RSD-TR-4-85

INTERTASK COMMUNICATIONS IN AN
INTEGRATED MULTI-ROBOT SYSTEM!

Kang G. Shin

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-1109

May 1985

CENTER FOR RESEARCH ON INTEGRATED MANUFACTURING
Robot Systems Division

COLLEGE OF ENGINEERING
THE UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN 48109-1109

YThe work reported here is supported in part by the NSF Grant No. ECS-8409938 and the U.S. AFOSR Contract
No. F49620-82-C-0089. Any opinions, findings, and conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the view of ONR. A subset of this paper was presented at the 1985
IEEE International Conference on Robotics and Automation.

1.

2.

3.

4.

TABLE OF CONTENTS

--

PORT-DIRECTED COMMUNICATIONSciieirrerecenereeceerenesesessenenns

COMMUNICATION PRIMITIVES SUITABLE FOR AN IMRS ..o,
4.1. Communications Needed for Each Process Classccoooeveveeeeeevveeeennnnn,

4.2. The Primitives Needed

--

5. BACKBONE FOR PROGRAMMING LANGUAGE FOR AN IMRS

6.

7.

5.1. The Module Structure

5.2. The Communication PrImMItIVES “......cccceoeiiivieieceirreeeeereeeeessssesssssesssssssnssssnes

--

g

12

16
17
19

25
25
32

35

41

RSD-TR-4-85

ABSTRACT

An integrated mults-robot system (IMRS) consists of two or more robots, machinery
and sensors, and is capable of executing almost all industrial processes with efficiency,
flexibility and reliability. Although the IMRS is motivated by an interesting application,
it is essentially a distributed, real-time processing system with various heterogeneous
processes.

In order to support a distributed, modular architecture of the IMRS, we propose in
this paper low-level communication primitives and their supporting language syntaz
which are typical of real-time concurrent programming languages. This is done by (i)
carefully examining the generic structure and interactions of IMRS processes, (ii) com-
paring and analyzing the primitives and syntax developed/proposed for general con-
current programming, and (iii) using port-directed communications.

We have chosen a complex chip insertion process to illustrate the selected primi-
tives. Our solution shows the effectiveness of the IMRS communication mechanisms.

Indez Terms - multi-robot system, robot languages, real-time constraints, (robot)
processes, subprocesses and (computational) tasks, module architecture, concurrent pro-
gramming, communications and synchronization, port-directed communications, blocking
and nonblocking primitives.

Intertask Communications 2

RSD-TR-4-85

1. INTRODUCTION

There are numerous advantages in using a multi-robot system(MRS) for manufac-
turing applications. For example, the system throughput or productivity can be
increased by exploiting the inherent parallelism, structural flexibility can be accommo-
dated for diversified applications, and even system reliability is achievable via the mul-

tiplicity of robots.

Conventionally, MRS's are all centrally controlled; that is, control tasks for an
MRS may be distributed over a network of processors but are all executed under the
supervision of one central task. Heterogeneous controllers in such an MRS are made to
converse via a standard communication protocol, e.g., GM’s MAP[BROWS4]. By using

a network to tie MRS's components together, it is possible to have robots working

! instead of workiug independently. Although almost all

together to solve processes,
manufacturing processes can be handled by the conventional central controller, com-
munications bottienecking and unreliability (that occurs at the central controller)
become major problems. For this reason we have defined in [SHIN85] a new MRS,

called integrated multi-robot system (IMRS), as a collection of two or more robots, sen-

sors, and other computer controlled machinery, such that

e each robot is controlled by its own set of dedicated tasks, which communicate to

allow synchronization and concurrency between robot processes,

e the tasks are executing in true parallelism,

! “Process’” will be used to denote the industrial output of the MRS, which is accomplished by a set of
“‘tasks” executing on one or more processors.

Intertask Communications 3

RSD-TR-4-85

e it is adaptable to either centralized or decentralized control concepts,

e tasks may be used for controlling other machinery (e.g., intelligent device driver
for CNC'’s), sensor I/O processing, communication handling, or just plain compu-

tations.

Further, we have developed in [SHIN85] a high-level abstraction of IMRS communica-
tions, called a module archstecture, to support an IMRS; this will be discussed briefly in

Section 2.

The rgasons for needing a structured solution to the IMRS problem are fundamen-
tal. The distributed nature of the IMRS will make programming more difficult, error
prone, and subject to complicated communications control techniques. Two immediate
places where structuring is needed is in the design of a module (the computational
entity that controls an indivisible subprocess in the system) and the intermodule com-
munications. Borrowing notions from software architecture, it is important to encapsu-
late the implementation of a subprocess into a single module, showing only interface

information to other modules. If the software is structured in this manner, then
(1) the system is easily adaptable,
(2) the system is maintainable,

(3) taking the step from the process structure to its module implementation is easier,

and

(4) the complexity of the system is reduced.

These are just some of the benefits of having a well-structured module and intermodule
communication structure. Before jumping into our presentation of the proposed solu-

tions, we first look at other approaches used in related areas and discuss why these

4 Intertask Communicaticns

RSD-TR-4-85

cannot be ported to the IMRS.

There are numerous robot languages (see [BONN82] for a survey) which can con-
trol more than one robot simultaneously, the most advanced being ALMUJT79]. AL
allows one program to control two robots at once. By using cobegin-coend pairs, a
programmer can initiate two pseudo-concurrent tasks. They can be synchronized using
the event data type (integer semaphores). The principal motive behind this design was
to allow cooperation via serializing the execution of tasks for each robot’s motions by
using events. This restricts the potential amount of parallelism that can be attained.
It would be more efficient to let each robot process run under the control of its own

tasks, with synchronization {or rendezvous) at designated points in the programs.

Some work has been done on distributed industrial process control[STEU84], but
the results are not easily transportable to an IMRS. [STEU84] has described a distri-
buted, fault-tolerant system used for controlling soaking pit furnaces. The furnace sys-
tem is controlled by a real-time concurrent language called ‘“‘Multicomputer PEARL.”
PEARL allows the transmission of information from one task to another by message
passing and remote procedure calls. Each furnace is controlled by its own microcom-
puter system, and the microcomputer systems are logically paired so should one system
fail, the corresponding mate computer system would control two furnaces. This system
is repérted to be highly fault-tolerant, having only 11 hours of down time in more than
24,000 hours of use. This figure is indeed impressive, but the classes of parallelism
involved in the furnace application are far less complex than the classes of parallelism
needed in an IMRS. The action of one IMRS process could completely alter the action
of another IMRS process, or robots might have to work on one .common process, requir-

ing tightly-coupled communications and synchronization. Because of the more dynamic

Intertask Communications [

RSD-TR-4-85

nature of the IMRS, a more intricate, flexible communications structure is needed.

There has been a considerable amount of research in concurrent programming
languages. Many languages have been created, each utilizing différent primitives to
allow communication and synchronization. Andrews [ANDR83] has classified con-
current programming languages into three classes — procedure-oriented, message-
oriented, and operation-oriented. The last two classes are most suitable for an IMRS
because the IMRS is inherently distributed. Some languages which fall into this class
are Distributed Processes (DP) [HANS78], Communicating Sequential Processes (CSP)
[HOAR78], Thoth [GENT81], and Ada [DODS82]. Although each language uses different
communications mechanism, it is claimed that for common concurrent benchmarks (i.e.
dining philosophers problem, bounded buffer) the mechanisms of any of these languages
can be used [ANDRS3], and that at an abstract level, their powers are equal. However,
for real-time industrial process control, these languages are virtually untested. We
expect real-time process control languages to evolve over time, and making a statement
as to thé best primitives to use would be futile. Different problems place different
demands on the underlying language, and as computers and robots are used to auto-
mate more complex processes in the future, needs will be generated for new communica-
tions primitivés. Regardless of the communication primitives used, it will be necessary

to structure the communications into well-defined channels for many reasons:

(a) IMRS’s will probably be programmed by groups of people, and thus a structured
interface between their respective pieces, while kiding implementation details, will

be necessary.

(b) Debugging the IMRS will be easier if declared communication channels exist.

6 Intertask Communicziions

RSD-TR-4-85

(c) Heterogeneous components will need to be linked via communications, and a clear,

flexible design will allow easier integration.

(d) Implementation of distributed communications will be easier.

Certainly one could come up with more reasons than these to justify the need for
structured communication channels. Ada’s entry-accept mechanism can be viewed as
a channel, but except for this, none of the other concurrent programming languages
provide structured channels. Later in this paper, we use ports [SILB81] to structure the

intermodule communications of an IMRS.

This paper is organized as follows. We briefly review in Section 2 the module
architecture that we have developed in [SHIN85]. We advocate the port directed com-
munications for an IMRS in Section 3. In Section 4 we identify first communication
needs for each process class and then propose the primitives most suitable for an IMRS.
In Section 5 we combine all notions of the module architecture and the primitives into
a communication structure. Section 6 is concerned with demonstrating how the
selected primitives and structure can be used by using an example IMRS which is typi-
cal of manufacturing applications. Section 7 concludes the paper with a brief mention

of the remaining work needed to implement an IMRS.

2. REVIEW OF MODULE ARCHITECTURE

As was pointed out in the Introduction, the term “process” will be used to mean
an sndustrial (but not computational) process, which could be decomposed into scveral
subprocesses. Each subprocess may be accomplished by executing a module in a com-

puterized controller. Each module can be decomposed into computational tasks.

Intertask Communications 7

RSD-TR-4-85

For completeness we briefly review the module architecture in [SHIN84]. Our
development toward a module architecture began with the classification of IMRS
processes, which is given in Table 1. Each process is broken into two or more sub-v
processes, whose intended work may cr may not be dependent. The actions taken (in

both the software and hardware) to achieve each subprocess also may or may not be

dependent.
Subprocesses Actions ’ Process Class
Independent Independent Independent
Independent Dependent Loosely-Coupled
Dependent Dependent Tightly-Coupled
Dependent Independent Serialized-Motion

Table 1 - The Four Basic Process Classes

In Table 1 table we have named each of the four possible process classes appropriately.
The formal definitions of each process class conform to the different interactions

between subprocesses and their actions. Examples of each class are:

A. Independent Processes: Two robots exist on the same plant floor, but the work for
each robot is independent of the other’s and is blind to the other’s existence.
Each robot may depend on common state variables (e.g. conveyor belt). The
values of these state variables are determined by many different tasks, and thus

simultaneous changes must be handled reliably (e.g. by use of a proprietor or

administrator [GENTS1]).

8 Intertask Communications

RSD-TR-4-85

B. Loosely-Coupled P(occaaca: Tool sharing is an example of this class. If robot A is
using tool T, another robot B may be forced into either waiting for tool T, or into
performing another action not involving tool T. The work of each robot is
independent, but the individual actions taken are not. Collision avoidance
between two robots executing independent processes but sharing the same

workspace is another example of a loosely-coupled process.

C. Tightly-Coupled Processes: One example of a tightly-coupled process are two
robots which must grab a long steel beam off a conveyor belt. The action of one
process must be tightly-coupled to the action of the other process, otherwise the

beam could slip or damage could occur to a robot.

D. Serialized Motion Processes: We have chosen the name serialized motion because
the most practical process illustrating this interaction involves serializing the
action of different robots. If subprocess A must be executed before subprocess B
can commence, then A and B form a serialized motion process. The use of one

robot as a generalized fixture for another robot is an example of this.

E. Work-Coupled Processes: This class is not listed in Table 1 because it is not a
basic process class. If two processes are work;coupled, then should one process
fail, the other will perform error recovery and take over the responsibilities of the
failed process. It is obvious that the process will also be one of the four aforemen-
tioned processes. Work coupling may be one-way or two-way, depending on the
ability of the equipment to be used toward either process. The furnace pit opera-

tion described in [STEU84] utilizes two-way work coupling.

The process structure of an IMRS is hierarchical. The main process is divided into

many subprocesses, which are further divided, and so on. Eventually, the industrial

Intertask Communications 9

RSD-TR-4-85

process is divided into many indivisible subprocesses. Each of these subprocesses will
be programmed with a module. The module architecture refers to (i) the structure of a
module, and (ii) the logical structure and/or communication channels that connect the
modules in an IMRS. Note that, when a distributed network is used, the hierarchical

structure offers several advantages, e.g., easier impiementation and better adaptability.

Because a module controls an indivisible subprocess, we will often use ‘‘task”
instead of ‘“‘module.” We do this when we are concerned with the mbdule’s function,
and thus the work of the primary, not auxiliary tasks. This notation makes our later

discussions more comprehensible.

We have proposed the module architecture for an IMRS to be an n-ary tree, that

is formed by task creation.? When a task is-created, it becomes a child of the task that
created it. This parent-child .relationship between the tasks always exists, but the
amount of communications between the two will be different according to the class of
process that the tasks are controlling. Under most circumstances, communication chan-
nels among child tasks will be directly established, with the parent task playing a
minor role. This is termed horizontel communicaetions. Note in this case that despite
the parent-child relationéhip via task creation, there is little need of communications
between the parent and its child tasks. However, in some cases the parent must tightly
control its child tasks. This is termed vertical communications, which is characterized
by a close-knit relationship between a parent and its children. Note that these

approaches represent centralized and decentralized control, respectively.

Vertical communications are defined as communications between a task and any

of its descendant tasks. Simple vertical communications are those which occur between

2When a task begins executing.

10 Intertask Communications

RED-TR-4-85

a task and its immediate child tasks. If the standard n-ary tree is drawn with children
placed under their parents with an arc cconecting them, communications between a
parent and a descendant occur verticzlly in the tree. Horizontal communications are
defined as communications that cccur between tasks that are not related vertically (i.e.,
a sibling, cousin, or uncle relationship exists between the tasks). Simple horizontal

communications are those which occur among the children of a common parent.

Vertical communications are used in most currently existing MRS’s. Synchroniza-
tion of child tasks is achievable by having the parent issue directiveé, i.e., interrupts.
This scheme is easy to program and efficient, provided that (i) the number of child
tasks is small, (i) the IMRS processes are not apt to be modified often, (iii) the parent
task is very reliable, and (iv) the child tasks are not computationally intensive. How-
ever, if (i) is invalidated then communications bottlenecking occurs; if (ii) is invalidated
then changes will have to be made to more than one task in the system and will result
in down-time; if (iii) is invalidated then the system is vulnerable to a single failure in

the parent; and if (iv) is invalidated then parallelism is not being exploited.

Horizontal communications ameliorate the IMRS significantly. Allowing tasks to
communicate directly without a centra! controller (i) reduces the chances of a
bottleneck by exchanging messages among children, (ii) keeps all the code for each sub-
process local to one module, (m) increases reliability because all the subprocesses do not
rely on one central ccatrol task, and (iv) allows more parallelism because each child
task is not blocked as often as in the vertical case, where child must always await a

directive from the parent.

How may horizontal message communications be realized? Each module will con-

tain a message handler (MH), which receives and forwards messages among other

Intertask Communications 11

RSD-TR-4-85

modules horizontally. The MH would be part of the operating system, and wouid not
only act as an interface message processor (performing all the detailed work of the
communications as in Arpanet [McQU77]), but also as a real-time scheduler. The MH
for each module will have to decide (based on task, message, and communication chan-
nel priorities) what is the most urgent thread of control to resume. Naturally the
structure of an MH depends on the system being used. For example, if all the tasks of
one module executed on a uniprocessor, then the MH would have to decide if it was
more important to let the current task continue or to unblock a blocked task. One
possibility for giving the user control of the MH is to use a rule-based ezpert system’
for the MH which allows an application programmer to provide the dynamic decision
rules. Horizontal communications between two tasks involve having a message traverse
the links from the source MH to the destination MH (naturally the best route would be

chosen). By providing multiple links to every module, reliability is achieved.

We have briefly suxﬁmarized the results of our previous work contained in
[SHINS85]. Particularly, we have stressed that there are two types of communications:
vertical (centralized) and horizontal (decentralized) communications. A more complete
justification and examples of our ideas are contained in that work, as well as several

other facets not discussed here (e.g., task creation and destruction).

3. PORT-DIRECTED COMMUNICATIONS

As is often the case, there is a trade-off in complexity between the data structur-
ing facilities and program complexity without the data structuring facilities. We have
found that structuring the communication channels, as if they were a data type, leads

to simpler programs. The basis for our intertask communications is ports [SILB81].

3This is purely conjecture; the development of such a system is not a subject of this paper.

12 Intertask Communications

RSD-TR-4-85

We first discuss ports before proposing in Section 4 the communication primitives that

use the ports.

Although such structuring introduces an additional hidden overhead, we choose to

use ports to achieve this structuring due to mary advantages including:

e Accessing a port does not require the program to be dependent on the existence of
a task. Thus, fault tolerance is improved since communications can be redirected

by moving the end of a port.

e Communications are structured into channels that are declared by the user. This
is easier to use than direct naming, allows for more reliable and fault-tolerant

computing, and lowers the number of needed primitives.

e The ports can be tailored to individual needs, providing the benefits of both 1-

and 2-way naming.

One task declares the port, and is said to own the port. The other tasks desiring
to use the port must declare this intent in their specification sections (e.g., [SILB84]
employs a use statement in CELL). The declaration section of a port is allowed to
include restrictions to tailor the port to individual needs. The primary benefits are 1)
the declaration of ports allows for an adaptive communication system, 2) a smaller set
of primitives can be used, and 3) interfacing different modules is easier. It should be
noted that ports are logical channels; the physical communication channels depend on

the underlying implementation.

In the most general case, there are many users and one owner. The number of

users can, theoretically, be unbounded, but is limited by the size of the memory buffers

Intertask Communications 13

RSD-TR-4-85

allocated. Bytes are sent between the users and the owner in free format, and it is the
responsibility of the primitives that access the port to ensure compatibility. One of the
primary values, however, is that when a port is declared, restrictions [SILB81] can be
included to configure the port to certain specifications. Restrictions can be placed on
either the user end or owner énd of the port, (i.e port user restrictions or port owner

restrictions).
Our proposed port restrictions are:

(1) Message Format Restriction: This restricts the messages at compile time to a
declared format. The owner and users of a port declare the message format that
the port can handle, which would then be tested for compatibility at load-time.
The format could be a record or a typed formal parameter scheme as in Ada. The
advantages of this restriction are accidental misuse can be flagged at compile time,
the declaration shows how the port is used, and the run-time mode is more effi-
cient. Further, an underlying implementation may fix the packet size (i.e., 32
bytes in Thoth [GENTS81] and the V-System [CIIER84]), and this restriction
allows compile time warning of an inefficient size message, i.e., one requiring mul-

tiple packets.

(2) Message Direction Restriction: By restricting the direction of messages
through a port, incorrect local usage can be flagged at compile time, incorrect glo-
bal usage! can be checked when a task is loaded, and the intertask communicaticn
structure is easily observable. How this is done depends on the primitives. Ada

declares the direction of parameters, since they use the remote procedure call

‘Both a user and owner of a port may accidentally declare its “opening” as an input end of the port.
Since we are allowing separate compilation, this cannot be flagged until the tasks are loaded, even though all
the communications on the port are compatible with its definition. This is incorrect global usage, but is
correct local usage.

14 Intertask Communications

RSD-TR-4-85

(accept). Another way, the one we prefer, is to use send-receive-reply with the

port being declared as a send or receive port.

(3) Port User List Restriction: This is a port owner restriction that allows the
owner to restrict the set of possible users. The advantages are 1) it is possible to
create ports between only two tasks, instead of the current many-to-one seman-
tics, and 2) an efficient run-time implementation is possible. When the port owner
of users are loaded, system routines will have to test for conflicts and generate

load errors if necessary.

(4) Number of Active Users Restriction: This is similar to the Port User List Res-

triction, except instead we limit the number of active communicating users of the
port. The rational behind this restriction is that it limits the run-time message
buffer space permitting static buffer allocation instead of dynamic. As in the

prior restriction, a load error results if a conflict results.

(5) Port Fiiter Restriction: A filter is just a concurrently executing task that inter-
cepts, processes, and relays the messages. It is as if the port was cut into two
pieces, with the filter spliced in. A filter can be placed on either the user end, the
owner end, or both. The filter task would declare the port along with the restric-
tions. Primitives in the filter referencing the port cause the messages to be
transferred between the filter and the other module (or vice versa). To communi-
cate with the module that declares the port and filter, the primitives in the filter
will reference the predefined port name FILTER. For example, suppose task T
owns a port P with 2 filter F as a restriction. Then in task F, primitives address-
ing P will communicate with a user of port P, while primitives addressing FILTER

will communicate with task T. A common filter will be a bounded buffer used to

Intertask Communications 15

RSD-TR-4-85

)

simulate a nonblocking send. A device driver is another use of a port filter. If
all of a port’s messages needed to be passed through the same filter, then the filter
is placed on the owner’s end. Likewise, if a particular user needed its own filter,
then it would be placed at the user’s end. Thus the port declaration in the owner
and user can each name filter tasks. The filter tasks can raise exceptions when

necessary, invoking handlers in either the filter or the task using the port.

Timed Port Restriction: Since we are dealing with a real-time system, we pro-
vide a check that messages are delivered within a time limit. A timed port restric-
tion can be placed at both the user and owner end. If either the one-way message
or two-way rendezvous (depending on the primitives) is not completed by the
designated time, then the operating sysiem would raise a timeout exception in the

originating task.

Port Priorities: Port priorities are used to resolve queueing conflicts. A single
port priority declared by the owner will be sufficient. The owner end priority
would be used to determine the highest priority nonempty port, for nondeter-
ministic constructs. We could also allow user end priorities which would give a
further degree of flexibility (and complexity). The overhead of this approach is

not justifiable, and so we prefer a single priority per port.

These restrictions provide the user an easy way of tailoring and adjusting the

communication channels the programs use. Rather than requiring inline code that fixes

the communications to a task, the code fixes the communications to a port.

4. COMMUNICATION PRIMITIVES SUITABLE FOR AN IMRS

Designing a set of primitives for a language is a difficult task. The primitives

should be general enough to solve a broad class of problems on many architectures, yet

16

Intertask Communications

RSD-TR-4-85

at the same time provide efficient, reliable, structured, elegant solutions to them. CSP,
DP, and Ada have vastly diiferent semantics, and although each language can be used
to solve virtually any concurrent zpplication, there are wide variations in their elegance
and efficiency [WELS81]. Our work is geared toward IMRS processes which can be
categorized under the five process classes of Section 2 and [SHIN85]. These five classes
are broad enough to include almost all manufacturing processes. The categorization
places stringent demands on the communications system, since each class has different
interactions between subprocesses and actions to be taken. We will begin with the
identification of communications need for each IMRS process class which will then lead

to selection of the primitives.

4.1. Communications Needed for Each Process Class

Independent Process: Use and update of state variables through proprietors will be the
most ccmmon communications need of an independent process. Another use of for
independent processes is a job reporting process that performs inventory, statistics,
and material handling operations. Depending on the urgency of the communication,
different methods are required. Nonblocking message passing would be used when
message receipt is not time critical or mandatory. Blocking message passing would be
used when the sending task could not continue until it knew for certain that the desti-
nation task had received the message (e.g., sending a status update to a database in
the console room). A task that is part of an independent process may even need a
response to a message before it can continue (i.e., a state variable must be changed if
the task is to continue operating). These needs require message passing and remote
procedure calls. To no surprise, these are the communication primitives needed for

the furnace application [STEU84], which can be classified as an independent process.

Intertask Communications 17

RSD-TR-4-85

Loosely-Coupled Process: Because. the actions depend on one anothe:, the controlling
tasks are constantly sending messages between themselves regarding their actions and
status. When a task reaches a point in execution where it is about to perform the
next step in the subpr;)cess, it needs to know the status of the other subprocesses. It
can either look into a local database, ask the other process for its status, or ask a
server task for information about the state of the process. The first approach requires
message passing between tasks, the second remote procedure calls, and the third a
proprietor or monitor. Because the tasks contro! independent subprocesses, synchroni-
zation points between tasks are not .needed. Thus, nonblocking semantics are pre-
ferred for this process class. The communications must be quick, since actions in the
process are delayed while the communications are being performed. Efficiency is less
of a concern here because the frequency between messages is bound by the actions of

the process, which are infrequent in comparison to processor cycles.

Tightly-Coupled Process: The subprocesses of this process are controlled vertically,
with the child being a slave of the parent. The child should always perform an action
requested by the parent immediately. The child will probably have to return a status
message after each directive from the parent, so the parent can decide the next direc-
tive to give to the child. Thus a remote procedure call is sufficient. An interrupt
approach would lead to a more inefficient, and unnatural solution for tightly-coupled
processes. Since the remote procedure calls will likely be executed often, it is crucial
that its implementation not entail too much overhead. Roberts [ROBES81] suggests

that this may be difficult, and that lower-level primitives should be used instead.

Serialized Motion Process: This class requires one or more subprocesses to be per-

formed before another subprocess can commence. In the simplest of cases, this class

18 Intertask Communicaiions

RSD-TR-4-85

simply requires signal/wait synchronization primitives.’ In more complicated cases,
information wou!d have to be conveyed between tasks, so the blocking message pass-
ing could be used. We prefer to use inessages for both cases, with null messages for
- signal/wait. The only difficuity is that synchronization between several tasks is dif-

ficult and a primitive for this is needed.

Work-Couplcc; Processes: Each task will have to maintain an updated database of all
the other tasks to which it is work-coupled. Thus blocking message passing is needed
(premature unblocking of a task would cause problems if a crash occurred Gefore
several of the sent messages were received). As soon as one of the tasks of the work-
coupled process receives the update message, the original task may unblock. Care
must be taken that the update messages are properly forwarded to each task invoived

in the work coupling (i.e., the messages will have to be sequenced so the database can

be correctly updated should the messages arrive in improper order).®

4.2. The Primitives Needed

Choosing the primitives for an IMRS is as, if not more, important than the robot
interface. Using ports takes major strides towards integrating individual modules, but
the primitives dictate how easy it is to perform the communication and synchroniza-
tion between modules. As mentioned in the Introduction, there are many concurrent
programming languages, but the usefulness of each primitive has not been proven in
real-time distributed systems. As distributed systems become more popular, we expect
the communications to evolve. ' In this section we present the primitives that are

appropriate for an IMRS. This is based on the discussions in Sections 3 and 4.1.

5These processes are the ones handled in AL by using events [MUJT79).

®This probably would not happen because the delay between the steps in an IMRS process are much
greater than the message propagation delay, but should nevertheless be performed for reliability.

Intertask Communications 19

RSD-TR-4-85

Primitive Semantics

send blocking send.

receive blocking receive.

reply nonblocking reply.

query Used to asynchronously invoke statments in one task from

another task. Preemption may occur depending on the
priorities given in the order statement.

response A block of code at the end of a task that is
asynchronously invoked by queries from other tasks.

order , Used to prioritize conditions in a task.

waitfor Multiple-task synchronization and communications.

Table 2. Commauniscation Primstives Needed For an IMRS

send, reccive, and reply are used for both blocking and nonblocking message
passing (see [GENTS81] for a good discussion on these prﬁnitives). The semantics are
straightforward, as are their implementations. If task A issues a send to task B via a
port, then task A will remain blocked until it has received a repiy from task B. Task
B executes a receive on a port. If task B executes its receive before the send has
occurred, it becomes blocked. Task A remains blocked until a reply is executed by
task B, thus every send-receive sequence requires a reply to unblock tasks. The
reply is nonblocking because task B knows that task A is already blocked at a send,

thus when the reply is executed, task B does not need to block. 2-way naming (CSP)

"However, we will not discuss the actual design of a robot programming language, which requires other
developments such as a real-time distributed operating system, CAD/CAM interface, etc., and is expected to
take several years to complete.

20 Intertask Communications

RSD-TR-4-85

can be attained by using a port user restriction. l-way naming (DP, Ada) can be
attained by using a port without user restrictions. Nonblocking semantics are
attained via a bounded-buffer port filter. An advantage of these primitives is that the
protocol is a 2-way message- transfer so remote procedure calls are effectively simu-
lated, and the work done by Birrell and Nelson in creating reliable communications is

applicable[BIRR84].

An efficient implementation of send-receive-reply is not difficult. By using
queues for tasks blocked at a send or receive, tasks are removed from the active task
pool and busy waiting is avoided. Using ports introduces additional run-time over-
head (due to the extra level of indirection), but the implementation is not iany more
complex than the implementation discussed by Roberts et. al. [ROBES81]. Roberts et.
al. also discuss why busy waiting might be preferred over queues (which involve con-
text switches when implemented on a uniprocessor). They state that context switches
are more expensive than busy waiting when the communications are significantly more
frequent than the computations. Except in the tightly-coupled processes of an IMRS,
the intertask communications will occur relatively infrequently in comparison to the
computations (i.e., at natural intervals in the IMRS process, which are few and far
between). Thus, ways need to be investigated to allow busy waiting for primitives
using ports in a vertically controlled tightly-coupled process. Ome possibility is to
create a process type restriction, that allows the user to specify the process class of the
port. The code generated for a port could then use the process type restriction to
optimize the produced ccde. There are, of course, other ways to cause a compiler to
produce different code (e.g. metacommands), and the advantages of each must be

examined.

Intertask Communications 21

RSD-TR-4-85

The query, response, and order statements are used to allow one task to inter-
rupt another task. When a task needs information from another task, it queries the
other task through a port. This is similar to an exception being raised in Ada or
PL/I, except it happens across task boundaries. This cannot be simulated by using
multiple tasks, because tasks cannot share common variables. The appropriate
response handler at the other end of the port is then executed. Two differences
between the query - response mechanism and Ada exceptions are: (i) Ada does not
allow parameters to be passed, and (ii) after an exception handler has executed, con-
trol does not contiﬁue from the interrupted point. The query is thus similar to a
remote procedure call, except it preempts the current thread of control. The query
causes the response to be raised in the task that owns the port Portname, provided
the user is doing the query. Alternatively, but less useful, the owner could execute the
query and one of the users would be interrupted. (A parent could query its children

to check their status.)

A technical problem with the query - response is that in a real-time system, a
more urgent operation should not be interrupted by a query. Silberschatz [SI1.B84]
has proposed an order statement, which is remotely similar to what we need. His
order statment is used in CELL to specify the priorities of threads of execution as
they become unblocked. The order statement is essentially a directive to a user pro-
grammable scheduler, The order statement contains a list of the different sections of
a task arranged according to their priorities; a preemption requested by a query will
occur depending on the order. The sections of a task that appear in the order state-
ment are the response handlers, procedures, functions, and background code. This
gives the programmer real-time control over the different sections of a task, which is

needed in an IMRS and likely to be needed in other process control systems.

22 Intertask Communications

RSD-TR-4-85

The last primitive is the waitfor primitive, and is needed to allow more than
two tasks to synchronize and communicate. Consider, for example, how to perform
three way synchronization and communication with the other primitives. One
approach .is to have one task issue two comsecutive receives. The other two tasks
would then issue sends to this task via a port. This simple solution unfortunately has
flaws: (i) the asymmetry allows communications only between the send'ihng tasks and
the receiving task. Even though three tasks are synchronized, the two sending tasks
cannot directly communicate. (ii) The solution is not very safe, since accidental
misuse could easily occur if the wrong task entered the three-way synchronization by
performing a send. (iii) The source code in all three tasks does not make clear what is
really intended. (iv) This method is inefficient as the number of tasks grows. The
problem is that the send-receive is designed for a two-way rendezvous only. The

waitfor primitive is our proposed primitive to perform n-way rendezvous.

A call to waitfor includes a message, a function name, and a list of the tasks
with which to synchronize. The semantics are as follows. When a task executes a
waitfor, it remains blocked until all the tasks named in its waitfor list have exe-
cuted a waitfor. When a set of tasks unblock because their waitfor list become
satisfied, the named function in each waitfor would be executed. When the function
is completed, execution of the task continues after the waitfor. The functions would
have read access to all the messages pooled by the tasks involved in the synchroniza-
tion via the waitfor. The rational behind having these functions is that each task
will have to respond differently according to the messages. The function would be
written by the user, and would return a single message by operating on the pooled
messages. To be correctly used, if task A executes a waitfor, it should not be allowed

to either unblock other tasks yet remain blocked or unblock itself yet have a task on

Intertask Communicaticns 23

RSD-TR-4-85

one of the unblocking tasks’ waitfor lists still remain blocked. Since it is too costly

to insure this feasible at run-time, the user is made responsible for avoiding deadlock

and insure correct usage.?

Note that this is not a language primitive, but a system call, that provides an
easy-to-use method of multitask communications and synchronization. Further, note
that since many tasks are involved in a symmetrical rendezvous, ports are not applica-
ble, so the waitfor does not use ports. To implement the waitfor, a mcssage will
have to be sent to every processor that contains a task in its waitfor list. One mes-
sage would originate, and be relayed among the necessary processors. Except for an
unavoidable framing window, the synchronization occurs simultaneously. Once again,
it is intended that each task unblocking because of another task executing a waitfor
is named in all the waitfors of the unblocking tasks. That is, each unblocking task
has identical waitfor lists. To require this would need run-time testing, and thus the

looser semantics are preferred.

How should we handle nondeterminism and dequeueing of messages? To obtain
nondeterminism, Ada’'s select statement is preferred. We do not really want complete
nondeterminism in an IMRS, since we must alwé.ys be able to predict what will occur
in a given situation. Thus, if more than one select alternative is open (i.e., ready to
communicate), we choose the message in FIFO fashion from the highest priority port.
(See the port priority discussion in Section 3.) Silberschatz [SILB81] prefers complete
nondeterminism in dequeucing messages from a port. This will not work in a real-time
system. Alternatively, Gentleman[GENT81] proposes that port priorities can be simu-

lated by using receive-specific messages (2-way naming), or by using an additional

®[t may even be possible to define a predefined array or record of task names. Rather than giving a list
of task names to waitfor, the record could be given. This could speed run-time efficiency, and may help

24 Intertask Communications

RSD-TR-4-85

task to receive the message. These alternatives can be used, but lead to more
unstructured solutions. The queueing and dequeueing should be handled by a sys-
tematic set of rules, not by burdening the application programmer. If ports do not
have a priority, they are given a default priority lower than any user-specifiable priori-
ties for ports. This scheme will cost slightly more to implement than nonpriority
ports, because the run-time efficiency can be spared at 3 cost of extra storage by

appropriately using pointers into multiple linked lists.

5. BACKBONE FOR PROGRAMMING LANGUAGE FOR AN IMRS

In this section we combine all our notions by proposing a new robot programming
language, called LIMS (Language for an Integrated Multi-Robot Systems), {.hat is neces-
sary to program an IMRS. LIMS will have similarities with Ada and AL, yet neither of
these languages provide the features we need. Modifying either of these to our needs
would cause more confusion than simply extracting the needed features. Our presenta-
tion of LIMS is incomplete, omitting details not pertinent to the IMRS intertask com-
munications or module architecture. The presentation is broken into two subsections,
the first deals with the module structure, and the second with the communication prim-

itives.

5.1. The Module Structure

LIMS provides three distinct program units, modules, tasks, and subprograms
which are hierarchically arranged. An I}MRS consists of several large processes, which
can be recursively divided into many subprocesses. As discussed in [SHINSS], this
recursive subdivision of processes leads to a tree-like structﬁre. Eventually the leaf

nodes are reached, which correspond to indivisible subprocesses. The physical process

Intertask Communications 25

RSD-TR-4-85

hierarchy now yields way to the software hierarchy. Each of the nodes in the process
tree will be controlled by modules, which are ideally executing in parallel. A module
will consist of several concurrent tasks, each of which can contain subprograms (i.e.,
procedures and functions). We only discuss modules and tasks here, since these are
the concurrently executing entities. The subprogram unit is identical to the Ada sub-

program unit (see Chapter 6 of the Ada Reference Manual [DoD82)).

Modules and tasks are very similar to each other and resemble Ada tasks. Each
will contain two components, a specification and a body. In the grammars that follow,
an item in “{}" can be used zero or more times, an item in “[]” is optional (i.e., can

H__H

appear zero or one time). Statements within two are comments. A module specif-

ication is as follows.

debugging.

28 Intertask Communications

RSP-TR-4-85

module_spec := module mod_id
[is
{dec_option 3}
end [mod_id]] ;

dec_option := task task_id
| response resp_id [param_list]
| port port_id param_list {owneroption}
| useport port_id param_list {useroption}

param_list == almost equivalent to Ada formal_part [DoD82]
- we allow NULL parameter lists. —

owneroption :== usage== usages
| ##users== integer_const
| userlist=(task_or_mod { ; task_or_mod})
| filter== task_id
| timeout== numeric_const timeunit
| priority== integer_const
useroption ::= usage== usages

| filter== task_id
| timeout== numeric_const timeunit

usages = send | receive | query | response
task_or_mod := task_id | mod_id
timeunit = msec | sec

process_type ::== INDEP | LOOSE | TIGHT |SERIAL | WORK

Table 8. A Module Specification.

Intertask Communications 27

RSD-TR-4-85

The body of a module will take on the following form.

module_body ::= module body mod_id is
[declarative_part]
[hardware
hardware_decl
{hardware_decl}]
[work_schedule
work_step
{work_step}]
[order_statement]
begin
sequence_of_statements
[response
response_handler
{response_handler}]
[exception
exception_handler
{exception_handler}]
erd [mod_id] ;

hardware_decl ::= --Implementation-dependent, these declarations

will contain information concerning physical

devices, I/O channels, etc. This is similar

to PEARL's divisions [STEU84] and AML's defio [IBM81].--
work_step = integer_const | subprogram_call {, subprogram_call };
order_statement ::= (priority_id { ; priority_id})
priority_id = mod_id | resp_id | excep_id | subprogram_id

response_handler ::=when port_id.resp_id {| port_id.resp_id} [actual_param_list] =
sequence_of_statements

exception_handler ::=when excep_id {| excep_id} param_list ==>
sequence_of _statements

Table 4. A Module Body.

28 Intertask Communications

RSD-TR-4-85

The module specification declares (i) the tasks that are crecated when the module
is created (i.e., all the bodies begin execution concurrently), (ii) the response handlers,
(iii) the ports that it owns, along with the needed restrictions, and (iv) the ports that
it uses, along with the needed restrictions. Each declared response handler must have
a corresponding handler in the module body, otherwise a load error will result. The
port owner and user options are the restrictions discussed in Section 3. The usage
(message direction) restriction cannot use the Ada modes in, out, and in out because
they do not match unicuely to our primitives. Thus we must use modes which
correspond to our communication primitives that use on the ports. When an owner
declares a usage restriction, the owner can only access the port via the primitive
named. A port user can also declare a usage resiriction. By declaring usage restric-
tions, it is easy to examine the communications taking place through the port, and
compile time checking can be done to make sure each port is correctly used. When
the tasks are loaded, compatibility between the usages can be checked just once. Note
that a task that issues a receive on a port must eventually issue a reply on the same
port to complete the protocol. Also note that the userlist restriction syntax allows
either a task or module to be named. This is because the two are identical as far as

the communications go.

A module body is similar to an Ada task body, the only differences being that
after the declaration section we include two divisions [STEU84] and an order state-

ment, and before the exception handlers there are response handlers.

The first division is a hardware division, which allows the programmer to define
the process dependencies for the program. Examples might be the existence of a

gripper switch, force sensor, or vision system. We leave this unspecified, for this is

Intertask Communications 29

RSD-TR-4-85

implementation dependent, i.e., a welding system will have one set of types or verbs,

while an assembly system will have a different set.

We also provide a work schedule division. The philosophy behind this is to place
all the statements that modify the process environment into one section at the begin-
ning of the module body. By doing this, it is easy to examine and modify the function
of a module and process. The control logic for the process would be included in the
module’s sequence_of_statements, but the actual work in the process would be per-
formed by executing the next step in the work schedule via a perform primitive.
This is valuable when the steps of a process can be statically determined, i.e., expressi-
ble in such a schedule. If this can be done, then a work schedule division can make
the programming easier. If this cannot be done, then the standard approach of mixing

computations with process control steps must be used.

The order statement indicates the urgencies of each section of code. This is
used when there is more than one legal thread of control in a module (i.e., several
active response or exception handlers). The mod_id must correspond to the namé of
the module, and each named identifier must exist. The first identifier is given priority
1 (the highest priority), the second priority 2, etc. This scheme requires all the back-
ground code for the module have the same priority as well as each entry block with
the same name. We prefer this to the alternatives of providing a priority at the loca-
tion of the definition of each prioritizable region or prioritizing according to labels.
Our scheme allows easy comparison and modification of relative priorities. Thesc
priorities are not to be confused with task priorities. Task priorities are used to
specify which task gets control if the tasks are executing on a uniprocessor. The

order priorities indicate when a query should be handled.

30 Intertask Cormmunications

RSD-TR-4-85

A response handlexf looks similar to an exception handler, except it provides a
parameter list. One restriction must be placed on response handlers: they cannot
change the value of a local variable. This restriction is placed to avcid erroneous
results that could arise if a queried response alters the value of a local variable that
was being used when the interrupt occurred. Hence the name ‘“‘query” is given when
accessing a response handler, for the handler can query a local variable but cannot

change it.

A task in LIMS is defined almost exactly the same way as a module. The major

differences are:

(1) Instead of the keyword module beginning the specification and body, the keyword

task is used.
(2) A task specification cannot declare another task as a dec_option.

The rational behind this design is that an indivisible subprocess is being éontrolled by
the module. This subprocess may require things to be done in parallel, so we allow
concurrent tasks. _In order to be able to view the structure of the subprocess and
module, we should be able to easily locate a subprocess function in terms of its con-
trolling program, i.e., module. If tasks could create other tasks, this would not be the

case.

We have omitted many needed primitives from our definitions given here. For
example, communication primitives, renaming declarations, representation clauses, and
use and with statements (to facilitate separate compilation). Variants of these and
other primitives will have to be introduced to make this a complete language, but we
only discuss the issues pertinent to the module architecture and intertask communica-

tions structure here.

Intertask Communications 31

RSD-TR-4-85

Note that we omitted discussion concerning task and module priorities. Our
work is based on the assumption that tasks and modules execute in true parallelism.
With this assumption, task and module priorities are not needed. However if each
task does not execute on a dedicated processor, then true parallelism is unattainable,
and priorities will have to be given. Additionally, task and module priorities may not
be independent of port priorities. A low priority task may need to send a crucial
emergency message through a high priority port that preempts a task of higher prior-
ity. The message handler discussed in [SHIN85] and summarized in Section 2 will
have to know how to resolve these conflicts arising from task priorities and message

priorities.

The tasks of a module begin execution automatically when the module is created.
In [SHIN85] we explbain the need for a costart primitive. The costart would be
responsible for creating modules, establishing the link between the logical and physical
communication channels, and allowing dynamic specification of ports (as opposed to

statically declaring them as we have discussed here).

5.2. The Communication Primitives

We now are ready to discuss the syntax of the communication primitives.

32 Intertask Communications

RSD-TR-4-85

send_command := send port_id [actual_param_list]

receive_command = receive port_id (runtime_tid , parameter {, parameter})
reply_command := reply port_id (runtime_tid , parameter {, parameter})
query_command == query port_id.resp_id [actual_param_list]
waitfor_command := identifier === waitfor(function_id ;

task(or module)_id {, task_id } ;
parameter {, parameter})

getmess_command = getmess(module_id)

actual_param_list = equivaient to Ada actual_parameter_part [DoD82)

Table 5. Syntaz of the Communication Primitives.

In the above commands, the parameter lists are of the standard Ada form. The
parameter lists for the receive and reply are identical to actual_parameter_list,
except they must begin with a run time task identifier. Since the send-receive-reply
sequence can allow more than one reply to be pending for the same receive, one must
be able to identify the task whose send was just processed in order to correctly reply
to it at a later time. This is similar to Thoth [GENT81] and the V Kernel [CHER84].
The semantics for the send, receive, and reply have already been discussed, and the

syntax is easily understood.

The query command behaves like a remote procedure call. The task executing
the query is blocked uatil the response handler has completed executing. The only

difference between the query and a remote procedure call is that preemption that

Intertask Communications 33

RSD-TR-4-85

_ takes place with the query command.

The waitfor command has a syntax which allows the specified semantics, but a
few final points must be made. The function that is executed when the synchroniza-
tion is complete must return the same type as the identifier. The task_id's or
module_id’s are task or module names, not the run time task identifiers used in the
receive and reply commands. When the function is executing, it must be able to
access each message pooled by each task. We propose the getmess command to
achieve this. The function can execute the getmess command giving a task_id. This
will set the parameters given in the function definition to the parameters given by the
designated task. The parameters are read-only to avoid errors if several tasks share a
common database of messages on a single processor. By repeatedly performing
getmess’s, a function can correctly build a single response for the task executing the
waitfor. The only disadvantage with this approach is that problems arise if each
task pools a different size message. The function would then have to know the exact
format of each message pooled by each task. A simple solution is to have the get-
mess set a predefined record and size variable. The variable would hold the number
of parameters pooled by the named task in the getmess. The record would hold the
value and type of each parameter. We do not feel this extra power is warranted for

our needs, and that requiring each task to pool the same format message is sufficient.

Using these primitives with port directed communications as we have described
here will yield a powerful communication system. Our work clearly provides one-to-
one and many-to-one communication schemes. By reversing the roles of an owner and
its users, the owner can send messages, or query response handlers in a one-to-many

fashion. However, to be consistent, this one-to-many will still only send the message,

34 Intertasik Communications

RSD-TR-4-85

or invoke the response handler in just one of the users. The user to take part in the
communication is chosen nondeterministically. If we want true one-to-many semantics
(i.e. a broadcast), we can adapt our scheme as follows. Define two new usages, sen-
dall and callall in addition to the four already existing. Only a port owner can name
these usages as a restriction, so a slight modificaticn of the grammar will be required.
When a port owner performs a send to a port declared as sendall, the send will be
sent to all its users. Upon the first reply being sent back, the owner will unblock.
This is almost identical to Cheriton's work with the V Kernel [CHER84], except he
lumped tasks into groups. Our method unfortunately calls for many porf,s to be
declared, but other advantages results (i.e., not having to keep track of group id’s, and
restricting messages to different sets of users only requires one new statically declared
port, as opposed to having many group id’s). The semantics concerning multiple
replies can be handled identically to Cheriton’s approach. By combining his notions
with our ports and restrictions, it is possible to attain powerful communications capa-

bilities with only having to execute one primitive in the source program.

8. EXAMPLE IMRS

In this section we demonstrate how LIMS, coupled with our previous work in
[SHIN85], can be used to program a complex IMRS easily, and with a high degree of
relia.bilrity. The example process does not include all the five process classes, nor does‘
its solution include all the communication primitives, but it does illustrate many of the
salient features of our port directed communications. Before we begin with the exam-
ple, we should mention that we ‘“idealize”” the capabilities of rpbots. That is, our pro-
cess uses robots for chores that would be more effectively, inexpensively, and reliably

solved with other equipment. This is because we wish to focus on the intertask com-

Intertask Communications 35

RSD-TR-4-85

munications, and not on detailed device drivers.

The IMRS we use is the three workcell chip insertion assembly line. The first

workeell is simply a relay that release pallets onto a roller conveyor.” The second
workcel! uses two robots to anchor a blank computer card to the pallet. The first robot
moves a card to the pallet, then the second robot screws the card onto the pallet. The
third workcell consists of a single robot that inserts various chips onto the card. To
complicate the last workcell, assume that a similar assembly liné exists next to this line,
and that the last robots of each line share 2 common set of feeders. This reduces the

hardware costs and the space requirements.

This IMRS consists of three independent processes. The first involves no sub-
processes. The second consists of two subprocesses that make a serialized motion pro-
cess. The third involves no subprocesses, but forms a loosely coupled process with
another process for the other assembly line. We thus need five modu.les, gate, load_it,
and chip_it which correspond to the controlling modules for the three workcells, and
load_card and screw_in_card which are the two modules for the two subprocesses of
load_it. Therefore, we expect to need the following communication channels (we omit

the code needed for the higher levels of the process tree):

(1) A port that is owned by gate that receives messages from load_it and chip_it con-

taining information about their speeds.

(2) Another port owned by gate that communicates with a task in its module that

releases a pallet onto the conveyor.

%A roller conveyor uses metal rollers instead of a rubber mat to move the cargo. The advantage of this
is that cargo can be stopped at one workcell by a gate while the rollers can be left on to keep cargo moving
on the other sections of the conveyor.

38 Intertask Communications

(3)

(4)

(5)

(6)

(7)

RSD-TR-4-85

Two ports owned by load_it that issues status request messages to its child

processes (controlled by the modules load_card and screw_in_card).

A port owned by load_card that communicates between it and a device driver

that freezes the pallet in a known location in the workspace.

Another port owned by load_card which sends a message to screw_in_card when a

card is in place.

A port owned by chip_it that communications between it and a device driver

which freezes that pallet with the card in a known location in the workspace.

Another port owned by chip_it that it uses to ask the other robot for permission
to enter the critical region about the feeders. (Likewise, this task also uses a port
that the other robot’s module owns which handles permissions coming from the

other module).

A detailed code of this example IMRS is given in the Appendix, where we use a

notation similar to Ada [DoD82]. Code that is omitted is described in braces ("{}").

We also omit procedures not crucial to the intertask communications (the hardware

dependent device drivers).

There are many interesting features of the solution which warrant special atten-

tion. These include:

(1)

Bounded buffers can be utilized to simulate ncnblocking send’s. Notice that the
approach of using a filter task does not complicate either end of the port. Both
GATE and the two users LOAD_IT and CHIP_IT are ‘ignorant tc the internal
actions of BOUNDED_BUFFER. Because BOUNDED_BUFFER is a filter, being

spliced onto a port, scme mechanism must be used to indicate from which end of

Intertask Communications 37

RSD-TR-4-85

(2)

(3)

()

(5)

38

the splice each communication comes. The built-in port name FILTER is the
mechanism preferred. The communications via FILTER go to the port owner.
Correct usage between the owner, users, and filter can still be verified at load
time. Each primitive using FILTER must complément the usage declared by the
port owner, and the usage declared by the filter must complement the usage

declared by each user.

There is valuable redundancy in the timeout error exceptions. The failure cf any
module or task will be caught eventually by a timeout, and correct action can be

taken. This could even include killing a task or module and creating a new copy.

When device drivers are used, we prefer to restrict the number of users rather
than the one user via a USERLIST. This allows accidental usage, but makes it
easier to kill a copy of the device driver should a hardware error occur, which can

often happen when relays are trying to freeze a moving pallet.

The response handlers include a port name as well as the response name. This is
to lower the amount of work that is done at run time. By doing this, we can com-

pare compatibilities at load time.

We have used a simple work scheduler in CHIP_IT. The work scheduler will
choose the step with the highest priority (the lowest number). Since all the steps
are given priority 1, a step will be chosen arbitrarily. Each statement of the step
is then executed. By using this, it is trivial to change a chip number or a chip
location. We do not have to go digging intq separate files, complicated record
structures, or into the task body. We simply change the appropriate step.
Depending on the design of the work scheduler, GRASP, and INSERT, return

codes could be allowed which determined if a step were successfully performed.

Intertask Communications

RSD-TR-4-85

Thus if a feeder became empty, we could signal the operator and continue with

another step.

(6) There is a complex order statement in CHIP_IT. When we were originally pro-
gramming CHIP_IT (while also considering CHIP_IT2), we tried to guarantee
exclusion of the critical region by using different order statements in CHIP_IT
and CHIP_IT2. After bseveral hours of frustration we realized it could not be
done. This is because of the following. CRIT_SECTION must be ahead of the
background code (either CHIP_IT or CHIP_IT2) in at least one of two mbdules,
otherwise both tasks couid simultaneously query to the other module, thus caus-
ing a deadlock. But if CRIT_SECTION is ahead of the background code in one of

the modules, than one module could get permission to enter the critical section,

and then because of an operating system context switch!® remain hung in its back-
ground code. Meanwhile the other module could continue to execute, ask permis-
sion to enter the critical section (which would be granted because the other
module still had not entered the GRASP procedure), and then a collision in the
critical region could occur. This is unavoidable because once a task is given per-
mission, it can lose execution cycles. Thus the order statement should not be
used to try to perform mutual exclusion, and should be used as it was originally
intended, to force real-time priorities. This is how we use it in CHIP_IT (and
CHIP_IT2). A query can only interrupt the current thread when the robot is
performing an insertion. Our solution can introduce a deadlock, however, because
each module could duery the other simultaneously (or any time after the INSERT

but before the next GRASP). Thus we have to break the deadlock. This requires

1We want our solution to work on uniprocessors, a network of multiprocessors, or a network of unipro-
cessors.

Intertask Communications 39

RSD-TR-4-85

(7)

40

asymmetrical timeout exception handlers, but the deadlock can be broken. Note
that this deadlock will occur the first time through each module, but as soon as it
is broken, each task will immediately get permission to enter the GRASP routine
as soon as the other module enters the INSERT routine. By the time the other
module gets done with the INSERT routine, the current module will be either in
GRASP or INSERT, and in either case permission to enter GRASP will be
granted (because INSERT has lower priority than the critical section and a call to
INSERT follows a call to GRASP). Depending on how the arrival of the cards are
synchronized, deadlock could occur on each pass through the modules. Certainly
a more sophisticated synchronization scheme could be designed, but this would
depend on how often the deadlock was occurring, and how accurate the deadlock
timeout exception handler is. If the deadlock occurs often, or if a more compli-
cated scheme is needed to implement an n-way critical region, the simplest

approach is to create a monitor task with the existing primitives.

LOAD_IT uses two parts, ASK_CHILD1 and ASK_CHILD2, to check on the
status of its children LOAD_CARD and SCREW_IN_CARD. Instead of this, we
can use one part, which both child modules would use. Then a query by the
parent, LOAD_IT, would nondeterministically select one of the children to use.
The only problem with this is that the selection may not be fair, and the same
child could get queried each time. If an implementation were known to be fair,

then this technique would not cause such a problem.

Intertask Communications

RSD-TR-4-85

7. CONCLUSION AND DISCUSSION

In this paper we have explored the various communication demands brought

about by five different types of processes, independent, loosely coupled, tightly coupled,

serialized motion, and work coupled processes. In order to support the module archi-

tecture in [SHIN84], we have developed (i) a set of communications and synchronization

primitives needed for an IMRS, and (ii) a concurrent language syntax using the selected

primitives based on port-directed communications. The development is based on both

the distinct, complex nature of an IMRS and our knowledge of the existing concurrent

languages.

However, our current accomplishment is just a beginning towards the final goal of

developing a complete IMRS. Some of the remaining work includes:

Developing a complete operating system kernel. The V System [CHER84] has
three major components, the interprocess communications (IPC), the kernel server,
and the device server. Our discussion on the communication primitives is similar
to Cheriton's [PC. We have only tackled one third of the work involved in
designing a complete system like the V system, the kernel and device servers still
need to be designed. This will prove to be difficult, because of all the different
devices and sensors which must be incorporated into the system along with the

real-time software.

Determining the message primitives and how to process messages based on task

priorities, message urgencies, and time limits and ports.

An IMRS programming language must be designed which allows simple, efficient,
and reliable programming of the MRS processes. Creating a simple rotot pro-

gramming language that can be used by people of different experience (that also

Intertask Communications 41

RSD-TR-4-85

allows the power of an IMRS) will be quite challenging.

Undoubtedly, the IMRS will play a significant role in future robotics and automa-

tion, leading to improvement of both manufacturing productivity and robot safety. We

feel that the communication structure presented in this paper along with the module

architecture in [SHIN84] should form a good foundation for developing such an IMRS.

REFERENCES

[ANDR83] Andrews, G.R., and Schaeider, F.B., ““Concepts and Notations for Con-

current Programming,” ACM Computing Surveys, March 1983, Vol. 15
No. 1, pp. 3-43.

[BROWS84] Brown, A. D., “Using Communications Standards to link Factory Auto-

mation Systems’, Machine Design, p. 123-126, August 23, 1984.

[BIRR84] Birrell, A., and Nelson, B., “Implementing Remote Procedure Calls,”

ACM Transactions on Computer Systems, Vol. 2, No. 1, Feb. 1984, pp.
38-59.

[BONN82] Bonner, S., and Shin, K. G., “A Comparative Study of Robot

Languages,” Computer, Vol. 15, No. 12, Dec. 1982, pp. 82-96.

[BERN80] Bernstein, A. J., “Output Guards and Nondeterminism in Communicating

(1)
(2)

(3)
(4)

(5)

42

Sequential Processes,”” ACM Transactions on Programming Languages
and Systems, Vol. 2, No. 2, April 1980, pp. 234-238.

Bourne, S. R., The UNIX System, Addison-Wesley, 1982.

Cheriton, D. R., “The V Kernel: A Software Base for Distributed Systems,” IEEFE
Software, April 1984, pp. 19-42.

U. S. Dept. of Defense, “Reference Manuzl for the Ada Programming Language,”
July 1982.

Gal, D., Mudge, T., and Volz, R., “Using ADA as a Robot Systm Programming

Language,” Proceedings of the 13th International Symposium on Industrial Robots
and ROBOTS 7, 1983, pp. 12%42-57.

Gentleman, W. M., “Message Passing Between Sequential Processes: the Reply
Primitive and the Administrator Concept,” Software Practice and Ezperience,
Vol. 11, 1981, pp. 435-466.

Intertask Communications

RSD-TR-4-85

(8) Gini, G. and Gini, M., “ADA: A Language for Robot Programming?,” Computers
in Industry, Vol. 3, No. 4, 1983, pp. 253-259.

(7) Habermann, A., and Perry, D., Ada For Ezperienced Programmers, Addison-
Wesley, 1983.

(8) Hansen, P. B., The Architecture of Concurrent Programs, Prentice-Hall, Inc.,
1977.

(9) Hansen, P. B., “Distributed Processes: A Concurrent Programming Concept,”
Commaunications of the ACM, Vol.21, No. 11, Nov. 1978, pp. 934-941.

(10) Hoare, C. A. R., “Communicating Sequential Processes,” Communications of the
ACM, Aug. 1978, pp. 668-677.

(11) IBM Corp., IBM Robot System/1: AML Concepts and User’s Guide, Publication
No. GA34-0180-1, 1981.

(12) Hughes, J. K., PL/I Structured Programmsing, the 2nd. Ed., John Wiley and Zons,
1979.

(13) McQuillan, J. M. and Walden, D. C., “The ARPA Network Design Decisions,”
Computer Networks, North-Holland Publishing Co., 1977, pp. 243-289.

(14) Mujtaba, S., and Goldman, R., “AL Users’ Manual,” SAIL Report, Jan. 1979.

(15) Roberts, E. S., et. al., “Task Management in Ada - A Critical Evaluation for
Real-Time Multiprocessors,” Software Practice and Ezperience, Vol. 11, 1981, pp.
1019-1051.

(18) Schoeffler, J. D., “Distributed Computer Systems for Industrial Process Control,”
Computer, Feb. 1984, pp. 11-18.

(17) Shin, K. G., Epstein, M. E., and Volz, R. A., “A Module Architecture for an
Integrated Multi-Robot System”, Tecknical Report, RSD-TR-10-84, Robot Sys-
tems Division, Center for Robotics and Integrated Manufacturing (CRIM), The
University of Michigan, Ann Arbor, MI, July 1984. Also appeared in the Proc.
18th Hawass Int’! Conf. on System Sciences, Jan. 1985, pp. 120-129.

(18) Shoch, J. F., and Hupp, J. A., “Measured Performance of an Ethernet Local Net-
work,” Communications of the ACM, Vol. 23, No. 12, Dec. 1980, pp. 711-721.

(19) Silberschatz, A., ‘‘Port Directed Communication,” The Computer Journal, Vol. 24,
No. 1, 1981, pp. 78-82.

(20) Silberschatz, A., “Cell: A Distributed Computing Modularization Concept,”” [EEE
Transactions on Sa2ftware Engineering, vol. SE-10, no.2, Mar. 1984, pp. 178-185.

(21) Steusloff, H. U, “Advanced Real-Time Languages for Distributed Industrial Pro-
cess Control,” Computer, Feb. 1984, pp. 37-46.

(22) Stotts, P. D., ér., “A Comparative Study of Concurrent Programming
Languages,” ACM SIGPLAN Notices, vol. 17, no. 9, Sept. 1982, pp. 76-87.

(23) Wegner, P., and Smolka, S. A., “Processes, Tasks, and Monitors: A comparative
Study of Concurrent Programming Primitives,” IEEE Transactions on Software
Engineering, Vol. SE-9, No. 4, July 1983, pp. 446-462.

(24) Welsh, J., and Lister, A., “A Comparative Study of Task Communication in
Ada,” Software- Practice and Ezperience, vol. 11, 1981 pp. 257-290.

Intertask Communications 43

RSD-TR-4-85

44

APPENDIX: CCDE OF AN EXAMPLE IMRS

— Gate checks to see if there is room on the conveyor for another
— pallet. It does so every n/2 seconds, where n is the faster of

— load_it and chip_it. This guarantees that each cell will always
— be busy, without requiring gate to do busy waiting.

MODULE GATE IS
TASK BOUNDED_BUFFER; - Used to simulate a nonblocking
: — port for messages from chip_it and load_it
TASK RELEASE; — Used to release a pallet onto ihe conveyor.
— It does so only if the line is not backed
— up (perhaps by looking at a photocell).
— A RC=0 indicates a pallet was released.
PORT FREQUENCY(TASK_NUM:INTEGER;TIME_FOR_ONE:REAL)
— Receive cycle time messages. TASK_NUM=0
— for load_it, 1 for chip_it.
USAGE=SEND- Must ask BOUNDED_BUFFER for the next queued
— message. TASK_NUM=-1 implies empty buffer
FILTER=BOUNDED_BUFFER

USERLIST=(LOAD_IT,CHIP_IT);

PORT LET_1_GO(RC:INTEGER)
— Send 2 message to RELEASE to release a pallet

USAGE=SEND
#USERS=1 - Should RELEASE fail we can start up
— another task with a different name,.
TIMEOUT=2 sec; — If we don’t get a response within 2 seconds,
- then invoke an exception handler.
END GATE;
MODULE BODY GATE IS
CYCLE_TIME, - Holds the delay time between pallets
TEMP_TIME: REAL; "~ = Holds the time from one message

SPEEDS:ARRAY(0..1) OF REAL; — Holds the estimated cycle times for
— load_it (0) and chip_it (1)

RC, — The return code
NUM_RELEASED, — Used for inventory purposes
TASK_NUM; — Either 0 or 1 for a message.

ORDER(LET_1_GO.TIMEOUT,GATE) — Let a timeout interrupt the background code
BEGIN

CYCLE_TIME := 10.0; - Initialize variables

SPEEDS(0) := 20.0;

SPEEDS(1) := 40.0;
— Loop indefinitely!!

LOOP
DELAY CYCLE_TIME ; -- Delay so as to not kill cycles

Interiask Communications

RSD-TR-4-85

SEND LET_1_GO(RC); = Let the next pallet go and get the return code

[F RC=0 THEN NUM_RELEASED := NUM_RELEASED+1;
ELSE {signal for help} ,

— See if 2 message is waiting in the bounded buffer, and if so, update
- CYCLE_TIME.

SEND FREQUENCY(TASK_NUM,TEMP_TIME);

IF TASK_NUM >= 0 THEN
SPEEDS(TASK_NUM) := TEMP_TIME; - Update the correct speed.
CYCLE_TIME=MIN(SPEEDS(0),SPEEDS(1))/2.0 ;

END IF;

END LOOP;
EXCEPTION

WHEN LET_1_GO.TIMEOUT =>
{Signal for help. Perhaps reset timer, perhaps kill
and restart RELEASE}

END GATE;

TASK BOUNDED_BUFFER IS -~ Hold 20 messages. Do not test for overflow.
PORT FREQUENCY(TASK_NUM:INTEGER; TIME_FOR_ONE:REAL)
- A filter task also declares the port. The only
- difference is that the USAGES may be different,
-- a8 is done here. The USAGE for the filter must
- be compatible with those of the USERs.
USAGE=RECEIVE - Receive messages from users
FILTER=BOUNDED_BUFFER
- By declaring this, the compiler knows this then
- is the filter task, and thus the predefined port
- FILTER is legal
USERLIST=(CHIP_IT,LOAD_IT);
END BOUNDED_BUFFER;

TASK BODY BOUNDED_BUFFER IS

TYPE MESSAGE IS - The message type
RECORD .
T_NUM : INTEGER ; - 0 for load_it, 1 for chip_it
SPEED :REAL; - [ts speed
END RECORD;
BUFFER : ARRAY(0..19) OF MESSAGE; - The buffer of messages
HEAD, — The head of the queue
TAIL, - The tail of the queue
TASK_ID, = The runtime id for a task.
TASK_NUM: INTEGER; - 0 for load_it, 1 for chip_it

TEMP_TIME : REAL; - The cycle time for either load_it or chip_it

Intertask Communications 45

RSD-TR-4-85

BEGIN
- Loop Indefinitely!

LOOP
SELECT

— Receive a message if one is available and there is space for it

WHEN (HEAD+1) MOD 20 <> TAIL =>
RECEIVE FREQUENCY(TASK_ID,TASK_NUM, TEMP_TIME);

- Load into buffer

HEAD := (HEAD+1) MOD 20; — Increment HEAD
BUFFER(HEAD).TNUM := TASK_NUM;
BUFFER(HEAD).SPEED := TEMP_TIME;

OR
~ See if GATE is asking for a value

RECEIVE FILTER(TASK_ID,TASK_NUM,TEMP_TIME);
— Use FILTER to designate communication with
- the port owner.
- Generate response

IF HEAD = TAIL THEN REPLY FILTER(TASK_ID,-1,-1);
ELSE
REPLY FILTER(TASK_ID,BUFFER(TAIL). TNUM,BUFFER(TAIL).SPEED);
TAIL := (TAIL+1) MOD 20 ;
END [F;

END SELECT,;
END LOOP;
END BOUNDED_BUFFER,;

— LOAD_IT just checks the status of its children every 4 seconds,

— and once in a while sends an averaged cycle time message to
- GATE.

MODULE LOAD_IT IS
USE PORT FREQUENCY(TASK_NUM:INTEGER; TIME_FOR_ONE:REAL)
USAGE=SEND;
PORT ASK_CHILD1(RC,NUM_DONE:INTEGER; TIME_FOR_ONE:REAL)
—~ Ask load_card for its status

USAGE=QUERY — Preempt the child if necessary
USERLIST=(LOAD_CARD) - Only allow LOAD_CARD to use
TIMEOUT=2 SEC; — We better get a response, else the

— child could be dead.
PORT ASK_CHILD2(RC:INTEGER)

— Ask screw_in_card for its status

USAGE=QUERY — Preempt the child if necessary
USERLIST=(SCREW_IN_CARD) — Only allow screw_in_card to use
TIMEOUT=2 SEC; — We better get a response, else the

46 Intertask Communications

RSD-TR-4-85

~ child could be dead.

END LOAD_IT;

MODULE BODY LOAD_IT IS
NUM_LOADED, —Used for inventory
RC: INTEGER; — Return code

CYCLE_TIME : REAL; - The cycle time, according to load_card
ORDER(ASK_CHILD1.TIMEOUT,ASK_CHILD2.TIMEOUT,LOAD_IT);
- Allow exceptions to preempt task

BEGIN
COSTART(LOAD_CARD,SCREW_IN_CARD); - Start other modules

— Loop Indefinitely!

LOOP
DELAY 4.0; — Delay 4 seconds

-- See If load_card is still ok
QUERY ASK_CHILD1.STATUS(RC,NUM_LOADED,CYCLE_TIME);
IF RC <> 0 THEN {Signal for Help}
- See if screw_in_card is still ok
QUERY(ASK_CHILD2.STATUS(RC)
IF RC <> 0 THEN {Signal for help}
{Average many cycle_times and once in a while do
SEND FREQUENCY(0,CYCLE_TIME); }
END LOOP;
EXCEPTION
WHEN ASK_CHILD1.TIMEOUT | ASK_CHILD2.TIMEOUT =>
{Signal for help and take correct action}
END LOAD_IT;
MODULE LOAD_CARD IS
TASK FREEZE_PALLET ; — Stops pallet when in correct place
— and sends message via PALLET _IN_PLACE
USE PORT ASK_CHILD1(RC,NUM_DONE:INTEGER; TIME_FOR_ONE:REAL)
USAGE=RESPONSE; - Must have a response handler

- PALLET_IN_PLACE is a signal from the driver FREEZE_PALLET that
~ the next pallet is ready.

PORT PALLET_IN_PLACE() #USERS=1 — Allow only one driver
TIMEOUT=30 SEC — Error if no pallet at all
USAGE=RECEIVE; — Expects a message

~CARD_IN_PLACE signals SCREW_IN_CARD that it can begin

Intertask Communications 47

RSD-TR-4-85

PORT CARD_IN_PLACE(RC:INTEGER)
USAGE=SEND
USERLIST=(SCREW_IN_CARD)
TIMEOUT=30 SEC; — Error if no REPLY within 30 seconds
END LOAD_CARD;

MODULE BODY LOAD_CARD IS

NUM_LOADED, - Used for inventory
TASK_ID, — Used for REPLY, the runtime TASK id
RC : INTEGER; — A Return code

CYCLE_TIME: REAL; - Time for the last cycle
— Allow preemptions -

ORDER(PALLET_IN_PLACE.TIMEOUT,ASK_CHILD1.STATUS,LOAD_CARD);
BEGIN
NUM_LOADED := 0;

- Loop Indefinitely

LOOP
{start timer}
{grab next card and move to ready position}

-~ Wait for signal that we can proceed, don’t send REPLY until
— Pallet can be released.

RECEIVE PALLET_IN_PLACE(TASK_ID);
{move card to pallet}
— Signal SCREW_IN_CARD that the card is ready
SEND CARD_IN_PLACE(RC); - [F RC=0 vThen it was successfully anchored
IF RC <>0 THEN {Signal for HELP}
ELSE

{stop timer}
{compute cycle time and store in CYCLE_TIME}

REPLY PALLET_IN_PLACE(TASK_ID); - Release pallet
NUM_LOADED := NUM_LOADED+1;
END IF;

END LOOP;

— Response Handler for Parental Query

RESPONSE
WHEN ASK_CHILD1.STATUS(RC1,NUML:INTEGER;CYCLE1:REAL) =>
RC1 = 0;
NUM1 := NUM_LOADED;
CYCLEL1 := CYCLE_TIME;
EXCEPTION
WHEN PALLET_IN_PLACE.TIMEOUT | CARD_IN_PLACE.TIMEOUT =>

48 Intertask Communications

RSD-TR-4-85

{Signal for help}
END LOAD_CARD;

-~ SCREW_IN_CARD awaits for a signal on CARD_IN_PLACE and then screws
- the card to the pallet

MODULE SCREW_IN_CARD IS
USE PORT ASK_CHILD2(RC:INTEGER) USAGE=RESPONSE; — Status requests by load_it
USE PORT CARD_IN_PLACE(RC:INTEGER) USAGE=RECEIVE
TIMEOUT=30 SEC; - If no signal every 30 seconds then error
END SCREW_IN_CARD;

MODULE BODY SCREW_IN_CARD IS
TASK_ID, — A run time TASK id for REPLY
RC : INTEGER; — A return code
- Allow preemptions

ORDER(CARD_IN_PLACE.TIMEOUT,ASK_CHILD2.STATUS,SCREW_IN_CARD);

BEGIN
—Loop Indefinitely

LOOP
{Prepare to screw in next card}

RECEIVE CARD_IN_PLACE(TASK_ID,RC);
{screw card in, set RC=0 if OK, <>0 if error}

REPLY CARD_IN_PLACE(TASK_ID RC);

END LOOP;
RESPONSE
WHEN ASK_CHILD2.STATUS{(RCL:INTEGER) =>
RC1 := 0;
EXCEPTION

WHEN CARD_IN_PLACE.TIMEOUT =>
{Signal for help}
END SCREW_IN_CARD;

— CHIP_IT inserts the chips onto the card. It uses work scheduling

— to perform this. The work scheduler uses three procedures, REINSTATE
— which initializes the internal variables, PERFORM which performs the

- highest priority {lowest number) step not yet done, and MORE, which

- returns the number of steps remaining. We only postulated the usefulness
— for work scheduling, and this is our attempt to show its value.

~ The locations and chip numbers can be easily changed, because they

— are not embedded deeply inside the code, and the order of the insertion

- is not predetermined, so an empty feeder still allows the performing

- of other steps.

Intertask Communications 49

RSD-TR-4-85

50

MODULE CHIP_IT IS

TASK FREEZE_CARD; - Stops the card
PORT READY_TO_CHIP() - FREEZE_CARD sends us a signal in this por
#USERS==1 - Allow only 1 driver
TIMEOUT=60 SEC — Expect a response every minute
USAGE=RECEIVE; -~ We receive the signal

PORT SHARE_FEEDER(CLEAR:INTEGER) - Ask the other process for permission
— to enter critical region, 0 means its OK

USAGE=QUERY — Preempt other task if it is inserting a chip
USERLIST=(CHIP_IT?2) - The other module
TIMEOUT=3 SEC; — Not only for module failure, but if both

—~ modules simultaneously query, than a deadlo
— occurs and this breaks the deadlock. A
— deadlock should rarely happen however.

~ Port to allow CHIP_IT?2 to ask us for permission

-~ CHIP_IT?2 has a USE PORT identical to this except for SHARE_FEEDER

USE PORT SHARE_FEEDER1(CLEAR:INTEGER) USAGE=RESPONSE;
USE PORT FREQUENCY(TASK_NUM:INTEGER; TIME_FOR_ONE:REAL); — Send

END CHIP_IT;

MODULE BODY CHIP_IT IS

OK, - OK to enter critical section (GRASP)
STEPS: INTEGER; — The number of work steps remaining

CYCLE_TIME : REAL; - The time to insert all the chips

WORK SCHEDULE

— Give all the steps equal priority, so they can be
— executed in arbitrary order

1) GRASP(1),INSERT(X,Y,Z); — One chip to be inserted
1) GRASP(4),INSERT(X1,Y1,Z1); — Another chip to be inserted

. 1) GRASP(12),INSERT(XN,YN,ZN); — The last chip on the card

— Use the following order -
- 1) Allow timeouts the highest priority
- 2) Don’t allow the background code to be preempted,
else a QUERY could be interrupted by a QUERY from CHIP_IT2
3) Don’t allow the critical region to be interrupted
4) THEN allow preemption for 2 QUERY from CHIP_IT2
5) The lowest priority is the insertion code. THUS 2 QUERY
will only be answered when a robot has left the critical region.

ORDER(READY_TO_CHIP.TIMEOUT,
SHARE_FEEDER.TIMEOUT,
CHIP_IT,
GRASP, - A subprogram whose code is omitted. Simply
— enters the criticzl region, grasps a chip

Intertask Communications

RSD-TR-4-85

- from feeder N, and exits critical region.
SHARE_FEEDER1.CRIT_SECTION,
INSERT); - A subprogram whose code is omitted. Simply
— inserts a chip at X,Y,Z.
BEGIN
- Loop Indefinitely

LOOP
{Start timer}
RECEIVE READY_TO_CHIP(TASK_ID); ~Get signal to begin

REINSTATE; — Initialize work scheduler
—Loop until no more steps to periorm

MORE(STEPS);
WHILE STEPS <> 0
LOOP '
QUERY SHARE_FEEDER.CRIT_SECTION(OK); —-Ask permission to enter
, - critical region
IF OK <> 0 THEN PERFORM;
ELSE {Signal operator}
END IF; ' ‘
MORE(STEPS); — See if any more steps
END LOOP; |

{stop timer, update and average cycle time, and ohce in a while do
SEND FREQUENCY(I,CYCLE_TIME); }

END LOOP;
- Because of order statement, always give permission to enter critical section

RESPONSE
WHEN SHARE_FEEDER1.CRIT_SECTION(CLEAR:INTEGER) =>
CLEAR :=1;

— card never arrived timeout.

EXCEPTION
WHEN READY_TO_CHIP.TIMEOUT =>
{Signal for help}

- Share feeder timeout. This could be because of a critical failure

— in CHIP_IT?2 or an unlucky deadlock occurrence. There are many ways to
- break the deadlock. One would be to call a procedure which had a lower
- priority than SHARE_FEEDER1.CRIT_SECTION. If CHIP_IT2's timeout.
- than simply kept retrying the operation, eventually CRIT_SECTION

— would have the higher priority than the low priority procedure,

— and CHIP_IT2 would be given permission to enter the critical region.

END CHIP_IT;

Intertask Communications 51

IIIIIIIIIIIIIIIIIII

