(AP) complex and one in headquarters(HQ). 1t is assumed that
each computing site handles most of the transactions associated with it. That
means, in PP the transactions of parts plants are handled, in AP the transactions of
assembly plants, and in HQ the transactions typical of headquarters, for instance,

the transactions of all the office items which are being consumed by the corporation.

Let { DIVISIONS, DEALERS, ITEMS, SALES } be a fraction of the database to

be distributed over the three sites each of whose logical schemas is

DIVISIONS (div# ,div_name ,head)

DEALERS (d# ,address ,d_type)

ITEMS (item#t ,5_name ,i_type)

SALES (divft ,d# itemit)
where div# is a division number, d# a dealer number, and item# an item number.
Each instance of these logical schemas is shown in Appendix A. In the following an

example is illustrated showing how this database is formalized by a many-sorted

structure. It is also illustrated how Ly is defined on the structure.

xample 4.1,

Given the preceding auto corporation database, the many-sorted structure
defined on this database, say DB(Auto), is DB(Auto) = <{item# ,d#, -}, ¢,
{DIVISIONS ,DEALERS ,ITEMS ,SALES}, {B47,V02, - - - }> , where items#, d#, - --
designate sort domains and B47, V02, --- are constant symbols which are the
members of item# sort domain. It is noticed that initially the unary relation set

{P,} is empty.

42

// R

—
(.__.

Figure 4.2. A Computer Network of an Auto Corporation

Now since there is no unary relation in the initially defined structure
DB(Auto), a Ly is introduced associated with the logical structure DB (Auto)
with its unary predicate set being empty. Let such Ly be denoted by
L% (DB(Auto)) to indicate that its unary relation set is empty. Assuming that all
the symbols, needed for L& (DB(Auto)) are provided, Lg(DB(Auto))=
< ¢,{Div,De,It,Sa}, { B4T,VOL, --- }, p> where Div, De, It and Sa are
the predicate symbols indicating the relations DIVISIONS , DEALERS , ITEMS
and SALES , respectively; B47 and V01 are the constant symbols which belong to
the item# sort domain, and; p(/t) = 3 and so on. At this moment no unary predi-

cate symbol has been yet introduced. However, it will be noticed later that

43

L3 (DB (Auto)) gradually evolves into Lg{DB(Auto)) as aggregate variables are

introduced.

The preceding example shows how a database is formalized as a structure and a
language is defined on the structure. Now a knowledge base associated with the
database is formalized using the language defined on the structure, i.e., the

knowledge base is a theory whose model is the structure.

Definition 4.1.2

For a database application DB, let Ly(DB) be the many-sorted language with
aggregate variables defined on DB . A knowledge base associated with DB, denoted
by KB(DB), is then a collection of some sentences of Ly (DB) which are true in the

structure DB .

The following illustrates the preceding way of formalizing the knowledge base about

the data:

Example 4.1.2

Consider the language L§&(DB(Auto)) of Example 4.1.1. Let a general fact of
the auto corporation world be expressed by a sentence ¥ in L (DB(Auto)). As long
as ¢ describes a true fact of the real world which is modeled by DB(Auto), y is
interpreted as true in DB(Auto). Therefore ¢ is an element of the knowledge base

associated with DB (Auto), denoted by KB (DB (Auto)),i.e., ¥ € KB(DB(Auto)).

44

It is noticed that Definition 4.1.2 suggests an alternative way of defining a
knowledge base. Suppose Th(DB) means the complete theory defined on the struc-
ture DB ,ie., Th(DB)= {v: l=DB ¥} . Then a knowledge base associated with
DB is a subset of Th(DB),ie., KB(DB) C Th(DB). In a practical environment,
it is reasonable to assume that no complete theory can be defined on DB , or say a
complete knowledge base. Only a necessary amount of knowledge which is useful for
the intended purpose can be collected, so this can be at most a proper subset of the
complete theory Th(DB), if anything like Th (DB) ever exists. Later in Chapter VI,
it will be shown how the necessary amount of knowledge is gathered which consti-

tutes the knowledge base intended to be built.

4.2. KBDDBS Design

In this section the KBDDBS design is formalized in terms of a function. By
doing so the role of the knowledge base KB in the KBDDBS design is manifested.
First, a local database in a network is defined as a logical structure. Then two
DDBS design schemes, a DDBS design scheme which does not consider horizontal
partitioning and the KBDDBS design scheme which does consider horizontal parti-
tioning, is stated formally in terms of two different functions. By these two different

functions, the differences between the two DDBS design schemes is visualized.

In a distributed environment, a local database is a fraction of the whole data-
base which is a collection of relations. The fraction of the database may consist of
fragments of relations if horizontal partitioning is adopted as design strategy, or

complete copies of relations if horizontal partitioning is not considered. Defining a

45

local database requires the notion of a quass-substructure of a many-sorted structure
to be introduced because the notion of a substructure is too restrictive to describe

the local database containing fragments of relations.

The notion of a quasi-substructure is defined as follows: Let DB® and
DB? be two database applications defined according to Definition 4.1.1,
DB® = {{D'}ie1 » {P}ier » {RS}yer » {Ci " }ier, ke, } and DB =

{DNer » (PYer » {R}er ,{Ci"}er,tex,} . Then DB’ is a quasi-substructure

of DB® ,denoted by DB® C DB* , if the following conditions are satisfied:
(i) DtcC Dg,foreach i €1,and

(") ij c Rlan (lel X - X Dsi(”)

where i, €1 .
The notion of a quasi-substructure is less restrictive than that of a substructure by

the condition (it). That is, for DB’ to be a substructure of DB*® , the condition (ii)

) where i, €1 .

should be R} =R'n (D,*l X X D,‘;m

Let L be a site index and { € L . Then in terms of a quasi-substructure a

local database application at a site [is formally stated as follows.

Definition 4.2.1

Let DB be the database application which is to be distributed over a network.
For each | € L, where L is an index set for sites, a local database application of sste

I , denoted as DB, , is a quasi-substructure of DB, such as

DB, =< {D,;}ier,» {Rju}ier,» {Clilierex}> °

46

Example 4.2.1

Let L={AP,PP,HQ} and let the database to be dispersed be DB (Auto) of
Example 4.1.1. Suppose it has been decided to store in HQ only the information
about the dealers which deal with office items. Let such iuformation be represented
by a subset of the relation DEALERS, called OFFICE_DEALERS , then the local data-

base at HQ DByq is
DByg = <{d# ,item# ,- -}, ¢, {OFFICE_DEALERS,- - -}, {ink, -+ }>

and DByq (Auto) C DB(Auto).

From the definition above, an allocation configuration of DB over a network
could be simply formulated as a collection of quasi-substructures of DB, each of
which is a local database. The only restriction on each allocation configuration of
DB is that each tuple of each relation in the DB should reside in at least one site of
the network. The notion of an allocation configuration of DB over a network is

defined as folldws:

Definition 4.2.2

Given a database application DB and a site index set L, an allocation confi-
guration of DB over L, denoted by DDB , is a collection of quasi-substructures of

DB such that if DDB = {DB; :l€L} where DB, = < {D,;}iei, {R,.},es,

{C;.I}IGI,EEK,}> ,then D.=UD,"[’ RJ‘=URJ'1 ,and C;:U Ck‘,l o
lel lel el ®

47

In the following, two extreme cases of allocation configurations are shown, i.e.,
one an allocation scheme with complete redundancy and the other an allocation

scheme without any redundancy.

Example 4.2.2

Let DDB, and DDB, be the allocation configurations with complete redun-
dancy and without any redundancy, respectively. Let DDB, = {DB‘:1 € L}, then
ViEL DBf=DB. Let DDB, ={DB:l€L} where DB'= <{D"}.c/,
{R}:},er s {Ck',l'}:el,kex, >. Then VjeJ Vil,eL , if 1, # l,, then

RJ”v‘l n R]”vlg = ¢

It is well known that there are two main DDB design criteria space cost and
time cost, say C, and C, , respectively. Consider a DB and a network index set
L-. Let Dpg; stand for the collection of all the possible legitimate allocation con-
figurations defined by Definition 4.2.1 including the two extreme cases of allocation
configurations, the allocation scheme with complete redundancy and the allocation
scheme without any redundancy. Let M be the index set of all the possible

DDB s, then
DDB,L = {DDB“ tm € M} .

A DDBS design scheme in general is then to produce the allocation configuration
from the given DB and L ,say DDByy, € Dps,, , in such a way that the costs C,
and C; associated with DDB_, are less than any costs associated with each

DDB,, € Dpgy, -

48

The cost C, associated with a DDB may be calculated by simply adding up
all the storage costs recuired by the DDB . The cost C;, however, can not be
decided from an allocation configuration alone because calculating C, usually
requires a known or estimated system load as an additional parameter. In a distri-
buted database system, such system load is usually modeled by a collection of
ordered pairs < a user query, the query issuance frequency >. Knowing how often
each specific user query would be issued at each site is adequate information to judge

a system'’s load.

In order to precisely define what a system load is, @F is introduced as a collec-
tion of ordered pairs of the following: QF = {<yg;, f;>: ¢, is the j® query at
the site ¢ and f is the issuance frequency of g¢;}. As is implicit in the descrip-
tion of QF , QF dependson DB and L . Givena DB and L ,if QFpg, is
the collection of all possible loads on the system of DB over L , then the two costs

C, and C, are functions such as,

C, Cl

Dpp. —$, Dpar X QFpgr — $.

In the following, in terms of these two cost functions the two DDBS design
schemes, a DDBS design without any partitioning of relations, and the KBDDBS

design, are formalized.

Definition 4.2.3

Let Sps and S, be a set of various database applications DB’s and a set of
various site index sets L's, respectively. Given a DB €Sy and a L €5, , a

DDBS design without any partitioning is a function fpf; : QFps — Dps. such

49

that fora QF € QFpp ,

$08.1(QF) = DDB s,
where if DB ={---{R,};¢,, "}, DDBy,={DB™:1 €L} and DB =
{---AR;u};erieL, "}, then
(i) forany j and |, R,, =¢ or R;; =R, ,
(i) for each DDB; € Dpg,;, whose local database application does not allow any
horizontally partitioned fragments of relations (i.e., if DDB, = {DB}: 1 € L}

and DB'= {---{R),};esr 1L, "}, then for any j and [, either

R;-l =¢ or R;.l = R))r

C,(DDB) + Ci(DDB oy, QF) < C,(DDB,) + C((DDB,, QF). .

Definition 4.2.4

Let Spg and S, be a set of various database applications DB’s and a set of
various site index sets L's, respectively. For a DB € Sps , suppose KBpp is a set
of all possible instances of a knowledge base associated with the database DB, i.e.,
the collection of all KB(DB)'s. Given a DB € Sp3 and a L € S, , the KBDDBS
design is a two place function fpf; : QFpss X KBpg — Dpg,, such that for a

QF € QFps, and a KB(DB)€ KBp; ,
/o€ L(QF, KB(DB)) = DDBLf ,

where if DB ={---,{R,},es,""-}, DDBKE ={DB™:1 €L}, and DB™=

{---{Rji}jerter »+ -}, then

50

() forany j and I, R,, C R,,
(i) for each DDB, € Dpg, ,

C,(DDBER) + C.(DDBXZ, QF) < C,(DDB,) + C,(DDB,, QF) . °

It is intuitively obvious that for a very large database, in which the queries at
each site are more locally clustered at some fractions of the relations, the system
designed by the design scheme of fpi; would significantly outperform the system
designed by the design scheme of fp), . In other word, given DB, L , QF , and

KB(DB),if fps1(QF)= DDBy, and f,¥,(QF ,KB(DB))= DDBXE | then

C.(DDByin) + Ct (DDB oy, QF) >> C,(DDBXE) + ¢, (DDBXE QF).

It is mainly because, in fpf, , though it depends on the system parameters
and the degree of replication, the additional storage requirements plus the cost of
maintaining consistent multiple copies of relations at more than one site all the time
could be prohibitively high and, therefore, the cost paid for replication becomes more
than the benefits gained by replication. This problem of f,), originated from
viewing the whole body of each relation as the smallest unit of data allocation. In
foi'L , however, th;e unit object of distribution is allowed to be the horizontally
partitioned fragments of relations.‘ That means, the storage and update cost for the
unnecessarily replicated portion of relations may be avoided by appropriately distri-

buting the horizontally partitioned fragments.

The major question in the KBDDBS design fpf, is then “How should the
relations be partitioned horizontally so that at each site the necessary portion or

unnecessary portion of each relation can be faithfully reflected in their allocation?”

51

It is not difficult to se& that the URC’s at each site are necessary to partition rela-
tions horizontally. As long as it is known that the user queries at a site are clustered
around only a certain fraction of a relation, it would certainly be better to allocate

only that fraction of the relation at the site.

Therefore, the problem of ‘“How to partition relations horizontally?” is the
problem of “How to identify the URC's at each site!”” One suggested approach
would be to examine the user queries at each site. However, the approach to detect
the URC's precisely enough méy not be feasible only by looking at the queries
because the user queries are not formulated to do so. In the relational data model,
users need not specify details about what they want from the database in their query
expressions since the details about the database are transparent to the users. The
information contained in the user queries is not sufficient to estimate the URC's

precisely.

Nevertheless, it is postulated that the DB designer can estimate the precise
URC’s to some degree by exploiting the knowledge inherited from his(her) concep-
tion of the real world. After seeing a query, what the DB designer may do for this
would be to search for any knowledge which may be applicable to the query and to
derive better URC''s associated with the query. It is suggested that a knowledge-
based approach can be employed in which what the DB designer does is mimiced. In

the following section, the knowledge-based approach is discussed in detail.

4.3. Knowledge-Based Approach of the KBDDBS Design

In the previous section, it was discussed that what mattered in the KBDDBS
design was to determine the URC'’s precisely and it could be done by employing a

knowledge-based approach. In this section it is discussed in detail how the

52

knowledge-based approach is employed by constructing a knowledge base system.

The suggested approach is to build a front-end Knowledge-Based System (KBS)
that receives the user provided queries, and revises them into equivalent versions by
using the knowledge about the data which provide more precise URC's than do the
user provided queries. In building the knowledge-based system, there are two funda-
mental issues to be concerned with as in building any type of knowledge-based sys-
tem: knowledge representation formalism and snference mechanism. These two
aspects of a knowledge-based system vary depending on a system’s domain of appli-
cations. No general solution exists. However, one basic philosophy of a logical for-
mal system may be applied in designing a knowledge based system, although a
knowledge based system of Al differs from the formal system of logic from the prac-
tical point of view. The basic philosophy is stated in [Shoe67]:

*Clearly whether or not A is a theorem of T depends strongly on what the nonlogi-
cal axioms of T are. Hence we must expect the condition for A to be a theorem of

T to refer not only to A, but also to the nonlogical axioms of T. If these nonlogi-

cal axioms are sufficiently simple, this will not be a disadvantage. For theories with

complicated nonlogical axioms, it is necessary to abandon [a] general solution, and
seek a solution adapted to the particular theory.”

If the knowledge base of any knowledge based system is regarded as a collection of
nonlogical axioms with sufficient complexities, what is being implied by the preceding
statement is that it would be desirable to develop a #peciﬁc inference mechanism for
a particular knowledge-based system rather than to develop a general inference
mechanism applicable to any knowledge-based system. In this study, this philosophy
is faithfully followed. When building a knowledge base for the KBDDBS design, the

knowledge useful for its intended purpose is expressed in some specific types of

83

formulas in Ly and an inference mechanism is developed which could be efficiently

applied only to those formulas.

In the rest of this section, the KBS of the KBDDBS design is formalized in
terms of a knowledge representation formalism and an inference mechanism. As a

preliminary step, a knowledge-based system in general is formalized as follows:

Definition 4.3.1

A knowledge-based system in general (KBSG) is an ordered pair,
KBSG = <KRF ,IM> , where KRF and IM stand for a knowledge representa-
tion formalism and an inference mechanism respectively, such that from the known
facts expressed in KRF some additional true fact is efficiently deducible only by

using the syntactical processing based on IM . °

Example 4.3.1

If a propositional calculus (PC) in logic is considered as analogous to a
knowledge based system in Al, then the collection of the tautologies and the nonlogi-
cal axioms of PC is considered to be a knowledge base and modus ponens with refu-
tation procedure as an inference mechanism, therefore,

PC = < syntax rule of PC, modus ponens with refutation procedure >.
The practical systems in Al, the Q-A systems [Mink78, Reit78b] and QUIST system
[King81] can be formalized into

Q-A = < syntax of applied first order language, resolution principle >,

QUIST = < syntax of QUIST query language, inference guiding heuristics > .

54

It becomes clear from the preceding examples, depending on the problem
domain to which a knowledge based system is applied, KRF and IM of a KBSG
vary. For instance, compare a Q-A system with the QUIST system. In a Q-A system
a query is furnished as a corjectured theorem which ought to be proved, while in the
QUIST system, a query is given and a set of equivalent queries may be derived. The
former, therefore, naturally appeals to automatic theorem proving technique (ATP),
which means KRF and IM of a Q-A system may be mapped into a formal language
synt#x and the refutation technique respectively. The latter, however, is not ade-
quate for the application of ATP, because there is no conjectured theorem given a
priori. Because of this reason and the fact that there may be many equivalent
queries deducible which may not necessarily be beneficial, in QUIST a specific infer-
ence guiding heuristics has been chosen as its /M and at the same time KRF has

been developed to fit its IM.

The KBS of the KBDDBS design is similar to the QUIST system in the sense
that there is no conjectured theorem, but it differs from the QUIST system by the
fact that there should be only one conclusion to be deduced by its inference mechan-

ism. Suppose the KBS is modeled by
< Syntaxof Ly, IM* >

where IM® is some inference mechanism applicable to the formulas in Ly . In this
case devising the inference mechanism IM’ to be applied to any formulas of Ly
could be extremely difficult because Ly is a very general knowledge representation
formalism. Fortunately, the fact that the useful knowledge for partitioning horizon-
tally falls into a class of specific types of formulas in Ly allows the development of a

simple efficient inference mechanism of the KBS. Following the philosophy of a

55

logical formal system quoted earlier, it is suggested that the KBS be modeled by
< L-Horn formula, |—>

where Z-Horn formulas are some specific types of formulas in Ly and |— is a sim-

ple syntactic matching procedure which is applicable only to the £-Horn formulas.

The schematic diagram of the horizontal partitioning system of the KBDDBS
design is shown in Figure 4.3. The KBS consists mainly of two parts, namely, the
knowledge base constituting some specific knowledge about the data, and the infer-

ence mechanism.

56

udisop sgAdd) 291 jo wasg Sutwonred [2IU0ZLOH g} nSiy

3uiuonyaed fejuocziioy

Jo

uonBuIUIdR(

8, 04N

5, 04N

Jo

uolsuIuULIdPR(Q

suoissardxa

£1anb posiaal

saM

wisluB oW

aduazajul

-

8jep 3y}

noqe adamoudf

ayis yoed 98

-] sausenb 98

CHAPTER V

QUERY REPRESENTATION IN L,

5.1. Scheduled User Queries

User demand to the database, or simply saying user queries, is one of the funda-
mental design resources in most of the DDBS designs schemes. In this chapter it is
shown how this fundamental design resource is expressed for thé KBDDBS design by
using Ly as the descriptive tool. First, in this section the notion of scheduled user

queries is introduced and its importance is discussed.

When user queries are used for a DDBS design purpose, what information needs
to be acquired from the user queries determines how the user queries should be
expressed, i.e., the intended usage of the user queries determines query representation
formalism. For example, in [Aper81], all the information needed from the queries is
which kinds of relations appear in each query. Therefore, their query representation
formalism only contains the information regarding what relations are needed to
answer a query.‘ Such representation formalism is sufficient for their intended pur-
pose, since the issue of their study is to reflect the intermediate data flow only in
terms of relations. Knowing which relations would be required to answer queries is
enough to determine which distribution configuration of the relations would be the

optimal.

57

58

However, in our study where the issue is to introduce a methodology of parti-
tioning relations horizontally based on the URC's, the URC'’s obtained only in
terms of the relations are not tight enough. The URC's should be identified in
terms of fractions of relations. In order to make it so, the query representation for-
malism in the KBDDBS design must contain the information regarding which frac-
tions of relations are required to answer a query. Beside the preceding requirement,
there is another condition to be satisfied for the query representation formalism in
the KBDDBS design. That is, since the knowledge about the data is applied to a
query, the query should be expressed in a compatible way with the knowledge to be
applied. In summary, there are two issues involved in representing the user queries

for the KBDDBS design:

(1) In the query expression, restrictions should be explicitly specified, as well as pro-
jections or joins, because the horizontal partitioning is mainly determined by

restrictions.

(2) The queries should be expressed in a compatible way with the knowledge so
that the knowledge can be applied to the queries via some syntactic inference

process.

With these two issues in mind, the two notions, “user queries” and “‘scheduled
user queries,” are differentiated as follows. User queries are the instances of
queries issued by the users which may be identified by a DB designer by intensive
interviewing the users before attempting to design and scheduled user queries are
the query expressions derived from the user queries in a “collective’” way. What is

meant by collective way is explained in the following.

59

First, let the notion of ‘‘same type' of user queries be defined as follows: For a
given set of user queries, if any pair of user queries differ only by the values of res-
triction, then the queries in the set are of the same type. A scheduled query
representing the set of the user queries of the same type is then any single formal
expression that has the meaning of combining all the user queries in the set. For
instance, suppose there are two user queries such as

“Who has been supplied item#=B47?"

“Who has been supplied item#=V03?"

These two queries are of the same type since they only differ by the restriction
values B47 and V03. A scheduled user query derived from these two user queries is
any formal expression having the same meaning as

“Who has been supplied item#=B47 or V03?" | (5.1)

Regarding the first issue, i.e., restrictions should be explicitly specified in the
query expression, a scheduled user query certainly contains the information regarding
the subsets of relations on which restrictions are made. For example, any formal
expression for (5.1) can indicate that the restrictions of the user queries are only to

the transactions whose item# values are B47 or VO03.

Now for the second issue, i.e., the queries should be expressed in a compatible
way with the knowledge about the data, it is suggested that Ly be used as the
representational tool of the scheduled user queries. By using aggregate variables in
Ly, the collection of the same type of user queries can be compactly expressed in
Ly . How scheduled user queries are expressed compactly in Ly is the content of

the following section.

60

5.2. L-Normal Form as a Query Representation Formalism

There have been many languages suggested, and implemented in practice, as
tools for representing queries. Each query language has been developed for its own
purpose and these languages are compared to one another on the basis of different
criteria. When concern is only with a relational data model, the query languages are
divided into two types: algebraic languages and predicate calculus languages. The
calculus-based languages are further divided into two classes, namely, tuple relational
calculus and domain relational calculus. The primitive objects of the former are
tuples of relations and those of the latter are elements of the domain of the same
attributes. Here Ly is used as a query language based on the domain relational cal-

culus.

In general, a query expression means the set of tuples to be returned as the
answer to the query. Either in an algebraic query language or in a calculus-based
query language, the syntax rules for query expressions are made up so that a query
expression written according to those rules is intended to mean the set of tuples

returned as the answer.

Suppose there are two relations R, and R; each of whose arity is two and
which are joinable via their key attributes. If a query ¢ is the one retrieving tuples
of R, whose key attribute is the same as the one of R, , then in an algebraic

language ¢ would be expressed as
R, DL R, .
Compared to this, in a calculus-based language ¢ would be expressed as

q ={<z,y>:R,-(z,y)ﬂR,(z,z)}.

61

It is clear in the above example that unlike an algebraic language, a calculus-based
language allows the query expression to be built up in two layers: one the intentional
qualification clause which is a well-formed-formula of the calculus; and the other the
bracket “{ }” intended to mean the set implied by the qualification clause. The
well-formed-formula is called a qualification clause and the complete representation
of a query which is intended to mean the answer set of the query is called a query
ezpression. When representing the queries in Ly which is a domain relational cal-
culus, a query's qualification clause must also be explicitly distinguished from its
expression. The separation of the two notions is essential in this study since the
knowledge is not applied to the query expression but to the qualification clause of

the query.

In order to separate the two notions in the context of Ly, the notion of

DEF (") is first introduced as follows:

efinition 5.2.1

Given a structure DB , let Ly{DB) be a language associated with DB . If ¢
is a formula in Ly(DB) with n free variables, then DEF(DB,J) is an n-ary rela-

tion such that
DEF (DB ¥) = {<ay, *** ,a,>: |, v[s]},

where if V is the variable set of Lg(DB) and {D,} is the set of sort domains of

DB , then s is a variable assignment function & : V = UD: .
1€l °

62

Now the two notions, a query expression and a query clause, are formally

introduced as follows. Given a database application structure DB, let

¥(vy, -, v,) €E Form(Lg(DB)). Then a query ezpression ¢ is an expression of the
form DEF(DB, y(vy,---,v,)) and the query clause of ¢ is ¢{v,,---,v,) of
DEF (DB, ¢(vy, -, v)).

Example 5.2.1

Suppose the following is a user query to DB(Auto) frequently issued at site
AP: “What are the addresses of the dealers who were supplied item#=B47?" Then

the expression of this query in Ly is,
g = DEF (DB (Auto), ¥,),

where the query clause ¢, of ¢ is

¥, =1z Jy Jv (Sa(z,y,B47) N De(y,u,v)).

As long as the notion of DEF(") is clear, from here on by simply a query it
would be often meant a query clause. In the rest of the section it is shown that
query clauses for scheduled user queries are of certain form in Ly. As stated in the
previous section, an issue of how the queries should be expressed is whether the user
queries can be expressed in a compatible way so that the knowledge can be applied
to the user queries in a deductive way. With this in mind, a class of formulas of Ly

is defined as follows:

Definition 5.2.2

For a € Form(Ly), a is in E-normal form if a is of the form, for some
n20, Jv, -+ Tv_ vy, ~-- ,v,), where {v, --- v, }C {vy, -+, v},
such that
(1) v, 1<i <n,isasimple or an aggregate variable, and

(2) #(vy, -, v,) is aconjunction of atomic formulas.

From here on, the I-normal form is used to express the query clauses for
scheduled user queries. The expressive power of I-normal form is illustrated by an

example.

Example 5.2.2

In addition to the user query clause ¥, shown in Example 5.2.1, suppose there

are other user queries, say ¢, and y,, as follows:

Yo =1z Iy Jv (Se(z,y,V01) N De(y,u,v)), and

vs =3z Iy Jv (Sa(z,y,V03) N De(y,u,v)).

Then ¢,, ¢;, and ¢, are all of the same type. The scheduled user queries made
up of ¢,, ¥,, and ¢, is a query expression asking ‘“What are the addresses of the
dealers which were supplied item# = B47, V01, or V03!" Without using aggregate
variables, one way to express the query is DEF (DB (Auto), U ¢, U ¢,) . In fact, the

disjunctive form ¥; U ¥, U ¢ can be equivalently expressed as

64

YiU¥U¥s= Jz Jy Jv Iz (Sa(z,y,V03) N De(y,u,v)N
(2=B47TU:z=V01U z:=V03)).

Now it is shown how this scheduled user query can be compactly expressed in E-
normal form. Suppose Ly(DB(Auto)) is E-extended by a new predicate symbol J
and at the same time the structure DB(Auto) is also expanded by E-definition by

the defining axiom of J such as
Vz (J(z) 5 (z=B47TUz=V01U z=V03)).

Then by introducing an aggregate variable, the disjunctively conjoined formula

%1 U ¥2 U ¢ collapses into a I-normal form formula ¢, as follows:

gy =3z Iy 3z% Jv (Sa(z,y,2%') N De(y,u,v)). (5.2)

Here the scheduled wuser query expression DEF(DB(Auto), ¥, U $;U ys) is

equivalently expressed by DEF(DB(Auto), q,).

In the preceding example, it is clear that ¢, of (5.2) is much more compact
than the disjunctively conjoined formula ¢, U ¥, U ¥5 . User queries are expressed in
a much more compact way in Ly than in an ordinary many-sorted language. How
such compact way of expressing the query allows the application of the knowledge to
the cjuery is discussed in detail in Chapter VII. From here on as long as the distinc-
tion between user queries and scheduled user queries is clear, i.e., the latter is made
from the former to be used for the purpose of the KBDDBS design, by simply

““queries” it is meant scheduled user queries.

65

Finally, by using the formality of the query clauses in E-normal form, the notion of
the URC’s which has been introduced informally in Chapter II is defined in terms of

the atomic formulas of Ly as follows:

Definition 5.2.3

For a query ¢ in EI-normal form, let the matrix of ¢ be of the form
Ryn :-- NRy where R, € Atom(Ls), 1<i <m. If DEF'(DB,q) stands
for the singleton set whose member is the set DEF(DB , R,), then the URC ident;-

fied by ¢ is

U DEF'(DB , q)
.‘e{l'v..

An example of the preceding definition follows:

Example 5.2.3

The query ¢, of (5.2) in Example 5.2.2 is considered. The matrix of ¢ is

Sa(z,y,25/)N De(y,u,v) . The URC'sidentified by ¢, is then the set

{ DEF(DB(Auto), Sa(z,y,2%')), DEF (DB (Auto), De (y,u,0)) } .

CHAPTER VI

KNOWLEDGE REPRESENTATION IN L,

6.1. Axiomatic Knowledge Identification

In this section it is discussed what kind of knowledge is included in the
knowledge base of t;he KBS. In any knowledge-based system, what types of
knowledge should be included in its knowledge base generaily depends on the pur-
pose of using the knowledge. In the KBDDBS design, the purpose of using the
knowledge about the data is for the horizontal partitioning, and by doing so to even-
tually reap the benefits accrued from allocating the partitioned fragments instead of
the complete relations. The benefits accrued when distributing horizontally parti-
tioned fragments include: (i) during the process of queries, the selection operation is
dispens‘ed with in some degree by presuming each fragment as a preselected subrela-
tion, and (ii) the unnecessary join operations are eliminated by knowing a priori the

fact that join operations between some fragments produce a null set.

Such benefits, which are sought by relying on the dispersion of horizontally par-
titioned relations, imply what should be derived from the knowledge base and, there-
fore, what should be in the knowledge base. They are mainly the two types of
knowledge: (i) the knowledge which contains the notion of preselection (or, say,

prepartitioned fragments) which would be of benefit to dispense with the selection

66

67

operations of queries, and (ii) the knowledge which shows the relationships between
the prepartitioned fragments of relations which would eliminate any unfruitful join

operations.

It is postulated that these two types of knowledge are expressible in terms of
five types of axiom schemas in Ly . In other words, the instances (i.e., axioms) of five
axiom schemas constitute the knowledge base of the KBS which is utilized for the

purpose of horizontal partitioning of relations.

The five axiom schemas identified are Functional Dependency Axiom schema
(FDA), Relationship Axiom schema (RA), Inherency Axiom schema (IA), Ground
Defining Axiom schema (GDA) and Virtual Defining Axiom schema (VDA). The rea-
son the knowledge is classified into the axioms of five types is twofold. One is to
identify the knowledge useful for horizontal partitioning via syntactic formality, and
the other is to exploit the formality for developing an inference mechanism. In the
following, the meaning of each axiom schema is first briefly explained and then the
representation of the schema in Ly is shown. Examples of each schema are given in
the following section. These examples are annotated at each schema description. To
simplify the expressions, some abbreviations are adopted: if A is an index set such as

A={a;, - ,6,}, then X, and QX, are the abbreviations of the sequences

Z4,, "* , %, and Qz, ‘-- Qz, ,respectively, where Q iseither Vor 3.

(i) Functional Dependency Axiom (FDA)

Functional dependency (FD) in a relation is a well known concept. Any type of
FD can be expressed in the form of schema discussed below and also any axiom of

this schema describes a FD (e.g., (6.3)).

68

FDA schema : Given an n-ary relation R whose attribute index set is
{1,---,n},ifthereisa FD from X, to X; where A and B are the sub-
setsof {1,---,n },and A N B is not necessarily the empty set, then the FD is

expressed as VX, YXp VXo Vip VY (R(X,,Xp . Xc) N R(X,,Yy Vo)~ (z,=
yy N -+ Nz,.=y,)) where all the variables of X, ,Xo ,Xc, Yy ,and Y¢ are
simple variables,and B'=B - A, C ={1,---,n}-(A UB), and each i’ isan

element of B’ .

(ii) Relationship Axiom (RA)

An axiom of RA schema describes the following types of relationships which
hold between two relations: (i) whether an attribute of one relation shares a common
domain with an attribute of the other relation, and (ii) if so, whether join of the two
relations over the attributes of the common domain is meaningful in the sense that
queries including the join of the two relations on these attributes are meaningful.
Although any two relations having attributes which share a common domain are
actually joinable, not every join of such relations would be meaningful. Only mean-

ingful join of two relations is specified in this schema (e.g., (6.10)).

RA schema: Given an n-ary relation R, and an m-ary relation R, whose attribute
index sets are {1,--:,n} and {1,-:-, m} respectively, if the range of gz, ,
i €{1,---,n}, is identical with the range of y, , j € {1, -, m}, and the join of

R, and R, on z, and y, is meaningful, then such relationship between the two rela-

tions R, and R, is expressed as 3z, 3)_(:4:3% 3?3.(R1(z.,4?4.)n
Ry, Y5:)N (2,=y,)) where A'={1,---,n}-{i}, B'={1,---, m}-{j} and

all the variables z, , X;+, y, and Yz, are simple variables.

69

(iii) Inherency Axiom (IA)

An axiom of IA schema is the type of knowledge which plays the key role in the
KBS, since URC’s are more precisely estimated by knowing the relationships
between the subsets of relations. The type of knowledge in this schema consists of
the inherited facts specifying how the subsets of relations are interrelated to each
other. Axioms of this type mostly carry how the relation could be subdivided and

how the subrelations are interrelated (e.g., (6.4)).

IA schema : Let an n-ary relation R, and an m-ary relation R,, whose attribute
index sets are {1,---,n} and {1,---,m } respectively, be related by an
axiom of RA on the attributes X, , where A C {1,---,n}. Then a relation-

ship between some fractions of these two relations R, and R, is expressed in

the form of VX, (IXy¢ IX;e (X4, Xy Xse)— Y5 Ro(X4,Y5)) where some
variables of Xy and at least one of each of X,+ and Y are aggregate variables ;
A ={1,---,n}-A,B={1,---,m}- A, A®is some attribute index set of rela-
tions RA-related with R, ; and ¥(X,,X¢ ,X,) € Form(Ly) is a conjunction of atomic

formulas of Ly including R,(X,,Xy).

Here it is noticed that any axiom in this schema is a I-Horn formula (Z-
Horn formula} is a variation of Horn formula [Horn51] in which variables in the for-

mula may be aggregate variables).

t In a more formal way, L-Horn formula can be stated as follows: A ¢ € Form(Ly) is a basic
E-Horn formula iff ¢ is a disjunction of formulas ©,, ¢y =6, U - - U6, , where at most one of
the formulas ©, is an atomic formula, and the rest of them are the negations of atomic formulas. A
T-Horn formula is built up from the basic Z-Horn formula with the connective (), the quantifiers

J and V. A Z-Horn sentence is a E-Horn formula with no free variables.

70

(iv) Ground Defining Axiom (GDA)

In the axiom schemas of IA, some unary predicates are introduced as the
accompanying symbol of aggregate variables. As previously discussed in Section 3.3,
whenever a unary predicate, say P , is introduced syntactically, the meaning of the
symbol P must also be described and introduced as what is call a defining axiom.
There are two ways of doing this: one by GDA schema and the other by VDA
schema. If the defining axiom is explicitly stated in terms of constants, it is called
an axiom of this GDA schema and if it is implicitly defined in terms of some other
existing relation predicates, then it is called an axicm of VDA schema. By the GDA
schema, the members of the set which is interpreted by the introduced unary predi-
cate are explicitly defined in terms of the constants of Ly. The GDA schema is for-

mally stated as follows (e.g., (6.1)).

GDA schema : Given a unary predicate P to be introduced, the GDA schema is
represented in the form, Vz (P(z) 5 (z =¢' U --- U z =1¢")), where ¢',
1<i < n,is aconstant symbol of a sort domain to which the aggregate variable

accompanying P belongs.

(v) Virtual Defining Axiom (VDA)

An axiom of VDA schema is an axiom defining a unary predicate in terms of
some other pre-existing predicates. When defining the set designed by a unary predi-
cate, it may not only be described in terms of the constants of Ly but also may be
expressed in terms of nonunary predicates of Ly. The set designated by a unary

predicate may simply be expressed in terms of VDA schema by some combination of

71

join, selection, and projection of relation predicates, instead of by only the constants

of Ly. The formal representation schema is the following (e.g., (6.8)).

VDA schema : Given a unary predicate P to be introduced, the VDA schema is
represented in the form, Vz (P(z) & a(z)), where a(z) € Form(Lg) and z is the

only free variable in ofz).

6.2. C-Horn Knowledge base

In the previous section, five types of axiom schemas have been identified whose
axioms would constitute the knowledge base of the KBS. The knowledge that is
directly applied to the queries is in fact a special class of the axioms of the five sche-
mas. Other kinds of knowledge are used for secondary purposes. In this section, it
is discussed how the special class of the knowiedge is constructed from the axioms of

the five types of schemas.

The knowledge base of KBS can be said to consist of two levels that are
denoted by KB and KBgy , respectively. KB is the knowledge base constituting
the five types of axioms that was introduced in the previous section and KByy is a
subset of the logical consequences of KB . In fact, KB is a proper subset of the
complete theory KB(DB) defined on the database structure DB, i.e.,
KB C KB(DB). By this it is meant that KB is a collection of knowledge selected
from KB(DB) that is of interest to the DB designer of a specific application domain.

In our case, the knowledge needed to estimate the URC’s is the content of KB.

KBygy is indeed the collection of the axioms that actually take part in the syn-
tactic inference procedure of the KBS (how it is done is the content of Section 7.2).

KBgy consists of two types of axioms: [type I] the IA axioms in KB each of which

72

has its ‘‘corresponding” FDA axiom in KB (the notion of ‘‘corresponding” is
defined shortly), and [type II} a class of axioms equivalent to the IA axioms of type I
which are individually derived from some relevant IA, FDA, GDA, VDA and RA
axioms. The axioms of type II are also IA axioms. I'rom the fact that both types of
the axioms in KByy are IA axioms and the IA axioms are L-Horn formulas, KByy
is called a Z-Horn knowledge base. In the following it is shown by example how
axioms of the five schemas constitute KB and how KByy is constructed from
KB . In this example it is also clarified why the five types of axioms are identified

as useful knowledge for the KBS.

First, it is illustrated that the axioms of three schema types, FDA, IA and
GDA, constitute KB . Let a knowledge provided by a DB designer be “All the
dealers which are supplied car items are the car dealers.” Let B47, V01, V03, and
W09 stand for ﬁll the car items, and let 50 and 51 stand for all the car dealer

types. If P and @ are defined, respectively,

Vz (P(z) 5 (z=B47Uz=V01Uz=V03U z=W09)),

‘ (6.1)
Vz (Q(z) & (z=50 U z=51)),

then, with a little exercise of imagination, the preceding knowledge is recapitulated

by the following formulas in an ordinary many-sorted language:

Vy (32 Jz(Sa(z,y,2) N P(z)) = Fu Jv (De(y,u,v) N Q(v))) (6.2)

in conjunction with a functional dependency in the relation DEALERS from d# to

d_type of the following form
Vz Vy Vz Vy ' V2 !(De(z,y,2) N De(z,y',2') = z=2") (6.3)

(why (6.2) must be in conjunction with (6.3) is additionally explained in detail later

73

in Section 7.2). By introducing the aggregate variables :* and vZ% , (6.2) is

equivalently expressed as

Vy (Jz 3z Sa(z,y,2%F) = Ju JvEQ De(y,u,vE9)). (6.4)

Here (6.3) is a FDA axiom and (6.4) is an IA axiom. (6.3) and (6.4) are elements of
KB . In the process of generating (6.4), it is required to add the axioms of (6.1) in
KB as GDA axioms in order to make P and @ meaningful predicate symbols.
The preceding illustration shows the axioms of the three schemas, FDA, IA and
GDA, are elements of KB . Axioms of other two schemas, RA and VDA, are illus-

trated in the context of constructing KByy from KB .

In the rest of the section, it is shown how KBy, is constructed from KB .
First, the notion of ‘‘corresponding” FDA axiom is introduced for each IA axiom.

Let an IA axiom K be of the form

K = vzl“' vzn ('Gb(zu"‘,zn)-’ 331"' 343(-’-‘,"',3., rzlr'-”yzk))v
where {z, ,--:,2,}C {z,,---,z}. Let Zg,» "' ,2g be the only aggregate
variables among z,, :-- ,z . A FDA axiom is said to be the corresponding aziom

of K if the FDA axiom is of the form

Vuy oo Vuy Voo Vi Vg Wy (R(uy, v YW LY, Lm0

’
R(“ll"’l“h»”l .""Ilk')"’llvl=yw'ln tot nyw’=y;');
which states that there is a functional dependency in R from u,, --- ,u, to
yU‘) te ,yﬂl'

KByy is constructed by including only the IA axioms in KB each of which

has its corresponding FDA axiom in KB . The IA axiom of (6.4) is considered. It is

74

clear that (6.3) is the corresponding FDA axiom of the IA axiom (68.4). Since (6.4) is
accompanied by (6.3) in KB , (6.4) is a legitimate element of KBy, . There can be
possibly a class of IA axioms in KB which are not accompanied by their
corresponding FDA axioms. For instance, (6.4) may not be accompanied by (6.3) in
KB , although (8.4) is still an IA axiom and is therefore an element of KB . Such
IA axiom must not be included in KByy . The reason that IA axioms without their
corresponding FDA axioms should not be included in KByy, is because they can
lead to an incorrect identification of the URC's (it will be discussed in detail later in
Section 7.2).

Now it is illustrated how a class of axioms equivalent to the IA axiqms in
KByy is derived and also included in KBgyy . In this context, the need of RA and
VDA | schemas is illustrated. The reason KByy is expanded by adding new IA

axioms is to allow a larger class of user queries to be handled by the KBS. These

new axioms are also IA axioms and they are generated in conjunction with some

relevant IA, FDA, GDA, VDA and RA axioms.

First it is shown how a VDA axiom is derived from IA, FDA and GDA axioms.
Let there be a relationship saying “All the values of i_type in ITEMS for the car
items are only ‘bus’, ‘sedan’ and ‘van’ " which indeed holds in the relation ITEMS

[cf. Figure 6.1]. This relationship is expressed as

V™ (Jy 3z B(z™,y,2) = Fu ToTF N (zZF 0 0TF)Y), (6.5)
where R is defined
Vz (R(z) & (z=sedon U z=>bus U z=van)), (6.6)

in conjunction with the functional dependency in ITEMS from stem# to i_type

75

ITEMS

item# | name | i _type The following holds:
Co06 white 7 | paint

N11 squ. 11" | nut

P02 | distribu. | engin DEF (DB , It (:¥° ,w,t)) .
P03 radiator | engin

S01 In. 8080 | elect. ==

S02 battery elect.

X89 | iron9” | plate DEF (DB , It (z,w,t=%)).

B47 Eland bus
Vo1 Astre sedan
Vo3 Camaro | sedan
W09 Brat van

Figure 6.1. Derivation of a VDA axiom

Ve Vy Ve Wy ! Ve'!(It(z,y,z2)N1t(z,y'2") > z=2"). (6.7)

Here (6.5) is an IA axiom, (6.6), a GDA axiom and (6.7), a FDA axiom. The IA
axiom (6.5), the FDA axiom (6.7) and two GDA axioms, one for R in (6.8) and the
other for P in (6.1), imply that the unary predicate P which was once defined in

terms of constants can now be defined in terms of the predicate It . That is, from
(8.1), (8.5), (8.6) and (6.7), it follows that PP2 = DEF (DB, Juw Jt=* Ii(z,w,t=R))
[cf. Figure 6.1]. The meaning of P can now be expressed as

Vz (P(z) 5 3w JER It(z,w,t™F)). (6.8)
(6.8) is a VDA axiom that is therefore an element of KB .

Now it is illustrated how an IA axiom in KBgyy in conjunction with a VDA

axiom and a RA axiom leads to another IA axiom that is equivalent to the IA axiom.

706

The IA axiom (6.4) and the VDA axiom (6.8) are considered. If the aggregate vari-

P

able : shown in the antecedent of the IA axiom (6.4) is unraveled, (6.4) is

equivalently expressed as

Vy(dz 32(Sa(z,y,z2) N P(z)) = Fu v De(y,u,v%?)). (6.9)

Then (6.9) and the VDA axiom (6.8) suggest a way to provide an axiom that is

equivalent to (6.4). That is, P(z) in (6.9) may simply be replaced by

Jw 3t It(z,w,t%®) without changing its meaning as long as the equivalence of
these two expressions are defined in terms of the VDA axiom (6.8). However, the
replacement of such unary predicate by using a VDA axiom should not be made

unless there is a RA axiom in KB which is called the “relevant” axiom to doing so.

The notion of a “relevant’” RA axiom is introduced as follows: Let K be an IA
axiom describing a relationship between some subsets of two relations, say R, and

R, , of the form

K=Vzy -« Voo (Wai|, -,z)N Rz, - ,3,)—

Bz, -+ Tn Rofzey, 0 12 210 00 1)
where {z,l, ,z,.}g{z,, +++,2,} and {z,l, P R N
{z1, -+ ,z}. Let z; be an aggregate variable whose range is restricted by a
unary predicate, say P , where z,, € {z;,, """) 25} and z, ¢ {ze,, -) 2y, } s

and let this aggregate variable be unraveled as follows:

K'=Vz, --- Vo (Y{z;, -,z)NRyz,, " ,z)NP(z)—

331 tte 3zh Rz(zaly ctt ,24‘ y 21, ° 70 ;Zk))

where z, is now no longer an aggregate variable. Let there be a VDA axiom of

77

the form,

Vz)' (P("'J,) = 3%1 T Hy,,Ra(yx y T, yv+l))
where {z, , Ypr " y,_} = {y1, *° , Y41} - Then it is said that a RA axiom of
the form

Ju, - Juy, Jwy - oy (R, -0 uy)N Rywy, -0, wyy) N (v, =uw,))

is the relevant RA aziom to the replacement of P(z;) in K' by

3!/:1"' 31/:‘,33(111;"'.%4—1)1 where ;. e{“jl;"',“j,}’ wy €{wy, *, yp}

and w, isthe z; € {y1, -, pon}.

When replacing P(z;) in K' by Iy, --- Iy Ralyr, - -, yop), the
relevant RA axiom is needed because the presence of the relevant RA axiom implies
the resulting formula obtained by the replacement would be useful. By definition,
the RA axiom of the preceding form means join of R, and R, over the attribute
indicated by z; is meaningful. This implies that queries including the join of R,
and R, over the attribute indicated by z, are meaningful, which therefore means the
resulting formula obtained by the replacement can be used to restrict such queries.

The use of relevant RA axiom is illustrated in the following. Let the join of the
two relations SALES and ITEMS via item# be meaningful in the sense that
queries including the join of the two relations on item# are meaningful. This rela-

tionship is expressed as

dz 3y 3z Ju Jw At (Sa(z,y,z2)NL(u,w,t)Nz=u). (6.10)

Here (6.10) is a RA axiom which is therefore an element of KB . Furthermore (6.10)

78

is the relevant RA axiom to the replacement of P(z) in (6.9) by

Fw 3t It(z,w,t**)) in (6.8). Replacing P(z) by JIw ™ It(z,w,t=R))

rephrases (6.9) into the following form:

Vy (3z 3z Jw 3!2”(50 (z,4,2) Nn It(z,w,tm))—> Ju JoE0 De(y,u,vE@)). (6.11)

(6.9) describes the same knowledge described by (6.4) in a different way “All the
dealers who are supplied ‘sedan’, ‘bus’ and ‘van’ are the car dealers”. Here, (6.11) is
again an IA axiom that was intended to be derived. (8.11) is an element of KBgy .
At the end of Section 7.1, it will be illustrated how the inclusion of the new IA
axioms such as (6.11) enlarges the class of queries to be handled by the KBS. It is
noticed that although KByy contains only IA axioms (which are all £-Horn for-
mulas), the other types of axioms have been indirectly embedded in the

construction of KByy .

CHAPTER VII

INFERENCE PROCEDURE

7.1. Inference Procedure

In this section, it is described how the knowledge about the data, i.e., KBy ,
is applied to the queries, i.e., query clauses in E-normal form, in order to lead to an
equivalent query clause which shows more precise URC's than does the original
query. This process is done by the inference procedure of the KBS. Let the infer-
ence procedure be abbreviated by the symbol * |—". Then *|—" requires some
preliminary steps to be made for the formulas in KBy; and the query expressions
in E-normal form. Each formula in KBgy is converted into an existential quantif-
ier free form by the process known as Skolemization. Once the Skolemization step is
performed, all the quantifiers can be omitted from the formulas in KBy, and the
query expressions. This is possible because the formulas in KBy, are only univer-

sally quantified and the query expressions are only existentially quantified.

The step converting each formula in KBgy into an existential quantifier free
form is described in detail. First, the formulas in KBy, are converted into the logi-
cally equivalent prenex normal forms. Then the prenex normal forms are converted
into existential quantifier free forms by the usual procedure called Skolemization.

Here the Skolemization for the formulas of Ly differs from the ordinary Skolemiza-

79

80

tion only by the fact that when a Skolem function is introduced, its range must be
restricted to a unary relation which is the same as the range of the variable to be
replaced by the function. An example illustrates the Skolemization process for a for-

mulain Ly:

Example 7.1.1

Consider the IA axiom of (6.4). Let this axiom be ¢,

v= Vy (Jz J:%F Sa (z,y,25F) = Ju JuZ° De(y,u,vE?)).

The logically equivalent prenex normal form of ¢ is

Wy Vz 25 Ju JuE9 (Sa(z,y,2) — De(y,u,v=?).
Its Skolemized form is
Wy V2 V25 (Sa(z,y,2%F) = De(y,9(y,2,2%°),/%(y,2,2%F))),

where ¢(y,z,z5°) and f9(y,z,z=’) are the Skolem functions replaced for the vari-
ables u and vE? | respectively. It is noticed that the range of f? (v,2,2%F) is

denoted by the superscript @ which is the range of vZ9 .

The Skolemization step needs no justification as long as the Skolemized formu-
las are equivalent to the formulas prior to Skolemization. Once the Skolemization
step is completed, ‘ |—>" manipulates only the matrices of the Skolemized formulas
in KByy with the matrices of the existentially closed query expressions. As stated
previously, as long as all the formulas in KBy, are only ﬁniversally quantified and

all the query expressions are only existentially quantified, the presence of the quantif-

81

iers can be made implicit in the symbol manipulation process * |—".

In order to describe * |—", two notions, namely, “match” and “restrictable”,
need to be defined. Before defining these notions, a few notations are first intro-
duced in the following: After all the formulas of KBgy are Skolemized and their
universal quantifiers are stripped off, let the resulting set of matrices be denoted
KB2y; . After the existential quantifiers are stripped off from all the queries con-
cerned, let the resulting set of the query clauses be denoted by Q. For ¢ € @,
let SUB(g) stand for the collection of all the subformulas of ¢ . Each formula in
SUB(q) is again a conjunction of atomic formulas. Since any formula in KBgy is
of IA schema, it follows that any formula in KBf; is of the form
v~ R(ty, -+ ,t) where ¢ is a conjunction of atomic formulas and
R(ty, +-- ,t,) is an atomic formula with R being a relation predicate and some
of the terms among ¢,, --- ,t, being Skolem functions [IA schema is defined in
such a way that there is at least one existentially quantified variable in the conse-
quent. See (ii) of Section 6.1]. This formality is used in defining the two notions,

“match’” and ‘“‘restrictable’.

The notions of “match” and “restrictable” are the following. For ¢ € @™ and
K, € KBy with K, of the form y; — R(t,, --* ,!,),some ¢, € SUB(q) that
does not include the predicate R in it matches (or ‘“is matched by’) K, if the
two following conditions are satisfied:
(1) A predicate symbol is in ¢, if and only if the same predicate symbol is in ¥, .
(2) DEF(DB,q,) C DEF(DB.y;) .

A query clause ¢ € Q™ is restrictable by an element K, € KBZy if the following

two conditions are satisfied:

82

(1) Thereis ¢, € SUB(q) which matches K, .

(2) For the consequent R(t,, ---,t,) of K,, there is an atomic formula
Ry(¢f , --- ,) in ¢ such that (i) R and R, are identical relation predi-
cates, and (ii) there is a variable ¢'€ {¢{, --,tf} and a Skolem function
4 €{ty, -, ty} such that Ran(t) C Ran (%), where by Ran(t) is meant

the range of the outermost symbol of the term ¢ .

Here (R , R,) in (2) is called a restriction pair associated with ¢, and K, in (1).
If ¢ is restrictable by K, , it is said that ¢ s restricted by K ,; using the follow-
ing process: for each restriction pair (R , R,), if the variable ¢7 in R, and the
Skolem function ¢ in R satisfy the relationship Ran(f) C Ran (t), then substi-
tute ¢’ by a variable v whose range Ran(v) = Ran(t). Here ¢ in R, is called

the corresponding variable of t, in R . The restricted ¢ is denoted by ¢ |K, .

Now the inference procedure * |—" is introduced in the following:

Inference Procedure *‘|—"

Stepl Let ¢*° =g, W = SUB(g), and go to Step 2.
Step 2 Let g, be an element of W, and go to Step 3.

Step3 Let MATCH(q,) be all the formulas in KBZ, which match g . If

MATCH (g,) is empty, go to Step 5 ; otherwise go to Step 4.
Step4 Do while MATCH(q,) is not empty,
1. let K, be an element of MATCH (q,),

2. MATCH(q,) = MATCH(g,)- K, , and

83

3. let ¢'=g¢"' | K; onlyif ¢° is restrictable by K, ;
and go to Step 5.

Step5 Let W =W -gq, . If W isempty, stop ; otherwise, go to Step 2.

The preceding procedure always stops at Step 5 either (i) with ¢° being a revised
version of ¢ € @ if there was any element in KB, which restricted g , or (ii)
with ¢° being identical with ¢ otherwise. The complexity of the preceding pro-

cedure is discussed in the following. The following notations are used:

n the size of KBZy .

r the number of atomic formulas in ¢ .

&i) the number of atomic formulas in the i* subformula ¢, of ¢ .
A(#) the number of free variables in the i subformula g of ¢q.

A{ the size of the range of the k" free variable, 1 <k < \(i), in the

i subformula ¢, of ¢ .

n(j) the number of free variables in the antecedent of the ;* knowledge
Kj in KBEH .
B’ the size of the range of the {* free variable, 1 <1 <n(j), in the

antecedent of the ;j* knowledge K, in KBPy; .

§(j) the number of the Skolem functions in the consequent of the j*

knowledge K; in KBYy .

C. the size of the range of the m™ Skolem function, 1 < m < ¢(j), in

the consequent of the j* knowledge K, in KBZ, .

84

D] the size of the range of the corresponding variable in R/ of the m®*

Skolem function in the consequent of the ;* knowledge K, in
KBYy where R/ is the atomic formula with which the consequent of

K, constitutes a restriction pair.

]

At Step 1, the total number of possible subformulas of ¢ is 2" -1, i.e., for the set
W of subformulas of ¢ itssize | W | =2 -1. This means that the outermost
loop (i.e., Step 2 — Step 5 — Step 2) of the procedure is repeatedly carried out as
many times as 2’ -1 at most. At Step 3, finding MATCH(q,) entails comparing
each member of KB®, with ¢, . This comparison consists of two types of testings.
First, for each element, say the j* member K, of KBEy, it needs to determine
whether all the predicate symbols of ¢, are in the antecedent ¥, of K, and no
other predicate is in y; . Since both ¢, and ¥, do not contain any predicate
symbol more than once in their expressions, the worst case of determining the
preceding condition is when ¢, and ¢, both have &i) atomic formulas. Deter-

mining the preceding condition requires comparisons of no more than
&i).
Second, for each knowledge satisfying the preceding condition, say K, , it needs to

determine between ¢, and the antecedent y; of K, whether

M)
DEF (DB (Auto), ¢;) € DEF (DB(Auto), ¥,;). Since |DEF(DB(Auto), ¢,)]| < k[ll Af

W) ,) ,
and | DEF(DB(Auto), ¢;)| < III‘ B/, this determination requires comparisons of

no more than

85

xI("I)At'(logXl('iv)A,,') + xPI)I?‘{(logxﬁ)Bi) + Maz()l("I)Ak' , xI(:I)B;’)

E=1 E=1 b=l E=1 E=1 E=1

[notice that both ¢, and y; of K; have \i)(=n(j)) free variables]. Let the
preceding term be abbreviated by P(i, j). Since g¢; is compared with each indivi-
dual in KBgy , the overall complexity of generating MATCH (¢,) at Step 3 requires

comparisons of at most

Y EEP+PGE L),

1=l

At Step 4, the Do-while loop is processed as many times as | MATCH(q,)| . The
restriction step, i.e., (3) in the Do-while loop, requires to test Ran(t,) C Ran(t])

% Skolem function, 1 < m < §j), in the consequent of

where ¢, 1is the m
K, and ¢t} is its corresponding variable in ¢ . This test requires comparisons
of at most

¥ ciny.

m s=]

Since the Do-while loop is processed as many times as |MATCH(q,)| , and
| MATCH(q,)| is at most n [| MATCH(gq,)| = n is the case when all the members

of KBZy match g¢,], the total number of comparisons at Step 4 is no more than

» % cini .

Juslm =

Hence overall the total number of comparisons to be made in the procedure * |—"

is no more than

2’Z-Ill S &+ PG, N+ Y %) CiD:].

=] gu=l J=lm ==1

Let L stand for the number of atomic formulas in the longest possible query in

86

Q™. Then forany i, 1<i <2 -1, §i)< L. Let M stand for the size of
the largest sort domair of the given database application structure DB . Then for
any ¢, 1<i<2 -1, and k£, 1<k <Ni), A'<M and for any j,
1<j<n,and I, 1<I<n(j), B’<M. Alsoforany j, 1<j <n,and
m, 1<m<¢j), C4 <M and D, <M. Let K be the largest possible
value for Mi) and ¢(;) where 1< i <2 -1 and 1< j < n . The following

relationship holds:

P(:, s xl('i)Ail Xl("I)A')l('i)B 1 xl('i)B M kﬁ)Ai)‘l(:I)B
(t ,J)—kl:l k(ogk-l k)+ [£ 1 t](ogkd g)+ aZ(k=l J ’k==l t])

< M logM>) 4 M NogM) 4 M) |

Using O-notation the overall complexity of * |—>" is concluded as follows:

2 1 n L)])
ST R+ PGL N+ W cins

J==l Ju=lm =x]

Z-1 n _ 1)
< Y Y [L%+ (MhogM™®) 4 M NogM™) 4 M)) 4 M? 3} 1]

§] y =) m =]

2Z-1 n
S LY L2+ M¥(2ogMX +1)+ MK |
tmm] y =1

IA

[L%+ M¥(2logM® + 1)+ M?K]O (2")0(n)

= M'0(2")0(n) for some constant M’ .

Although the overall complexity includes the exponentially growing term 0 (2), it
is expected that O (2") is limited to a certain constant value since in most cases a
query does not involve more than 3 or 4 atomic formulas. Therefore, if the 0 (2')
term is replaced by some constant, say C , and if C' = CM’ for some constant

C’, then the overall complexity of |—» is

87

c'o(n)
where n is the size of the knowledge base KBZy .

The procedure ‘‘|—" produces two results: if * |—>"" applies KBZ; to
g € Q™ to produce ¢’ [from here on, the whole procedure will be abbreviated by
KBZy;q |[—> ¢), then (i) ¢* is “equivalent” to ¢ and (i) if ¢* 5 ¢ then
¢’ shows “‘more precise” URC's than g¢ . By the equivalence between ¢’ and
¢ it is meant that DEF(DB,q)= DEF(DB,q'). Let ¢ and g’ be
RN -~ NR, and R{N --- NR,, respectively, where R, and R',
1<i < m’, are atomic formulas of Ly. Then according to Definition 5.2.3, the

URC’s identified by ¢ and ¢° are , U }DEF'(DB ,g9) and
1€{l, - ,m

{ U }DEF’(DB »4"), respectively, where for each i DEF'(DB, g)=
i€{l, - ,m

{DEF(DB , R,)} and DEF'(DB ,q')={DEF(DB ,R)}. By the fact that ¢°
shows more precise URC’s than ¢ it is meant the following relationships hold: (i)
forno j, 1<j <m, DEF(DB ,R,»)q DEF (DB , R)), and (ii) for some i,
1<i <m, DEF(DB ,R)C DEF(DB ,R,).

Showing the equivalence of ¢* and ¢ in a formal way is the content of Sec-
tion 7.2. In the following it is first demonstrated that ¢’ shows more precise

URC's than ¢ along with illustrating “ |—" by an example.

Example 7.1.2

Let the query ¢, in Example 5.2.2 be concerned with,

¢,=3z Jy Jz= Jv (Sa (z,4,2%)N De(y,u,v). (7.1)

88

Here it is shown how the IA axiom (6.4) in KBy, is applied to g, of (7.1) to derive
¢’ in a purely syntactic way by * |[—". In Example 7.1.1, it has been shown that

the IA axiom (8.4) can be Skolemized into the following form:
Yy Vz V2= (Sa(z,y,2%F) = De(y,9(y,2,2%),/%(y,2,:7)), (7.2)

where ¢(y,z,2*) and f9(y,z,2%) are Skolem functions. (7.2) clearly shows how
the relations SALES and DEALERS are related fragment by fragment, namely,
CAR_SALES of SALES and CAR_DEALERS of DEALERS . Now let the
matrices of (7.1) and (7.2) be ¢ and K, , respectively. The followings hold:
Sa(z,y,2*’) in ¢ matches K , since for the antecedent Sa (z,9.2%F) of K, it
holds that (i) the predicate symbol Sa in ¢, is the only predicate symbol in the
antecedent of K;, and (ii) DEF(DB(Auto),Sa(z,y,2%')) C DEF (DB (Auto),
Sa(z,y,2%)); and ¢ is restrictable by K; since there is a restriction pair
(De(y,9(y,2,2%),1%(y,2,2%)), De(y,u,v)) where Ran(f°(y,z,2%°)) C Ran(v).
Therefore, by substituting v in De (y,u,v) by the variable w®?® whose range is

identical to that of f9(y,z,2%F)), ¢* is concluded to be
¢°=Sa(z,y,2%') N De (y,u,wE?). (7.3)

The URC’s indicated by ¢° in (7.3) are the set of the defined relations
DEF (DB(Auto),Sa (z,y,2*')) and DEF(DB(Auto),De(y,u,w=?)). When these are
compared with the URC'’s indicated by ¢ , i.e., the set of the defined relations
DEF (DB(Auto),Sa (z,y,2%')) and DEF (DB (Auto).De(y,u,v)), it is clear that ¢°

shows more precise URC'’s than does ¢ (see Figure 7.1).

89

The URC's From ¢ The URC's From g¢°
DEF (DB (Auto),Sa (z,y,2%°) DEF (DB (Auto),Sa (z,y 2™)
div# | d# | item# | div# | d# [item#
01AP | O1A Vo1 01AP | 01A Vo1
02AP | 01A B47 02AP | 01A B47
04AP | 01A Vo3 04AP | 01A Vo3
05AP | 55L Vo3 05AP | 55L Vo3
and and
DEF (DB (Auto),De (y,u,v)) DEF (DB (Auto),De (y ,u ,w=?))
d# address | d_type d# address d_type
01A | Ann Arbor 51 0l1A | Ann Arbor o1
03A | Dearborn 30 07A | Flint 50
07A Flint 50 55L Flint 51

26M | Cleveland 20
33B Cleveland 30
48B Rockford 31
55L Flint 51
65B Detroit 20
66L Nile 23
70A | Lansing 70

Figure 7.1. The URC's Revealed to the Relations SALES and DEALERS

90

The result illustrated in the preceding example is formalized as follows:

Theorem 7.1.1

If KBPy;q |— ¢’ and ¢’ ##gq, then the following relationships hold

between U DEF'(DB,q) and U }DEF'(DB ,¢°): (i) for no j,

i€{t, . m) i€{L, - m
1<j<m, DEF(DB ,R;)@ DEF(DB ,R)), and (ii) for some i, 1<i < m,

DEF (DB ,R) C DEF(DB , R,).

Proof. When ¢ is restricted by a formula in KB, , only the following type of
modifications is made on ¢ : a variable, say z ,in ¢ is replaced by some variable,
say w , satisfying the condition Ran(w) C Ran(v). The theorem follows immedi-

ately. Q.E.D.

Having introduced the inference procedure “ |—", it can be pointed out more
clearly what advantages are obtained by using L{ as the tool for describing queries
and the knowledge about the data. This can be discussed in the context of what
problems could have occurred if the queries and the knowledge about the data were

expressed in an ordinary many-sorted language (L,,).

When the queries and the knowledge about the data are expressed in L, ,sym-
bolic manipulation of these two objects entails extra computation which is unneces-
sary if these two objects are expressed in Ly . Such extra computation is caused by
the loss of ‘‘a form of meta knowledge” which otherwise is embedded and maintained

in the aggregate variables of Ly . The query g, of (7.1) and the IA axiom, say K |,

of (6.4) are considered.

91

1= 33 3![332, 3” (Sa(zyy,zzl)ﬂbe(y,“;”)) .

K = Vy (3z 3:% Sa(z,y,2%) = Ju Juv=? De(y,u,v¥?)).

Let the aggregate variables in the two formulas ¢, and K are unraveled into rela-
tivized expressions in L, . Let ¢ and K™ be the resulting relativized expres-

sions equivalent to ¢, and K , respectively.

gt = Jz Jy Jz Jv (Se(z,y,2)NJ*(z) N De(y,u,v)),

K™ = Wy (32 32(Sa(z,y,2) N P*(z)) —~ TJu v (De(y,u,v) N Q°(v)),

where the symbol *# is used to designate that the atomic formulas with * are
exclusively used for the purpose of variable range restriction. For convenience, from
here on the following convention is made: although, strictly speaking, the range of a
variable in the relativized expressions, such as z in ¢, is the sort to which the
variable belongs, by the range of such a variable it will be meant the relation indi-
cated by the atomic formula which has the variable as its only argument and is

superscripted with * .

The two formulas ¢, and ¢ are considered. In ¢, the range of zZ’ in
Sa(z,y,2%’) is determinable as the relation J from the variable itself since zZ’
itselfl contains the information about its own range. In contrast with this, in ¢
the range of z in Sa(z,y,z) can not be determined as the relation J unless it i3
tested whether there is an atomic formula with * in ¢ which has z as its only
argument and whose predicate saymbol designates the relation J ,}i.e., J*(z). When
aggregate variables are unraveled into relativized expressions, such range determina-
tion test becomes necessary since unlike the aggregate variables the variables in the

relativized expressions no longer contain the range restriction information on the

92

variables themselves. Similar argument can be applied to 22 and v=Q@ of K

and z and v of K™ .

What has been argued in the preceding paragraph is discussed in detail. It is
shown why the range restriction test means extra computation in the symbolic mani-
pulation. First it is formally stated how a formula in Ly is expressed in terms of

relativized expression in L, . Let a formula oy in Ly be

og = Jz*F i

Then oy is translated into o, in L, as follows:

omn = Tz (z nNP'(z)).

In o, the symbol # is used as an aid to provide notational convenience, i.e., to
indicate that the atomic formulas with * are exclusively used for the purpose of

variable range restriction.

Let the queries and the knowledge about the data which were expressed in Ly
be expressed by the relativized expressions in L, . Let an inference procedure,
namely “ |[—" ", be developed which is applicable to the queries and the knowledge
expressed in L, . Let *|~—™" consist of five steps each of whose function is identi-
cal with its corresponding step of *“|—».” Let the superscript m be used to indi-
cate various notation used in “|—"" so that the notations used in “ ™" can
be distinguished from its corresponding notations used in * [—,"” for instance, ¢™
and K are now the formulasin L, . The inference procedure * [=—>" " is the fol-

lowing:

93

Inference Procedure * |—™"

Step1™ Let ¢' =¢™ , W™ = SUB™(¢™), and go to Step 2™.
Step 2™ Let ¢," be an element of W™, and go to Step 3™.

Step 3™ Let MATCH™(g™) be all the formulas in KB7g which match ¢™. If

MATCH™ (¢") is empty, go to Step 5™ ; otherwise go to Step 4™.
Step 4™ Do while MATCH™(¢,") is not empty,
1. let K™ be an element of MATCH™ (¢™,
2. MATCH™(¢™) = MATCH™ (¢™) - K, and

3. let ¢ =¢°| K™ onlyif ¢° is restrictable by K™;

and go to Step 5™.

Step 5™ Let Wh =W™ —¢». If W™ is empty, stop ; otherwise, go to Step 2™.

“|—"" is different from * |—" by the following: Let ¢ be the subformula
of ¢™ which does not include any atomic formulas with # . Then at Step 1™
SUB™(¢™) is constructed by including only all the subformulas of g . Doing so is
appropriate since the atomic formulas with * in ¢™ are irrelevant to constructing
MATCH™ (q,") of Step 3™. At Step 3™, when MATCH ™(¢,™) is constructed the
presence of the atomic formulas with # is ignored in ¢ and each member of
KB . When determining whether all the predicate symbols of ¢™ are in the
antecedent ¥ of K ;+ and no other predicate is in ¥;", atomic formulas with *
need not to be considered since their usage has nothing to do with determining what

relations are involved in ¢™ and v,

94

The complexity of * |—™ " is discussed. Let the following notations be additionally

introduced:

€ the number of atomic formulas with # in ¢™ .

th

a(i) the number of atomic formulas with # in the i® subformula ¢

A(;) the number of atomic formulas with # in the antecedent of the j;*

knowledge K* in KBZ .

7(j) the number of atomic formulas with # in the consequent of the j*

knowledge K in KBZf .

At Step 1™, since the total number of possible subformulas of ¢ is also
2" -1, | W™ | =2" -1. This means that the outermost loop (i.e., Step 2™ —
Step 5™ — Step 2™) of the procedure * |—™" is also repeatedly carried out as

many times as 2’ -1 at most.

At Step 3™, since the presence of the atomic formulas with * is ignored in
constructing MATCH™(¢,"), determining whether all the predicate symbols of ¢"
are in the antecedent ¥ of K™ and no other predicate is in ¥ requires the

same complexity as that of *“ |—,” i.e.,

).
However, after the preceding condition has been tested, when determining whether
DEF (DB(Auto), ¢") C DEF (DB(Auto), %,") additional comparisons are needed.
Determining DEF (DB(Auto), ¢,) C DEF (DB (Auto), ¥,) requires to know the
ranges of the variables of ¢™ and ¥ . Since the ranges of these variables are

specified in terms of the atomic formulas with # | what has been called range deter-

mination test must be made for the variables in ¢™ and y*, i.e., the ranges of the

95

variables in ¢ and ¥ must be derived from the set of atomic formulas with *
in ¢™ and the set of atomic formulas with #* in %", respectively. Since the
number of the atomic formulas with # in ¢™ is a(:) and the number of variable
in ¢™ is M), determining the ranges of the variables in ¢ requires comparisons
of no more than

% i) = ati) ¥ = ol).

7 =]

Similarly, determining the ranges of the variables of ¥ requires comparisons of no
more than

W o) = a6) ¥ = A i)
7 =)

7 mmx]

Once the ranges of the variables in ¢™ and y® are determined, the complexity of
determining whether DEF(DB(Auto), ¢;) C DEF (DB (Auto), ¥,) is identical with
that of Step 3 of *“|—>." Thus the overall complexity of generating MATCH™ (¢,")

at Step 3™ requires comparisons of at most

S (& + aliMi) + B G) + PG L 7))

J=l
Range determination test is aléo needed when restriction is made at (3) of Step 4™,
i.e., ranges of the terms in the consequent of K™ and their corresponding variables
in ¢™ need to be determined. Since the consequent of K and ¢™ have at most
7(j) and e atomic formulas with # , respectively, the test requires comparisons of

no more than

i)+ e.

96

Thus the complexity of (3) of Step 4™ is at most

W (ri) + e+ capi).

m ==l

Let N be Maz(N,, N;) where N, is the number of atomic formulas with * in

g™ and N, is the largest possible number of atomic formulas with * in the
antecedent ¢ of any K" "€ KBJ;. Then for any i, 1<i<?2 -1,
ai)< N, forany j, 1<j<n, Aj)SN and +j)<N,and e<N.
The overall complexity of *‘ |—™ " is concluded as follows:

¥ £ (860 + alp6) + () + P65+ 5 8 (a) + e+ 0202)

t mm]) =lm ==}

2-1n
S Y Y [L?+2NK + M¥(2ogM® + 1)+ (2N + M?)K |.

1==]y =]

It has been shown previously that the complexity of * =" which corresponds to
the preceding complexity of *‘ |—™ " is

2'-1 »n
S Y L%+ ME(2ogM® + 1)+ MK |.

g==]y=]
Therefore, it is concluded that the complexity of *“ |—™ " is augmented by

2'-1 =

T % [4NK |.

f==] j =]

The preceding term signifies how much extra computation is entailed in * |—™
which is unnecessary in * |—." The amount of extra computation depends on the

database, the queries and the knowledge about the data.

At the end of Section 6.2, it has be2n mentioned that KByy is expanded by a
class of equivalent axioms to the IA axioms in KB to enlarge the class of queries to

be handled by the KBS. Finally, in the rest of the section it is illustrated how the

97

KBysy expanded by the equivalent axioms is applied to a query which otherwise
may not be applied to. Suppose the user query ¢, in (5.2) had been equivalently

given as g¢,,

g2=Jz Juw 5 3z Jy Jv (It(z,w,tm)n Se(z,y,z)N De(y,u,v))

where Vz (S(z) % (z=sedan U z=bus)). Let ¢ be the matrix of the existential clo-

sure of ¢,,
g =1It(z,w,t*)N Sa(z,y,2) N De(y,u,v). (7.4)

Then no subformula of ¢ matches the IA axiom (7.2) although
It(z,w,t™)N Sa(z,y,z) of (7.4) “semantically” matches (7.2) in the sense that
DEF (DB (Auto), Jw Jt= It (z,w,t™)N Sa(z,y,2)) C DEF (DB (Auto),Sa(z,y,z%)).
However, the revised version, say ¢’ , of ¢ in (7.4) can still be derived by using the

IA axiom (6.11) which was previously shown equivalent to (7.2). First, (6.11) is

Skolemized into

Vy Vz Vz Vw ViZR (Sa(z,y,2)NIt(z,w,tZF) —

7.5
De(y,g(y,2,2,wtTf),1%(y,z,2,w,t}))), (75)

where g(y,z,z,w,t™) and f9(y,z,z,w,t=®) are the Skolem functions replaced for
the variables ¢ and v®® of (8.11), respectively. Then similar procedure can be
applied to (7.5) and (7.4), as had been done for (7.2) and the matrix of (7.1), to con-
clude ¢°,

¢ =It(z,w,t>)n Sa(z,y,2) N De(y,u,w=?). (7.6)

It is clear that (7.8) shows more precise URC's than (7.4).

98

7.2. Correctness of the Inference Procedure

In general, for any symbolic manipulation procedure designed to carry out infer-
ence, it must to be justified whether the result obtained syntactically is indeed valid
semantically. For ¢ € @™, let KBZy; ¢ |— ¢' . What matters is whether the
revised query ¢° ‘is equivalent to the original query ¢ . In this section the issue of

equivalence between the revised query and the original query is discussed.

As a preliminary step a lemma is first presented. The following notations are

used in the lemma and elsewhere in this section: For a formula aof(z,, --- , z,), let
<6y, ", 6,> stand for a variable assignment such that
['=DB e(zy, " ,24)[81, --* , a,]. For such assignment <a,, --- ,8,>, 4

is called an assignment element, or just an element, corresponding to z, . Then by

<8y, **- ,a,,>|z,l_ , & €{8;, -+ ,4,}, it is meant the element e which
corresponds to 7 . For a subformula Az, , ---,32,) of oz, -+ ,2),
{i;, ~--,&}C{1, ---,n}, <6y, - ,8,>|P stands for the subassign-
ment <&, "' ,0,> of <6;, " ,0,> such that

B, Az, s ey, o el

Lemma 7.2.1

For ¢€Q”, le¢ KBPy;q }—>g¢°. For some assignment
<8y, ***,0,>, if |5, ¢61, ---,as] then there is an assignment

<a,, '+ ,a, > satisfying l_—-l.w ¢’ 6y, - ,an].

Proof. The inference procedure * |—>" is a process of revising the input query ¢

to another form by applying each element in KB®; until ¢ can no longer be

99

revised. Therefore it suffices to show that for each K, € KBYy if K, ;9 |— ¢°

then the lemma holds.

Let K, ;q |— ¢’ . Without loss of generality, let K;' be of the following

form which is the original form of K, before it is Skolemized ard its quantifiers are

dropped:

K,'= Yz, Vi, (!1),(11."',1'.)" Jz,- -+ Jz R(zax’...’z%'zl’...'zt)),
where {z, , ",2,} S {z,, --,2.}. Let ¢ and ¢’ which both have m,
n + k < m , free variables be expressed as ¢(y,, ", yn) and ¢’(yy, ", Un),
respectively. Let some ¢, (v, , -, 4,)€SUB(¢), {vi;, " 0, }C{v1, " vah

match K, , i, ¢ and ¢; include an identical set of predicate symbols and

DEF (DB , ¢,) C DEF(DB , ¥,) .

The proof is shown in a constructive way. For an assignment
<ay, *** ,a8,>, let it hold that |=:DB g[8y, **- ,6n]. Since g, matches

K; , it follows that

=y vil<sa, -, ea>]al].

Since K, is true in DB, it follows that there is an assignment, say,

<dy, -+ ,dy, €y, *-° , >, satisflying
’hpa wfnR[dlf e ’dn y€1, °°° ’etly and
<dy, " 4y, €y, " .¢b>|¢j=<du cer L dy> =<0y, " ,a,>]4, .

Let an 8t0mic formula, .8ay Rq(yul y Ty yu. y yvl y T yvl,) 1}

By " Wy o Yoy ¥} S {y1, 0 s ¥m}, in ¢ and the consequent

100

R(zy, ---zy,2y, -+ ,2) in K;' constitute the restriction pair (R , R,) asso-
ciated with ¢, and K, . For some {y,,,l, ,y,,l} - {y‘,l, ", ¥y} in R,
and some {zo,, - vz} € {z1, - ,z} in R, let Ran(y,) C Ron(z,),

1< r <1, which therefore means ¢° is obtained by restricting ¢ by K , in the

following way: For each r , 1 < r <, substitute Yo, by a variable v, whose

range Ran(v,) = Ran(z,).

Accordingly, a new assignment <a; , --- , 6n > can be constructed from
<a,, -**,8,> and <d,, ---,d,,e;, -, e> in the following way: For
each r, 1<r <1, the element <a,, --- v 8> |y in <ay, - ,8,> s
replaced by the element <d,, --- ,d,,e;, -+, > | z5, . Let the resulting

<a,, *** ,6,> be <a, , -+ ,a0>. From the way ¢° is obtained by res-
tricting ¢ by K, and from the way <a, , ---, s, > is constructed from

<a,, "' ,6,> and <d;, --- ,d, ,e,, -+, e >, it follows that

T T

Q.E.D.

The preceding lemma can be said to signify the soundness of * }—"" in the fol-
lowing sense: if % and ¢ are the existential closures of ¢ and ¢°, respectively,
then KBfy;q |— ¢° implies KBZ U {¢.} = ¢.. The soundness of * |—"
can be easily understood by the following argument: as long as it is known that all
the dealers who are supplied cars are car dealers and that there are some dealers who
have been supplied items B 47, V01, or V03 which are cars, then it is valid to con-

clude that there are some dealers who are car dealers.

101

Lemma 7.2.1 is used in showing the equivalence of ¢° and ¢ . The issue of
the equivalence of the revised query ¢° and the original query ¢ is directly related
to why only the IA axioms having its corresponding FDA axioms in KB is included
in KBsy when constructing KByy from KB . Before showing their equivalence
in a formal way, the role of FDA axioms in their equivalence is first illustrated in the
following. Consider the functional dependency axiom in DEALERS from d# to

d_type ,

V2 Wy Yz Vy! Vz2!(De(z,y,z)NDe(z,y',2') > z=2"), (7.7)

and the IA axiom depicting a relationship between fractions of SALES and

DEALERS ,

Vy (3z 3z Sa(z,y,2=) = Ju Jv=? De(y,u,v=?)) (7.8)

where P is meant by Vz (P(z)S (z=B47Uz=V01Uz=V03U z=W09)) and
Q, V2 (Q(z) = (2=50U z=>51)). It is not difficult to see that only when (7.7) is
combined with (7.8), (7.8) is interpreted as “All the dealers who are supplied items
B47, V01, V03 or W09 are exclusively car dealers”. (7.8) alone only asserts “Any
dealér who is supplied items B47, V01, V03 or W09 is a car dealer although that
dealer may deal in other items”. This implies that the IA axiom (7.8) requires the
existence of (7.7) in the knowledge base to guarantee that the two fragments associ-

ated with the consequent of (7.8) are disjoint, i.e.,
DEF (DB(Auto), De(y,u,v=%)) n DEF (DB (Auto), De(y,u,v=?")) = ¢

where Vz(Q '(z) & -~ @Q(z)).

The above argument can be more realistically illustrated by entering the tuple

< O1A, Lansing, 80 > in DEALERS in which case the functional dependency in

102

DEALERS from d# to d_type no longer exists. Let the database with the new
tuple be DB(Auto) . It is clear that (7.8) is still valid both in DB(Auto) and in

DB (Auto) , but (7.7) is valid only in DB (Auto). In this case, the following is clear:

DEF (DB (Auto) , De(y,u,v=9)) N DEF (DB (Auto) , De(y,u,v=?))

= {< 0l1A, Lansing, 80 >}.

The preceding argument is formalized by the following theorem.

Theorem 7,2.2 Equivalence of ¢ and ¢° .

For ¢ € Q™,let KB4y ;q |— ¢' . Then DEF(DB,q)= DEF (DB ,q"°).

Proof. For the same reason stated at the beginning of the proof of Lemma 7.2.1, it

suffices to show that for each K, €KBPy if K;;q |—> ¢’ then

DEF(DB,g) = DEF (DB ,q") .

Let K;;q |— ¢°. Showing that DEF(DB,q') C DEF (DB ,q) is trivial,
because ¢° is a restricted version of g¢. Here it is omly shown that

DEF (DB,q) € DEF(DB,q*) holds.

Without loss of generality, let K, ' be of the following form which is the origi-

nal form of K; before it is Skolemized and its quantifiers are dropped:

K}'= vzl...Vz” (¢j(zlr"'rza)"’ 3:1... asz(zdl!..'!zB. ’zl,--.’zk)),

where {z,‘,---,z,.}g{zl,-'-,z,.}. Let ¢ and g¢° which both have m,
n + k < m , free variables be expressed as g¢(y,, ", ¥.) and ¢'(y7, -, y.),
respectively. Let some ¢,(y,, ", 4,)€ESUB(q), {vi,, "4, } S {1, ", v}

matches K, , ie., ¢ and ¢; include an identical set of predicate symbols and

103

DEF (DB , q,) € DEF(DB , y,) . Let an atomic formula, say
Rolvays by sy ol {0y oty s 00y 0 JC {01, m), in g
and the consequent R(z,, ‘-2z ,2z,, *-,z) in K;' constitute the restriction

pair (R , R;) associated with ¢, and K, . For some {y.,l, ", U} © {!Jux. Tty Yy)
in R, and some {z, , "-,2,}C {z,,---,2)} in R, let Ran(y,)C Ran(z,),
1< r <, which therefore means ¢° is obtained by restricting ¢ by K, in the fol-

lowing way: For each r, 1 < r <, substitute Yo, by the variable v, whose range

Ran(v,) = Ran (2,).
Let the FDA axiom corresponding to K; be of the form

Vsl-“Vs,,W,---W,VI; '..V‘l" (R(Blt &, by, rtk)n

R("lr """h:‘l' v”'r't')—"wl=lv;ln n'wl=‘wl)”'(l)

where {w,, - ,w} C {1, ---,k}. (1) states that there is a functional depen-

dencyin R from #,, --- , 8, to by "7 sty

Let <6y, *** ,8,>€EDEF(DB ,q). In order to prove that
DEF (DB , ¢) C DEF(DB , ¢°') holds, it must be shown that
<6y, *** ,8a> EDEF(DB , ¢q') holds. This is shown by contradiction. First,
from the hypothesis <a,, -+ , 8, > € DEF(DB , g) it is implied that

bpa q [alr e ’aﬂl (2)
By Lemma 7.2.1, (2) implies that there is an assignment <4, ,---, a, > satisfying
'=TJB q‘[a; , e ,a,,:] e (3).

Since ¢’ is a restricted version of ¢ , (3) implies that

S, 0lei s o anl o (4).

104

To prove by contradiction, let <a,, -, 8, > ¢ DEF(DB , ¢') additionally hold.

This additional hypothesis implies that

%H ¢' 6y, " ,0a) " (5).
Now (3) and (5) are considered. From (3), (5) and that the way <@y , v, 80>

of (3) is constructed [see the proof of Lemma 7.2.1], the following holds:

<a;, " ,8,> and <a; , --,a,> are identical except that for

"(6)

some w,, w, €{wy, W}, <8y, , 00> | Yo, F <Oy, 0, 00 >y,

’

Now <a, , --- ,an> in(4)is considered. Let <b; ,---,b, ,cy , - ,¢ > be

<6y , ", 80> Ry(uys "o Yy Yoy """ Yy)- Then from (4) it follows that

bDB ‘RG [bl' y 70 ’bh'vcl' sy T ’c;] (7)

Now <a,, ** ,a,> in (2) is considered. Let <b,, -, by,cy, ", ;> be

<oy, 6m > | Re(Wy s Yy Uoyst vy). Then from (2) it follows that

F=%B R, [51, cee by, ey, 0 ,Ck] (8)
From (6), (7) and (8), the followings are concluded:
(i) <by, -*- ,y>=<by, - ,4 >,and
(ii) for some w, , w, €{wy, - ,w}, <by, -, b, 1, >y #F
<b g, c-v J b ey, e :Ct'>|ym,-
(i) and (ii) implieé that there is no functional dependency in R, from y, , -, y,
t0 Yo, " Yy, - This further implies that there is no functional dependency in R
from 8;, --,8 to g, -, t, since R, and R are identical predicates. This

fact contradicts (1). Thus it follows that <a,, ', an> € DEF(DB , ¢") that

means DEF(DB,g) C DEF(DB,q’) holds. Q.E.D.

105

7.3. Horizontal Partitioning

In this section two issues are discussed: how the estimated URC'’s are used for
partitioning the relations; and how the partitions of the relations obtained by this

approach should be interpreted.

The former issue is straightforward. The notion of a bipartition is first intro-
duced: Given a revised query expression, say, ¢* ,let R(¢’) be an atomic formula
shown in ¢'. Let the bipartition of the relation RPE(gq') obtained by R(q'),

denoted by M, (R(¢’)), be defined
M, (R(¢")) = {DEF(DB ,R(¢")), DEFDB ,R(¢"))}

where DEFR\DB ,R(q’)) = RP2(q’)-DEF(DB ,R(q")).

When KBZ;Ug }—> ¢°, the revised query expression ¢° can then be
viewed as a way of obtaining a bipartition of each relation referred to by ¢° . That

is, a relation being referred to by ¢’ is divided into two fragments, one part

DEF(DB , R(q')) that is needed to answer ¢° and the other DEFDB ,R(g'))
that is not needed. The set of these two fragments is conceived as a bipartition of

the relation RP2(g*). For instance, from the revised query expression ¢° in (7.3)
¢’ =Sa(z,y,2%) N De(y,u,w™?),

a bipartition of 'DEALERS , namely, CAR_DEALERS and NON_CAR_DEALERS
and a bipartition of SALES , namely, SALES_] and SALES_II can be obtained.

These two bipartitions are illustrated in Figure 7.2 of the following:

106

CAR_DEALERS
d# address d_type
01A | Ann Arbor 51
07A | Flint 50
55L | Flint 51

/(

DEALERS

N\

NON_CAR_DEALERS

d# address d_type
03A | Dearborn 30
26M | Cleveland 20
33B | Cleveland 30
48B | Rockford 31
65B | Detroit 20
66L Nile 23
70A | Lansing 70

SALES

SALES_I

div# | d# | item#
01AP | 01A Vo1
02AP | 01A B47
04AP | 01A Vo3
05AP | 55L Vo3

SALES_II
divit | d# | item#
01AP | 07A W09
O1PP | 55L S01
01PP | 07A P02
02PP | 03A P02
03PP | 01A P03
03PP | 03A S02
05PP | 55L S02

Figure 7.2 Bipartitions of the Relations DEALERS and SALES .

107

It is noticed that the bipartition of DEALERS is not derivable from the original

query expression ¢, of (5.2),

g, =3z Jy Jz& Jv (Sa(z,y,2"')N De(y,u,v)).

In fact, more than one query can conceivably refer to each specific relation in
the database. Let Q°(R) be the collection of the restricted versions of queries

RPB . One way to obtain a partition of the relation R P8

referring to the relation
is to intersect the blocks of all the possible bipartitions each of which is obtained

from a restricted query expression in @ ‘(R). In order to be more specific, the fol-

lowing notion is introduced: For two partitions IT' and IT? of the relation R?2 ,

d
MMI? = {S:5=58 NB, where B, €M'and B, € [I?, and S ¢ }. Since the
commutativity and the associativity hold for T}, let ') - -- MMO" be written

by M M. Formally stated, the partition, denoted by TI(R), of the relation
1€{1, »}

RPB obtained from the given Q*(R) is

MR)= M M(R(¢")).
1°€Q*(R)

At a glance, the approach of intersecting all the possible bipartitions looks like
a crude way of partitioning each relaﬁon in the database. However, this approach is
meaningful in the sense that the partitions obtained from the revised query expres-
sions by this approach is more refined than those obtained directly from the user
provided query expressions. This further implies that when the fragments of the
partitions are dispersed over the sites of a network, the fragments of the former par-
titions can be more flexibly distributed than those of the latter partitions. Various

data allocation algorithms such as [MoLe77, IrKh79, Aper81, CeNW83] can be used

108

to determine an optimal or suboptimal dispersion of the data by treating the frag-

ments as the unit objects of distribution.

7.4. Conclusions and Future Work

A knowledge-based approach has been described in which URC’s are derived
from the user queries to the database and the knowledge about the data. In order to
describe the user queries and the knowledge, ordinary many-sorted language is
extended. In this extended language, the user queries are expressed in a specific
form, called T-normal form, and the knowledge useful for this purpose is identified
by five types of axiom schemas. The knowledge is applied to each query expression
via an inference mechanism to derive a revised query expression. From the revised
query expressions, URC'’s are estimated. Horizontal partitioning can be based on the

estimated URC's.

The work which has been shown so far can be further extended into three direc-
tions. One direction is to expand the knowledge base of the KBS by accommodating
a larger class of knowledge. Possibly more knowledge is useful for the intended pur-
pose. It can be represented in terms of different types of axiom schemas in Ly and,
in such case, it is expected that the inference procedure (|—>) may have to be modi-

fied. A more sophisticated inference procedure may be required.

The second direction is to study the problem of allocating the fragmented rela-
tions. Although the fragmented relations can be distributed over a network by
adopting some of the currently known data allocation models, the allocation obtained
from this approach may not reflect the logical intricacy among the fragments. That

means, during the process of answering queries, the relationships among the frag-

109

ments may not be used fully to reduce the unnecessary preselection or join opera-
tions that are the major benefits sought by distributing the partitioned fragments.
This problem resﬁlts because the currently known data allocation models do not take
into account the logical relationships among the fragments as a design resource. A
new data allocation model is needed that combines the relationships among the frag-

ments with a quantitative optimization model.

The third direction is to investigate a distributed query optimization based on
the knowledge base. When the fragments are dispersed over the network, the logical
relationship among the fragments can guide various query processing strategies
including how preselection operations can be dispense(i with, how useless join opera-
tion can be eliminated, and how parallel distributed query processing can be
scheduled over a network. When their relationships are complex enough, their role
in guiding the process of answering queries can be more than what the conventional
data directories usually do. The logical relationships can constitute a meta-
knowledge base and it can be used in conjunction with the conventional data direc-

tory in an intelligent way to optimize processing the queries.

PART II

In this part, a type of problem is first identified which may occur when a reso-
lution scheme is applied to many-sorted theory. In order to avoid such a problem,
an extension of the first-order language called one-sorted language with aggregate
variables is introduced. It is shown that any many-sorted theory can be converted
into an equivalent theory in a one-sorted language with aggregate variables. Aggre-
gate variables allow the introduction of range-restricted variables dynamically in the
structure which is expanded by definitions. This allows the introduction of a new
resolution scheme named Unification over the Weakest Range (or UWR-resolution).
The completeness of UWR-resdution is shown and the efficiency of UWR-resolution

is discussed.

110

CHAPTER VI

A MANY-SORTED RESOLUTION BASED ON
AN EXTENSION OF A ONE-SORTED LANGUAGE

8.1. Introduction

Within the field of automatic theorem proving, the advantages of many-sorted
logic are well known [Haye7l, Hens72, Cohn83]. A language of many-sorted logic
offers more compact expressive power than the corresponding language of one-sorted
logic, and so a theory is expressed with a much smaller number of shorter clauses in
the former than in the latter. When a resolution scheme is used, the smaller number
of shorter clauses means a shorter refutation. Furthermore, the refutation sequence
is further shortened when the sortal information is used as a metaknowledge prevent-

ing irrelevant resolvents from being generated.

It was only recently that a theoretical foundation for many-sorted resolution
was established by Walther [Walt83, Walt84a]. Walther presented a many-sorted
calculus, called LRP-calculus, in which a resolution and the so-called weakening rule
are employed as the inference rules of the system. He showed the completeness of
TLRP-calculus and also showed how the ERP-calculus is related to its corresponding
one-sorted calculus. In his sequel paper, Walther also demonstrated the power of a

many-sorted resolution by an example called *Schubert’s streamroller”” [Walt84b).

111

112

However, when Walther’s approach is applied to a certain class of many-sorted
theories, his approach still generates irrelevant resolvents which degrade the overall
deductive efficiency. The many-sorted theories falling in this class are those satisfy-
ing a certain relationship among the sorts. By an example, an illustration is given of

what this relationship is and what irrelevant resolvents are generated.

Example 8.1.1

Let z,, z., z;, and z, be the variables ranging over the sorts B, C ,

D , and E , respectively, where D CB, D CC, ECB,and EC C. The

theory to be refuted is given by:

(1) Vz, (P(z)U Tz, Q2 ,2)),
(2) Vz, = P(z),

(3) Vz, ¥z, - Q(z, ' zc) .

If (1) and (2) are chosen as parent clauses to be resolved, because z, of P(z,) in
(1) and z, of - P(z,) in(2) are unifiablet over the sort D , and if (1) is expressed
as P(z,)U Q(z , f*(2)) uéing a Skolem function f%(z,) whose range is restricted
to D, the two clauses can be resolved uwsing a most general unifier (mgu)

0={ys/2 ,vs/z. } where y, ranges over the sort D . The resolvent then is

4) Qv () (1)+(2) .

It is now seen that (4) cannot be resolved with any other clauses, not even with (3)

because there is no sort known as a subsort of D NE . A dead end Las been

t A variable ¢ is unifiable with aterm ¢ over the sort S if there is a substitution 8 that
unifies {ov ,¢t}, i.e., v@=1t0, and the results of the instantiations v# and t9 are both terms
ofsort S .

113

reached. The unsatisfiability can be shown either by resolving P(z,) in (1) and
- P(z.) in (2) with a variable of sort E or by resolving Q(z; , f*(z;)) in (1) and

~ Q(z, , z.) in (3) with a variable of sort E ;(4)is a useless resolvent.

Generating the types of useless resolvents illustrated in the preceding example
can be avoided. Had there been another sort G = B n C , (1) and (2) could have

been unified over the sort G giving the resolvent

(4') Qz , £'(3)) (1)+(2),

where the variable z, ranges over the sort G . The clause (4') can be resolved
further with (3) over the sort E resulting in the empty clause []. There is no dead
end here. There is a problem, however, that if the sort G is unavailable, the vari-
able z, cannot be introduced in the middle of the deduction. In an ordinary
many-sorted language, a variable cannot be introduced unless the range of the vari-
able agrees with any of the a priori fixed sorts, which is a common problem often

caused by the inflexible usage of an ordinary many-sorted language?.

To alleviate such a situation of the preceding example, an extension is proposed
of the one-sorted language called one-sorted language with aggregate varsables (L 4)
into which a many-sorted theory can be translated and which may be dynamically
extended to bypass the problem illustrated previously. In Part I, aggregate variables
were embedded into a many-sorted language resulting in the language called many-
sorted language with aggregate variable . Here aggregate variables are embedded in a

one-sorted language.

t Some discussion about the inflexible usage of many-sorted language is found in [Cohn83] in
which Cohn suggested a way to improve the expressiveness of many-sorted logic.

114

Aggregate variables allow us the dynamic introduction of range-restricted vari-
ables without revising the a priori fixed structure. Using the dynamic range-
restricting nature of the aggregate variables, an efficient many-sorted resolution
scheme named wunification over the weakest range (UWR-resolution) is presented,
which is designed to avoid generating useless resolvents as illustrated in the preced-
ing example. There are two issues to be discussed, the completeness of UWR-

resolution and the efficiency of UWR-resolution.

8.2. Related Literature

In general, automatic theorem proof systems are divided into two classes: the
systems belonging to the first class start with a given set of logical formulas and
create new formulas by using certain inference rules until a refutation is concluded.
The systems belonging to the second class do not create any new formulas but test
certain conditions ensuring unsatisfiability of the given set of formulas. The former
includes resolution-based proof system, and the latter includes mating-based proof
systems such as Andrew’'s mating calculus [Andr81] or Bibel's matrix calculus

[Bibe81]. Here the only concern is with the resolution-based proof systems.

In order to introduce some background for the resolution-based proof systems,

the introductory statement by Davis and Putnam in [DaPu60] is quoted:

“The hope that mathematical methods employed in the investigation of formal
logic would lead to purely computational methods for obtaining mathematical
theorems goes back to Leibniz and has been revived by Peano around the turn of the
century and by Hilbert’s school in the 1920’s. Hilbert, noting that all of classical
mathematics could be formalized within quantification, declared that the problem of
finding an algorithm for determining whether or not a given formula of quantifica-
tion theory is valid was the central problem of mathematical logic. And indeed, at
one time it seemed as if investigations of this ‘decision’ problem were on the verge of
success. However, it was shown by Church and by Turing that such an algorithm
cannot exist. This result led to considerable pessimism regarding the possibility of
using modern digital computers in deciding significant mathematical questions.

i15

However, recently there has been a revival of interest in the whole question. Specifi-
cally, it has been realized that while no ‘decision procedure’ exists for quantification
theory there are many proof procedures available - - - .”

An important contribution to the area of automatic theorem proving was made
by Herbrand. Herbrand proposed in his thesis [Herb30] a deductive system that later
turned out to be complete and far more efficient than other previously known deduc-
tive systems. The result, known as the Herbrand theorem, fva.s later adopted further
by many researchers and led to the invention of various proof procedures. Quine
presented a proof procedure for quantification theory [Quin55], and Wang and Gil-
more have each produced working programs that employ proof procedures in quan-
tification theory. Although Quine's work was restricted to theoretic aspects of the
proof procedure, Wang’s and Gilmore’s programs were actual working programs run
on computing machines, which account for important initial contributions. Both
Wang's and Gilmore’s programs, however, were very inefficient due to the combina-
torial explosion in determining the inconsistency of the given formula, although these
methods are superior in many cases to truth table methods which are the crudest
way of determining the inconsistency of the given formula. Both Wang's and

Gilmore's programs run into difficulty with some fairly simple examples.

Wang's and Gilmore's methods ﬁere improved a few months after their results
were published by Davis and Putnam [DaPu60]. Davis and Putnam proposed a new
way of determining the inconsistency of the given formula while avoiding the prob-
lem of the type that occurred in Gilmore’s program. However, their improvement

was still not enough.

A major breakthrough was made by Robinson [Robi65a] who introduced the

"

so-called ‘“‘resolution principle.” His resolution-based proof system was much more

116

efficient than any earlier proof procedure. However, this system was still inefficient
due to the many irrelevant and redundant formulas which were generated during the
derivation of a refutation. Such pitfalls in Robinson's resolution triggered the crea-
tion of various refined forms of the resolution principle in the attempt to increase
further its efficiency. Some of these refinements include hyper-resolution by Robin-
son [RobiB5b], renameable resolution by Meltzer [Melt68], the set-of-support strategy
by Wos, Robinson and Carson [WoRC85], all of which were later unified into seman-
tic resolution by Slagle [SlagB7]; lock resolution by Boyer [Boye71]; linear resolution,
which was independently proposed by Loveland [Love70] and by Luckham [Luck70]
and which was later strengthened by Anderson and Bledsoe [AnBI70], Reiter [Reit71],
Loveland [Love72], and Kowalski and Kuehner [KoKu70]; and unit resolution by

Wos, Carson, and Robinson [WoCR64] and Chang [Chan70).

Recently, researchers realized that the deductive efficiency of using the resolu-
tion can be improved significantly if the deduction is based on a many-sorted cal-
culus along with incorporating the preceding types of refinements. Deduction based
on a many-sorteci calculus goes back to Herbrand [Herb30]. In his thesis Herbrand
established the fact that the deduction based on a many-sorted logic is equivalent to
the deduction based on its corresponding one-sorted logic. Since then, various forms
of many-sorted calculus have been proposed and investigated by Schmidt [Schm38,

Schm51], Wang [Wang52], Hailperin [Hail57], and Idelson [Idels64].

Several researchers suggested some practical theorem proving programs based
on a many-sorted calculus without sound theoretical foundation [Weyh77, BoMo79).
It was only recently that a theoretical foundation for many-sorted resolution was

reported by Walther and Cohu [Walt83, Cohn83, Walt84a]. Walther presented a

117

many-sorted calculus based on resolution and paramodulation that is called TRP-
calculus, and Cohn suggested a way to improve the expressiveness of a many-sorted
logic in which a many-sorted resolution corresponding to Robinson’s resolution is
used as an inference rule. In his sequel paper, Walther demonstrated by an example

the power of a many-sorted resolution [Walt84b).

8.3. Organization

The rest of Part II is organized in a way similar to Part I. In Chapter IX, Ly
is introduced: syntax of L3, interpretation of L}, and the E-extensibility of L.

Lg then is used as the language for describing a many-sorted theory.

In Chapter IX, it is first shown how a many-sorted theory is formalized in L .
It is clarified that the only concern is with a certain class of many-sorted theories.

The problem that was illustrated by an example in Section 8.1 is then formally

described.

In Chapter IX, the UWR-resolution is introduced and the completeness of the
UWR-resolution is shown. In order to prove the completeness of UWR-resolution, in

Section 11.2, the L -version of the Herbrand theorem is introduced.

Finally in Chapter IX, the issues about the efficiency of the UWR-resolution are
discussed. To discuss the efficiency, a hypothetic many-sorted resolution is intro-
duced, namely E-}resolution, that does not employ the technique of introducing a new
sort dynamically as the resolution is being carried out. The efficiency of the UWR-
resolution is then measured by comparing the refutation of a given many-sorted

theory generated by the UWR-resolution with that generated by the T-resolution.

118

In Appendix B, some intermediate steps needed to introduce the L &-version of
the Herbrand theorem are shown. In Appendix C, two complete refutations are
shown that show the inconsistency of an example many-sorted theory. One is gen-
erated by the UWR-resolution and the other, by the E-resolution. In Appendix D,
two alternative approaches are given which embody the idea of unifying a pair of
variables satisfying a certain condition over the weakest possible range: (i) an
approach in which the theory in a many-sorted language L, is repeatedly
translated into @ revised language of L, along the way the refutation of the theory
is carried out, and (ii) an approach in which the theory to be refuted is expressed in
a generalized version of an ordinary many-sorted language whose variable sets and
constant sets are not necessarily disjoint. In Appendix E, it is shown that the gen-
eralized version of an ordinary many-sorted language which was introduced in

Appendix D is as legitimate as the ordinary many-sorted language.

CHAPTER IX

ONE-SORTED LANGUAGE WITH
AGGREGATE VARIABLES 1}

9.1. Syntax of L3

Aggregate variables can be embedded in a one-sorted language as well as in a
many-sorted language. When the aggregate variables are embedded in the former, it
is calléd a one-sorted language with aggregate variables (L&). L is the special case
of Ly where there is only one sort. In this sense formal introduction of Lg is
unnecessary. Nevertheless, for the sake of clarification and for the purpose of letting
Part II stand alone, Ly is fully introduced in this chapter. Syntax of Ly} is first

given in this section.

Two types of variables are available in a one-sorted language with aggregate
variables L3 : simple variables and aggregate variables. A simple variable of L} is
the same as the ordinary variable of 5 one-sorted language. An aggregate variable is
syntactically an ordinary sort variable, but semantically a variable whose range of

interpretation is restricted by a unary relation rather than to a sort domain. For-

1y TP, . . TP
mally stated, an aggregate variable is of the form z~ ' in which 2™ ' ranges over the

unary relation indicated by the unary predicate symbol P, .

Let J, L ,and K be, respectively, a relation index set, a function index set

and a constant index set. In addition, let I be an index set for some unary rela-

119

120

tions. Let A and ¢ be functions such that \:J — N* and §:L — N* where

N7 is the set of positive integers.

Definition 9.1.1

A one-sorted language with aggregate variables L{ then consists of the follow-
ing: (1) parentheses (,) ; (2) constant symbol C; for each k € K ; (3) simple
variables z,, - -- , z, , ‘- - , and aggregate variables zlzp‘ , T, z,EP‘ , ~-+ ,for
each i €1, where P, ‘is a unary predicate symbol; (4) a X\(j}ary predicate sym-
bol R, for each j €J ;(5) a ¢(/)ary function symbol F, for each I €L ; (6)

logical connectives = and — ; and (7) a universal quantifier V. °

When it is convenient, L: is represented as a quintuple,
L =< P,R,F,C,p> where P is a unary predicate set whose members are
exclusively used in the superscripts of aggregate variables, R is a predicate symbol
set, F is a function symbol set, C is a constant symbol set 'and p is the arity

function such that p: R UF — Nt where N+ is the set of positive integers.

Based on this language, the terms of L are defined as usual except that each
variable is now either a simple variable or an aggregate variable. The set of atomic
formulas of L, Atom(Lg), is also defined as usual. The set of well-formed formu-
las of L, Form(Lg), is then defined recursively as: (i) if a € Atom(Lg), then
a € Form(L2); (il) if @, A€ Form(Lg), then so are ~ @, (@ — f), and Vv o where

v is either a simple variable or an aggregate variable ; (jii) nothing else, except the

expressions obtained by finite applications of (i) and (ii), is in Form(Lg). The defin-

121

able syntactic objects U, N, & and 3, and the standard notions such as sen-

tences are also introduced in the usual way.

9.2. Interpretation of L}

A structure is needed to interpret each formula in L. Let 0S, be a struc-
ture for Li. Then 0S, = < Q,{P.}ies , {R,},es » {Fi Jier + {Ci }eex >t where
Q2 is the universe of 0S, ; P, is a unary relation P, cna; R'J is a \(j J-ary rela-

tion R; c), F, is a §(/)-ary function F, QW 40 and a distinguished ele-

ment C'k is an element of 2.

The interpretation of a formula in the structure 0S, then requires a variable

assignment function s as follows:

Definition 9.2.1

For set V of variables of L} and the universe 0 of structure 0S,, & isan

assignment function ¢ : V — Q such that for a simple variable z , s(z)=g39,

where a € Q ; for an aggregate variable zm", s(zEP') = a4 , where a € P, .

Assignment function for the terms of L} is defined as usual. For notational
convenience symbol s is also used for the assignment for the terms. The validity of

each formula is determined by the following interpretation rules.

From the next section on * * ” is omitted on a symbol as long as the meaning of the symbol is
g
unambiguous.

122

Definition 9.2.2

For R;(to, *** , tyy)) s ¥1,¥2 € Form(Lg), where ¢,'s are terms, the satisfac-

tion of the formulas with respect to # in 0S, is defined by,

(1) }=OS‘ R;(to, -) [e] iff <s(to), - ,8(thy)> ER, ,

(@) b= mvlel A vl

B b b dalel Il b, il then b= walol

(40 For a simple variable =z, ":_'os, Vz ¢ [s] iff for any

s €0, =, v{s(z|a)], and

(5) For an aggregate variable 2 , |==05 Ve ¥ |e] iff for any a €P,,
2Pl
= ¥l o),

if v, # v

where for variables v, and v, , (v, |a)(v;)= () .
a ifv, =y °

As a corollary to the definition, the interpretations of U, N, and 3 can also be

easily defined.

9.3. I-Extensibility of L}

Two results are shown in this section: (i) how a formula in a many-sorted
language is translated into L&, and (ii) how in L} variables ranging over a priori
undefined sorts can be introduced while the structure associated with Lg is

expanded by definitions.

123

As a preliminary step to showing the former result, a many-sorted language
(Ln) is formally defined first. A many-sorted language L, with sort indez set |
consists of the followings: (1) |/ | infinite disjoint sets V!, ---, VI where the
elements of V', 1<i < |I], are called variables of sort i ;(2) |/] disjoint
sets C',--+, C!!'! where the elements of C', 1< i < |I], are called constant
symbols of sort i ; (3) for each n-tuple <iy,---,4,>,{i;, -, } S 1, aset

<'r "> ghose elements are called predicate symbols of sort <i,,---,i,>;

R
(4) fOl' eaCh n+l-tuple <il y "7 T in ’ iil+l> 4 {il y T T iu ’ in+l} g I y 3 set
F<'vr "w91® ghose elements are called function symbols of sort

<iy, ", iy, ip41>; (5) logical connectives - and — ; and (6) a universal

quantifier V.

For the sort index set I , let there be a partial order relation S CI X I,

called sort ordering, such that < i; ,i, > € S if and only if sort i; ss a subsort of

sort i, . Foreachi €1, let SUB(:’)-——d- {3, : <14, ,i > €5 }. The syntax rule of
L, with respect to the sort ordering S is given in the following}. First, the set of
terms of sort i is inductively defined as follows: (i) any variable of sort i or constant
symbol of sort i is a term of sort i , and (ii) if f is a function symbol of sort
iy, ', 4y ,ipq> and ¢;,---, ¢, are terms of sort if ,---,i?, respectively,
where i? € SUB(i;), 1< j < n ,then f{t,, -, t,)is a term of sort i,4; . The set
of atomic formulas of L, is defined to be of the form A(tf ,---,) where A is an
n-place predicate symbol of sort <i,,---,4,> and ¢/, 1< j < n,is a term of

sort if € SUB(i,). The set of well-formed formulas of L, is then defined as usual.

t The syntax rule of L, given here is similar to that of a many-sorted language given by
[Walt83]. Similar syntax rule is also mentioned in [Wang52] as a more general form than the syntax
rule of a many-sorted language given in [Ende72, KrKr67].

124

Definable symbols U,N, & and 3 are introduced in L,, as usual and the interpre-

tation of the formulas of L,, is also given as usual.

Now it is shown how a formula in L, is translated into Li. Let o, be a
formula in L, . When ¢, is translated into Lg, let the translated formula be

denoted by o5 . If a sort variable, say z, of sort i € I , occursin o, such as

Om = vzl Z ’

then in oy =z is replaced by an aggregate variable, say 2 , Le.,

. TP, TP,

oy = Vz z ',

where P, is introduced as the corresponding unary predicate symbol to sort i . If
a function symbol, say f of sort <iy, -, 4 ,6,u>, {i;, ", , i} €1,

occurs in o, such as

Oy = f ’

then in oy [is superscripted with P, .., ie.,

og= IP"-+1____ ,
where P, " is introduced as the corrgsponding unary predicate symbol to sort i, .
When n =0, the preceding function symbol translation includes how a constant
symbol in o, is translated into L3, i.e. if ¢ is a constant symbol of sort i that
occurred in o, , then ¢ is superscripted with the unary predicate, say P, , that
corresponds to sort i, i.e., ¢f'. The preceding translation of ¢, into oy implies
that L} is as convenient as L, in abbreviating the relativized expressions in a

one-sorted language into more compact forms.

125

For convenience, let L, with sort index I be a quadratuple
Ln =< R ,F,C,p> where R is a predicate symbol set, F is a function sym-
bol set, C is a constant symbol set, and p 1is the arity function such that
p:R UF — Nt where N* is the positive integer set. Then the language L} for
os is a quintuple L=< P ,R,F',C',p>. P in L} is a unary predicate
symbol set whose elements are the unary predicate symbols that are introduced dur-

. . . . N >’ .
ing the translation of o, into og, for instance, suchas P, in z7' and P, _in
5 +1

Pl . .
[/*?. F' and C' in L& are the function symbol set and the constant symbol
set, respectively, whose members are obtained by superscripting appropriately their

respective function symbols and constant symbols in F and C .

As far as semantics for the formula oy is concerned, the structure for Ly, say

0S,(L%)", can be constructed from the many-sorted structure for L, , say

MS(Ln). Let MS(L,) be a quadratuple MS(L,)= < {S}.es , R, F,C>

where I is the sort index set. Then O0S,(L{)’ is a quintuple

OS,(Lg')'=<ﬂ,}.’,1§,F.",(;'> where 0= UJ S, , P={P,:foreach 1 €1,
i€l

S, is assigned to P, } and F'= {s': for each function f€ 13‘,

f:85,X XS, =S, ., f! is an arbitrary extension of f, f':Q" -0 }. The

following theorem is shown for the translation of o, into og:

Theorem 9.3.1

A sentence o0, in L, is true in MS(L,) if of in L{ is true in

0S,(Lg)" .

126

Proof. Let the sets of terms of L, and L3 be denoted by Term(L,) and

Term (L), respectively. Let s be an assignment function s : Term(Ln)— U S, .
1€1

Then along with the translation of o, into of, there can be defined an assignment
function 2°, &' : Term(L&)— Q, such that s°(¢t°)=s(¢) where t’ stands for

the translation of ¢ € Term (L,) into Lg .

Proof is shown by induction on the length of &, . First, let o, be an atomic

formula of the form R(t,,---,!,) where ¢,,---,t, € Term(L,). Let the rela-

tions designated by R in MS(L,) andin OS,(Lg)’ be RYUn) 4png pOSELY ,

Msa) _ g% @2 Y Brom the way that #° is defined, it fol-

respectively. Then R
lows that
Ms, (L,)
hMS(LM)R(tl’."’t.)lsl <=> <8(‘l),-..'a(t”)>€R
140
< <a'(t]), -, (1) > e RO

<= h R(‘;,"',l;)[-?.]-

0s, (L)
Since ox = R(¢{ ," ", ty), the theorem holds when ¢, is atomic.

Suppose the theorem holds for all formulas of length less than or equal to & .
Inductive step must be shown for the formulas of length 4+1. When the formulas
of length A +1 is obtained from the formulas of length less than or equal to & by
using -~ or — , the proof is trivial. Only the following inductive step is shown.
Let 0,, be a formulain L, of length 4 and let oz, be the translation of

om s into L3 . Induction hypothesis implies that for any assignment function s

and its corresponding assignment function &’ ’:ﬁsu.) Tmob [¢] iff
= ogx[s’]. Let o, be Vz, 0, , where z, is a variable of sort i . It

os, (L)

follows that

127

l:—ﬁ_(LM) on 2] <> '::ES(LM) Vz, 0m s [2]

<= forany s €S, , =

ey Tma [o(z 0]

by the induction hypothesis,
by the way the translation is made, and

by the way OS,(L&)’ is constructed from MS(L,)

= P,, st (=™
<=> forany a € P, l__;s,(z,nl)’ ory [8°(z7 ' | 8))
by Definition 9.2.2 (5)
P 1] ’
= V; !
= By ¥ ol

Since oy = \Phal ogs , the theorem holds for the formulas of lemgth A+1.

Q.E.D.

The preceding theorem assures that any formula in L, can be translated into
L3 only by using aggregate variables. It may well be assumed from here on that a
many-sorted theory can be expressed in L} only by using aggregate variables. In
addition to showing the expressive power of Ly, the preceding theorem suffices to

justify the validity of embedding aggregate variables in a one-sorted language.

The power of L} over L, lies in the fact that in the former a variable whose
range 13 restricted to any subset of the unsverse Q can be introduced as needed in sts
cztension, whereas in the latter a sort variable ranging over an a priori undefined
sort may not be introduced. This means that one of the problems of L, , namely,
the inflexible usage of sort variables (e.g., [Cohn83]), can now be overcome. How the

inflexible usage is overcome is explained in detail in the rest of this section.

Now it is shown how in L} variables ranging over new sorts that have not

been defined a priori can be introduced while the structure associated with Lg is

128

expanded by definitions. Let a theory T, in a one-sorted language be equivalently
expressed as a many-sorted theory, say T, ,in L, . Let the language for T, be
Ln(Tn)t. Let z, and z, be the sort variables of L, (T,) which range over the
sorts S, and S, , respectively. An inflexible usage of sort variables is displayed when

another formula in a one-sorted language, say a logical consequence ¢, of T, ,
¢ = Vz (S)(z)NSAz) — ¢(z)) (9.1)

needs to be further abbreviated in L,(T,). If a new variable ranging over
S1N Sz, say z , can be introduced, ¢, of (9.1) can be abbreviated to Vz, ¥(z1)
in Ln(T,). Unless the sort equal to S, N S, has been defined in the sort structure
for L,(T,), however, doing so requires the revision of the sort structure for
Lm(Tm) to accommodate the sort equal to §; N S,. Compared with this, in L$ in
order to introduce a variable ranging over a previously undefined set, the structure

for L} only needs to be expanded by E-definition.

Let Ty be the translation of T, into L}. Let L3(Ty) be the language for
5, £, : 1
Tg. Let =z and z be two aggregate variables of L3 that range over the
relations S, and S,, respectively. In order to introduce a variable ranging over
S1N Sy, all that must be done is to add a new unary predicate symbol S; to
L$(Tyx), abbreviate ¢, by
i g™, (9.2)

and augment Ty by the defining axiom

Yz (Si(z) S Si(z) N Sfz)) .

t By the language of T, , it is meant the language whose variables are those of L, and whose
relations and function symbols are those which occurin T, .

129

The extended language, say Lo ', is formally called a L-eztension of L% and the

augmented theory, say Ty , a T-eztension of Ty.

As far as the semantics of the new predicate symbols in Ly’ are concerned,
such as S, of (9.2), their corresponding unary relations must be introduced in the
structure for L. Suppose OS, is a model of Ty. In a way similar to the one
shown in Lemma 3.3.2 of Part I, it can be shown that there is a unique expansion by
definition of 0S, , say 0S,’', wﬁich is a model of Ty’ . More specifically, 0S,’

is called an ezpansion by L-definition of 0S, .

Let the characteristic of Ly that allows a more compact expressive power in its
extended language be called I-eztensibility of L. The validity of I-extensibility
of L: can be shown in a way similar to the one that shows the validity of Z-

extensibility of Ly in Theorem 3.3.2 of Part I.

CHAPTER X

PROBLEM FORMULATION

10.1. Representation of a Many-Sorted Theory in L}

The many-sorted theories of concern here are those which fall in a certain class.
In this section, it is shown how these many-sorted theories can be described in Lj .
Let T, be a many-sorted theory expressed in a L, with sort index set I and its
associated sort ordering S which is a partial order relation in I . Let L,(T,) be
the language for T, . Let FS'v eta> {iy, ", iy, 441} C I, stand for the
function symbol set of sort <i,,---,4, ,¢, 44> in L,(T,). Corresponding to
L,(T.),let a L} be defined as shown in Section 9.3.3. For eachi €I ,the Lg

has a unary predicate @, .

Let T, be translated into L& and let the translated theory be denoted by
Ty . Two facts must be included in Ty : each sort indicated by i € I is not empty

<t 1 ". "‘. +l>

and each function indicated by f€F is well regulated over the

corresponding sorts. These two facts can be described in Lg in the following forms

of axiom schemas: Let z , z,," -, z, besimple variables of L!. Then

(i) foreach i €I, Jz Q,(z), and
(i) for each function symbol f in Ln(T,) of sort <i,, --- i, ,i, >

Vo, oo Vo, (Q2) = o0 = Qi (3) = @ (fz1, -+, 2,)). When n =0,

130

131

the preceding formula becomes the sentence @,(c) which indicates ¢ is a con-

stant symbol of sort s .

For the preceding types of axioms, however, their presence in Ts does not need to
be stated explicitly. Since the facts described by the preceding two types of axioms
hold for every many-sorted theory described in L3, their presence can be simply
assumed without their explicit inclusion. For example, when a resolution principle is
applied to Ty, its refutation can be preceded under the assumption that the preced-

ing types of axioms are implicit in Ty.

It can be said that many-sorted theories in general contain two types of nonlog-
ical axioms, namely, type I nonlogical axioms and type II nomnlogical axioms, that
characterize each specific many-sorted theory. Type I nonlogical axioms are those
that describe the relationships among the sorts. The type I nonlogical axioms can be

expressed in the following form of schema in L3 :
vz (Qi(z) = @,(z)) (10.1)

where z is a simple variable and < i, ,i, > € S . The type Il nonlogical axioms

are any formulas of L{.

The goal of this section is to show how the many-sorted theories concerned in
this work are formalized by using the language L7 and an additional symbol “ € "
which is introduced shortly. Although the many-sorted theories concerned here can
be expressed solely in L3, for convenience the symbol “ G " is additionally used.
First, it is discussed that when applying a resolution principle to a many-sorted
theory Ty, the two types I and II of nonlogical axioms of Ty can be expressed

independently by using two different representation schemes. When a resolution

132

principle is applied to Ty, deductions made using the type I nonlogical axioms of
Ty are distinguished from deductions made using the type II nonlogical axioms of
Ty . The deductions made from the former are relationships among the predicate
symbols {Q, },es in L} and the deductions made from the latter are the resolvents
of a set of clauses in L} which are generated by using the deductions made from the
former exclusively as a metaknowledge (how this is done will be clear in Section 11.3
where the WR-unification algorithm is introduced). Such distinction between the
two types of deductions implies that the two types of nonlogical axioms of Ty can
be expressed independently by using two different representation schemes, one for

the type I nonlogical axioms and the other for the type Il nonlogical axioms.

It is discussed how the many-sorted theories concerned here are formalized by
using the symbol *“ € " and L. It is first shown how the symbol * G " is used to
express type I nonlogical axioms of the many-sorted theories. It was shown that the
type I nonlogical axioms of a many-sorted theory include the instances of the schema

(10.1). Let the symbol * € " be used to indicate that
Q CQ, (10.2)

if and only if Vz (@, (z)— @,(z)). An expression of the form (10.2) is called an
ordering aziom. Let OA (acronym of ordering azioms) be a set of expressions of
the form (10.2). It is clear that the type I nonmlogical axioms of Ty can be

expressed in terms of OA.

Showing how the type Il nomlogical axioms of a many-sorted theory are
expressed in Ly is straightforward. Previously by Theorem 9.3.1 it has been shown

that any formula in L, can be expressed in L. Let Ty be a set of formulas in

133

Ly . Then from Theorem 9.3.1 it is clear that all the type Il nonlogical axioms of a
many-sorted theory can be expressed in terms of Ty . In conclusion, it is said that a
many-sorted theory concerned in this work is formalized by an ordered pair

< O0A ,Ts>.

The following is an example of the formalization of a many-sorted theory which

falls in the class of many-sorted theories concerned here:

Example 10.1.1

The many-sorted theory in Example 8.1.1 can be expressed by an ordered pair

< OA , Ty > as follow:

OAt: () DGB, DGC,
() ECB, ECC,

N

Ty : (8) V2™ (P(z™)U Tz Q=% ,2)),
(4) V25 - P(z5),

(5) VzEE vzI€ o Q(z%F | zEC).

Ty in the previously formalized < OA , Ty > is a collection of formulas of
L3 . In the rest of this section it is shown how the Ty is equivalently expressed as
a collection of ‘‘clauses”. First a few notions are introduced that is used throughout

the rest of Part II.

Literals: For any a € Atom(L$), « is aliteral and - a is also a literal.

Complements: For any a € Atom(L4), a is a complement of -« and also

t For simplicity, any ordering axiom of the form Q,J € Q, isomitted in OA . This convention
is used throughout the Part II.

134

-« is a complement of a. The two literals a and - a are, in either order, a

complementary pair.

Clauses: A finite set (possibly empty) of literals is a clause. A disjunction of
literals is used as synonymous with a set of literals. The empty clause is denoted
by [J.

Ground literals: A literal that coptains no variables is a ground literal.

Ground Clauses: A clause whose each member is a ground literal is a ground

clause. In particular, [] is a ground clause.
Ezpressions: Terms and literals are the only expressions.

Now the Skolemization of the formulas in Ty is considered. Foreach y € Ty
of a many-sorted theory < OA , Ty >, ¥ can be transformed into a prenex nor-
mal form where the matrix contains no quantifiers and the prefix is a sequence of
quantifiers. The matrix, since it does not contain quantifiers, can be transformed in

a conjunctive normal form. Let the formula y be transformed into
@iz " Qi M (10.2)

where M is in a conjunctive normal form and @, , 1 <i < n ,is either V or 3.
If (10.2) were a one-sorted formula, what is known as a Skolem normal form of (10.2)
is obtained by the following: beginning with z,, replace each existentially quantified
variable in M, say z, 1<r<n, by a function fz, , -,z),
1<8,< -+ <8, <r ,and delete Q,z, from the prefix.

When (10.2) is a formula in L}, a modification is made to this Skolemization
process. That is, each Skolemized function that is introduced in place of an existen-

tially closed variable is superscripted with a unary predicate symbol that is

135

accompanied with the variable. For instance, if z, 1is replaced by a function

flzs,, -+ , 2z,) and z, is an aggregate variable accompanied with a unary predi-

cate symbol, say R ,then z, is replaced by the function jR(zsl, e,z).

Once each ¢ € Ty is transformed into a Skolem normal form, the prefix of
is made implicit since it consists of only the universal quantifiers. After the prefix is
dropped from ¢, ¥ is a conjunction of clauses. Let a conjunction of clauses be
used as synonymous with a set of clauses. In the rest of Part II, by a many-sorted
theory it is meant an ordered pair < OA , Ty > in which Ty is a set of clauses.

An example follows:

Example 10.1.2

Consider Example 10.1.1. Ty in the < OA , Ty > below is now a set of

clauses. In clause (3), f°(z%2) is a Skolem function that is replaced for z=2 :

OA: (1) DEB, DE&C,
29 ECB, EGCC,

Tg: (3) P(z*)uQ(z*, 1P (s*P)),
(4) - P(z¥°),
(5) - Q(z%F , 2%C).

Finally, a few notations are introduced that are used in the rest of the Part II.
First two defined symbols that are denoted by @ and G, respectively, are intro-
duced. Associated with the symbol &, the two symbols @ and G are defined,

respectively, as follows: @ q Q, if and only if it is not the case that Q,] C€Q,,

and @, G @, ifandonlyif @ C @, and @ #Q, .

136

Now a unary predicate that corresponds to each term is introduced. The set of
clauses Ty ina < OA , Tg > is considered. Let Term(Tyx) be the set of all the
terms which occur in Tyx. For each term ¢ € Term(Ty), a unary predicate symbol
is determined by the outermost symbol of ¢ . That is, if the outermost symbol of
t is a function symbol of the form fP ', a variable of the form 2= , OF a constant
of the form ¢ , then P, is the predicate symbol determined by the outermost
symbol of t . Here P; is calléd the unary predicate that corresponds to the
term ¢ . Such unary predicate symbol P; of the preceding is denoted by Ran(t)

from here on.

Now the ordering axiom set OA of the < OA , Ty > is considered. Let
t, ,t, € Term(Tg). In the rest of Part II, statements of the following form are

often needed to be mentioned:
Ran(t,) € Ran(t,) € OA . (10.3)

When OA is fixed, the statements of the form (10.3) can be made without explicitly
mentioning OA. For notational simplicity, in the rest of Part II, Ran(t,) © Ran(t,)
is used to mean that Ran(t,) € Ren(t,) € OA. Accordingly, by Ran(t,) G Ren(t,)
it would often mean that Ran(t,) € Ran(t,) € OA but Ran(t,) Ran(t,), and by

Ran(t,) € Ren(t;), neither Ran(t;) € Ran(t;) € OA nor Ran(t,) = Ran(t,).

10.2. Finitely Many Most General Unifiers

The problem identified in Example 8.1.1, namely, the generation of useless
resolvents that lead to dead ends, occurs only when a certain class of many-sorted
theories is refuted by a resolution scheme. For instance, for the many-sorted theories

with the tree structure stated in [Walt84a], this problem would never occur. When

137

the tree constraint is lifted, however, this problem may appear. In this section,
the conditions under which such problems may arise are formalized, this time in

terms of L.

In general, when the resolution principle is applied to a many-sorted theory
some restrictions are required in its unification procedure. In order to describe the
restrictions more specifically, the following notion is introduced: A many-sorted
theory < 0A , T > is considered. Let L{(Ty) mean the language of T+, Let
P Dbe the unary predicate symbol set of L&(Ty). Given the set P, let a set of

immediate predecessors of a unary predicate symbol P, € P , denoted by IMP(P,),

be defined by IMP(P,)= {P, | P, €P ,P, G P, and if there is a P, € P such
that P, © P, G P, , then P, =P, or P, = P, }. For simplicity, from here on the
superscript P in the notation /M (‘) is omitted. It can be dome because if the
theory < OA , Ty > is given the unary set P is fixed. The restrictions are then: a
variable v can be unified with a nonvariable term ¢ iff Ran(¢) G Ran(v) and a
variable v, can be unified with a variable v, iff IM(Ran(v,))N IM(Ran(v,))5# ¢ .
The former restriction can be enforced easily in a many-sorted resolution by restrict-
ing that each substitution component /v should satisfy the condition
Ran(t) € Ran(v) . One way to incorporate the latter restriction in a many-sorted
resolution would be the following}: if there is a unary predicate symbol Sy € P such
that S; G Ran(v;) and S; G Ran(v,), and, at the same time, there is no S, € P

satisflying S; €@ S; € Ran(v;) and S; G S; G Ron(v,), then { v, , v; } is unifiable

t By L4 (Tg) it is meant the language whose variables are those of Ly and whose relations and
function symbols are those which occur in the set Ty of formulas. This notation is used in the rest of
Part II.

$ In [Walt83], a similar idea of incorporating the latter restriction was implemented by the infer-
ence rule called “‘weakening rule”’.

138

with a substitution § = { z, /v, , z; [v;} , where z; is an aggregate variable 2ccom-

panying with the predicate symbol S; .

When the preceding method of incorporating the restrictions is directly imple-
mented in a unification procedure, a certain situation arises that is called generation
of finitely many most general unifiers (here only the case having a finite number of
sorts is considered). The situation of generating finitely many mgus arises when two

to-be-unified variables, say v; and v, , satisfy the following conditions:
(i) Ran(v) g Ren(v;) and Ran(v,) € Ran(v;),
(1) | IM(Ran(v))NIM(Ran(v,))| > 1.

In fact, if =z is a variable such that Ren(z;)=P, and
P, € IM(Ran(v;)) N IM(Ran(v,)), then any substitution 8 = {z. /v, , 2z /v, } is a
legitimate mgu of { v, , v, }, since v,8 = v,d. This implies that there are possibly
as many mgus for {v, ,v, } as |IM(Ren(v,)) N IM(Ran(v,))| . For example, con-
sider Example 10.1.2. when the ordering axioms are D €B, D € C, ECB
and EGCC, |IM(Ran(z*8))nIM(Ran(z%))| = {D ,E}. Two different
mgus are available for {z*2 | z%C} namely, {z%°/z%8 ,z%0[z%C} and
{zZF [2TB | 2T£ [2XC} which both are legitimate mgus. As has been demonstrated
in Example 8.1.1, the problem in this situation is that multiple resolvents can be
derived from given two clauses and not all of them are indeed useful for the genera-
tion of the empty clause. In Section 11.1, a way to remedy this situation is formally

proposed.

CHAPTER XI

UWR-RESOLUTION

11.1. Unification over the Weakest Range

First, a few basic notions are introduced that are needed for formal description
of the resolution scheme called unification over the weakest range (UWR-resolution).
These notions are concerned with the operation of instantiation, i.e., substitution of

terms for variables in the clauses of Ly .

A many-sorted theory < OA , Ty > is considered. Given the ordering axiom
set OA and the language L{(Tg), the following notions are introduced. Any
expression of the form t/v where v is a variable and ¢ is a term different from
v satisfying Ran(t) © Ran(v) is a wr-substitution component . For two variables
v, and v, of Lg(Ty) that satisfy the conditions (i) Ran(v,) € Ran(v,) and
Ran(v)) @ Ron(v,) and (ii) |IM(Ren(v,)) N IM(Ran(v,))| > 1, a pair denoted by
{t/v; ,t[v;} isa wr-subpasr, if
(1) ¢/v, and t/v; are wr-substitution components where ¢ is a new

variablein L& (Tyg),

(2) L2 (Tg) is extended by including a new unmary predicate symbol, say P,,

with Ran(t)= P; , and

139

140

(3) 0A is augmented so that for each wunary predicate symbol
Q € IM(Ran(v,)) N IM(Ran(v,)), (Q € P)€EOA , and (P, S P,)€ OA and
(P € P,)€ OA where P, and P, are the predicates indicated by Ran(v,)

and Ran(v;), respectively.

A finite set (possibly empty) of wr-substitution components that possibly con-
tain one or more wr-subpairs and none of the variables of which are same is a wr-
substitution. In particular, ¢ denotes empty substitution. The notions such as
tnatantiation and compoasstion of substitutions are defined as usual. If E is an
expression and 4 is a wr-substitution, then the instantiation of E by ¢ is denoted
by E8. If X\ is also a wr-substitution, the composition of 4 and X is

denoted by 6\ .

A wr-substitution 4 is called a wr-unifier for a set {E,, --- ,E, } of
expressions if and only if Ef=Ef§= --- =FE;0. Theset {E,, --- ,E; } i3
said to be unifiable if there is a wr-unifier for it. A wr-unifier o for a set
{E,, -+ ,E, } of expressions is a most general wr-unifier (wr-mgu) if and only
if for each wr-unifier 8 for the set there is a wr-substitution \ such that § = o).
A wr-resolvent is a resolvent that is generated by using a wr-substitution as a unif-

ier (this notion is defined in a more formal way in Section 11.3).

The EI-extensibility of L} plays the central role in introducing wr-subpairs.
From the definition of a wr-subpair, it is clear that wr-resolvents are not expressible
in the current vocabulary of L&. They can only be expressed in an extended

language of Lg. This idea is illustrated in the following example.

141

Example 11.1.1

The many-sorted theory < OA , Ty > in Example 10.1.2 is considered.

OA: () DEB, DEC,
@9 ECB, ECC,
Ts: (3) P(zP)uQ(=%8, /°(z*2)),
(4) -~P(z%),
(5) -~Q(=*,2%).
An example of a wr-resolvent is the following: For z%8 of P(z™) in (3) and zZ€
of = P(z%€) in (4), a wr-subpair { zZX [zZB zTK [3EC} can be introduced if Ly
is extended by a unary predicate symbol, say K, where
Vz (K(z)5 B(z)n C(z)). The extension of Ly requires < OA , Ty > to be

extended also. That is, upon introducing K , OA is augmented to OA* by the

ordering axioms as follows:
2Y) KGB,KGCC,DECK,ECK.

Here the wr-subpair { zZX [zZB ZK [3ZC) jtself is a wr-unifier of (3) and (4).
Therefore the wr-resolvent of (3) and (4) that is generated by using
{ 2K |28 | 2¥X [2EC} ag a unifieris Q(zZX , f?(z%X)). In the following, a refu-
tation of the < OA , Ty > is shown:

6 QE™, 2=), (3)+(4)
™ 0. (5)+(6)

The above refutation shows that the wr-resolvent (8) of (3) and (4) is resolved with

(5) resulting in [J.

142

So far the syntactic notion of the UWR-resolution has been introduced. Before
ending this section, in the rest, the semantic notion of the UWR-resolution is dis-
cussed in terms of the structure associated with LL(Tx). When the outermost
symbol of ¢ is a function symbol, say f, (if the outermost symbol is a 0-place
function symbol, then ¢ is a constant) the unary relation indicated by Ran(t) is
the codomain of the function indicated by f . When the outermost symbol of ¢
is a variable, ¢ itself is a variable and the unary relation indicated by Ran(t) is

the range of the variable ¢ . Let the unary relation indicated by Ran(t) be
denoted by Ran (t) . It is not difficult to see that the range of the variable ¢ in a
wr-subpair { t/v, , t/v;} [ie., Ron(t)= Ran (v,) N f?an(v,-)] is the weakest range
over which { v, v;} can be unified -- weakest in the sense that if P, = Ran (t),
then there is no other unary relation P, such that P, C P, and {v,v} isstil

unifiable over f’, . For this reason, the unification stated here is called unifica-
tion over the weakest range and the resolution involving such unification is called
UWR-resolution. The idea behind UWR-resolution is therefore to subsume all

the possible unifications by one unification over the weakest possible range.

11.2. Herbrand Theorem for L! Clauses

As a preliminary step to proving the completeness of UWR-resolution, in this
section a modified version of the Herbrand theorem [Herb30] that is called the Li-
version Herbrand Theorem is presented. The L &-version Herbrand theorem is used
as the basis for proving the completeness of the UWR-resolution in the following sec-
tion. This modified version of the Herbrand theorem is needed for two reasons: first,

the Herbrand theorem is originally based on a one-sorted predicate calculus, but here

143

a many-sorted predicate calculus is dealt with, and second, the original version of the
Herbrand theorem cannot be used directly for proving the completeness of a resolu-

tion scheme, although it provides the theoretic basis for doing so.

In the modification, the original version of the Herbrand theorem is used as the
starting point. First, based on that original version, a many-sorted version of the
Herbrand theorem is established that is applicable to the clauses in an ordinary
many-sorted language (L,). Then, the many-sorted version applicable to the clauses
in L, is converted into another many-sorted version that is, this time, applicable to
the clauses in L2 . Here the former step is of no concern as long as one such many-
sorted version can be found. in the literature. Such a version is given by Kreisel and
Krivine [KrKr67] which they call “the uniformity theorem for predicate calculus with
several types of variables.” Thus the only concern here is to convert the many-sorted
version of the Herbrand theorem by Kreisel and Krivine into another many-sorted

version that suits our purpose.

Converting the many-sorted version by Kreisel and Krivine into the many-
sorted version that suits our purpose comsists of two steps: first, to convert the
former into an intermediate version that is applicable to the L3 clauses, and
second, to convert the intermediate ;'emion into the form of the Herbrand theorem
that can be directly used for proving the completeness of UWR-resolution. The first
conversion step is straightforward and, therefore, is shown in Appendix B. In
Appendix B, the following form of the Lj-version Herbrand theorem is derived as

an intermediate result:

144

Theorem 11.2.1

Let A(z,, ---,z,) be a quantifier free formula with free variables
zy, *** ,%,. Then Vz, --- Vz, A(z,, --- ,z,) is unsatisfiable if and only if
there is a sequence (t{), --- 1)), 1< <p, of n-tuples of terms of Li(A)

such that A, N --+ N A, is unsatisfiable where A, is obtained by replacing z, ,

1<j<n,in A by .

This form of the Herbrand theorem further needs to be modified so that it can
be directly used for proving the completeness of UWR-resolution. In the rest of this

section it is shown how the further modifications are made.

First it is seen what is meant by Theorem 11.2.1. This theorem says that there
is a procedure verifying the inconsistency of a prenex formula, say ¥ . The formula
v’ is constructed from ¢ which, being universal, can be written in the form

Vz, +-- Vz, A(z,, +-- ,z,) where A is quantifier free. Then formulas are gen-

erated of the form, for some k¥ > 0,
AR® o W) A ®, o), (11.1)

where ¢()s are terms of L}(4). Each formula of this form is tested in a finite
number of steps to determine whether or not it is inconsistent by using a truth table,
i.e., by treating each atomic formula in (11.1) as a propositional variable. Then Y is

inconsistent if and only if an inconsistent formula of the form (11.1) is found.

t L4 (A) stands for the language of A . By the language of a formula, it is meant the language
whose variables are those of L and whose relations and function symbols are those which occur
in formula A4 .

145

As the preceding procedure indicates, the Herbrand theorem provides a theoret-
ical basis for the existence of a proof procedure for a quantification theory (strictly
speaking, what is described is a refutation procedure rather than a proof procedure).
The Herbrand theorem, however, does not address the details about how an actual
proof procedure should look, for example, how terms are to be substituted for vari-
ables and how the inconsistency of the resulting formula of the form (11.1) can be
checked. For developing an actual proof procedure, the most critical issue is how
these two detailed processes can be made in a systematic way, since what matters in
the actual proof procedure is the efficiency. Most of the proof procedures known

today tackle this issue in one way or the other.

The preceding issue was first addressed by Quine [Quin55]. In his paper Quine
presented two proof procedures called “method A” and “‘method B.” In method A,
he suggested a way to substitute terms for variables. Given a Skolemized normal
form y, let a class of terms, say C , contain, to begin with, all those constants of
¢ (or ‘a’, arbitrarily, if there is none). Further, if a non-zero-degree function symbol
occurs in ¢, then the function, with members of C in place of the function’s argu-
ment position(s), in turn belongs to ¢ . This class C , usually infinite, which
Quine called ‘“the lexicon of ¢”, is then the only set of terms that are substituted for
the variables in ¢ . This method of substituting terms for variables is restrictive in
the sense that no such restriction is mentioned in the original version of the Her-
brand theorem. The restrictive substitution, however, does not hamper the com-
pleteness of the proof procedure which is based on such restrictive substitution. Here
the restriction is not necessary but only used as a technical aid for carrying out the

substitutions. Quine'’s restrictive substitution strategy was later used in various

146

machine based proof procedures [Gilm80, Robi65a).

In method B, Quine further suggested a methodology with which the incon-
sistency of a set of formulas can be proved without formulating a conjunction of all
the formulas in the set. He also showed that doing this is more efficient than doing

otherwise.

These two ideas, restrictive substitutions aﬁd proving the inconsistency of a set
of formulas without formulating a conjunction of all the formulas in the set, later led
to a specific form of the Herbrand theorem by Robinson [Robi65a]. Robinson used
this version in proving the completeness of his resolution principle. The goal of this
section is to derive a modification of the Robinson’s version which is applicable to

the clauses in Lg. The modified version is derived in the rest of this section.

First, two notioqs are introduced that are often called “Herbrand universe” and
“saturation.” The notion of Herbrand universe of a set of clauses in L{ is given
first: Let Ty be a set of clauses in L. For some index set I ,let {P,},c; be the
unary predicate set} of L3 (Ty). Let MIN({P,},¢;) be the subset of {P,},¢; such
that if P, € MIN({P,},¢;) thenforno P, € MIN({P;},e;) is P, G P, . Let F be
the set of all function symbols that occur in Ty. For each P, € MIN({P, her), if
F contains a zero-degree function symbol, say ¢ , such that Ran (¢)= P; , then
the functional vocabulary of Ty is F; otherwise the functional vocabulary is the
set {c}UF where ¢ s a constant symbol arbitrarily chosen to satisfy
Ran(c) = P, . Then the Herbrand universe of Ty is the set of all ground terms in

which there occur only symbols in the functional vocabulary of Ty .

t The unary predicate set of Ly is the set of unary predicates which accompany the aggregate
variables of Lg .

147

Now the notion of saturation is the following: Let Ty be any set of clauses in
Ls and let Py be any set of ground terms. Then the saturation of Ty over Py ,
denoted by Py(Ty), is the set of all ground clauses obtainable from the clauses of
Ty by replacing each variable, say v, , in a clause of Ty with each member, say
t, , of Py which satisfies the condition Ran(t;) C Ran(v,) [occurrences of the

same variable in any one clause is replaced by the same term].

The two preceding notions are illustrated by the following example:

Example 11.2.1

Consider the < 04 , Ty > of Example 10.1.2:

0A: () DEB, DEC,
() ECB, ECC,
Tg: (3) P(z2)u Q(zZ8, f°(z8)),
(4) -~ P(z¥°),
(5) -Q(z*,2%).
The unary predicate set, say UP ,of Li(Ty) is {B,C,D ,E}. MIN(UP) is
then {D ,E}. Let d° and e be the constants such that Ran(d®)=D and

Ron(e®) = E . The functional vocabulary of Ty is then {d° , eE} U {f°}. The

Herbrand universe of Ty is the following:
{dD, cE, fD(dD), fD(eE), fD(fD(dD)), fD(fD(eE)), cee } .

Le¢ Pz be a finite subset of the Herbrand wumiverse of Tg, say

Py ={cF, f°(cF)} . The saturation of Ty over Py, PyTy), is the following:

PHTz)={ P(c®)U Q(e®,12(eF)), PSP (F)U QU (eF)1° (7 (c5))),
S P(ef), 2 P(fP(eF)), ~Q(eF,e®), ~Q(eF, 1P ()).

148

Notice that - Q(f(ef),ef) and - Q(f°(ef),/°(ef)) are not included in

Py Ts),since Ran(f°(ef)) @ Ran(z=E) [notice that Ran(f°(ef))=D]

When the two notions, Herbrand universe and saturation, are used, Theorem
11.2.1 can be rephrased in the form given below. It is assumed that for a many-
sorted theory < OA , Ty >, OA is any finite set of ordering axioms and Ty is

any finste set of clauses.

Theorem 11.2.2

A < 0A, Ty > is unsatisfiable if and only if some finite subset of H(Ty) is

unsatisfiable where H is the Herbrand universe of Ty .

Finally, with a little exercise of imagination, the preceding form of the Her-

brand theorem can be further rephrased in the following form:

Theorem 11.2.3 Herbrand Theorem for L} Clauses.

A < 0A, Tg> is unsatisfiable if and only if for some finite subset Py of

the Herbrand universe of Ty, Pg(Ty) is unsatisfiable.

The preceding theorem is the final L -version of the Herbrand theorem that
was to be derived. In the following section this theorem is used for proving the com-

pleteness of UWR-resolution.

149

11.3. Completeness of UWR-Resolution

In this section the completeness of UWR-resolution is proved. This proof
closely follows the proof of Robinson’s resolution principle presented in [Robi85a].
First the completeness of UWR-resolution at the ground level must be established.
At the ground level, however, there is no difference between the resolution of one-
sorted ground clauses and the resolution of many-sorted ground clauses. For exam-
ple, when two ground clauses are to be resolved, what must be determined is
whether the two clauses contain a complementary pair of ground literals. In making
such a decision, it is immaterial that each term in a ground clauses in Lg is associ-
ated with a certain unary predicate symbol which is determined by the outermost
symbol of the term. In the following, therefore, the ground resolution theorem for
UWR-resolution is presented without its prooft as a modification of the ground reso-

lution theorem for Robinson'’s resolution principle.

First, a few basic notions are introduced. Let C and D be two ground
clauses or, as defined synonymously, two sets of ground literals. Let L C ¢ and
M C D be two singletons whose respective members form a complementary pair of
ground literals. Then the ground clause (C - L)U (D - M) is called a ground resol-
ventof C and D . Let TE be aﬂy set of ground clauses. Then the ground reso-
lution of T¥ , denoted by R(TE), is the set of ground clauses consisting of the
members of T§ and all ground resolvents of all pairs of members of T& . The
n® ground resolution of T , denoted by R"(T§), is defined for each n > 0 as

follows: R(T¥)= T¢ andforn >0, R"*TE)=R(R"(TE)).

t Formal proof can be found in [Robi65a}.

150

Theorem 11.3.1 Ground Resolution Theorem for UWR-Resolution.

A <04 ,TE > is unsatisfiable if only if R"(T) contains [] for some

n2>0.

By using this theorem, the Herbrand theorem for L} clauses, Theorem 11.2.3, can

be rephrased as follows:

Theorem 11.3.2

A < 0A , Ty > is unsatisfiable if only if for some finite subset Ps of the

Herbrand universe of Ty and some n > 0, R"(PHTj)) contains 0.

The rest of this section is devoted to showing how the preceding theorem leads
to the theorem for the completeness of UWR-resolution. As the first step, the pro-
cedure known as unification algorithm must be given which shows how a mgu is
derived for a set of clauses satisfying a certain condition. First, the notion of a
disagreement set is introduced as usual. The disagreement set of a nonempty set

W of expressions (excluding literals with negation symbol) is obtained by locating
the first symbol (counting from the left) at which not all the expressions in W have
exactly the same symbol and then extracting from each expression in W the subex-
pression that begins with the symbol occupying that position. The set of these

respective subexpressions is the disagreement set of W.

In the following an algorithm is introduced which embodies the idea presented

in Section 11.1, i.e., unifying two variables which satisfy a certain condition over the

151

weakest range. This algorithm is called WR-unification algorithm and is applicable
to any finite nonempty set of expressions. Unlike the unification algorithm for a
one-sorted resolution, the WR-unification algorithm requires a finite set OA of
order axioms as an input in addition to a finite nonempty set W of expressions.
OA is needed in the algorithm since the UWR-resolution needs to know the unary
predicate symbols determined by the outermost symbols of terms and variables. For
example, if ¢, and v, are, respectively, a term and a variable that are to be uni-
fied, then the WR-unification algorithm needs to determine whether
Ran(t,) € Ran(v,) or what are IM(Ran(t,)) and IM(Ran(v,)). These become
determinable if 0A is provided as an input to the WR-unification algorithm. The
following process is applicable to a finite nonempty set W of expressions and a fin-

ite set OA of ordering axioms:

WR-Unification Algorithm

Step 1 Set k=0, W, =W, o, = ¢, and go to Step 2.
Step 2 If W, is a singleton, stop; o, is a wr-mgu for W . Otherwise, find the

disagreement set D, of W, and go to Step 3.

Step 3 If there exist elements v; and ¢, in D; such that v, is a variable
that does not occur in #, , go to Step 4. Otherwise, stop; W is not

unifiable.

Step 4 If Ran(t;) € Ran(v;), then let o,y =0, {t; Jo;}, Wia= W {t,/v:},

and go to Step 7. Otherwise, go to Step 5.

Step 5

Step 6

Step 7

152

If t, is a variable and IM(Ran(v.)) N IM(Ran (1)) # ¢, then go to

Step 6. Otherwise, stop; W is not unifiable.

If |IM(Ran(v:)) N IM(Ran(t))| =1, then let 0,4, = or{wfv , wfty}
where w is a variable satisfying Ran(w) = IM(Ran (v,)) N IM (Ran (t,)),
Wipn= W, {wfv, ,wft; }, and go to Step7. Otherwise [ie.,
| IM(Ran (v;)) N IM(Ran(t;))| > 1], do the following: (i) let P be a
new unary predicate that is not in 0OA; (ii) for each
Q € IM(Ran(v.))NIM(Ran(t;)), enter @ € P in OA , and also enter
PECP, and P C P, in OA where P, and P, are the predicates
indicated by Ran(v;) and Ran(t,), respectively; and (i) let o044y =
oy {w/vi ,wft, } where w is a variable satisfying Ran(w)=P ,

Wipn= W, { w/v; , w/t; } and go to Step 7.

Set & = k+1 and go to Step 2.

There are two basic properties of the WR-unification algorithm that need to be

justified. One is that the preceding process always terminates for any finite

nonempty set of well-formed expressions. The other is that for a unifiable set of

expressions, the outcome of a wr-mgu is always ensured. The former property can be

shown in a straightforward way. The algorithm has three termination points at

Steps 2, 3 and §, respectively. If the algorithm does not terminate at any of these

points and continue infinitely, the algorithm would generate an infinite sequence

Waoo, Way, Woz, ---, of finite nonempty sets of expressions with the property

that each successive set contains one less variable than its predecessor, namely,

Wo; contains v; but Wo,y, does not. This is impossible since W contains

153

only finitely many distinct variables. Therefore the algorithm must terminate in a
finite number of steps. The latter property, i.e. a wr-mgu is ensured for a nonempty
finite unifiable set of expressions, is formally shown by the theorem given below.

This result is used in the proof of Lemma 11.3.4 and elsewhere.

Theorem 11.3.3 WR-Unification Theorem.

Given a finite set OA of ordering axioms and a finite nonempty unifiable set
W of expressions, the WR-unification algorithm always terminates at step 2 and

the last ¢, is a wr-mgu for W .

Proof. From the hypothesis that W is unifiable, there is a substitution ¢ that uni-
fies W . It suffices to prove then that the WR-unification algorithm always ter-
minates at Step 2; and that for each ¥ > 0 until the WR-unification algorithm so
terminates, § = o,); holds at Step 2 for some substitution X\, [this is sufficient
enough to say that the last o, is a wr-mgu for W because the last o, possibly
includes one or more wr-subpairs that would be introduced at Step 6]. This is

proved by induction on & .

For k =0, by taking Ny =0, § = g\ since 0,=¢. For 0 < k < n , assume
that § = o;\; holds at Step 2 for some substitution \;, . When & = n only two
cases are possible' at Step 2: either (i) Wo, is a singleton or (ii) Wo, is not a single-
ton. In case (i), the WR-unification algorithm terminates at Step 2 and o, is a wr-
mgu since by the induction hypothesis § = o, A\, for some substitution X\, . In case
(ii),-the WR-unification algorithm.finds a disagreement set D, of Wo, . The induc-

tive step is then to show that in case (ii) the process continues and does not ter-

154

minate either at Step 3 or 5, and, when k¥ =n +1, 6= 0,4, holds for some

substitution X,y .

Let k¥ = n . It must hold that)\, unifies D, from the followings: ¢ is a
unifier of W, 8§ =o,)\, holds at Step 2 by the induction hypothesis, and D, is
the disagreement set of Wa, . At Step 3, since W is unifiable, there must exist a
variable v, and a term t, in D, that is different from v, . Here since)\, uni-

fies D, , it holds that
Vadg =8N, - (1).

From (1) it can be shown that v, never occurs in ¢, : If v, occurs in ¢, , then v,)\,
occurs in {,\, . Since it is impossible that, while v, and ¢, are distinct, v, \, occurs
in ¢, \, and at the same time v,\, = {,\, , v, can not occur in ¢, . Therefore the

WR-unification algorithm will not terminate at Step 3, but will go Step 4.

At Step 4 the algorithm sets 0,4, =0, {t,/v,} if Ren(t,) € Ran(v,) and
otherwise will go to Step 5. At Step 5, as long as D, is unifiable, it is neither possi-
ble that Ran(t,) € Ran(v,) when ¢ is not a variable nor
IM(Ran (t,)) N IM(Ran(v,)) = ¢ . This implies that the algorithm never terminates

at Step 5, but will go Step 8. At Step 6, the algorithm sets either
Opq1 = on{tn/”n} e (2)

or 0,.+1=Un{wn/vn;wn/tn} T (3)

where w, is a new variable that does not occur either in v, orin ¢, . Let case (a)
be when the algorithm sets o,,; as (2) and let case (b) be when the algorithm sets
0n41 as (3). In the rest of the proof, it is shown that at Step 2 in both cases (a) and

(b) 6 = 0,417 a4 holds for some substitution X, .

155

Case (a): Let Ayyy =X, = {(t,>,)/va}. Then

A = {(tada)/ve} U o by definition of), ,
= {(ts X a1)/va } U a1 since v, does not occur in ¢,
= {ty /v, Py - (4) from the propertiest of

the composition of substitutions.

Therefore the following holds:

6 =o,), from the induction hypothesis
=0, {ts /v, }Xn+l from (4)
= 0”+1X.+1 e (5) from (2) .

Case (b) : Let M\oyy =Xy - {(wha)/va , (w),)/t,} [notice here that ¢, is a vari-

able]. Then

M= {(wXy)/va, (W)t} U by definition of X,

= {(wh\p)/ta , (Wha)/ta} UM, u since w does not occur
either in v, orin ¢,

= {wfv, , wft,\ya - (6) from the properties of

the composition of substitutions

Therefore the following holds:

0 =0, from the induction hypothesis
= 0, {wfv, , wft,)\, from (68)
= a,,.{,.l)\,,ﬂ e (7) from (3) .

Hence from (5) and (7), it follows that for all ¥ > 0, § =10,)\, holds at Step 2 for
some substitution X; . Since the WR-unification algorithm must terminate but it

will never terminate either at Step 3 or 5, it must terminate at Step 2. Conse-

t Properties of the composition of substitutions include: (1) for any expression E and any substi-
tutions o and A, (Eo)A = E(o)), (2) for any substitutions ¢ and X\,if Eo = E) then o=\ , (3)
for any substitutions o, X and &, (oA)§=0(26), and (4) for any sets A and B of expressions and
substitution A\, (A UB)A=AXUB\.

156

quently, whenever the algorithm terminates at Step 2 the last o, is a wr-mgu

for W. Q.ED.

Now the UWR-resolution operator, denoted by Ry ("), is introduced in a simi-
lar way as the ground resolution operator R(') was introduced at the beginning of
this section. Ry(') differs from R(") only by the fact that the former is applied

to the clauses in L{, whereas the latter is applied to the ground clauses.

efinition 11.3.

Given < OA, Ty > , the UWR-resolution of Ty, denoted by Ry (Ty), is the
set of all clauses consisting of members of Ty and all wr-resolvents of all pairs of
members of Tyg. The n® UWR-resolution of Ty, denoted by Rj(Ty), is then

defined as follows: RY(Tg)= Ty and for n >0, R} (Tx) = Ry (R%(Ty)). o

Now a lemma called the Lifting Lemma is proved. Before doing so, the notion
called standardization is introduced in order to make a pair of clauses not share any
common variable. If L is a clause and vy, *** , v are all the distinct variables,
in alphabetical order, which occur in L , then the z-standardization of L , denoted
by ¢, is thev substitution {z,/v,, --- ,z;/v;} where Ran(z,)= Ran(v,),

1<i <k, and the y-standardization of L , denoted by n; , is the substitution
{ys/vy, -+ ,u/ve} Wwhere Ran(y,)=Ren(v;), 1 <4 < k. Itissaid that L is
z-standardized (y-standardized) to L ¢, (L#n,). It is noticed that for a given pair

of clauses, say ¢ and D, Céc and Dnp share no common variable.

157

Lemma 11.34 Lifting Lemma.

Givena < OA , Ty >, if Py is any subset of the Herbrand universe of Ty,

then R(PxTg)) C PRy (Ty).

Proof. Suppose E € R(PTyx)). Either E € PyTy) or E isa ground resolvent
of two ground clauses in P(Ty). If E € Py(Ty), then E € PRy (Tg)) since
Ty C Ry (Tg). Therefore, it suffices to show that when E is a ground resolvent of
two ground clauses in Pg(Ty), then E € PyRy(Ty)). Let E be a ground resol-
vent of two ground clauses, say C* and D’ . Since C, D" € P(Ty), there
are two clauses, say C and D,in Ty and two substitutions, say « and 4,
satisfyizg the following: If a = {t,/v,, --- , t/ve} where v,, -+ v, are all
distinct variables in ¢ and A= {w,/u,, --- , Wy [un} Where u,, --- u, are
all distinct variables in D , then (i) € = Ca and D" =DJ and (i) « and B
are overt Pg(Ty),ie., ¢y, -+ ,t and wy, *** ,w, arein Py. Then from

the fact that E is a ground resolvent of C* and D , it follows that
E=(C-L)ayu(D -M)s,

where L CC and M CD, L and M are nonempty, and La and MS are
singletons whose respective members are complements [notice that if L = ¢ and

M =D ,then E is []]. Let 6 be
O={tfz1, " - tfz ,wifyy, o wafyn).
Then it follows that

E=(C-L)cOU(D -M)po --- (1)

t It P is any set of terms and the terms ¢y, -, t of the components of the substitution
0={ty/vy, -+, 4, /v } areallin P, then @ is a substitution over P .

158

and that Léc0=La and Mn,0=Mp. Let N(Léc U Mnp) stand for the set
of atomic formulas that are members, or complements of members, of the set
L¢c UMnp [this convention is used in the rest of Part II. Then 6 unifies
N(L&c UMnp). By the WR-unification theorem, there is a wr-mgu oy unifying

N(L éc U Mnp) so that for some substitution X,
8=oyr - - (2).

Here)\ is over Py since the substitution 6 is over Pg. It follows that
Lé{cowh=La and Mnpoyh=Mp. Then since La and MJ are singletons

whose respective members are complements, so are L écow and Mnpoy . Let F be
F=(C-L)cow U(D -M)ipay -+ (3).

Then it follows that F € Ry (Ty) since (3) implies that F is a wr-resolvent of C
and D . From (1), (2) and (3) it also follows that E = F)}. Finally, since X is

over Py, it is concluded that E € Py(Ry(Tyg)). Q.E.D.

Example 11.3.1

Consider the following < 04 , Tx > :

OA: (1) DEB, DCC,
(2 ECB, EGcC,
Ts: (3) P(z™)u Q= , f2(s38)),

(4) -~ P(2%9).
The Herbrand universe of Ty is the following:

{dD' eE,fD(dD)' fD(cE), fD(va(dD)), fD(fD(eE)), s } .

t Distributive property holds for substitutions: (A UB)\ = A\ U B\.

159

where d° and ¢f are the constants such that Ron(d®)=D and
Ran(e®)=E . Let a finite subset Py of the Herbrand universe of Ty be

Pg={¢f,d°, fP(eF), fP(d?)}. Then the saturation of Ty over Py is

PHTg)={P(c®)U Q(e®,/°(cF)), P(d®)U Q(d?°,f°(dP)),
P(fP(eENUQUP(eE)P (/P (B,
P(f2(dP)u Q(sP(dP). 1P (12 (47)),
~P(cf), ~P(dP), =~ P(fP(cF)), - P(fP(dP))}.

R(P(T5)) = PHTs) U{Q(",17(c®)), @(d°,17(d7)),
QUP(ELL (P (E)), QUP(AP)L (P (4P)) }

On the other hand, le¢ a new predicate K be defined as

Vz (K(z)= B(z)Nn C(z)), then
Rw(To)={P(™)u Q(z™,/°(z™)), ~ P(z%°), Q (7 ,/°(zTX)) } .

PHRw(T5)) = PHTs) U{ Q(e5,/°(eF)), Q(d°,/° (4°)),
QP (eENSP(1P(eB)), QP (dP), 1P (1P (dP))) .

It clearly follows that R (PE(Trz)) C PyRw(Ty)).

The following is a corollary to the Lifting Lemma which shows that the n® UWR-

resolutions are also semicommutative with saturation.

Corollary 11.3.5

Givena < OA , Ty > ,if Py is any subset of the Herbrand universe of Ty,

then R"(PHTg)) C PR} (Ty)).

Proof. Proof is by induction on n . For n =0, RYPyTy) = Py(Ty) =

P{Ry(Tg)). For n 20, let R"(P{Ty)C PyR}(Ts)) be hold. Then the

160

inductive step is the following:

R"™(P{Tg) =R(R"(PHTy)) by definition of R"#
C R(PR}(Ty) by the induction hypothesis ,
C PyRw(R%#(Tx))) by Lemma11.3.4,
= PR} (Ty)) by definition of R} . Q.E.D.

Now the following form of lemma is concluded:

Lemma 11.3.8

Ifa < 0A, Ty > is unsatisfiable, then for some finite subset Ps of the Her-

brand universe of Ty and some n > 0, PR}(Ty)) contains [].

Proof. By Corollary 11.3.5, it is immediately obtained from Theorem 11.3.2.

Q.E.D.

Finally, the final version of the Herbrand theorem for L& clauses is proved,

which assures the completeness of UWR-resolution.

Theorem 11.3.7 Completeness of UWR-Resolution.

A < 0A , Ty > is unsatisfiable if and only if Rj(Ty) contains [] for some

n2>0.

Proof. The “only if"" part is proved first: Lemma 11.3.8 is considered. Here mere
replacement of variables by terms cannot produce [] for a nonempty clause, i.e.,

PRy (Tyg) will contain [] if and only if Rj(Ty) contains []. Therefore, by

161

simply replacing PHRj}(Tg)) of Lemma 11.3.6 by Rj(Tg), the “only if” part of
the theorem is immediately obtained.

Now the “if"" part is proved: Let Rj(Tyz) contain [] for some n < 0. Sup-
pose < OA , Ty > is satisfiable. Since any resolvent of two clauses is a logical
consequence of the two clauses, any structure satisfying < OA , Ty > should also

satisfy []. The empty clause [] is never satisfiable by any structure. Hence

< OA , Ty > is unsatisfiable. Q.E.D.

CHAPTER XII

EFFICIENCY OF UWR-RESOLUTION

12.1. A Hypothetic Many-Sorted Resolution

In this chapter, the efficiency of UWR-resolution is discussed. Informally
speaking, the efficiency of UWR-resolution is due to letting a wr-resolvent subsume a
class of resolvents that would otherwise need to be generated. For example, when a
pair of clauses satisfying a certain condition is resolved, if UWR-resolution is
employed, only one resolvent is generated by using one or more wr-subpairs, whereas
otherwise more than one resolvents must be generated. In the latter case, resolvents

can be generzted that only lead to dead ends.

In order to discuss of the efficiency of UWR-resolution in an organized way, the
situation described informally in the preceding paragraph must be formalized. As a
way of doing this, a hypothetic many-sorted resolution scheme, namely E-resolution,
is introduced. Informally speaking, the Z-resolution is a many-sorted resolution that
is identical with the UWR-resolution except that in the former wr-subpair is no
longer used, but a pair of wr-substitution components called L-subpair is used in
place where a wr-subpair is to be used. Unlike wr-subpairs, I-subpairs can be intro-
duced without extending the language L that is currently being used. The formal

notion of a E-subpair is introduced shortly. Although here the efficiency of the

162

183

UWR-resolution is discussed by comparing it with the efficiency of the I-resolution,
similar comparison can be made with the many-sorted resolution scheme such as that
of Walther’s [Walt83]. Both Walther's scheme and the E-resolution have the prob-

lem of generating useless resolvents as the ones described in Section 8.1.

Formally speaking, the I-resolution differs from the UWR-resolution
only by the following. Let two variables v, and v, satisfy the following condi-
tions: (i) Ran(v,) € Ran(v,) and Ran(v,) € Ran(v,), and (ii)
| IM(Ran (v,)) N IM(Ran(v;))| > 1. Then in the UWR-resolution the variables v,
and v, are unified by a wr-subpair {w/v, , w/v,} where w is a variable satisfying
that Ran(w) is a new predicate with which |IM(Ran(v,) N IM(Ran(v,))]| =1
and Ran(w) € IM(Ran(v;)) N IM(Ran (v,)). Compared to this, in the E-resolution
the variables v, and v, are wunified by a pair of wr-substitution
components {w'/y, ,w'/ v;-} where w'! is a variable satisfying
Ran(w ') € IM(Ran(v,)) N IM(Ran(v,)). The pair of wr-substitution components
{w'fv,, w'[v;} is called a Z-subpair. It is said that {w'fv, ,w'[fv,} is a E-
subpair corresponding to the wr-subpair {w/v, ,w/v;}. For such E-subpair
{w'fv,,w'[v;}, let Ren(w') stand for the unification predicate of
{w'fv; , w'[v;}. Then it is easy to see that for the wr-subpair {w/v, , w/v;} there
are as many corresponding EI-subpairs as | IM(Ran(v,)) N IM(Ran(v,))| whose

unification predicates differ from each other.

Once the notion of E-subpair which corresponds to that of wr-subpair is intro-
duced, the notions IT-substitution, I-unifier, I-unification and I-mgu of the £-

resolution can also be introduced, repectively, in the same way as the notions

164

wr-substitution, wr-unifier, wr-unification and wr-mgu of the UWR-resolution were
introduced. Their formal definitions are omitted to avoid possible redundancy. The
unification algorithm for the E-resolution, namely the Z-unification algorithm, can
also be introduced identically with the WR-unification algorithm except some modif-

ication of Step 8. Step 6 of the T-unification algorithm is:

Step® If |IM(Ran(s)) N IM(Ran(t))| =1, then let o4y = o, {u]o, , wft,)
where w is a variable satisfying Ron(w)= IM (Ran (ve)) N IM (Ran (1)),
Wipr= Wi{wfu, ,w/t;}, and go to Step 7. Otherwise [ie.,
| IM (Ran (v,)) N IM (Ran(t;))| > 1], let 0,4, = oy {w/v, , wft,} where w
i8S a variable satisfying Ren(w)e€ IM (Ran (v;)) N IM(Ran (t,)),

Wi = Wi {w/v; , wf/t; }, and go to Step 7.

Accordingly, the basic properties of the the T-unification algorithm can be justified
with a theorem, namely E-unification theorem, i.e., for any finite nonempty set of
unifiable expressions the C-unification algorithm terminates and for a unifiable set
of expressions a possible outcome of ET-mgu is always ensured. Formal introduction
of the E-unification theorem is omitted to avoid the possible redundancy. The com-
pleteness of the E-resolution, however, is shown indirectly in the following section

where the WR-resolution is compared with the T-resolution in terms of efficiency.

In the rest of this section the E-resolution is discussed in more detail. First, it
is shown, in the form of a lemma, how a wr-mgu and a I-mgu are related to each

other. This lemma is used in the proof of a lemma in the following section.

185

The following notion is first introduced: A finite set 6§ of wr-substitution com-
ponents is called a variable-for-variable substitution if for each wr-substitution com-

ponent vy/vy € 6, both vy and vy are variables.

Lemma 12.1.1

Given two clauses C and D, let N(L& UMnp)t be unifiable where
LCC and MCD,and L and M are noneinpty. If oy and of are, respec-
tively, a wr-mgu and a L-mgu, each of which unifies N(L é- U M7p), then there is

a variable-for-variable substitution ¢ satisfying
(i) foreach vgfvy €6, Ran(vy) € Ran(vy), and

(i) owbd=o0f.

Proof. Let Ey and Eg be the wr-resolvent and the T-resolvent of ¢ and D which
are generated by using oy as a wr-mgu and o4 as a T-mgu, respectively, i.e.,

Ey = (C -L)cow U(D -M)npow ,

Ex =(C-L)cotU(D -M)npos.
It is noticed that once ¢ and D are z-standardized and y-standardized to C ¢,
and D np, respectively, then z,,---,2 and y,, -, yn are all the distinct vari-
ablesin C¢c and Dipp , respectively. Let oy and of be, respectively,

ow ={tifzr, -)z, wifyy, - » Un [Ym },

aﬂk‘_'—'{ul/zl’ .U;;/Zg rul/ylv 'vm/ym}-

t Previously in Section 11.3 N(L ¢ U M1np) has been defined as the set of atomic formulas that
are members, or complements of members, of the set L& U My .

166

If some two-substitution components ¢, /z, yw, [y, Eoy where t, = w, , consti-
tute a wr-subpair {t,/z, , w,/y,}, then there is a E-subpair {u,/z, v,/y,}, where
v,/z,,v,/y, €Eof and u, =v,, which corresponds to the wr-subpair
{t./2, , w,;/y,} . From the way that a wr-subpair and a Z-subpair are defined, the

following relationship holds between {t, [z, , w;/y;} and {u, /2 ,v,/y}:

{t./= , wJ/y)}X= {u, /2, ”)/y;};

where X\ = {4, /t;} and Ren(u,) € Ran(t,). Now let a substitution § be con-
structed in the following way: (i) if {t/z ,w,/y,} Coy is a wr-subpair and
{v,/z, , v, [y} C of is its corresponding E-sub pair, then {u,/t,} is an element of
¢, and (ii) no other wr-substitution components than those identified by (i) are the

elements of 8. Then it follows that
owl = of

and for any substitution component vy/vy €8, Ran (vg) € Ran(vy). Q.E.D.

Now, the Z-resolution operator Ry ") is introduced in a way similar to that for the

UWR-resolution operator Ry () was introduced:

Definition 12.1.1

Given a < 0OA, Ty >, the T-resolution of Ty, denoted by RgTy), is the
set of all clauses consisting of members of Ty and all E-resolvents of all pairs of
members of Tsx. The n® T-resolution of Ty, denoted by R(Ty), is then

defined as follows: R£(Tg)= Tz, andfor n > 0, REH (Tg) = RHRE(Ty). o

167

In the following it is illustrated how Ry (') and Ry ') are carried out for a

given set of L3 clauses. Here the result of Lemma 12.1.1. is also illustrated.

Example 12.1.1

Let the < OA , Ty > of Example 10.1.2 be augmented as follows:

0At (1) DEB, DEC,
) ECB, ECC,
B FED, FGCE,
4 GED, GCE,
(5) HED, HCE,
Tz : (6) P(z™°)U Q=™ y®F)U R(fF (%) y%F),
() - P(z¥),
8) -~ Q=™ (=),
(9) - R(z%,z%0).

(i) Rw (") is performed as follows:

Ry(Ts) = RY(T)U{ Q=™ yZE)U R(fF (2TX),y*F),
P(z*) U R(fF(z%5),1H(2%F)),
P(z®®)u @(z*,2%) },

where two new predicates K and J are defined by Vz (K(z) 5 B(z)n C(z))

and Vz (J(z)S D(z)NE(z)):
Ri(Ts) = Ré(T) U { R(fF (5F), 1 (z%F)), Q (3K 2%7), -+ }.

Here @ (z%K,z%’) is a wr-resolvent of -~ P(yZ¢), P(zZ8)y Q(222,2%/) € R} (Ty) .

t For simplicity, the ordering axioms that are derivable from 0A ,suchas FEB, G C B,
HEB, FSC, GECC and HC C, are omitted in 0OA . This convention is used in the
rest of Part IL

168

(if) Ryl ") is carried out as follows:

Ri(Tr)=R2(TIU{ Q=" y™)UR(fF(zT0),y=F),
Q (=™ ¥y) U R(fF (z5F),y%F),
P(z™F)U R (fF (z7F), /7 (z%F)),
P(z*)uy @ (=™ 2%,
P(zEB) U Q(zm,zzc) ,
P(z*8)u Q(zm,zm)} .

RE(Tg)=RE(TH U { R(S (wF) A (wTF)), Q(wTP,w"F),
Q(wEE’wEF) , Q(wZD’wEG) , Q(wZ:E,wEG) ,
Q(v™ ,u™), Q(w™ W),
R(ff (w=), 1 (w™F)), RS (wEC), 17 (wB¢)),
R(fF(w™), 4 (wBH)), - }.

Now consider the wr-resolvent P(z™)y Q(z%,z%/) e R}(Tyx) and the &-
resolvent P(y*2)u @ (y=8 ,y*)€ RZ(Ty) each of which is obtained by resolving
(6) and (9). The wrresolvent is obtained by using the Wwr-mgu
{FF (z%)[2™ , 2% |27 2% [y*F} | say oy , and the E-resolvent, by using the
L-mgu {fF(z5B)[z=E | 3 ¥F [zTD LTF [EEY say of . Here
{25 [z%P | 2E7 [y} is a wr-subpair in the Wr-mgu oy and
{z™ [2™ , 2% [y*E} is its corresponding L-subpair in the E-mgu of . It follows

that there is a variable-for-variable substitution {zZF 2%/} satisfying
ow {25 |27} = of

where Ran(z™) @ Ren(z%'). The additionally generated Ri(Ts) and RZE(Ty)

will be used later in Example 12.2.1 and in Example 12.2.2.

169

12.2. UWR-Resolution vs Hypothetic Many-Sorted Resolution

In this section the efficiency of UWR-resolution is discussed. The efficiency is
discussed by comparing UWR-resolution with I-resolution in a certain way, i.e., for
a given many-sorted theory < OA , Ty >, by using Ry (") and Ry ") two refu-
tations of the theory are derived. Both refutations are generated by the method
called level-saturation, i.e;, the resolution operators Ry (") and Ry ') are con-
secutively applied to the results of the applicatioh at the previous level until [J is
derived. Each refutation is then the alignment of all the resolvents ordered accord-

ing to their generations.

The way the two resolution schemes are compared here is, in fact, to contrast
the longest possible refutation sequences that can be generated for a given theory by
the two schemes Ry (') and Ry). This approach is meaningful in the sense
that at each level it is not known a priori to the resolution which two clauses should
be best resolved. The worst case may result in generating all the possible resolvents
at each level. The approach adopted here consists of two stages. The first stage is
to show that given a many-sorted theory < OA , Ty > the length of the shortest
(by level) refutation generated by Ry (") is identical with that generated by
Rg(). Then the second stage is to show that the total number of wr-resolvents
generated by Ry (") is smaller or equal to that generated by Ry -) . When the
results from the two stages are combined, the intended comparison of the two resolu-

tion scheme is obtained.

In the following, the first stage is introduced. First, the notion “subsume” is
introduced: Let C, and C, be two clauses that differ only by their variables. Let

{vi, *-- , v} and {u,, ---,u,} be all the distinct variables in C, and in

170

C., respectively, where v, in C; corresponds to u, in C, for 1 <i<n.
When it is convenient, the notation C,|v, is often used to mean the n's
corresponding variable in C,, ie, u,. C, subsumes C, if for any

i€{l, -+ ,n} Ran(y)C Ran(v;).

Lemma 12.2.1

Given a < OA , Tg >, if there is a clause E, € REH (Tx)- RL(Tg), i 20,

then there is a clause E; € Ry*(Tg)- Rjy(Ty) that subsumes E, .

Proof. Poof is by induction on i . For i =0, the proof is trivial since
RW(Tg)= R2(Tg). For i >0, it is assumed that the following holds: For any
clause E, € Rg(Tg)-Rg'(Tx), there is a clause E, € Rj(Ty) - Ry (Ts) which
subsumes E,. The inductive step is then the following: Let
E,€ Rg" (Tg)- RE(Ty5) be a resolvent of two clauses C,, D, € Ry(Tg). Let
the abbreviated notations ¢ and 75, be used for c, and ", respectively [this
way of abbreviating the z(y)-standardization is used in the rest of this section).

Then there are nonempty subsets L, C C,, M, C D, such that
E,=(Cy1-Li)6iosU (D) - My)mos - -+ (1),

where og unifies N(L,6, U M,n). By the induction hypothesis, there are two
clauses C,, D,€ Ry(Ty) which subsume C, and D,, respectively. Let
{z!, - ,z'} and {2, ---,z°} be all the distinct variables in C,¢, and
Cqf;, respectively, and let {y!, - ,yn } and {y2?, ---, 42} be the dis-

tinct variables in D,n, and D,n,, respectively. Let 6. and 6, be

171

be ={zi/zf, -,z },

o ={ylful, " umlya)
Then since C, and D, subsume €, and D,, respectively, it holds that
C.é = Cyé8c and Dn, = Danibp , for any ie{1,---,n},
Ran(z,') © Ran(z,%) andforany j €{1,---,m }, Ran(y}) € Ran(y?) . It also
holds that there are two singleton subsets L, C C, and M, C D, which are sub-

sumed by L, and M,, respectively. It follows that L, = L,£5. and

M & = M685p . Therefore, from (1) it follows that
E,= &Cz = Lo)ebcoz U (D2~ Mo)nbpos - - - (2).
Let 6§ be 6= {z/z? ,---,z}z2, yMy?, -, yu/v.2} . Then it follows that
Ey=((C2- L2)é2U (D2~ Ma)no)éos - - - (3).
It also holds that

N(L1& U Mym) = N(Lyédc U Manabp)
= N((L 26 U Mn.)0) .
Therefore, when N((L,£ U M,n,)é) is unifiable by oy, N(L£, U Mjn,) is unifiable
by éog. Here 6oy is still a T-mgu for N(L,£ U Man,) since § simply replaces
variables for variables and for each v,/v,€8 Ran(v,) € Ran(v,). Now by the
WR-unification theorem, it follows that there is a wr-mgu, say oy |, unifying
N(L26;U Mzn;) . Then between oy and éop, by Lemma 12.1.1, there exist a

variable-for-variable substitution 6 such that
0w0= 502 c s (4)

where for each substitution component vs/vy € 6, Ran(vy) € Ran(vy). Let E, be

the wr-resolvent of C; and D, that is generated by using oy as the Wr-mgu, i.e.,

172

E;=(Cy-Loéow U(Dy- Mooy -~ (5).
Then E; € Ry (Tyx)- Ry(Ty). Finally, the following holds:

E,=((C2-L)U(D2- Mi)n,) b og from (3)
=((C2-L)&U(D2-M)n)owd from (4)
= E. from (5) .

Since for any substitution component vg/vy € 8, Ran(vy) € Ran(vy). So it fol-

lows that there is E; € Ry*(Tg) - Riy(Ts) which subsumes E,. Q.E.D.

Example 12.2.1

Consider Example 12.1.1. Let E, € RZ(Tx)- R2(Tyx) be
Ey=R(f" («™).fM(w™)).

Here E, is a E-resolvent of - Q(z%,f#(z%F))e R&(Ty), say C,, and
QX yE)UR(fF(z™),y*E)e RL(Ty), say D,. There are two clauses
= Q™ f1(z™), Q=T yF)UR(fF (=™)y™) € RH(Ty), say C; and D,,
respectively, which subsume C, and D,, respectively. A wr-resolvent of C, and

D,,say E,,is then
E;=R(ff (:%F),f4(:)).

E, subsumes E,. It can be verified from Example 12.1.1 that

E, € R}(Tg)- R#(Ty).

The following is a corollary to the preceding theorem which assures that the shortest

deduction sequence generating | by Ry (*)is not longer than that by Ry).

173

Corollary 12.2.2

Given a < OA , Ty >, if n is the smallest non-negative integer for which

R%(Tys) contains [J, then Rj(Ty) also contains [].

Proof. Let n be the smallest non-negative integer for which R%(Ts) contains
IJ. Then [] is a resolvent of two clauses, say C,,D,€ RE™*(Tx). Since [] is a
resolvent of C, and D,, the following holds: C; and D, are singletons, and there

is a L-mgu, say og, unifying N(C & U Dmy). It follows that
Ci60sU Doz = []

where C €0y and D nog are singletons whose respective members are comple-
ments. By Lemma 12.2.1, there are two clauses in Rj}(Ty), say C, and D.,
which subsume C, and D,, respectively. Here C, and D, are also singletons. It
can be shown that N(C,& U D,n,) is unifiable in a way similar to the one that
showed N(L26;U M2n;) was unifiable in the proof of Lemma 12.2.1. Let oy bea
wr-mgu unifying N(C,§, U Dgn,). Then Cuéoy and Donoy are singletons

whose respective members are complements. It immediately follows that

Ca2bow U Dongow = [].

Ry(Ts) - Ry (Ty) contains [J. Sodoes R}(Ts). Q.E.D.

Now the result in other direction to the result of Corollary 12.2.2 is derived.
First, a few more notions associated with ‘‘subsume” are introduced. A set of
clauses, denoted by SBSM(CI(vL)) y 1<k < n,issubsumed by C, over Ran(v;)

if for each S € IM(Ran (v;)) there is a clause Cs € SBSM(C,(v;)) satisfying (i) C,

174

subsumes Cs , (ii) Ran(C, |v,) =S, and (iii}) Ran(C, | v,) = Ran(v,), if i £k .
This notion is further generalized as follows. Let v,,---, v, be the variables in
alphabetical order in €, and let {v, , -, v, } C{vi, -, v.}. Let T be the
index set of IM(Ran(v;)) X -+ X IM(Ron(v,)). A set of clauses, denoted by
SBSM(Cl(v,1 , T, v,vk)) , {v,-1 L, v,k} C {v1, -, vn}, 18 subsumed by C, over
Ran(v,-l) , e, Ran(v,k) , if the fol_lowing is satisfied: For each <S,“ , e, S,i > €
IM(Ran (v,))) X - -+ X IM(Ren(v,)), ler, there is a clause
Cs € SBSM(Cy(vi, - -, v,)) satisfying (i) C, subsumes Cs, (ii) for each v, ,
v €{v, v}, Ran(C, |v)=Si, and (iii) for each vpt,
v €{vy, "o, 00} - {v,‘, s, v,k}, Ran(Cy | v,) = Ran(v,) .

In the rest of this section a symbol <> is used to designate that C, <> C,
means C; and C, subsume each other. The following notation is also used: Given
a <0A,Tg>,let A'(0A) stand for the set of all the unary predicate symbols
that were newly defined from the 0* UWR-resolution R(Tyx) to the i* UWR-

resolution Ry (Ty). Then a variable v in a clause C € Ry(Ty) is a d(i,j)-

variable if Ran(v)€ A'(0A)-A7(0A).

Lemma 12.2.3

Given a < OA , Ty >, let there be a clause E, € R (Tg)- Ry(Ty). If
there is no d(i+1,0}-variable in E,, then there is a clause E; € R (T5)- RL(Ty)
such that E, <> E;. If there are some d(i+1,0)-variables, say e,, - , ¢ , in

E,, then there is a SBSM(E(e,, - , &) C RE? (Tg) - RE(Ty) .

Proof. Proof is by induction on . For =0, let a clause

175

E, € Rw(Tg)- Ry(Ts) be a resolvent of two clauses C,, D, € RY(Ty). Then it

follows that for some two singleton subsets L, C €, and M, C D,
E,=(C1-Li)&ow U(D1-My)mow -+ (1),
where oy is a wr-mgu unifying N(L& U My7n,) .

(Case I) If there is no d(1,0}variable in E,, then o, does not contain any
wr-subpairs. Hence oy is also a E-mgu unifying N(L,§, U M,n,). This implies
E, € RZ(Tx)- R2(Tx) since RyY(Ty)=R2(Tg). It trivially holds E, <> E,.
Consequently, by letting E,=E,, there is a E,€ R (Ty)- R2(Tyg) such that

E,<>E,.

(Case 1) If there are k& d(1,0)-variables e,, --- ,¢, in E,, then the wr-
mgu oy in (1) must contain k wr-subpairs since E, € Ry}(Tg)- RW(Ty). Let
{z!,---,z'} and {y!, - -, yl} be all the distinct variables in C.¢ and
Dny, respectively. Let the k wr-subpairs in o, be {eafzcly s edfuly} -,
{ec/zcley » e iy } where {zty , -z} Szt -, 2}, and

{ydl(l) P ydl(t)} Cc {yxl

y ", Un}. Let T, be the index set of
IM(Ran(ey)) X -+ X IM(Ran(e;)). For each {S!, .-, S/} €IM(Ran(ey)) X

++ X IM(Ran(e;)), €T, , let A\ be a substitution of k substitution com-
ponents {vife,, --- ,v{fe;} such that Ran(v/)=S', 1< j <k . Then when
ow unifies N(L§UMn), ow)' also unifies N(L,& U M,n,) since) simply
substitutes variables ¢;, -+ , e by vi, .-, vf, respectively. Here oy)\ is
no longer a wr-mgu but a I-mgu since each wr-subpair {e¢,/z.},), e, lvt) }

1<j <k,in oy isreplaced by { v//z.};),v//vl;) } in oy) which is now a

L-subpair. Let E} be

176

E;, =(Cy-L)&ow N U(D,- M)mow\' .

It is clear that E; € RE(Ty)- R2(Ty) since RY(Ty) = R2(Ty) and o)
isa Z-mgu of C,,D,€Ry(Tg). The following relationship holds between
E) and E,:
E; = ((Cy- L)&iow U (D, - M)mow)\
= Elxl .

It follows that E, subsumes Ej} since for any substitution component vefvy €N
it holds that Ran(vz) G Ran{vy). Finally, the following is concluded: for each
{S1, -+, S{}€IM(Ran(e,)) X -+ X IM(Ran(e;)), ! €T, , there is a clause

E; € R} (Tg)-R2(Ty) such that (i) E, subsumes E. , (ii) Ran(E;|e,)=S!,

1<j <k, and (iii) for any variable » in E, other than e,, --- , ¢,
Ran(E} | v) = Ran(v). Therefore, it follows that there is a
SBSM(Ey(ey, -+, e&)) S RE(Tg)-R2(Ty).

It is now assumed that for i > 0, the induction hypothesis holds. In the rest

of the proof, the inductive step is shown.

Let E, € Ry (T5)- RY(Tx) be a resolvent of two clauses C,, D, € Ry (Ty).
There are only three possible cases: (i) there is no d(i,0)-variable in either C , or
D,, (ii) some d(i,0)variables are in either C, or D,, and (iii) some d(i 0k
variables are in both C, and D,. The inducti{'e step for case (i) is similar to what
was shown in the induction basis. The inductive step for case (iii) includes that for
case (ii). Therefore in the rest of the proof it is only shown that the inductive step

holds for case (iii).

First, some preliminary steps are given which are needed in the rest of the

proof. From the fact that E, is a wr-resolvent of ¢, and D,,let E, be

177

E,=(Cy-L)ow U(Dy-Mnoy, -+ (2)

where L, C C, and M, C D,, L, and M, are singletons, and ¢, isa Wr-mgu
unifying N(L,§ U Myn). Herelet z!, --- , z! and gy}, --- , Ym be all the
distinct variables in €., and D,y respectively. Let z,: ,t e, z,cl ,
{il,”',ic}g_{l,"',n},andy,: ,"‘,y.‘l,{il,"',id}Q{l,"',m},bethe
d(i,0)variablesin C,¢ and D,n,, respectively. By the inductive hypothesis, there
are SBSM(Ciéy(z,] , - ,z!)), SBSM (D ym(y) , -+, v') S RE(Ty).

By definition of SBSM(C\&\(z,; , - -+, z,!)), it holds that for each clause, say

ac , in SBSM(C\é(z}, -+, z,!')) there is a substitution, say ., such that

ac = C§,6c . Hencelet A be a set of substitutions such as
Ac = (bc : Crbibe € SBSM (Cii(=z} , -+, 51))} .

An observation is made on A; as follows: Let T'c be the index
set of IM(Ran(z})) X --- X IM(Ran (z!)). By definition of
SBSM(Cy&(=) ,-- -, z')), it follows that for each leres, if
<S, "+ ,S8 >€IM(Ron (z1)) X -+ X IM(Ran (2!)), then there is the
corresponding substitution 6: € Ac such that C,¢,6% € SBSM (Ci&ilz) -+, 3)))
and foreach k, i, <k <i,, Ron(C.68L | 2Y) = S .

Similarly, let Ap be defined from SBSM (Dum(y) , - ,u})) asfollows:

d
Ap = {8p : Dymbp € SBSM(Dym(y} , -+, u}))}.

An observation is made on A, as follows: Let I'p be the index

set of IM(Ran(y!)) X -+ X IM(Ron(y})). By definition of

178

SBSM(Dm;(y.i e, yul), it follows that for each ler,, if
<S,’1 .ty S\ > € IM(Ren) I SR IM(Ran(y,')), then there is the
corresponding substitution 65 € Ap such that D 5,85 € SBSM(D v L, ut)

and for each k , i, <k <i;, Ran(Dm6) | yt) = S .

(Case I) Let there be no d(i+1,0}variable in E,. Then oy does not contain
any wr-subpair. The pair of clauses which can be resolved among
SBSM(Ci&i(zi} -+, 2)!)) X SBSM(Dymy(y} , -+, w})) is first identified. It is
done by constructing a set of substitution pairs, denoted by RESOL!, which is a
subset of Ac X Ap . RESOL' is constructed from A; X Ap and the wr-mgu

ow of (2) by the following rules:

(i) A substitution pair <6c,8p> € Ac X Ap is a member of RESOL! if for
each wr-substitution component ¢/v € oy it satisfies the condition that
(a) iftisin Ci& and v isin D,n,,then Ran(t5c) Ran(vép), or
(b) if ¢t isin Dy and v isin C¢ ,then Ran(t8p) G Ran(véc).

(ii) No substitution pairs other than those identified by (i) are in RESOL® .

It follows that RESOL! is not empty. |

[The nonemptiness of RESOL! can be shown as follows: Without loss of generality,
let ¢t bein Ci§ and v bein D,;n . Suppose # is used to indicate that k°
means k is either a d(i,0)-variable itself or a term containing d(i,0)-variable(s) in
it. There are four kinds of substitution components in ow : ¢ fv, t*[v, t/v*
and ¢’/v’ . In order to prove the nonemptiness of RESOL!, it suffices to show

that for each kind of substitution components the following holds:

179

(@) ¢ /v: Since Ren(téc)=Ran(t) and Ran(vép)= Ran(v), for any

<6¢c ,6p> €Ac X Ap , Ran(té:) C Ran(vép) .

(b) t*/v:1If t* is a nonvariable term, then for any <éc,86,> € Ac X A,
Ran(t’6c) € Ran(vép) since Ran(t’'6c) = Ran(t*) and
Ran(vép)=Ran(v). If ¢° itself is a d(i,0)variable, then for any
S € IM(Ran(t*)), S @ Ran(v) since S © Ren(t’) and Ran(t’) € Ran(v).

() t /v’ :Since ¢ can not be identical with v*, Ran(t) @ Ran(v’). For any
6c €EAc, Ran(téc)= Ren(t). Since v’ is a d(i,0)variable, there is a

S € IM(Ran(v°)) such that Ren(t) € S G Ran(v*).

(d) ¢°/v® :If ¢* is a nonvariable term, then it is an identical case with (c) since
Ron(t’6c) = Ron(t’) for any 6c € Ac . If ¢° itself is a d(i,0)variable,
there are two possible cases: (i) if ¢’ = v*, then for any Sc € IM(Ran (t*))
there is a Sp € IM(Ran(v*)) “such that Sc = Sp, , or; (ii) if ¢* 3£ v* for any
Sc € IM(Ran(t*)) and for any Sp € IM(Ran(v*)), Sc G Sp .]

From the way RESOL' is constructed, it follows that for each

<bc ,8p> € RESOL' and for the two clauses L,t, My of (2)

N (L &6 U Mnyép) is unifiable, which further implies that

C,66c € SBSM(lel(z,: , e, z,»“) and Dnép € SBSM(D 1'71(%: , T, y,“)

are resolvable.

Let <éc,8p> € RESOL! (notice that there is at least one pair of substitu-
tions in RESOL' since RESOL' is mot empty). €&, L:&, Dyny and Mn, of
(2) are considered. It is shown how the two clauses C,£,6c and D6, which are
derived by using the <éc, 6D-> € RESOL' are resolved. First, a substitution ¢

that unifies N(L,&6c UM mép) is constructed from oy of (2) and the

180

substitution pair <& , 6p > in the following way: For each substitution component
tfv €oy ,())if t isin C,§ and v isin D, ,then té-/vép €6, or (ii) if ¢

isin Dyn, and v isin C,§, then t68p/véc €8, and (iii) no other substitution
components other than those identified by (i) or (ii) are the elements of 4. Without
loss of generality, let ¢ bein C,£, andlet v bein D,;n . Then accordingly there
are téc in C§6c and vép in Dmép which correspond to ¢ in C.§ and v

in D,n,, respectively. If ¢t and .v are unified by oy ,ie., toy = voy , then it
follows that t¢é; and vép, are unified by 6 since t6-0=1t6; and véy,6=
vép{técfvép}=1téc. Therefore, it follows that when oy unifies
N(L,& U M), 6 unifiess N(L&6c UM n6p). Furthermore since the construc-
tion of 6 from oy does not introduce any additional wr-subpair into 4, when
ow does not contain any wr-subpair, 6 does not contain any wr-subpair either.
Therefore 6 is a E-mgu as well as a wr-mgu. To indicate that' 0 is now a I-mgu,
let the notation oy be used for 6. Let- E, be the E-resolvent of C,£6. and

D n6p that is generated by using oy as the E-mgu, i.e.,
E;=(Cy-L)&dcosU (D, - Mymbpos.

Then from that Ciéibc € SBSM(Cr&y(z) , -+ z')) C R (Ty) and
Dymbp € SBSM(Dym(y,} , ="+ » v) € R:(Ty), it follows that
E,€ REH (T -Re(Ty).

Now E, <> E, is shown. The variables in E, of (2) are considered. Since
there is no d (i +1,0)}variable in E, there is no d(i,0)-variable in E,. Therefore, no
d (i OFvariable is in (C;-L,)§;ow . This means that although €, may contain

d (i ,0)-variables they are eliminated in (C, - L,)§,0 . Consequently, for any vari-

able, say v, In (Ci-Ly)&ow, it should hold that either

181

06{311,"',2,.1}—{2.:,"',2."1} or UE{yll,"',yml}-{y.:,"‘,y.,l}-
Each variable v in (C,-L,)§oy is compared with its corresponding variable in
(Cy-Ly)&dcos, e, (Cy-Ly)bcos]| v, in the following two cases:

() When wve{z}, -,z -{z!, -+, 21}, (Ci-L)&scos|v =vs.
In this case, véc is a variable in C,£6;. By definition of
SBSM (C1é(z} , -+ ,z)), it holds that Ran(v§c) = Ran(v) [by definition,

for a clause C, € SBSM(Cy(vy, --* ,v)), if u is a variable in €, and

u ¢ {vy, ~--v},then Ran(u)= Ron(C, |u)].
(i) When v efy!, - ,um}-{u), " ,u}}, (Ci-L)édcog|v =vécop.
In this case, vécor is a variable in Dymép . By definition of

SBSM (D my(y,; , =+ , %)), it holds that Ren(véco5) = Ran(v).

Therefore, it follows that (C, - L)§oy <> (Cy - L)€6c0os. Similarly, it can also
be shown that (D;- M, 0y ;> (Dy-M,)éépos. It is concluded that
E\<>E,.

(Case II) Let there be d(i+1,0)-variables e,, - ,e; in E;. Among these
variables some are d(i+1,i)variables and the rest are d(i,0)variables. It is
first identified the pairs of clauses which can be resolved among
SBSM(Cr&y(z,} , -+, 2,')) X SBSM (D (sl . -+, 5)). Itis done by construct-
ing a set of substitution pairs, denoted by RESOL?, which is a subset of
Ac X Ap . RESOL? is constructed from Ac X Ap and the wr-mgu oy of (2)
by the following rules:

(i) A substitution pair <é;,8> € A¢c X Ap is a member of RESOL? if for

each wr-substitution component t/v € oy it satisfies the condition that

182

(a) if t/v € oy is not a substitution component constituting a wr-subpair in
ow , then either Ran{té:) € Ran{vép) if ¢ isin C.¢ and v is in
Dym or Ran(tép) € Ran(véc) if ¢t isin Dyn and v isin C,¢, or

(b) if {tfvy,tfvy} is a wr-subpair in oy, then either
Ran(v,8¢c) © Ran{v,dp) if v, is in Cy§ and v, is in Dy or

RGR(UI5D)§ Ran(vzﬁc) if vy is in Dl€1 and Vo is in Cl£l‘

(i) No other substitution components other than those identified by (i) are

in RESOLZ.
It follows that RESOL? is not empty.

[The nonemptiness of RESOL? can be showr in a similar way as the nonemptiness
of RESOL! was shown. This time, however, in addition to the four kinds of substi-
tution components shown previously in the proof of nonemptiness of RESOL?, cases
for the following four kinds of wr-subpairs are also needed to be considered:
{t Jor,t Joa}, {8 Jor 8 Jogd, {t Joy, ¢ [v3},and {t [of,t [v3}.]

From the way RESOL? is constructed, it follows that for each
<éc ,8 > € RESOL®* and for the two clauses L, and M of (2)
N(L,&6c U Mmép) is unifiable, which further implies that
Crédc € SBSM(Cr&u(=) , -+, 2})) and Dymsy € SBSM(Dymy(y} ,- -+, 5})) are

resolvable.

Now let T, be the index set of IM(Ran(e,)) X --- X IM(Ran(e;)). For
each <Si, -, 8> €IM(Ran(e))) X -+ X IM(Ran(e;)), | €T, ,let N bea
substitution of & substitution components {vife,, --- ,v//e,} such that

Ron(v))=5/, 1< j <k . Then oy)\ also unifies N(L,& U M,n,). Here E\\' is

183

the resolvent of C,¢, and Dn, that is generated by using oy \' as the mgu, i.e.,
EN = ((Cy-Ly)&ow U(Dy-Mmay N -+ (3).

In the rest of the proof, it is shown that for each X', I €T, , a clause, say E} ,

can be derived such that E} € RE? (Ty) - RL(Ty) and EN <> EL .

First, it is shown how E} is derived. Let ¢, ", ¢, bethe d(i,0)variables
among ey, -, e . Let v, w0, {of, -, 0l } S (v, -, 0}, be the
variables such that v,ﬁ / e € M, 1<ji<h. Then each element of
{er, ~--,ea)-{e,, ~--,e} isa d(i+l,i)variable. Let RESOL® be a subset
of RESOL? such that if <&c,8,> € RESOL®, then <& ,ép,> satisfies the fol-
lowing condition: (i) if €, » 1<j<h, is in C,&, then
Ran (C£&6¢ | e,))=Ran(v,:), or (ii) if e, 1<j<h, is in Dy, then
Ran (D m6p | e,}) = Ran(v,j). The preceding conditions are used later in showing
EN <> E} .

Let <éc,6p> € RESOL®. Now a substitution 6 is constructed from o, of
(2), M of (3) and the pair of substitutions <& , 6, > in the following way:

(i) If t/v € ow is not a substitution component constituting a wr-subpair in oy,

(a) if ¢t isin C,§ and v isin Dy, then téc/vép €6,

(b) if ¢t isin Dy and v isin C,¢,then t6p/véc €9.

(i) If {t/v,,t/vs} is a wr-subpair in oy and both or either of v, and v, is

a d(i,0)variable,

(a) if v, isin C,§ and v, is in Dy, then either vibe[vabp €60 if

Ran (v,6c) © Ran(vybp) or vyép [vibc €0 if Ran(vydp) G Ran(véc),

184

(b) if v, isin Dy and v, is in C¢, then either v.6,/v,6. €68 if
Ran(v,6p) € Ran(vyéc) or vyéc[v,i8p €8 if Ran(vyde) € Ran(v,6p) .
(iii) If {t/v,, t/vs} is a wr-subpairin oy and neither of v, and v, isa d(i,0)
variable [notice that ¢ is a d(i+1, }variable], then {t'fv,,t'/v,} C ¢
where (' is a variable such that if v/t € \' where v is some variable then
Ran(t')= Ran(v).
(iv) No other substitution component other than those identified by (i), (ii) or (iii)

are elements of 4.

In a similar way as was shown in Case I of the inductive step, it can also be shown
that ¢ unifies N(L66c UM n8p) and 0 is a E-mgu. Let the notation oy be
used for 6 to indicate that ¢ is now a I-mgu. Let E, be the resolvent of

Ci&6c and D nép that is generated by using oy as the T-mgu, i.e.,

E; =(C,- L) écos;U (Dy - My épos .
Then from that Cibibc € SBSM(Cr&y(zi} , -+ ,2))) € R:(Ty). and
D mép € SBSM (D 1’11(1/.: » 0) € RE(Ty), it follows that
E; € REM (Ts)- R:(Ty).

Now it is shown that E\ <> E, holds. (C,-L,)&éc0os and
(C1-L)&ow)\' are considered. It is noticed that (C,-L,)éow subsumes
(C1-Ly)&ow)' since for each vfe €\, Ran(v) G Ran(c). There are only three
kinds variables in (C,-L,)¢oy : d(i,0)variables, d(i+1,i)-variables, and non-

d (i +1,0)-variables. For each kind of these variables the following holds:

(i) For any d(i,0)-variable e, €{e, , --- ,¢},if ¢ isin (Cy-L,)§ 0w , then,

185

from the way that RESOL® is constructed, it follows that

Ran((Cy- L1)éiécog| &) = Ran(v))= Ran((C1-Ly)&ow)\ |e,) where
! oL . . ! i
v, €{v/ , , vy } is the variable such that v, [e, €N .
(i) For each d(i+1,i)-variable e, € {e,, --- , e} - {e,, "= .6}, if ¢ isin

(Ci-Ly)61ow , then from the way that oy (i.e., 8)is constructed [see (iii) in

the constructing stage of 6], it follows that Ran((C,- L)) éc05] e,) =

Ran (v}) = Ran((Cy - L)ww) | e,) where o) €{u} -+, u!} is the vari-

able such that v,i/e,»‘ €N .
(i) For each non-d(i+1,0)variable, say wu, if u is in (C,-L,)&0oy,
then Ran((C,-L,)6cos|u)= Ran(u)= Ran((C,-L,)&op)\ |u) since

Ci€i6c € SBSM(Cy(z! , -+ ,2,)) and ul =u .

Therefore (C, - L,)&i6cog <> (Cy - Ly)éiow) . Similar arguments can be applied
to (D,-M)&bpog and (Dy- M)éow) to conclude that (D, - M,)¢6p 05
<> (D,- M)&ow) . Consequently, it follows that E\' <> E} . This conclu-
sion is sufficient enough to say that E;\' subsumes E!, because for each
v/fe €X', Ran(v) G Ren(e). Since the preceding argument has been made for
each X, le€r,, the following is finally concluded: for each
<Si, - ,8>€IM(Ran(e))) X --- X IM(Reon(e:)), | €T, , there is a clause
E{") € REP(Tg)-RE(Ty) such that (i) E, subsumes EL, (i)
Ran(E; | e,) =S}, 1< h <k, and (iii) for any variable v in E, other than
ey, " ,e, Ran(Ej|v)= Ran(v). Hence it follows that there is a

SBSM(E\(ey, -~ , &)) S RE" (Tg)-Ry(Tg). QED.

186

Example 12.2.2

Consider Example 12.1.1. The case when there is no d(i +1,0}-variable in E,
is considered. Let E, be R(fF(z%F)/(:%f))€ RZ(Tg) - R} (Tg). No d(2,0)
variable is in E,. Let E, be a wr-resolvent of - Q(z™,f#(z%f)) € R}(Ty) and
Q(z™ y™E)U R(fF (z™),yTF) € R}(Ty) . Let the two resolvents be ¢, and D,,
respectively. The‘ variable z%¥ in D, is a d(1,0-variable. There is a
SBSM (D(z%X)) C R (Tyx) such as
SBSM(D (=™)) = {@ (™) U R (fF (2),4™*),
Q™ yF)UR(F (=) y™)} .
Two clauses = @Q(z%,fF(2%F)), Q(z%E,y*E)UR(f"(2¥F),y=F) € RL(Ty) are
considered. Let these two clauses be C, and D,, respectively. It is noticed that

D, € SBSM(D,(z*X)). A E-resolvent,say E,,of C, and D, is
E;=R(fM (w™F),f(v™)).
It is clear that E,€ RE(Tg)- RL(Ty) and E, <> E,.
Now the case when there are some d(i+1,0)-variables in E, is considered. Let
E, be Q(z™,2%')€ R}(Tg)- R}(Ty5). The two variables 25X, z%/ in E, are
d(2,0)-variables. Let E, be a wr-resolvent of two clauses = P(zZC),
P(zZB)u Q(2%8,2%7) € R}(Ty5) . Let these two clauses be C, and D,, respec-

tively. The variable zZ/ in D, is a d(1,0)variable. It is seen that there is a
SBSM (D (z%)) C R (Ty) such as
SBSM (D (z%')) = { P(2®B) U Q (2%8 ,z%F),

P(zm)U Q(zEB,z“:G),
P(z™)U Q (™ ,27H) } .

187

Let C, be -P(z5)eRi(Tg. Let D}, D2, and D} be
P(z®)U Q™ ,2™), P(z™)UQ(:™,2%°), P(z™*)U Q(s™,:¥) e RE(Ty),
respectively. It is noticed that D) € SBSM(D,(z%')), 1 <i <3. A Z-resolvent is
derived from C, and each D}, 1< i <3, as follows: if the resolution operator
Rg(") is used,

Re(Ca, Dz) = {Q(v™ ,u™), Q(v™ w™)},

RyC;, DF) ={Q(v™ ,w™®), Q(v™ w™)},
RKC;, D7) ={Q(v™ ,w™), Q(w™ w™)}.

Let E;= U RHC,,D3). It is clear that E, is a SBSM(E,(z=X,z%’)) and
3

11 <

E, CRE(Tg)-RE(Ty).

A corollary follows to Lemma 12.2.3 which assures that the length of the shortest

deduction sequence for Ry(‘) is not longer than that of Ry ().

Corollary 12.2.4

Given a < OA , Ty >, if n is the smallest non-negative integer for which

Ry (Tx) contains [J, then RE(Ty) also contains [J.

Proof. Let n be the smallest non-negative integer for which Rj}(Ts) contains
[J. Then [J is a resolvent of two clauses in R} (Tyg), say C,,D,. There are
three possible cases: (i) there is no d(n-1,0)}-variable in either ¢, or D,, (ii) some
d(n-1,0)-variables are in either C, or D,, and (iii) some d(n-1,0}-variables are in

both €, and D,. Again only the most general case is considered: case (iii). Since

188

I is a resolvent of €, and D,, the foilowing hoids: €, and D, are singletons

and there is a wr-mgu, say oy , unifying N(C,& U D,n,). Then it follows that
Ciéiow UDmoyw =[],

where C oy and Dnoy are singletons whose respective members

are complements.

Since [J does not have any d(n,0)-variables in it, the proof here is similar to

the proof of Lemma 12.2.3 which was shown for the case when there is no d(n,0)

variable in E,. Let z! ,---,z' and y! ,---,y} be the d(n-1,0)variables in
C, and D,, respectively. By Lemma 12.2.3, there are SBSM(C,(z} , - -, 7)),
SBSM(Dy(yy , -, yn)) CR2(Ty). Let Ac and Ap be defined in the same

way as Ac and Ap, was defined in the proof of Lemma 12.2.3. Let
<béc,6p>€Ac X Ap . Cy& and D,n subsume C,£6; and D,y ép , respec-
tively. As was shown in the proof of Lem;na 12.2.3, it can be shown that there is a
£-mgu, say oy, unifying N(C,&6c UDnép). From the fact that C,¢, and
Dn, subsume C,§8c and D,nép , respectively, it follows that C,66. and
Dmép must be singletons. From the facts that C,66c and Dn8, are single-

tons and that oy unifies N(C,£6¢c U Dyn,6p), it immediately follows that
Ci&ibcog U D mbpos = [].

R%(Tx)-R:'(T5) contains [J. Sodoes RE(Ts). Q.E.D.

From Corollary 12.2.2 and Corollary 12.2.4, the following is concluded:

189

Theorem 12.2.5

Given < OA ,Tg>, if n is the smallest non-negative integer for which
R¥(Tz) contains [J and m is the smallest non-negative integer for which

RZ(Ty) contains [],then n =m .

Proof. The theorem immediately follows from Corollary 12.2.2 and Corollary

12.24. Q.E.D.

The preceding result is the conclusion of the firsts stage, i.e., given a many-sorted
theory < OA , Ty > the length of the shortest refutation generated by Ry(") is
identical with that generated by Rg(). The preceding result is illustrated by an

example at the end of this section.

The second stage of the comparison of Ry () and Rys{ ") is now given. First
it is shown that, given a many-sorted theory < 0A , Ty >, the number of wr-
resolutions generated by Ry (') at each level is smaller or equal to that generated

by Ry ') at the same level.

emma 12.2.6

Givena < OA , Ty >, foreach i >0,

| RWH(T) - RW(Ts)| < |REM (T - RE(TY)| -

Proof. This result is an immediate consequence of Lemma 12.2.3. For each

i 20, let E, be a clause in Rj*(Ty)- Ry(Ts). Let there be no d (i +1,0)

190

variable in E,. By Lemma 12.2.3, there is a clause E,€ R (Tg)- RL(Tyx) such
that E, <> E,. Let there be some d(i+1,0)}variables ¢,, --- ,¢, in E,.
By Lemma 12.2.3, there is a SBSM(E(e,, - , &)) C RE™ (Tg)- R5(Ty). It fol-

lows that
| SBSM(Exfer, -+, ee)| € |IM(Ran(e))| X -+ X |IM(Ron(er)].

Since |IM(Ran(e,))] >1, 1<i <k, |SBSM(E\e,, --- ,e))] >1. Since
for each FE,€Ry*(Tg)-Ry(Tg) there is either a corresponding clause
E, € REM(Tg)- RE(Tyx) such that E, <> E, or a corresponding set of clauses

SBSM(E\(ey, --* , &) C REM(Tg) - RE(Ty), it holds that
| R (Ts) - Riy(Ts)| < |REP (T -RE(TY)] .

Q.E.D.
The overall efficiency issue is concluded by-the following theorem:

Theorem 12.2.7

Given < OA ,Tg>, if n is the smallest non-negative integer for which

R%(Tz) and R%(Tyx) both contain [J, then |RF(Tg)| < |RE(Ty)] -

Proof. This result immediately follows from Lemma 12.2.6. Q.E.D.

The preceding theorem indicates that Ry () is more efficient than Ry(). The

result of Theorem 12.2.7 is illustrated in the following example.

191

Example 12.2.3

Consider the following many-sorted theory < 04 , Ts > :

OA: (01) DEB, DG C,
(02) EGB, ECC,
(3 FECD, FCE,
(04 GECD, GCE,
(05) HGD, HCE,
(06) ICE,

Tg: (07) P(E)U Q™ ,z®)UR(F(2™)2%F)u W(z™E),
(0.8) = P(z%°),
(09) - @(z¥,47(z)),
(0.10) - R (z%f z%P),
(0.11) -~ w(z¥).

Here a pair of numbers (i . ;) is used to identify each clause. Each clause pre-
ceded by (i .j) is the ;™ clause at the i resolution operation. For example,
for i =0, RY(Tg) = {(0.7),---,(0.11)} . Same notation is also used to identify
the clauses for the I-resolution Ry *),ie., R2(Tg) = {(0.7), ---,(0.11)}. It
is shown which of Ry (") and Ry ') is more efficient by generating Rj}(Ts) and
R%(Ty) each of which contains [J. When the members of Rj(Ty) and R%(Ty)
are appropriately aligned, they vare two refutations, one generated by Ry (") and
the other generated by Ry ‘), respectively. Both refutations are so lengthy that

their complete sequencies are shown in Appendix C.

The results obtained from the two refutations are summarized in the following

table that shows the numbers of resolvents generated at each level:

192

Comparison of Ry (") and Rg(")

No. of Resolvents Generated
Leve:
Ry () Re(")

0 5 5

1 4 7

2 12 29

3 12 24

4 4 5
Total 37 70

The following observations are made from the table: first, in both refutations, []
turns up at the same level, i.e., at level 4 (cf. Theorem 12.2.5); second, at each
level i , 0< ¢ <4, |RM(Tg)-Ry(Ts)| < |REM(Tg)- RE(Ty)| (cf. Theorem
12.2.8), and; third |R#(Tg)| < |RA(Tg)| (cf. Theorem 12.2.7). More details
about the refutations can be found in Appendix C; for example, what unary predi-
cate symbols are dynamically defined in the refutation by Ry (') and which I-

resolvents are indeed useless.

12.3. Conclusions and Future Work

First, a problem was identified that might occur in the currently known many-
sorted resolution, such as the one reported by Walther. This problem can be avoided
if new sorts are introduced while the resolution is being carried out. However, doing
so is not possible if the theory to be refuted is expressed in an ordinary many-sorted
language and the language is not to be revised along the way refutation is carried

out.

193

To alleviate such a situation, the language called one-sorted language with
aggregate variables (L ¢), which is obtained by embedding aggregate variables in a
one-sorted language, was proposed. A many-sorted theory was then expressed in Ly
and a new approach, called UWR-resolution, was presented. In this resolution new
sorts are dynamically introduced as needed using the aggregate variables. The com-
pleteness of this resolution was shown and the efficiency of the resolution

was discussed.

The preceding approach that has been shown throughout Part II is not the only
way of embodying the idea of unifying a pair of variables satisfying a certain condi-
tion over the weakest range. Alternative approaches are available. Two alternative

approaches are discussed in Appendix D.

There are two ways of extending the work discussed so far. One way is to
study what extension should be made if the theory to be refuted by the UWR-
resolution is expressed in the language LE which is obtained by including the
“equality symbol” in Ly . In this case, it is expected that an inference rule, what is
often called *“‘paramodulation”, must be additionally introduced. The other way is
to study the effect of combining with the UWR-resolution various control strategies
used in a one-sorted resolution. Theée strategies include those used in the one-sorted
resolution suéh as lock resolution, semantic resolution, linear resolution, and unit

resolution.

CHAPTER XII

CONCLUSIONS

The implications resulting from the two applications, one in Part I and the
other in Part I, are two fold: extending the first-order predicate calculi by embed-
ding aggregate variables in their languages is theoretically sound and.the extended

calculi are practically useful. These two implications are summarized in this chapter.

First, the theoretic soundness of the extended calculi is summarized. The two
languages for the first-order predicate calculi, a one-sorted language and a many-
sorted language, were extended by embedding a new type of syntactic object, called

aggregate variables. The aggregate variables are syntactically ordinary sort vari-
ables, but semantically they are variables whose ranges are restricted to unary rela-
tions instead of sorts. Therefore, whenever aggregate variables are introduced, the
sort structure determined a priori remains intact, although the system itself is aug-
mented by new unary relations that will be the aggregate variables range of interpre-
tation, which is the process known as expansion by definitions (e.g., [Shoe87]). This
property of the extended predicate calculus is called E-eztensibility. The E-
extensibility of Ly and the I-extensibility of L} were shown in the form of
theorems. These I-extensibilities of the extended calculi assure that one of the
problems of an ordinary many-sorted language, namely, the inflexible usage of sort

variables (e.g., [Cohn83]), can now be overcome.

194

195

In the rest, the practical usability of the extended calculi is discussed. The -
extensibilities of the extended calculi implied the flexible usage of aggregate variables
(coﬁtrasted to the inflexibility of the ordinary sort variables) which led to two appli-
cations, one in the distributed database design area and the other in the automatic
theorem proving area. Based on these two applications, the practical usability of the

extended calculi can be generalized.

Before such generalization is made, the svigniﬁcance of the extended calculi in
each application is reviewed. The significance of Ly in the KBDDBS design is given
first. The significance of Ly in the KBDDBS is twofold: (i) Ly provides more com-
pact expressive power than does L, and, therefore, (ii) to a certain extent, it
became possible to develop a simple syntactic matching process as the inference pro-
cedure involving specific formulas in Ly . The compact expressive power of Ly over
L, was due to the fact that Ly permitted the introduction of the aggregate vari-
able whose ranges were restricted to subsets of sort domains, something that could
not be done in L, . This compact expressive power of Ls allowed an easy way of
endowing dual semanticst to the formulas of Lz a la [Kowa74], which otherwise
might not have been possible. The knowledge about the data was able to be
expressed in a special form called thé T-Horn formula, queries were expressed in the
T-normal form, and a syntactic matching process was able to be developed as the
inference procedure with which the knowledge of the I-Horn form was applied to

the user queries in L-normal form in an inferencing manner.

t In [Mylo81] Mylopoulos mentions ““An interesting departure from logical representation schemes
has been proposed by Kowalski [Kowa74] who argues in favor of a dual semantice for logical formulas of
the form B,NB,N---N B, — A. The first is the traditional Tarskian semantics. The second is a
procedural semantics which interprets the formula as “If you want to establish A, try to establish B,
and B,and --- and B,” ".

196

Now the significance of L in the UWR-resolution is discussed. The signifi-
cance of Ly in the UWR-resolution is that L3 allows the introduction of the vari-
ables ranging over the intersection of two specific sorts determined previously in the
middle of refutation. Intrcducing variables over such a sort could also have been
done even if the theory to be refuted is expressed in L, , since all the likely-to-be-
used sorts can be determined before refutation begins, so the sort structure of the
theory can be modified to include the all the likely-to-be-used sorts. The problem
here was that unnecessary additionai axioms for the theory must be generated for no
usage. This problem will not be encountered if a variable ranging over a new sort is

dynamically introduced using aggregate variables.

Ba.seci on these two applications, the practical usabilities of the extended calculi
can be generalized to a certain extent. The following situation is considered: (i) a
system involving more than one category of objects is axiomatized, (ii) a need arises
to introduce a variable ranging over a sort that does not exist in the sort structure
determined by the categories of the objects, and (iii) it is not desired to change the
sort structure determined a priori. In this situation, the system can be axiomatized
based on the proposed extended calculi; variables ranging over new sorts can be

introduced as needed.

APPENDICES

197

198

APPENDIX A

A Relational Database Example

An Auto Corporation Database

DIVISIONS

div# | div_name head
01AP | Buick Patrick
01HQ | Finance Joyol
O01PP | Elextra Shin
02AP | Pontiac Lee

02PP | Body Rieger
03PP | Engina Meltzer
O3PP | Trans Frege

04AP | Frantana | Frege
05AP | Omnus Gelperin

DEALERS
d+# address d_type
01A | Ann Arbor 51
03A | Dearborn 30
07A | Flint 50
26M | Cleveland 20
33B | Cleveland 30
48B | Rockford 31
55L | Flint 51
65B | Detroit 20
66L | Niles 23
70A | Lansing 70

169

ITEMS
item# i_name i_type
A01 ink stationery
A02 note pad stationery
B47 Eland bus
C05 blue 5 paint
Co6 white 7 paint
N11 square 11” nut
P02 distributer | engine part
P03 radiator engine part
S01 micro proc. | elect. part
S02 battery elect. part
Vo1 Astre sedan
Vo3 Camaro sedan
W09 | Cabriolet van
X717 iron 77 plate
X389 iron 9” plate
SALES

div# | d# | item#

0IAP | 01A | VOl

O1AP | 07A | W09

O1PP | 55L S01

01PP | 07A P02

02AP | 01A B47

02PP | 03A P02

03PP | 01A P03

03PP | 03A S02

04AP | 01A Vo3

05AP | 5L Vo3

05PP | S5L S02

200
APPENDIX B

An Intermediate L{-Version of the Herbrand Thecrem

An intermediate L g -version of the Herbrand theorem is derived. In [KrKr67),
the following form of the Herbrand theorem is given as an exercise along with its

solution.

3. Refinement of the Uniformity Theorem (for predicate calculus with several
types of variables).

a) Show that if Iz, --- Jz, A , where A is quantifier free, is a theorem
then there is a sequence (¢t{), -+ ,£0) (1<i < p) of n-tuples of terms
of the language of A such that A, U - UA, is a theorem, where A,

is obtained by replacing z, in 4 by ¢).

In the preceding statements the following notions are used: Let L(A) be the
language of At with & types (or sorts in this context) of objects. Then there are
k infinite disjoint sets V!, --- | V! where the elements of V' ,1<i <k, are
called variables of type i of L(A). Then each variable z; ,1< j < n, belongs
to some V', 1<i <k. Let Term be the set of terms of L(A). Term is
divided _into k disjoint sets Term,, --- , Term; . Then each term t,(‘)

(1<i<p,1<j<n) belongstosome Term ,1 <! < k.

This theorem only states the necessary part of the condition. If the sufficient
part of the condition is also combined, the preceding exercise can be rephrased in the

following form of a theorem:

t By the language of a formula, it is meant the language whose variables are those of L and
whose relations and function symbols are those which occur in formula A .

201

Theorem 1t

Let A(z,, -+ ,z,) be a quantifier free formula with free variables
z,, *** ,2, . Then Iz, --- Jz, A(z,, -~ ,2,) is a theorem if and only if
there is a sequence (t{), --- , 1)) (1<i <p) of n-tuples of terms of the
language of A such that A,U --- UA, isatheorem, where A, is obtained by

replacing z,, 1< j <n,in A by ¢,

The formalism used in the theorem proving is based on the notions of unsatisfi-
ability and refutation rather than upon the notions of validity and proof. The fol-

lowing dual form of the theorem must be derived.

Theorem 2

Let A(z,, ---,z,) be a quantifier free formula with free variables
z,, ***,2,. Then Vz, --- Vz, A(z;, --- ,z,) is unsatisfiable if and only if
there is a sequence (t{), --- ,t,)) (1<i <p) of n-tuples of terms of the
language of A such that A, N --- N A, is unsatisfiable where A, is obtained

by replacing z, , 1< j <n,in A by t,0).

Proof. It is sufficient to put A(z,, ---,2,)= -~B(z,, - ,2,) where
B(zy, *** , 2,) is a quantifier formula with free variables z,, --- , z, . Then by
Theorem 1 and B(zy, '*+,z,)= -~A(z,, - ,2,), it holds that

t Kleene adequately points out what the Herbrand theorem indicates. Quoting Kleene [Klee87),
“We may summarize Herbrand’s theorem by saying that it reduces the question of the provability of a
particular formula with quantifiers (in the first instance, a prenex formula) to the question of the validi-
ty (or provability) in the propositional calculus of some one of a countably infinite class of quantifier-
free formulas (the Herbrand disjunctions).”

202

dz, --- Fz2, ~A(z,, -+ ,2,) is a theorem if and only if there is a sequence

(¢, -, 6") (1<i<p) of n-tuples of terms of the language of A such
that -A,U --- U -4, is a theorem. [t immediately follows that
Vz, -+- Vz, A(zy --- z,) is unsatisfiable if and only if there is a sequence
(2 A A (1<i<p) of n-tuples oi: terms of the language of A4 such
that A;N -+ NA, isunsatisfiable. Q.E.D.

Now, based on Theorem 9.3.1, the formula A can be expressed in Lg$. That is, the
language of A , denoted by L#(A), is the language whose variables are those of
L3 and whose relations and function symbols are those that occur in formula A .

Finally, Theorem 2 can be rephrased in the following form.

Theorem 3

Let A(zy, ---,z,) be a quantifier free formula with free variables
Zy, "' , 2, . Then Vz; --- Vz, A(z,, --- » Z,) is unsatisfiable if and only if
there is a sequence (¢{"), --- ,), 1<i <p, of n-tuples of terms of Li(A)

such that A, N --- N A, is unsatisfiable where A, is obtained by replacing z, ,

1<j<n,in A by ¢,

203

APPENDIX C

Refutations by Ry (") and Ry ")

Two refutations of a given many-sorted theory are shown. One is generated by
Ry () and the other is generated by Ry "). Consider the following many-sorted
theory < OA , Ty > given in Example 12.2.3:

OA: (01) DEB, DGEC,
(02) ECB, ECC,

03 FED, FGCE,
04 GED, GECE,
05) HEGD, HCE,
(06) IGCE,

Ts: (07) P(z*)U Q(2®8,2F)UR(fF(z™F),z%F) U W (s F),
(08) = P(z%°),
(09) - @(z¥,0(=™)),
(0.10) - R (z*£,z%0),
(0.11) -~ w(z¥).

First the refutation of < OA , Ty > generated by Ry () is shown and then the
refutation generated by Rg(") is shown. Remember both Ry(")and Rg(") are
level-saturation schemes. Each refutation is an alignment of the resolvents generated
at each level, i.e., a sequence. In each sequence, the first column shows the number-
ing for the deduction sequence. The numbering stops when the first [] turns up.
The second column contains the identifier of each resolvent. The first digit of each
identifier indicates the level at which the resolvent is generated. The third column

contains the identifiers of the parent clauses of their corresponding resolvent. The

204

fourth column shows the resolvents. The fifth column is used to show the dynami-

cally introduced sorts if the refutation is the one by Ry (). If the refutation is the

one by Rgy("), then it is used to indicate uscless resolvents.

1]

ded.

seq.

o OO DD

00O O o

11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28

29

res.

id.

(1.1)
(1.2)
(1.3)

(1.4)

(2.1)
(2.2)
(2.3)
(2.4)
(2.5)
(2.6)
(2.7)
(2.8)
(2.9)
(2.10)
(2.11)
(2.12)

(3.1)
(3.2)
(3.3)
(3.4)
(3.5)
(3.6)
(3.7)

(3.8)

(3.9)

(3.10)
(3.11)
(3.12)

(4.1)
(4.2)

(4.3)
(4.4)

parent
clauses

(0.7),(0.8)
(0.7),(0.9)
(0.7),(0.10)
(0.7),(0.11)

(1.1),(0.9)
(1.1),(0.10)
(1.1),(0.11)
(1.2),(0.8)
(1.2),(0.10)
(1.2),(0.11)
(1.3),(0.8)
(1.3),(0.9)
(1.3),(0.11)
(1.4),(0.8)
(1.4),(0.9)
(1.4),(0.10)

(2.1),(0.10)
(2.1),(0.11)
(2.2),0.9)
(2.2),(0.11)
(2.3),(0.9)
(2.3),(0.10)
(2.5),(0.8)
(2.5),(0.11)
(2.6),(0.8)
(2.6),(0.10)
(2.9),(0.8)
(2.9),(0.9)

(3.1)(0.11)
(3.2),(0.10)
(3.4),(0.9)
(3.8),(0.8)

The refutation generated by Ry (")

resolvents note
Q™ 2)UR(fF (=) =Yy W(sZX) K sBnC
P(y EE)UR’(J"‘(¥E), g (yZE) U W (z=F)
P(zm’)UQ(z” 2E)U W(==2) JSDNE

P(z¥)u Q(z™,zF)U R (/7 (2T),2%F)

R(fF(y™), 28) U W(y™)

Q2= 2=)y W(==¥) K,J
Q(zﬂ,zEE) U R(fr(zzl)’zza)

same as (2.1)

P(y=*)u W(z%F)

PP)U RS (1)0¥(y™))

same as (2.2)

same as (2.5)

P(zz’)UQ(zU,zE’) J
same as (2.3)

same as (2.6)

same as (2.9)

W(y**)

R(fF (™)ef(y™))
same as (3.1)
Q(z¥,2%7) J
same as (3.2)

same as (3.4)

same as (3.3)
P(y¥)

same as (3.2)

same as (3.8)

same as (3.4)

same as (3.8)

0
0
0
U

[2]

ded.
seq.

I 3D U WD

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36

205

The refutation generated by Ry *)

res.

id.

(1.1a)
(1.1b)
(1.2)

(1.3a)
(1.3b)
(1.3¢)

(1.4)

(2.1a)
(2.1b)
(2.1¢)
(2.1d)
(2.2a)
(2.2b)
(2.2¢)
(2.2d)
(2.2e)
(2.21)

(2.3)
(2.4)
(2.5)
(2.6)
(2.7a)
(2.7b)
(2.7¢)
(2.7d)
(2.7¢)
(2.71)

(2.8)
(2.9a)
(2.9b)
(2.9¢)
(2.10)
(2.11)
(2.12a)
(2.12b)
(2.12¢)

parent
clauses

(0.7),(0.8)

7),(0.
(0.7),(0.8)
(0.7),(0.9)
(0.7),(0.10)
(0.7),(0.10)
(0.7),(0.10)
(0.7),(0.11)

(1.1a),(0.9)
(1.1a),(0.9)
(1.1a),(0.9)
(1.1b),(0.9)
(1.1a),(0.10)
(1.1a),(0.10)
(1.1a),(0.10)
(1.1b),(0.10)
(1.1b),(0.10)
(1.1b),(0.10)
(1.1a),(0.11)
(1.1b),(0.11)
(1.2),(0.9)
(1.2),(0.10)
(1.2),(0.11)
(1.3a),{0.8)
(1.3a),(0.8)
(1.3b),(0.8)
(1.3b),(0.8)
(1.3¢),(0.8)
(1.3¢),(0.8)
(1.3a),(0.9)
(1.3b),(0.9)
(1.3¢),(0.9)
(1.3a),(0.11)
(1.3b),(0.11)
(1.3¢),(0.11)
(1.4),(0.8)
(1.4),(0.9)
(1.4),(0.10)
(1.4),(0.10)
(1.4),(0.10)

resolvents

Q(y‘:‘D,IEE)U R(fF(yZD),zEE) U w(yED)
Q=2) U R(SF (y™F),s™F) U W (y=F)
P(yZ)UR(SF(y™),0"(v™E) U W(2ZF)
P(z2)u Q(z%8,2¥)u W (z%8)
P(z®8)u Q(zm,zzc)u W(zm)
P(zZ)u Q (28 2TH)y W (z8)
P(z¥)u Q(z¥ ,z%)u R(fF(z¥),2%F)

R(fF (™) e (y™))u W(y*F)
R(fF(y®9), 0" (y=C) U W(y=%)
R(fF(y™) e ™) u w(y™)
R(fF(y%),0" (y=E)) U W (y=F)
QW= ,zE yu w(y*)
Q¥ 2=)u w(y™)

QT ™)y w(yIP)

Q™ ,z¥)u W(y=E)
Q(yZE’zEG) U w(yZE)
Q(y=8,z™)u W(y=)

not resoivable

Q=™)y R(fF (z¥),2F)
same as (2.1d)

P(y=E)u W(zZF)
P(y¥)UR(SF (™)o" (v™)
same as (2.2a)

same as (2.2b)

same as (2.2c)

same as (2.2d)

same as (2.2¢)

same as (2.2f)

not resolvable

not resolvablie

same as (2.5)

P(z¥)y Q(z¥ ,2%F)
P(z¥)u Q(s¥ ,2%%)
P(z¥)u Q(s¥ ™)

same as (2.3)

same as (2.6)

same as (2.9a)

same as (2.9a)

same as (2.9a)

note

useless

useless
useless

useless
useless
useless

useless
useless
useless
useless
useless

useless
useless

37
38
39
40

41

42
43
44

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

61

3.1a)
3.1b)
3.1¢)
3.1d)

— p— p— p—

(3.2)

(3.3a)
(3.3b)
(3.3¢)

(3.3d)

(3.4a)
(3.4b)
(3.4¢)
(3.5)
(3.6a)
(3.6b)
(3.6¢)
(3.7)
(3.8)
(3.9)
(3.10)
(3.11a)
(3.11b)
(3.11¢)

(3.12)

(4.1)
(4.2a)

(2.1a),(0.10)
(2.1b),(0.10)
(2.1¢),(0.10)
(2.1d),(0.10)
(2.1a),(0.11)
(2.1b),(0.11)
(2.1¢),(0.11)
(2.1d),(0.11)
(2.2a),(0.9)
(2.2b),(0.9)
(2.2¢),(0.9)
(2.2¢),(0.9)
(2.2¢),(0.9)
(2.2d),(0.9)
(2.2¢),(0.9)
(2.21),(0.9)
(2.2a),(0.11)
(2-2b),(0.11)
(2-2¢),(0.11)
(2.2d),(0.11)
(2.2¢),(0.11)
(2.2f),(0.11)
(2.3),(0.9)
(2.3),(0.10)
(2.3),(0.10)
(2.3),(0.10)
(2.5),(0.8)
(2.5),(0.11)
(2.8),(0.8)
(2.6),(0.10)
(2.9a),(0.8)
(2.9b),(0.8)
(2.9¢),(0.8)
(2.9a),(0.9)
(2.9b),(0.9)
(2.9¢),(0.9)

(3.1a),(0.11)
(3.1b),(0.11)
(3.1¢),(0.11)
(3.1d),(0.11)
(3.2),(0.10)

(3.3a),(0.10)
(3.3b),(0.10)
(3-3¢),(0.10)

206

W(y)
W(y=%)
W(y™)
W(y*)

not resolvable
not resolvable
not resolvable
R(fF(y™)e® (y™)
not resolvable
not resolvable
same as (3.1a)
same as (3.1b)
same as (3.1c)
not resolvable
not resolvable
same as (3.1d)
not resolvable
not resolvable
not resolvable

Q(zH,2%F)
Q(zﬂ,z}.‘.a)
Q(zﬂ,zzﬂ)

same as (3.2d)
same as (3.4a)
same as (3.4b)
same as (3.4c)
same as (3.1d)

P(y™)
same as (3.2)
same as (3.8)

same as (3.4a)
same as (3.4b)
same as (3.4c)
not resolvable
not resolvable

same as (3.8)

not resolvable
not resolvable
not resolvable

0
0

not resolvable
not resolvable
not resolvable

useless
useless
useless

useless
useless

(4.2b)

(4.3)
(4.4)

207

(3.3d),(0.11) [J
(3.4a),(0.9) not resolvable
(3.4b),(0.9) not resolvable
(3.4¢),(0.9) 0
(3.8),(0.8) IJ

208
APPENDIX D

Alternative Approaches of Ry (")

In Part I, it has been shown how a pair of variables satisfying a certain condi-
tion can be unified over the weakest range in @ L-eztended L& . Such idea of unify-
ing a pair of variables satisfying a certain condition can also be embodied by alterna-
tive approaches. They include: (i) an approach in which the theory in a many-sorted
language L, is repeatedly translated into a revised language L, of L, along the
way the refutation of the thcory is carried out, and (ii) an approach in which the
theory to be refuted is expressed in a generalized version (L) of an ordinary many-
sorted language (L,) whose variable sets and constant sets are not necessarily dis-

joint. These two alternative approaches are described in this appendix.

D.1. Refutation in a Revised Language L, of L,

The first alternative approach is described. A many-sorted theory T, in a
many-sorted language L,° is considered. Let T,° be the theory to be refuted. Let
two clauses ¢,y € T,° contain two variables v, and v, , respectively, and let
these two clauses be resolvable if v, and wv; are unified. When
| IM(Ran (v,)) N IM (Ran (v;))| > 1, if the two clauses were expressed in L}, L}
can be extended to unify the two variables v, and v; over the weakest possible
range, i.e., the intersection of the ranges of v; and v, . When the two clauses are
expressed in L, , however, unifying v, and v, over the weakest range is not
allowed, although it becomes possible if the two clauses 2 and ? are translated

into a new language in which a variable ranging over the intersection of the ranges of

209

v, and v; can be introduced. That is, L, can be revised into another many-
sorted language L,' that is identical with L,® except that in L,! an additional
variable set exists whose members range over the sort identical with the intersection
of the ranges of v, and v, . Then T, can be translated into 7T,! in L, includ-
ing the translations of ¥ and) into L,!, say y! and ¢}, respectively. A
resolvent, say y', of ¢ and ¢} can be derived as a clause in L,!. Let the overall

process described so far be abbreviated by

Tml{Tmol Lmll I'_RE) ¢1

where T,[Ta|La] means T, in L, is translated into T,! by using the revised
language L,! of L, and the symbol * }R—(m) " means the deduction process that
derives ¢! in L, as a resolvent of a pair of member of T,}[T,0|L,]] (specifically,

in the preceding example the pair would be ¢} and y}).

The preceding example describes only a snapshot of the continuous process that
is employed in this alternative approach. For example, y! and ¢! can also be
resolved in a way similar to the one used in resolving ¥? and y? and if this is

done, then resolving ¥, and ¢ means that a deduction process such as
TATAV LA b,

immediately follows the previous deduction process T,[T,0| L, }?(—m) ¢!, where
the symbol ;" is used to mean “in addition to”. In summary, in this alternative
approach (i) a theory and a logical consequence of the theory, i.e., a resolvent of a
pair of clauses in the theory, are translated into a new language, (ii) another logical
consequence is derived from the theory and the logical consequence in the new

language, and (iii) the processes (i) and (ii) are repeated one after another until the

210

intended logical consequence [] is derived.
In general, the refutation obtained in this approach can be viewed as a sequence
of deduction processes of the following form:

TATS L] b, ¥
TATS LA b, ¥

IS
AT L2 b, O
The preceding sequence of deduction processes makes it clear that in this alternative
approach the inconsistency of the‘theory T,? is not proved in L,° butin L} after
various stages of theory translations in newly revised languages have been made. It
must be justified whether the inconsistency proof of T made in L? can be car-
ried over to the inconsistency proof of the original theory T,° in L,2. Since refut-
ing a theory by this alternative approach entails a series of theory translation in a
new language and derivation of a logical consequence from the translated theory, the

following theorem can be shown first:

Theorem D.1
If TL[Ti%v' L) I'n_(m) ¥, i >0, then there is a translation of "
into L', denoted by y,[¢' | L], and for the translation y/[y' | Ly thereis a
proof procedure * I'EF) " such that
T by i L)

where y°=¢.

211

In the preceding theorem, the existence of * ln—(?) " means that ¥,[y' | L.
is a logical consequence of T,7%y'* although y;[y' | L] is obtained indirectly via

‘ |-R—(,-n) " and the translation of ' into L,'. The following theorem must further

be shown:

Theorem D.2

When TA[Ti %9 | L] o) ¥, i >0,if ¢ is [J then yiy* |1y is

also [J.

By combining Theorem D.1 with the preceding theorem, it is implied that even if []
is derived from T,[T,¢'?|L,] in L2, for some p >0, [] is also a logical

consequence of T, .

D.2. Refutation in a generalized version L) of L,

In this approach, the theory to be refuted is expressed in a many-sorted
language (L7) that is a more general version than an ordinary many-sorted language
(Ln) such as mentioned in Section 9.3 or given in [Ende72, KrKr67). L is more
general than L, in the sense that in L, neither its variable sets nor its constant

sets need to be disjoint.

The language L) is first defined. A many-sorted language LS with sort
indez set I consists of the following: (1) || infinite sets V!, --- vI/I (not
necessarily disjoint) where the elements of V', 1< i < |I], are called variables
of sort i; (2) |/]| sets C',---,C!! where the elements of ¢',

1<i< |I]|], are called constant symbols of sort i such that

212

c'n - nC*#¢, {iy, -, i} CI,if and only if V'in -- AVt A4,
(3) for each n >0 and each n-tuple <i,,---,i,>, {i,, --,i,} C1I, a set
R='" ™7 whose elements are called relational symbols of sort <ip, o, 6>

(4) for each n>0 and each n+ltuple <iy, e, 00>,

<’. y 'i 0’. > .
X *"*+1” whose elements are called function

{il;"'yin ~!iﬂ+1}gl’ aset F
symbols of sort <iy, -, i, , i,44> ; (5) logical connectives -~ and — ; and (8)

a universal quantifier V.

Definable symbols U,N,* and 3 are introduced in L as usual and the
syntax rule of L is also given as usual. The interpretation of the formulas of L/}
with sort index set I is given as follows. Let MS(L}) stand for a many-sorted
structure associated with L. MS(LS) consists of: (1) |/| nonempty sets of
objects S,,:--, S ;| where S is called the domain of sort i of MS (L3) such

that S, N -~ NS #¢, (i, --,u}CI, if and only if

viin .- v #¢; (2) for each constant symbol ¢ ecC'*n---nc™ ,

{i;,--,4,} €1, an element ¢™ ¢ Si,0 === NS, ;(3) for each predicate sym-

bol P of sort <i,,---,i,>, a relation PM C S,%X -+ X5, ; (4) for each
function symbol ! of sort <iy," ", 4 ,4p>, a function
IMS:SIIX "'xsl-—’si.ﬂ-

A variable assignment function & is given as follows: If V = Ul V' where
ve

V' is a variable set of L, , then s is an assignment function, s : V = |J S, ,
vl

such that for a variable z, € V''n --- n V" y {0} CI, s(z)=03,
where s € S,N - NS, . Assignment function for the terms of LS is defined as

usual. The validity of each formula in MS(Lj) is determined as usual.

213

As long as L is a more general version than L, , it trivially follows that any
formula in L, can be expressed in LJ . However, the converse must be shown to

assure that L. is as legitimate as L, . The converse is shown in Appendix E.

It is shown how the second alternative approach can be carried out. Let a
theory T, in a one-sorted language (L,) be equivalently expressed as a many-sorted
theory, say T, , in an ordinary many-sorted language L, with sort index I . Let
the language for T, be Ln(Tn). Let S, and S;, i,j €I, be two unary
predicate symbols in L, which are defined correspondingly to sort i and j of
L, (Tn). An inflexible usage of sort variables of L, is displayed when another for-

mula in L, , say a logical consequence ¢, of T, ,
¢, = Vz (Si(z)NS,(z) — 9(z)) (D.1)

needs to be further abbreviated in L, (T,). The syntax of L, does not allow the
one-sorted expression ¢, to be abbreviated into a many-sorted expression that is
compact enough to carry out the idea behind Ry (), for instance, as compact as

the form (D.2) below, unless L, (T,) is appropriately revised to do so.

Let Li(T,) be the L} defined to be equivalent to L, (T,),ie., Li(Tn) is
identical with L, (T,) except thatin LJ(T,) its variable sets and its constant sets
do not need to be disjoint. Let a variable z, ; belong to sorts i and j, ie.
2, €V, and z,; € V/ where V; and V; are variable sets of sort i and j in

Li(Tn). Then ¢, in(D.1) can be abbreviated into the form
vz, ¢(:zm) (D'Q)

in LJ(T,). It is noticed that abbreviating the one-sorted expression of the form

214

(D.1) into a many-sorted expression of the form (D.2) is the only type of abbreviation
needed when embodying the idea bekind Ry('). Therefore an alternative

approach of Ry () is obtained by expressing the theory to be refuted in L} .

215

APPENDIX E

Translation of a Formuia in L into L,

It is shown that any formula in the many-sorted language L/ that was defined
in Appendix D can be translated in an ordinary many-sorted language L, . Show-
ing this implies that L} is as legitimate as L, which is commonly given in various

literature such as [KrKr67] and [Ende72].

Given a L/ with sort index set I, its corresponding ordinary many-sorted
L, is constructed. A few preliminary steps are given first. Let V = {V' :i € I}
where V' is a variable set of LJ . A set V, of disjoint variable sets is derived

from V as follows: for each k€rl, if U ={Vvi,JV' -V!} then
1€l

V, = m U $. Let I, be the index set for V, so that each element of V, is
kel

expressed by V*, k €I, . A relationship holds between V and V, : If ¢ bea

function £:I — Nt where N* is the positive integer set, then for each V' € V

there exist uniquely ¢(i) variable sets in V, such that V' = vy ---u Vaj“”)
{71, "".ig)} €1, . In the preceding relationship, {j,, -, jg)} € I, is said

to be the i's, i € I, corresponding index subset, denoted by CI(i), of I, .

The ordinary many-sorted language L, with the sort index set I, that

corresponds to the L) then consists of: (1) |/, | infinite disjoint variable sets

1, |

AP 73 such that {V;:iel,}=1V,; (2) |I | disjoint constant sets

t The definition of * [T] " was given at Section 7.3 as follows: For two partitions ' and N? of a
set, M m M*={S:S=5NB, where B, c1'and B, €%, and S % ¢}. Since the commutativi-
ty and the associativity hold for Jete M) - - - m M* be written by m m.

i1, - ,n}

216

1, |

Ctl,-+-,C, " suchthattoeach C', i €I,of LI if CI() = {j1, ", jeu)}

then C'=¢/'u - - U C,j‘"; (3) to each predicate symbol P of sort
<iy, 4>, {iy, -, 4} C 1, of L] its corresponding (i) X - -+ X £(i,)
different relation symbols, whose collection is denoted by CP(P), such that for each
E, 1<k <)X -+ X&), P. €CP(P) is a relation symbol of sort
<if , -, it>€CI(i,) X -~ X CI(i,), and; (4) to each function symbol f of
sort <iy, by, 01>, {61, c,5}CT, of Lf its corresponding
(1)) X -+ X €(in41) different function symbols , whose collection is denoted by

CF(f), such that foreach k¥, 1<k <€) X --- X &i,1), ft ECF(f) isa
function symbol of sort <if , -« -, if,if > €CI(i) X - X Cl(i,4) .-

A few notation are introduced. Let TERM(LS) and TERM(L,) be the sets of
all the terms of LS and L, , respectively. For each ¢ € TERM (LE) ts
corresponding terms in TERM(L,), whose collection is denoted by CT(t), is
defined inductively as follows: (i) if ¢ is a variable z € V', iel, and
Cl(i)={j1, ", jq)}, then CT(t)= {:c;’l , z,’«')} where for each
k€{ji, ", ie)}, 2 € VF; (ii)if t is a constant ¢ of sort i, i €/, and
CI(i)={j1, ", jqy}, then CT(t)= {ef s c,‘«.‘)} where for each
k€{jr, " yieq}, ¢/ € CF;(iii)if ¢ is aterm of the form f{t,,---,t,) where
f i3 an n-place function symbol of sort <iy, -, i, 64>,
{iv, *-* 6 b} © 1, then CT(t)={fi(t7, - ,t): ff€ CF(f) and
'€ CT(,), 1< <n}.

Now let the terms of a formuls, say ¢, be defined as follows: (i) if

P(t, ,---,t_) is an atomic subformula of y where P is an m-place relation

symbol and &, 4, are terms, then t,,» ", are terms of ¢, and (ii) no

217

terms other than those identified by (i) are terms of . When it is convenient, ¥ is
expressed by ¢[t,,---,t,] if ¢, ---,¢ are all the terms of ¥ in the order of
their appearance in ¢ [notice that there can be duplicate terms among
ty, o, b)

It is shown how a formula in L/ with the sort index set I is translated into the
L, with the sort index set I, which was constructed correspondingly to the L/ .

Let 0, be a formulain LS with the sort index set I. Let o, be of the form,
am[tl: ’tl]' (bl)

Let k¥ = |CT(¢)| X -+ x | CT(4)|. The translation of ¢, into o in L,

with the sort index I, is then

on= U alltij), -, '(j) (b.2)

1<, <

where for each j, 1< j <k, ol[ti(j), -+, t°(j)] is constructed in the fol-
lowing way: (i) ¢, -+ ,# of o, are replaced by ¢{(j), --- ,t°(j), respec-
tively, where <ti(5), -, 4%5)> is the j* element of
CT(t) X --+ X CT(); (i)if P(t,, ~-- ,t,), {ur, -, 4} C{1,---,1},is
an atomic subformula of o, such that by the step (i) the terms by """ 4t are
replaced by &/ (i), --- , 4 (j), respectively, then P is replaced by

PGGCP(P) of sort <jl,"'»jr>) {jl;"'yjr}ela) where each jllx

1< h <r,is the sort to which t; (j) belongs, and; (iii) if Qz where @ is

either V or 3 is a quantifier appeared in ¢, and by step (ii) the variable 2
appeared in ¢,,---,#4 of o, is replaced by z° , then Qz is replaced by Qz°

in o] .

218

As far as semantics for the formula ¢, of (b.2) is concerned, the structure for
L, ,say MS°(L,), can be constructed from the many-sorted structure for L], say
MS(L). Let MS(LZ) be a quadratuple MS(Li)=<{S }ies,R ,F,C >
where I is the sort index set, {S,},¢; , the sorts of MS(LZ), R , the relation set,

F , the function set and C , the constant set. Then MS°(L,) consists of: (1)

|1, | nonempty disjoint sets of objects Sy ,---, S{1 | such that for each S, ,
i€l if CI(i)={j1, ", jqn}, then § =8’ U --- US/y, 5 (2) for each
constant symbol ¢ of sort if, i* €I, , an element M En) such that
M Em) M) , where M) € C ; (3) for each predicate symbol P/ in L} of
sort <if, --,i>, {if, --,if}C1I,, if P’e CP(P), then the relation
Pkm’(l"") = pMta) g (S"’§ X -+ X S':,,) , where p¥t) e p ; (4) for each func-
tion symbol f¢ in L, of sort <if,---,if,if,>, {(if,---,ifycC1, , if
ff € CF(f), then the function f,,mo(l""): .’; X =+ X S,:k - S.:’,+l such that
faf -0, af)=fla} -+, af), where Mo ep

Finally, the following theorem is shown for the translation of the formula o,

of (b.1) into the formula ¢ of (b.2):

Theorem B.1

A sentence o, in L} istruein MS(L}) iff o, in L, istruein MS’(L,).

Proof. Proof is by induction on the length of ¢, . First, proof is given for when
o, 1s atomic. Let o, be an atomic formula of the form R(t,, --- ,t,) where

R is an n-place relation symbol of sort <iy,- -, 4>, {i;,---,i,} €1, and

219

t,’s are terms. Let o, be truein MS(L?) with an assignment function & . The

traustation of o, Mmto o, m L, 13 the foilowing:
o =Ri(t1(1), -, QYU - URL(LI(E), -+, tJ(k))

where k = |CT(t})] X -+ X |CT(t,)] and for each j, 1< <k,
R/€ CP(R) and <t{(j), -, tJ(j)> € CT(t) X -+ X CT(¢t,).
Along with the preceding translation, an assignment function ¢° for the vari-

ables of L, is introduced as follows: s is an assignment function

8’ : q Vs, = U S’ such that if z in o, isreplaced by z° during the transla-
1€

° 'Glc
tion of o, into o, , then #(z)=2°(z’) [the assignment function s° defined
here is used throughout this proof]. For notational convenience the symbol s° is

also used for the assignment for terms. It can be trivially shown that for a unique

i, 15 <k,
<s(ty), -, e(ta)>=<e’(ti(5)), -, 8" (tA5))> -+ (1).
Let L be the index set for CP(R) so that each member of CP(R) is expressed by

R, , 1 €L . Then from the way that MS°(L,) is defined, it follows that

Ms(L!) MS°(L,
R =URrR"¥) ... (9.
leL

From the way o, is constructed, it follows that

Ms*(L,)

Ms*(L,)
U RI = R] . (3)

I€L 1< <k

where each R’, 1< j <k, is an atomic subformula in o, . From (1) the follow-

ing also holds: For each j,, 1< j <k, if for some ;' 1< ;' <k,

220

) o - MS°(L, . " e
<8”(¢f(.1h)),“',8"(!,,(;,,))>GRJ, ©n) then for any j , j #3j' and
1< <k,

o+ of - Ms°(L,)
<G, e > ¢ RETE
Consequently, the following holds:
t RS tu
bMS(L"’.)R(1, ’)[81
MS(L})

<> <s(t), -, 8(t)>€ER

MS(LY)

<=> forsome j, 1< <k, <s’(t1(j)), -, e°(t;(j))> € R from (1)

<=> forsome j, 1<j <k, <s’(t{(s)), -, 2°(t(5)>€ U R,MS’(L"') from (2)
leL

<=> for some j, 1<j <k, <s°(¢3(5), -, " (2G> € U R,MSG(L”‘) from (3)
1<, <k

<> U (forsome ;1S5 <k, <o®(117), -+, 0 (105")> € B
155 <
. . Ms? (L
<= U A< (6, ot (16> e R}y from (4)
P IS

= U {E=_ RG]}

1<y <k Ms°(L,)

<= ‘= U R]o(‘f(j)"“’tnv(j)) [8’,]'

MS°(L,) 1ST<E

It is concluded that when ¢, is atomic o, iff ol .
" ’ l=MS(L') " ’=MS°(LM) "

Suppose that the result is true for all formulas of length less than or equal to
h . It is shown that the inductive step holds for the formulas of length A+1. Let

omy and o, . be formulas of length 4 , and for o, , and 0., it holds that

= omy iff = om1 and = Omo Mff = 02 . Inductive

MS(LY) MS* (L) MS (LY) MS° (L)

step is the following:

221

(Case I) Let o, be -~ o, ,. Itistrivial to show that

= o 0] <= = ~oaale’].

MS(LS) MS° (L)

(Casell) Let o, be 0,,— 0,. Itis trivial to show that

=, o 1 = L st aialet].

(Case III) Let ¢, be Vzo,;,; where z €V'. The followings holds: If

CI($)={11,;‘€(x)}!then
S, =S|1U USI«I) (5)
and for any 4, ,in € {i1, -, iq)}
Se NS, =¢--(6).

Let ¢y, --,t, be the terms of 0, , and let o, ,= oaalti (7)), -, L)
1<7<t

where £ = | CT(t,)] X -+ X | CT(t,)| . From the induction hypothesis, it fol-
lows that: for each j, 1<j<k, if zY(j)eCT(z), z(j)eV),

i[E{il, T, ia,)},and a’(j)e S,: ,then

=, omaltz]e)] <= = U oda [s° @G e G)] --- (7).

MS(LY) MS°(La)1<y <t

Let 7 be a function n:{1,---,k}—{i,,---,ig)} such that for each a°(j),

1<j <k,in(8), if a°(j)€S, then 5(;)=1. Finally, the following holds:

222

= oa 8] <= = Vi om0

MS(LY) Ms(LY)
<=> foranys €8, , }::;-5(1,,,!,-) omale(z |a))
<=> foranya €S U - U5 }=MS(L"'|)0,” [s(z, | a)]
from (5)
o o (s 0 J) 0 (nof & o s
<> U lforanya®(j)e sy, I=MS,(LM)%.1 [¢°(2.(7) | a* ()]}

from (6) and (7)

<= U {(E=, W(i)dilsl}

1< <k Ms°(L,)

<= = U ¥'() el [¢°].

MS°(L,) 1<;<tk

. AiYol, i ? it follows that o, Iff O -
Since o~ Vz'(j)oa, 18 on, , I=MS(“) m '=Ms"(L,,,) m

m

Q.E.D.

BIBLICGRAPHY

223

[AnBI70]

[AnBo73]

[Andr81]

[Aper81]

[BaFe81])

[Bern76)

[Bern81]

[Bibe81]

[BoWi77]

[BoyeT71]

[Brac7g]

[BuFe78]

224

BIBLIOGRAPHY

Anderson, R. and Bledsoe, W. W., ““A linear format for resolution with

merging and a new technique for establishing completeness,” J. ACM,
Vol. 17, pp. 525-534, 1970.

Anderson, J. and Bower, G., Human Associative Memory, Winston,
Washington D.C., 1973.

Andrew, P. B., “Theorem proving via general matings,” J. ACM, Vol. 28,
No. 2, pp. 193-214, April 1981.

Apers, P. M. G., “Redundant allocation of relations in a communication
network,” Proc. Berkeley Workshop on Distributed Data Management
and Computer Networks, Lawrence Berkeley Lab., The University of Cal-
ifornia, Berkeley, 1981.

Barr, A. and Feigenbaum, E. A., The Handbook of Artificial Intelligence,
Vol. 1, 2, and 3, William Kaufmann, Inc., Los Altos, CA, 1981.

Bernstein, P. A., “Synthesizing third normal form relations from func-
tional dependencies,”” ACM Transactions on Database Systems, Vol. 1,
No. 4, Dec. 1978.

Bernstein, P. A. et. al., *‘Query processing in a system for distributed
databases(SDD-1)," ACM Transactions on Database Systems, Vol. 6, No.
4, pp. 602-625, March 1981.

Bibel, W., “On matrices with connections,” J. ACM, Vol. 28, No. 4, pp.
633-645, Oct. 1981.

Bobrow, D. G. and Winograd, T., “An overview of KRL, a knowledge
representation language,” Cognitive Science, Vol. 1, pp. 3-36, 1977.

Boyer, R. S., "“Locking: A restriction of resolution,” Ph. D. Dissertation,
The University of Texas, Austin, 1971.

Brachman, R. J., “A structural paradigm for representing knowledge,”
Rep. No. 3605, Bolt Beranek and Newman, Inc., Cambridge, MA, 1978.

Buchanan, B. G. and Feigenbaum. E. A.,, “DENDRAL and Meta-
DENDRAL: Their applications dimension,” Artificial Intelligence, Vol.
11, pp. 5-24, 1978.

[BuHa79]

[Carb70]

[CaseT?)

[CeNW83)

[Cham78]

[Chan70]

[Chan76)

[Chan78]

[Chen76]

[Chu 69)

[Chu 73]

[Chu 78]

225

Buckles, B. P. and Hardin, D. M., “Partitioning and allocation of logical

resources in a distributed computing environment,” Distributed System
Design, Tutorial IEEE Catalog No. EHO261-1, 1979.

Carbonell, J. R., “Al in CAIL: An artificial intelligence approach to
computer-assisted instruction,” JEEE Transactions on Man-Machine Sys-
tems, Vol. MMS-11, pp. 190-202, 1970.

Casey, R. G., “Allocation of copies of a file in an information network,"
Proc. AFIPS Spring Joint Comput. Conf., Vol. 40, AFIPS Press, Arling-
ton, VA, pp. 617-825, 1972.

Ceri, S., Navathe, S. and Wiederhold, G., “Distributed design of logical
database schemas,” IEEE Transactions on Software Engineering, Vol.
SE-9, No. 4, pp. 487-504, July 1983.

Champeaux, D. de, ““A theorem prover dating a semantic network,”
Proc. AISB/GI Conf., Hamburg, West Germany, 1978.

Chang, C. L., “The unit proof and the input proof in theorem proving,”
J. ACM, Vol. 17, No. 4, pp. 698-707, Oct. 1970.

Chang, C. L., “DEDUCE -- A deductive query language for relational
data bases,” Pattern Recognition and AI, Academic Press, New York, pp.
108-134, 1976.

Chang, C. L., “DEDUCE2: Further investigations of deduction in rela-
tional database,” Logic and Databases (H. Gallaire and J. Minker, eds),
Plenum Press, New York, pp. 201-236, 1978.

Chen, P., “The entity-relationship model -- toward a unified view of
data,” ACM Transactions on Database Systems, Vol. 1, No. 1, pp. 9-36,
March 1976.

Chu, W. W,, “Optimal file allocation in a multiple computer network,”
IEEE Transactions on Computer, Vol. C-18, No. 10, pp. 885-889, Oct.
1969.

Chu, W. W, “Optimal file allocation in a computer network,”
Computer-Communication Network (N. Abramson and F. Kuc, eds),
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973.

Chu, W. W., “Performance of file directory systems for databases in star
and distributed networks,” Proc. AFIPS Conf. NCC, Vol. 45, AFIPS
Press, Montvale, NJ, pp. 577-587, 1976.

[Chun83]

[Codd70]

[Codd72a]

[Codd72b)

[Codd78]

[Codd79)]

[CoGP81]

[Cohn83]

[DaPu80]

[Date83]

[Davi72]

[Delo78]

[DePa82]

226

Chung, C-W., A Query Optimization for Distributed Database Systems,
Ph. D. Dissertation, The University of Michigan, Ann Arbor, MI, 1683.

Codd, E. F., “A relational model of data for large shared data banks,”
Comm. ACM, Vol. 13, June 1970.

Codd, E. F., “Further normalization of the database relational model,”
Database System (R. Rustin, ed), Prentice-Hall, Inc., Englewood Cliffs,
NJ, pp. 33-64, 1972.

Codd, E. F., “Relational completeness of database sublanguages,” Data-
base System (R. Rustin, ed), Prentice-Hall, Inc., Englewood Cliffs, NJ,
pp. 85-98, 1972

Codd, E. F., “How about recently?,” Databases: Improving usability and
responsiveness (B. Shneiderman, ed), Academic Press, New York, pp. 3-
28, 1978.

Codd, E. F., “Extending the database relational model to capture more
meaning,” ACM Transactions on Database Systems, Vol. 4, No. 4, PP-
397-434, 1979.

Coffman, E. G. Jr., Gelenbe, E. and Plateau, B., “Optimization of the
number of copies in a distributed data base,”” IEEE Transactions on
Software Engineering, Vol. SE-7, No. 1, Jan. 1981.

Cohn, A. G., “Improving the expressiveness of many sorted logic,” Proc.
National Conf. on Artificial Intelligence, pp. 84-87, 1983.

Davis, M and Putnam, H., “A computing procedure for quantification
theory,” J. ACM, Vol. 7, pp. 201-215, March 1960.

Date, C. J., An Introduction to Database Systems, Vol. 2, Addison-
Wesley, Reading, MA, 1983.

Davis, D. J. M., “POPLER: A POP-2,” Rep. No. MIP-89, School of Al,
University of Edinburgh, Scotland, 1972.

Delobel, C., “Normalization and hierarchical dependencies in the rela-
tional data model,” ACM Transactions on Database Systems, Vol. 3, No.
3, pp. 201-222, Sept. 1978.

De Bra, P. and Paredaens, J., ‘“Horizontal decompositions and their
impact on query solving,” SIGMOD Record, Vol. 13, No. 1, pp. 46-50,
Sept. 1982.

[DoFo082]

[DuHN78]

[Ende72]

[EpSW78]

[EswaT74]

[FiHN72]

[FiHo80]

[Fiwe78]

[FuLa79]

[Furt81]

[GaMi78]

[Gilm60]

[GoRo77]

227

Dowdy, L. W. and Foster, D. V., “Comparative models of the file assign-
ment problem,” Computing Surveys, Vol. 14, No. 2, pp. 287-313, June
1982.

Duda, R. O., Hart, P. E. and Nilsson, N. J., “Subjective Bayesian
methods for rule-based inference systems,” Proc. National Computer
Conf. (AFIPS Conf. Proc.), Vol. 45, pp. 1075-1082, 1976.

Enderton, H. B., A Mathematical Introduction to Logic, Academic Press,
New York, 1972.

Epstein, R., Stonebraker, M. and Wong, E., “Distributed query process-
ing in a relational database systems,” Proc. ACM SIGMOD Int. Conf. on
Management of Data, pp. 169-180, June 1978.

Eswaren, K. P., “Placement of records in a file and file allocation in a
computer network,” Proc. IFIP Congress (Information Processing 74),
North-Holland, Amsterdam, 1974.

Fikes, R. E., Hart, P., and Nilsson, N. J., “Learning and executing gen-
eralized robot plans,” Artificial Intelligence, Vol. 3, pp. 251-288, 1972.

Fisher, M. L. and Hochbaum, D. S., “Database location in computer net-
works,” J. ACM, Vol. 27, No. 4, pp. 718-735, Oct. 1980.

Filman, R. E. and Weyhrauch, R. W., “An FOL primer,” Memo. 288, Al
Laboratory, Stanford University, 1976.

Fung, K. T. and Lam, C. M., “Optimal data allocation in a distributed
database,” Proc. Trends and Applications, National Bureau of Stan-
dards, Gaithesburg, Md., pp. 111-1186, 1979.

Furtado, A. L., “Horizontal decomposition to improve a non-BCNF
scheme,” SIGMOD Record, Vol. 12, No. 1, pp. 26-32, Oct. 1981.

Gallaire, H. and Minker, J. (eds), Logic and Databases, Plenum Press,
New York, 1978.

Gilmore, P. C., “A proof method for quantification theory: its justifica-
tion and realization,” IBM J. Research Dev., Vol. 4, pp. 28-35, Jan. 1960.

Goldstein, 1. P. and Roberts, R. B., “NUDGE, a knowledge-based
scheduling program,” Proc. Int. Joint Conf. on Artificial Intelligence,
Cambridge, MA, pp. 257-263, 1977.

[Gree69]

[Hail57]

[HaMc78]

[HaNi79]

[Haye71]

[Haye77]

[HaZd80]

[Hend75]

[Hend78]

[Hens72]

[Herb30]

[Hewi72]

228

Green, C. C., “The application of theorem-proving to question-answering
systems,” Proc. Int. Joint Conf. on Artificial Intelligence, Washington,
D. C., pp. 219-237, 1969.

Hailperin, T., “A theory of restricted quantification I, J. Symbolic
Logtc, Vol. 22, No. 1, pp. 19-35, March 1957.

Hammer, M. and McLeod, D., “The Semantic Model: A modelling
mechanism for DB applications,” Proc. ACM SIGMOD Int. Conf. on
Management of Date, Austin, TX, May 1978.

Hammer, M. and Niamir, B., “A heuristic approach to attribute parti-
tioning,” Proc. ACM SIGMOD Int. Conf. on Management of Data, pp.
93-101, May 1979.

Hayes, P., “A logic of actions,” Machine Intelligence, Vol. 6,
Metamathematics Unit, University of Edinburgh, 1971.

Hayes, P. J., “In defence of logic,” Proc. Int. Josint Conf. on Artificial
Intelligence, Cambridge, MA, pp. 559-565, 1977.

Hammer, M. and Zdonik, S. B. Jr., “Knowledge-based query processing,”
Proc. Int. Conf. on Very Large Data Bases, Montreal, Canada, pp. 137-
147, Oct. 1980.

Hendrix, G. G., “Expanding the utility of semantic networks through
partitioning,” Proc. Int. Joint Conf. on Artificial Intelligence, Thbilisi,
Georgia, USSR, pp. 115-121, 1975.

Hendrix, G. G. et. al., “Developing a natural language interface to com-
plex data,” ACM Transactions on Database Systems, Vol. 3, No. 3, pp.
105-147, 1978.

Henschen, L. J., “N-sorted logic for automatic theorem proving in
higher-order logic,” Proc. ACM Conference, Boston, MA, 1972.

Herbrand, J., Recherches sur la Theorie de la Demonstration (These
Paris), Warsaw (1930) Chapter 3, 1930. Also in Logical Writings (W. D.
Goldfarb, ed.), D. Reidel Pub. Co., 1971.

Hewitt, C., “Description and theoretical analysis (using schemata) of
PLANNER, a language for proving theorems and manipulating models in
a robot,” Rep. No. TR-258, Al Laboratory, Massachusetts Institute of
Technology, 1972.

[HeYa79]

[Horn51]

[Idel64]

[IrKh79)

[King81]

[KiPo81]

[KoHa69)

[KoKu70]

[KowaT74]

[KrKr67]

[Lee 72]

[Love70]

229

Hevner, A. R. and Yao, S. B, ““Query processing in distributed database
systems,” IEEE Transactions on Software Engineering, Vol. SE-5, No. 3,
pp. 177-187, May 1979.

Horn, A., “On sentences which are true of direct unions of algebra,” J.
Symbolic Logic, Vol. 18, pp. 14-21, 1951.

Idelson, A. V., “Calculi of constructive logic with subordinate variables,”
American Mathematical Society Translations (2), Vol. 99, 1972 - transla-
tion of Trudy Mat. Inst. Steklov. 72, 1964.

Irani, K. B. and Khabbaz, N. G., “‘A model for combined communication
network design and file allocation for distributed databases,” Proc. Int.
Conf. on Distributed Computing Systems, Huntsville, AL, pp. 15-21, Oct.
1979.

King, J. J., “QUIST: A system for semantic query optimaization in rela-
tional databases,” Proc. Int. Conf. on Very Large Data Bases, pp. 510-
517, 1981.

Kilov, K. I. and Popova, 1. A., ““Meta-database architecture for relational
DBMS,"” SIGMOD Record, Vol. 12, No. 1, pp. 18-25, 1981.

Kowalski, R. and Hayes, P., “‘Semantic trees in automatic theorem prov-
ing,”" Machine Intelligence (B. Meltzer and D. Michie, eds.), Vol. 4, Amer-
ican Elsevier, New York, pp. 87-101, 1969.

Kowalski, R. and Kuehner, P., “Linear resolution with selection func-
tion,” Metamathematics Unit, Edinburgh University, Scotland, 1970.

Kowalski, R., “Predicate logic as a programming language,” Proc. IFIP
Congress (Information Processing 74), North-Holland, Amsterdam, pp.
569-574, 1974.

Kreisel G. and Krivine J. L., Elements of Mathematical Logic (Model
Theory), North-Holland, Amsterdam, 1967.

Lee, R. C. T., “Fuzzy logic and the resolution principle,” J. ACM, Vol.
19, No. 1, pp. 109-119, Jan. 1972.

Loveland, D. W., “A linear format for resolution,” Proc. IRIA Symp. on
Automatic Demonstration, Versailles, France, 1968, Springer-Verlag, New
York, pp. 147-162, 1970.

[Love72]

[Luck70]

[MaRi76]

[MaUIg3]

[McDe82]

[McHa69]

[McMiT7]

[Melt66]

[Mink78]

[Mins75)

[MoLe77]

[Mylo81]

230

Loveland, D. W,, “A unifying view of some linear Herbrand procedures,”
J. ACM, Vol. 19, pp. 366-384, March 1972.

Luckbam, D., “Refinements in resolution theory,” Proc. IRIA Symp. on
Automatic Demonstration, Versailles, France, 1968, Springer-Verlag, New
York, pp. 163-190, 1970. .

Mahmoud, S. and Riordon, J. S., “Optimal allocation of resources in dis-
tributed information networks,” ACM Transactions on Database Sys-
tems, Vol. 1, No. 1, pp. 66-78, Mar. 1976.

Maier, D. and Ullman, J. D., “Fragments of relations,” Proc. ACM SIG-
MOD Int. Conf. on Management of Data, San Jose, CA, pp. 15-22, May
1983.

McDermott, D., “A temporal logic for reasoning about processes and
plans,” Cognitive Science, Vol. 6, 1982.

McCarthy, J. and Hayes, P. J., ‘Some philosophical problems from the
standpoint of artificial intelligence,” Machine Intelligence (D. Michie and
D. Meltzer, eds), Vol. 4, Edinburgh University Press, Edinburgh, Scot-
land, pp. 463-502, 1969.

McSkimin, J. R. and Minker, J., “The use of a semantic network in a
deductive question anwering system,” Proc. Int. Joint Conf. on Artificial
Intelligence, Cambridge, MA, 1977.

Meltzer, B., “Theorem-proving for computers: Some results on resolution
and renaming,” Computer J., Vol. 8, pp. 341-343, 1966.

Minker, J., “Experimental relational data base system bases on logic,”
Logic and Databases (H. Gallaire and J. Minker, eds), Plenum Press, New
York, pp. 107-148, 1978.

Minsky, M., ““A framework for representing knowledge,” The Psychology
of Computer Vision (P. Winston, ed), McGraw-Hill, New York, pp. 211-
977, 1975.

Morgan, H. L. and Levin, K. D., “Optimal program and data locations in
computer networks,” Comm. ACM, Vol. 32, No. 5, pp. 315-322, May
1977.

Mylopoulos, J., “An overview of knowledge representation,” Proc.
Workshop on Data Abstraction, Databases and Conceptual Modeling, pp.
5-12, Jan. 1981.

[NeSi72]

[Nils80]

[NoRu75]

[Oulig4]

[Quil6s]

[Quin55]

[Raph88g]

[RaWa79]

[Rebo76]

[Reit71]

[Reit78a]

[Reit78b]

[Reit81]

231

Newell, A. and Simon, H. A., Human Problem Solving, Prentice-Hall,
Englewood Cliffs, NJ, 1972.

Nilsson, N. J., Principles of Artificial Intelligence, Tioga Pub. Co., 1980.

Norman, D. A., Rumelhart, D. E. and the LNR Research group,
Ezplorations in cognition, Freeman Pub. Co., San Francisco, CA, 1975.

Oulid-Aissa, M., The Distribution and Materialization of Cross-
Referencing Data Units in a Computer Network, Ph. D. Dissertation, The
Univ. of Michigan, Ann Arbor, MI, 1984.

Quillian, M. R., “Semantic memory,” Semantic Information Processing
(M. Minsky, ed), MIT Press, Cambridge, MA, pp. 227-270, 1968.

Quine, W. V., “A Proof Procedure for Quantification Theory,” J. Sym-
bolic Logic, Vol. 20, pp. 141-149, 1955.

Raphael, B., “SIR: A computer program for semantic information
retrieval,” Semantic Information Processing (M. Minsky, ed), pp. 33-145,
1968.

Ramamoorthy, C. V. and Wah, B. W., “The placement of relations in a
distributed relational database,” Proc. Int. Conf. on Distributed Comput-
ing Systems, Huntsville, AL, Oct. 1979.

Reboh, R. et. al., “QLISP: A language for the interactive development of
complex systems,” Rep. No. TN-120, Al Center, SRI Int., Inc., 1976.

Reiter, R., “Two results on ordering for resolution with merging and
linear format,” J. ACM, Vol. 18, pp. 630-646, 1971.

Reiter, R., “On Reasoning by Default,” Proc. TINLAP-2., The Univer-
sity of Illinoi, Urbana, IL, July 1978.

Reiter, R., “Deductive Question-Answering on relational data bases,”
Logic and Databases (H. Gallaire and J. Minker, eds), Plenum Press, New
York, pp. 149-177, 1978.

Reiter, R., “On the integrity of typed first order data bases,”” Advances
in Data Base Theory (H. Gallaire, J. Minker and J. M. Nicolas, eds), Ple-
num Press, New York, 1981.

[RobiB5a)

[RobiB5b)

[RoGo77]

[Roth80]

[RuDW72]

[SAMP81]

[Schm38]

[Schm51]

[Schu78]

[Shap79]

[ShiIr84]

[ShoeB7]

[Shor76]

232

Robinson, J. A., “A machine-oriented logic based on the resolution prin-
ciple,” J. ACM, Vol. 12, No. 1, pp. 23-41, Jan. 1985.

Robinson, J. A., “Automatic deduction with hyper-resolution,” Int. J.
Comput. Math., Vol. 1, pp. 227-234, 1965.

Rothnie, J. B. and Goodman, N., “A survey of research and development
in distributed database management,” Proc. Int. Conf. on Very Large
Data Bases, Tokyo, Japan, pp. 48-62, Oct. 1977.

Rothnie, J. B. et. al., “Introduction to a system for distributed data-
bases (SDD-1),"” ACM Transactions on Database Systems, Vol. 5, No. 1,
pp. 1-17, March 1980.

Rulifson, J., Derkson, J. A. and Waldinger, R. J., “QA4: A procedural
calculus for intuitive reasoning,” Rep. No. TN-83, Al Center, SRI Int.,
Inc., 1972.

Proc. ACM SIGART/SIGMOD/SIGPLAN workshop on Data Abstrac-
tion, Databases and Conceptual Modelling, Pingree Park, Col., 1981.

Schmidt, A., “Uber deduktiven Theorien mit mehreren Sorten von
Grunddingen,” Mathematische Annalen, Vol. 115, pp. 485-508, 1938.

Schmidt, A., “Die Zulassigkeit der Behandlung mehrsortiger Theorien
mittels der ublichen Pradikatenlogik,” Mathematische Annalen, Vol. 123,
pp. 187-200, 1951.

Schubert, L. K., “Extending the expressive power of semantic networks,”
Artificsal Intelligence, Vol. 11, No. 1, 2, pp. 45-83, 1976.

Shapiro, S., ““The SNePS semantic network processing system,” Associa-
tive Networks -- The Representation and Use of Knowledge in Comput-
ers, Academic Press, New York, pp. 179-203, 1979.

Shin, D. G. and Irani, K. B., “Knowledge representation using an exten-
sion of a many-sorted language,” Proc. Conf. on Artificial Intelligence
Applications, Denver, Col., pp. 404-409, Dec. 1984.

Shoenfield, J. R., Mathematical Logic, Addison-Wesley, Reading, MA,
1967.

Shortliffe, E. H., Computer-Base Medical Consultations: MYCIN, North-
Holland, New York, 1976.

[Siek84]

[Slag87]

[SmSm77)

[SmSm78]

[SuMc72]

[TeFr82)

[Ullm80]

[Walt78)

[Walt83]

[Walt84al]

[Walt84b)

[Wang52]

[Wang80}

233

Siekman, J., “Universal unification”, Proc. Int. Conf. on Automated
Deduction, Napa, CA, (Lecture Notes in Computer Science, Vol. 170),
Springer-Verlag, New York, pp. 1-42, 1984.

Slagle, J. R., “Automatic theorem proving with renameable and semantic
resolution,” J. ACM, Vol. 14, pp. 687-697, March 1967.

Smith J. M. and Smith D. C. P, “Database abstractions: aggregation

and generalization,” ACM Transactions on Database Systems, Vol. 2, No.
2, pp- 105-123, 1977.

Smith J. M. and Smith D. C. P., “Principle of conceptual DB design,”
Proc. NYU Symp. on DB Design, New York, pp. 18-19, May 1978.

Sussman, G. and McDermott, D. V., “CONNIVER reference manual,”
Memo 259, Al Laboratory, Massachusetts Institute of Technology, 1972.

Teorey, T. J. and Fry, J. P., Design of Database Structures, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1982.

Ullman, J. D. Principles of Database Systems, Computer Science Press,
Rockville, Md., 1980.

Waltz, D. L., “An English language question answering system for a large
relational database,” Comm. ACM, Vol. 21, No. 7, pp. 526-539, 1978.

Walther, C., “A many-sorted calculus based on resolution and paramo-
dulation,” Proc. Int. Joint Conf. on Artificial Intelligence, Karlsruhe,
West Germany, 1983.

Walther, C., “Unification in many-sorted theories,” Proc. European
Conf. on Artificial Intelligence, Pisa, Italy, 1984.

Walther, C., “A mechanical solution of Schubert’s streamroller by
many-sorted resolution,” Proc. National Conf. on Artificial Intelligence,
Austin, TX, pp. 330-334, 1984.

Wang, H., “Logic of many-sorted theories,” J. Symbolic Logic, Vol. 17,
No. 2, pp. 105-116, June 1952.

Wang, H., “Towards mechanical mathematics,” IBM J. Research Dev.,
Vol. 4, pp. 2-22, 1960.

[Weyh77]

[Whit70]

[Wins77]

[WoCR64)

[WoKag3]

[WoMy77]

[Wong77)

[Wongsl)

[WoRC85)

[WoYo70]

[Yao 79]

234

Weyhrauch, R. W. “FOL, a proof checker for first-order logic,” Memo
AIM-235.1, Stanford Artificial Intelligence Laboratory, Stanford Univer-
sity, 1977.

Whitney, V. K. M., “A study of optimal file assignment and communica-
tion network configuration in remote-access computer message processing
and communication systems,” SEL Tech. Report No. 48, The Univ. of
Michigan, Ann Arbor, MI, Sept. 1970.

Winston, P. H., Artificial Intelligence, Addison-Wesley, Reading, MA,
1977.

Wos, L., Carson, D. F. and Robinson, A., “The unit preference strategy
in theorem proving,” Proc. AFIPS Fall Joint Computer Conf., Vol. 26,
pp. 616-621, 1964.

Wong, E. and Katz, R. H., “Distributing a database for parallelism,”
Proc. ACM SIGMOD Int. Conf. on Mangement of Data, San Jose, CA,
pp. 23-29, May 1983.

Wong, H. K. T. and Mylopoulos, J., “Two views of data semantics: A
survey of data models in artificial intelligence and database mangement,”
Information, Vol. 15., No. 3, pp. 344-383, 1977.

Wong, E., “Retrieving dispersed data from SDD-1: A system for distri-
buted databases,” Proc. Berkeley Workshop on Distributed Data Manage-
ment and Computer Networks, The Univ. of California, Berkeley, CA, pp.
217-235, May 1977.

Wong, E., “Dynamic re-materialization: Processing distributed queries
using redundant data,” Proc. of Berkeley Workshop on Distributed Data
Management and Computer Networks, The Univ. of California, Berkeley,
CA, pp. 3-13, 1981.

Wos, L., Robinson, A. and Carson, D. F., “Efficiency and completeness
of the set of support strategy in theorem proving,” J, ACM, Vol. 12, pp.
536-541, March 1965.

Wong, E. and Youssefl, K., “Decomposition -- A strategy for query pro-
cessing,” ACM Transactions on Database Systems, Vol. 1, No. 3, pp.
223-241, Sept. 1976.

Yao, S. B., “Optimization of query evaluation algorithms,” ACM Tran-
sactions on Database Systems, Vol. 4, No. 2, pp. 133-155, June 1979.

