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CHAPTER I 

RESEARCH OBJECTIVES 

 As a major organ of nutrition, the small intestine was first identified to express 

various amino acid transport systems like L, y+, y+L, A, ASC (Acevedo and Armstrong, 

1987).  With the understanding of protein digestion, a large quantity and variety of short- 

and medium-sized peptides were observed to absorb intact through epithelium although 

they were not substrates of amino acid transporters.  Typically, peptides with three to six 

amino acid residues were corresponded to a concentration of 120 mM to 145 mM and 

free amino acids were only 30 mM to 60 mM in the digest after administration of model 

proteins such as albumin (Daniel, 2004).  Approximately, 400 dipeptides and 8,000 

tripeptides could be generated from protein digestion. Those di-, tripeptides and a wide 

range of drugs such as β–lactam antibiotics and angiotensin-converting enzymes (ACE) 

inhibitors could be transported in the gut lumen (Radhakrishnan, 1977).  

The discovery of the intestinal oligopeptide transporter, designated as PEPT1, has 

provided molecular evidence for the functional activity of intestinal peptide transport.  As 

the exclusive oligopeptide transporter on the brush-border membrane of the intestinal 

mucosa so far, PEPT1 was identified as the first H+-coupled transporter in vertebrates, 

independent of extracellular Na+, K+ and Cl- (Fei et al., 1994).  It is predicted to contain 

12 transmembrane domains with both the C- and N-termini localized inside the cell, in 

which the first 4 transmembrane regions from amino-terminal and domains 7 to 9 are 
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responsible for the substrate affinity and PEPT1 unique characteristic features (Doring et 

al., 2002).  As a member of proton coupled oligopeptide transporters (POT) family, 

PEPT1 is classified as a low-affinity, high-capacity transporter and demonstrates broad 

substrate specificities ranging from different molecular size, polarity, to charge and 

conformation.  PEPT1 is distinguished from PEPT2, which is delieanated as a high-

affinity, low-capacity transporter primarily located in the kidney (Shen et al., 2001); even 

though both isoforms share 50% overall sequence identity and 70% similarity (Saito et 

al., 1996).  In addition, PEPT1 is a conserved gene among species: human H+/peptide 

cotransporter is highly homologous (81% identity and 92% similarity) to rabbit PEP1 

(Liang et al., 1995) and it exhibits a high degree of homology (83% identity, 86% 

similarity) to mouse PEPT1 on amino acid level (Fei et al., 2000).  

Shortly after its discovery, PEPT1, either in Caco-2 cells or in Xenopus oocytes 

expressing PEPT1, had been utilized to analyze hundreds of substrates in competition 

assays with tracer dipeptides.  Several high-affinity type inhibitors, but not substrates, of 

PEPT1 had been revealed such as active sulfonylurea antidiabetics and nonsulfonylurea 

insulin secretagogue (Sawada et al., 1999; Terada et al., 2000) to competitively block 

dipeptide transport via PEPT1.  Based on the structure, the substrates of PEPT1 can be 

classified into two categories: substrates with peptide bonds and those without peptide 

bonds.  In substrates carrying peptide bonds, they can be sub grouped into α–amino group 

presenters such as glycylsarcosine (GlySar) and substrates with other groups like β–

lactams and ACE-inhibitors (Boll et al., 1994).  To be efficiently bound and eletrogenic 

transported by PEPT1, its substrates with α–amino peptide bond require an essential 

structure with two oppositely charged head groups (i.e., amino and carboxyl groups) 
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separated by a carbon backbone with a distance of 5.5 to 6.3Å between the centers of the 

head groups (Doring et al., 1998).  More interestingly, simple omega-amino fatty acids 

such as Delta-aminolevulinic acid (ALA) can be transported via PEPT1 and show similar 

affinities as dipeptides, which contribute to the broad range of substrates for PEPT1 

(Doring et al., 1998).  In addition, PEPT1 is stereoseletive to its substrates.  Peptides with 

solely D-enantiomers of amino acids are not transported via PEPT1 (Wenzel et al., 1995).   

Better understanding of PEPT1 will facilitate drugs to improve their 

bioavailability.  One successful example was valacyclovir.  As the prodrug of acyclovir, 

valacyclovir showed a three to five-fold increase in bioavailability comparing to its 

parent drug, acyclovir, and utilization of PEPT1 has been demonstrated to contribute to 

this improvement (Weller et al., 1993). 

Normally, PEPT1 has very little expression in the colon tissues and is 

undetectable in the stomach.  Besides its expression in the small intestine, PEPT1 can be 

detected in kidney, mainly in early regions of the proximal tubules (Shen et al., 1999), 

brain, mammary gland and lung (Fei et al., 1994; Lu and Klaassen, 2006).  In the kidney, 

PEPT1 and PEPT2 are cooperating in the reabsorption of peptides, first by the low-

affinity, high-capacity PEPT1 in S1 segment and then by the high-affinity, low-capacity 

PEPT2 in S2 and S3 segments of the proximal tubule (Daniel and Rubio-Aliaga, 2003).  

In addition, PEPT1 has been shown to express in the tumor cell lines from extrahepatic 

biliary duct for the endogenous photosensitizer δ–aminolevulinic acid transport 

(Neumann et al., 2003).  

Besides its broad substrate specificity, another interesting characteristic of PEPT1 

is its regulation and adaptation to numerous physiological and pharmacological 
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conditions.  Hormones such as insulin (Thamotharan et al., 1999) and leptin (Buyse et al., 

2001) could stimulate dipeptides uptake into Caco-2 cells with an increase in the Vmax 

and no change of Km.  3,5,3’-Triiodothyronine (T3), on the other hand, would reduce the 

Vmax for GlySar influx to Caco-2 cells (Ashida et al., 2002).  PEPT1 will be induced in 

the stomach and colon in disease conditions (i.e. short-bowel syndrome), suggesting its 

compensatory effect in the absorption of dietary amino acids as well as some drugs (Ford 

et al., 2003).  Other factors like bacterial infection alter PEPT1 expression level and thus 

its function in the colon tissue (Marquet et al., 2007).  In addition, the expression PEPT1 

will be induced after a brief fast or sustained starvation (Thamotharan, et al., 1999) and 

after malnourishment (Ihara, et al., 2000), 

Knockout technology, a valuable research tool, has been developed for twenty 

years.  Targeted disruption of PEPT1 gene will conclusively determine the relative 

significance of this peptide transporter in small intestines as well as kidney, the two 

major expression organs of PEPT1.  We hypothesized that: 1) PEPT1 deletion will vitiate 

the intestinal absorption of dipeptides as reflective of the apical localization of the 

transporter in the enterocytes, 2) disruption of PEPT1 gene will result in significant 

changes in the pharmacokinetic profiles, especially absorption of dipeptides and 3) the 

absence of PEPT1 will lead to different responses towards physiological and pathological 

conditions such as fasting in the absorption of dipeptides.   

Based on these hypotheses, the specific objectives of this study were:  

 

1) To determine the role of PEPT1 in the in vitro intestinal uptake of GlySar from 

transgenic mice. 
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2) To determine the influence of PEPT1 on in vivo pharmacokinetics, tissue 

distribution and systemic exposure of GlySar under fed and fasted conditions in 

transgenic mice. 

3) To explore possible physiological and/or pathological changes in transgenic 

mice towards fasting treatments.  

 

To reach these goals, studies were performed using a combination of 

complementary techniques such as molecular and pharmacokinetic models like in vitro vs 

in vivo.  The results from this project provide exclusive understanding about the relative 

significance of PEPT1-mediated transport in the body.  These studies imply that PEPT1 

might be used as a target to improve bioavailability of poor absorbed drugs by 

pharmaceutical companies.  This project could have important clinical applications in the 

instruction of oral drug administration.  Finally, these studies provide insight into the 

importance of PEPT1 in animal survival.  
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

2.1 Proton-Coupled Oligopeptide Transporter 1 (PEPT1) 

2.1.1 Description and Importance 

The proton-coupled peptide cotransporters PEPT1 (SLC15A1) and PEPT2 

(SLC15A2) are the best characterized and possibly the pharmaceutically most relevant 

peptide transporter systems in the Proton-Coupled Oligopeptide Transporters (POT) 

superfamily.  In addition to PEPT1 and PEPT2, the histidine/peptide transporters, PHT1 

(SLC15A4) and PHT2 (SLC15A3), are the other members in this superfamily.  The 

human PEPT1 consists of 708 amino acid residues and shares a 50% overall sequence 

identity and 70% similarity to hPEPT2.  PHT1, on the other hand, has weak similarity to 

PEPT1 and PEPT2 (32% and 27%, respectively) on amino acid levels.  It was cloned 

from rat brain (Yamashita et al., 1997) and expresses in retina (Ocheltree et al., 2003), 

skeletal muscle and spleen (Botka et al., 2000) as well.  A recent paper (Romano et al., 

2009) showed its expression in rat thyroid tissue, while its function was less important 

than PEPT2 in peptide transport, largely due to its intracellular localization.  rPHT2 

encodes a protein of 582 amino acids with 49% identity to PHT1 and it mainly expresses 

in spleen, thymus and lung (Sakata et al., 2001).  PHT1 and PHT2 were shown to 

transport free histidine and certain di-, tripeptides, but it is little known about their roles 
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in the systemic exposure of substrates.  None was done about their specific 

pharmaceutical or pharmacological relevance (Daniel and Kottra, 2004).  

PEPT1 was the first mammalian oligopeptide transporter cloned from rabbit 

intestine in 1994 using the X. laevis oocyte expression cloning method (Fei et al., 1994).  

The gene encoding hPEPT1 is located on chromosome 13q33-34 with 23 exons (Liang et 

al., 1995).  Shortly after identification of PEPT1, PEPT2 was isolated by expression 

cloning and homology screening from a kidney cDNA library (Liu et a., 1995; Boll et al., 

1996).  PEPT2 mainly expresses in the kidney for the reabsorption of di-, tripeptides 

(Ocheltree et al., 2005) and choroid plexus for neuropeptide homeostasis and the efflux 

of peptides/mimetics from cerebrospinal fluid (Shen et al., 2007).  

After a protein meal, di-, tripeptides, instead of free amino acids, are the major 

components in the gut lumen.  PEPT1, predominantly expressing on the apical membrane 

of enterocytes, has been suggested for the translocation of dipeptides from gut lumen to 

cytoplasm in the enterocytes, where they will be degraded and/or transported into the 

systemic circulation.  Besides its normal functionality in nutrients and drugs absorption, 

PEPT1also plays an important role in pathological states as listed examples below.  

Cystinuria, an autosomal recessive disorder, is characterized with impaired 

transport of essential amino acids like cystine, lysine, arginine and ornithine in the GI 

tract and the proximal renal tubule due to the dysfunction of b0,+AT (Dello Strologo et al., 

2006).  Hartnup disease is another autosomal recessive abnormality in renal and GI 

systems marked with poor absorption of histidine, tryptophan, and phenylalanine (Broer 

et al., 2005).  Surprisingly, patients suffering from these heritage diseases did not show 

much malnutrition such as essential amino acid deficiency.  The main reason is that they 
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received the essential amino acids like lysine in di-, tripeptide forms via peptide 

transporters, which have been confirmed in in situ jejunal perfusion from patients 

providing lysine and leucine in their free forms or in dipeptide leucyl-lysine (Hellier et 

al., 1971).  It evidently establishes that PEPT1 is important or even essential to human 

beings, especially when they suffer from inherited gene defects.   

Because of their nature, single amino acids like glutamine and tyrosine are either 

unstable or poorly absorbed.  Steinhardt, et al. (1986) compared the absorption of 12 

amino acids either in free amino acid mixtures with glycine or in glycyl-dipeptide forms 

by human jejunum.  They found that all amino acids except for arginine were absorbed 

significantly higher in dipeptide forms than in free amino acid mixtures, especially for 

amino acids with poor absorptive characteristics like histidine and tryptophan.   

Numerous examples showed that PEPT1 played important roles in 

peptidomimetic drug absorption clinically used for the treatment of infection (e.g., β-

lactam antibiotics), hypertension (e.g., ACE inhibitor and rennin inhibitors) and cancer 

(e.g., bestatin).  One successful application of PEPT1 was to improve bioavailability of 

drugs in fighting viral infection (e.g., valacyclovir).  Overall, PEPT1 is pharmaceutically 

and pharmacologically relevant.  

2.1.2 Molecular Structure  

 PEPT1 cDNA from human, rabbit, rat and mouse encode highly homologous 

proteins containing 708 (human) (Liang et al., 1995), 707 (rabbit) (Fei et al., 1994), 710 

(rat) (Erickson et al., 1995) or 709 (mouse) (Fei et al., 2000), respectively.  Due to the 

lack of PEPT1 crystal structure, the transmembrane (TM) model of PEPT1 was generated 

by a two-approach computer modeling method, based on minimizing the interactions of 
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the faces of TMs in a pairwise fashion (Bolger et al., 1998; Yeung et al., 1998).  The 

protein contains 12 putative transmembrane spanning domains (TMD) with both N-, C-

termini facing in the cytosolic side.  A large extracellular loop is predicted between TMD 

9 and 10 (Figure 2.1).  From the amino-terminal region, the first 4 transmembrane 

regions and the domains 7 to 9 are critical for its substrate affinity and other characteristic 

features (Doring et al., 1996).  PEPT1 is a heavily glycosylated protein with multiple N-

glycosylation sites.  Human PEPT1 contains two potential sites for protein kinase C 

phosphorylation, while rat and rabbit PEPT1 have singly potential site for protein C-

dependent phosphorylation (Liang et al., 1995).  In rabbit and rat PEPT1, there is a single 

potential site for protein kinase A phosphorylation.  Interestingly, human PEPT1 is lack 

of any site for protein kinase A.  The molecular weight of hPEPT1 is 78.81 kilodaltons 

and an isoelectric point of 8.6.  Chromosomal assignment studies with somatic cell 

hybrid analysis and in situ hybridization identified that human PEPT1 gene is on 

chromosome 13 q33-34 (Liang et al., 1995).   

Both mouse and human PEPT1 genes are ~32 kb long and contain 23 exons and 

22 introns.  In mouse PEPT1, the putative regulatory region contains three GC boxes 

locating at nucleotide positions -88, -322, and -352, which are believed to be the binding 

sites for the transcription activator SP1.  Instead, a TATA box-like sequence, 

CAATAAATA, is present at nucleotide -813, suggesting its less importance on PEPT1 

transcriptional expression (Fei et al., 2000).  Human PEPT1 promoter regions are like 

mouse counterpart with GC boxes being at -29 bp and a couple of others within 300 bp.  

TATA boxes are locating at 511 bp and 517 bp upstream from the transcription start site.  

Shortly after the cloning of human PEPT1 gene, a closely related transcript, hPEPT1-RF 
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(for hPEPT1-regulatory factor) was isolated from human duodenum cDNA library (Saito 

et al., 1997).  The 18-195 amino acid residues of this 208-amino acid protein are identical 

to the 8-185 residues of hPEPT1, whereas the 1-17 and 196-208 residues are unique.  

hPEPT1-RF alone does not induce peptide transport activity; rather, it shifts pH 

sensitivity profile of hPEPT1-mediated dipeptide transport when coexpressing with 

hPEPT1 in Xenopus oocytes, suggesting its regulatory function on hPEPT1 activity.  

Site-directed mutagenesis has been extensively used to determine the substrate 

affinity of PEPT1.  H57, H121 and H260 were the first spot mutations tested on hPEPT1.  

H57 is locating near the extracellular surface of the second putative transmembrane 

domain and is suggested to participate in the binding and translocation of proton.  H57Q 

almost completely abolish PEPT1 transport function, while the other mutations had little 

effects on PEPT1 functionality (Fei et al., 1997).  hPEPT1 with Y167A in transmembrane 

domain 5 lost its ability to transport reference compound GlySar even though Y167A-

hPEPT1 expression level by western blot analysis and cell surface expression by 

immunofluorescence microscopy were similar to those of the wild type (Yeung et al., 

1998).  Mutation of W294A in TM 7 showed much larger Km and decreased Km when 

hPEPT1 transported GlySar.  Mutants G595A (locating in TM 10), Y12A (locating in 

TM1), Y167A (locating in TM5), and R28A (locating in TM 7) affected Vmax, but not 

Km, of hPEPT1 in transporting GlySar (Bolger et al., 1998).  Computer modeling of 

PEPT1 predicted that TMD 7 was essential in forming the putative central aqueous 

channel for substrate to traverse through.  Based on this prediction, a couple of single 

amino acids in TMD 7 were individually mutated to test PEPT1 function changes.  Three 

mutants F293C, L296C, and F297C of hPEPT1 showed negligible GlySar uptake 
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activity, suggesting their importance in defining the overall hPEPT1 structure.  In K278C 

mutant, GlySar transport decreased about 40% (Kulkarni et al., 2003).  R282E-rPEPT1 

had similar binding affinity to its substrate, but lost its responsiveness to extracellular pH 

changes in transporting D-Phe-L-Gln, suggesting the relevance of arginine 282 in 

cotransport of protons and peptides by wild type PEPT1 (Meredith, 2004).  Mutations 

such as Y587F (locating in TM10) and D341R (locating in TM8) had little apparent 

effect on PEPT1-mediated peptide transport (Meredith and Price, 2006).  Mutation of 

Y91F-rPEPT1 reduced 80% of its activity when transporting model dipeptide 

compounds, with mechanistic basis on transporter-proton interactions being interrupted 

(Meredith and Price, 2006).  A recent paper tested a couple of conserved tyrosine 

residues in rabbit PEPT1 and summarized that Y12F (locating in TM1), Y56F (locating 

in TM5), Y91F (locating in TM3), Y167F (locating in TM5), and Y345F (locating in 

TM8) altered rPEPT1 transport functions (Pieri et al., 2009).  A complete list of site 

mutations is shown in Table 2.1.  

2.1.3 Genetic Polymorphism  

 Classified as a conserved gene, PEPT1 (SLC 15A1) shows little genetic 

polymorphisms among various ethnic groups.  A genetic screening of 44 ethnically 

diverse individuals by a DNA polymorphism discovery panel identified 9 

nonsynonumous and four synonymous coding-region single-nucleotide polymorphisms 

(SNPs) in hPEPT1 (Zhang et al., 2004).  Among nine nonsynonymous SNPs, only a 

single SNP (P586L) demonstrated significantly reduced transport activity.  A subsequent 

study tested genetic polymorphisms on 247 individuals of various ethnic origins and only 

a new, low-frequency hPEPT1-F28Y variant was identified.  Functional studies in Cos7 
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cells transiently transfected with this variant showed a great reduction in transporting 

cephalexin uptake (Anderle et al., 2006).  

 Largely due to the low frequency of genetic polymorphisms, little information is 

known about the clinical relevance of PEPT1 SNPs to oral drug bioavailability.  One 

study was conducted to correlate a pharmacokinetics of valacyclovir, a believed PEPT1 

substrate, to genetic polymorphisms from 16 healthy volunteers (Phan et al., 2003).  

Though interindividual differences were observed in valacyclovir bioavailability, PEPT1 

genetic variation alone could not explain this clinical divergence.  Conclusively, 

SLC15A1 genetic polymorphisms are unlikely to have clinical impact on the drug 

absorption.     

2.1.4 Tissue and Cellular Localization  

 PEPT1 expresses in a variety of tissues with different subcellular localization.  

Among all tissues it expresses, small intestines have the highest amount of PEPT1 than 

any other tissues from mRNA to protein expression levels.  In the small intestines, it is 

locating on apical membranes of epithelial cells.  In rats, PEPT1 mRNA expression levels 

are comparable in all duodenal, jejunal and ileal segments (Howard et al., 2004).  In 

human beings, mRNA levels are the highest in duodenum, followed by jejunum and least 

being found in ileum (Terada et al., 2005).  PEPT1 is locating on the apical sides of 

epithelial cells in S1 segments of the proximal tubule in the kidney (Shen et al., 1999).  

Its renal expression is species-dependent: moderate levels of PEPT1 mRNA were 

detected in rat kidney, while its expression was very low in mice.  In addition, protein 

and function of PEPT1 were also confirmed in renal lysosomal membrane to transport di-

, tripeptides from cytosol to lysosome for their hydrolysis (Zhou et al., 2000).  
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 In pancreas, PEPT1 has been demonstrated to express in nuclei of smooth muscle 

cells in the wall of arterioles; in nuclei of Schwanna cells in unmyelinated pancreatic 

nerves, and lysosomes in acinar cells by immunohistological analysis (Bockman et al., 

1997).  Its function in lysosome was to mediate small peptides from lysosome to 

cytoplasm following intralysosomal protein degradation.  But the nature of the transporter 

function in the nucleus remained unknown.  In the liver, PEPT1 also expressed on the 

lysosomal membrane to translocate small peptides from lysosome to cytoplasm after 

protein degradation (Thamotharan et al., 1997).  PEPT1 mRNA transcripts, however, 

were low to undetectable in spleen, thymus, brain, pituitary, prostate, and uterus (Lu and 

Klaassen, 2006).   

 For PEPT1 expressions in extrahepatic biliary duct, all data were from cancer cell 

lines derived from this organ (Knutter et al., 2002; Neumann and Brandsch 2003).  It 

expressed on apical membranes of epithelial cells to transport the endogenous 

photosensitizer delta-aminolevulinic acid into tumor cells.  In addition, mRNA and 

function of PEPT1 were confirmed in pheochromocytoma neuroendocrine cell lines, 

suggesting its possible location in adrenal gland (Hussain et al., 2001).  PEPT1 mediated 

dipeptide transport into human full-term placental brush-border membrane vesicles 

(BBMV) (Meredith and Laynes, 1996).   

 Recently, mRNA, protein and function of PEPT1 were confirmed in nonpolarized 

monocytic cell line and macrophages isolated from human peripheral blood (Charrier et 

al., 2006).  Unlike PEPT1 having maximal activity at acidic environments like pH 6.0 in 

other tissues, hPEPT1 in nonpolarized immune cells functioned best at physiological pH 
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7.2.  In addition, mRNA of rPEPT1 was confirmed in lactating mammary gland, possibly 

transporting both nutrients and drugs into breast milk (Gilchrist and Alcorn, 2009).    

 

2.1.5 Regulation  

 One of the most interesting characteristics of PEPT1 is that it responds to a 

variety of factors ranging from its substrates to pharmacological agents.  The regulation 

of PEPT1 expression has summarized into below categories:  

 

Signal transduction components: 

Caco-2 cells, the human colon carcinoma cell line, has been widely used in the 

research of PEPT1 since this cell line will differentiate into polarized cell monolayers 

with PEPT1, other transporters and enzymes expressing on the apical membrane.  When 

treated with phorbol esters, an activator of protein kinase C, Caco-2 cells minimized its 

uptake of GlySar with a decrease in the maximal velocity and Km remaining unaltered.  

This inhibition could be blocked if Caco-2 cells were co-treated with staurosporine, an 

inhibitor of protein kinase C, suggesting the PEPT1 transport system was under the 

regulatory control of protein kinase C (Brandsch et al., 1994).  Cholera toxin could 

increase cAMP levels in the Caco-2 cells, which inhibited the activity of PEPT1 in a 

dose-dependent manner.  A decrease of Vmax was observed in the treatment as a reason 

for inhibition.  Furthermore, the inhibitors of protein kinase A and protein kinase C 

would block the inhibitory effect of cholera toxin.  This study indicated that cAMP, once 

activated, would work on its downstream receptors, PKA or PKC, to inhibit the activity 

of PEPT1 (Muller et al., 1996).  
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PEPT1 substrates: 

When exposed to PEPT1 substrates (i. e., 10 mM GlySar for 24 hours), mRNA 

and protein expressions of PEPT1 in Caco-2 cells would increase three and two folds, 

respectively.  Moreover, glycylglutamine (GlyGln) uptake by Caco-2 cells was 

significantly increased with two-fold increase in Vmax and no changes in Km.  In the 

presence of trans-Golgi network inhibitor (brefeldin), the stimulation was not achieved, 

indicating that dipeptides would boost the membrane population of PEPT1 (Thamotharan 

et al., 1998).  Similar stimulation of dipeptide uptake by PEPT1 was observed when 

feeding Caco-2 cells with 4 mM GlyGln for 3 days (Walker et al., 1998).  Further study 

demonstrated that dipeptides such as GlyPhe and certain free amino acids (i.e., Phe) 

could directly stimulate the rat PEPT1 promoter and increase expression of PEPT1 in 

Caco-2 cells.  In addition, brush border membrane vesicles (BBMV) from rats fed with 

high protein had higher GlySar uptake compared to those from rats without protein in diet 

(Shiraga et al., 1999).  

 

Hormones and growth factors: 

As a key hormone in metabolism, physiological conditions of insulin (5 nM) were 

shown to stimulate GlyGln uptake through Caco-2 cells by the increase of velocity 

(Vmax), while no alteration in capability (Km) in the Michaelis-Menten constant of its 

transport was observed.  Genistein, a blocker of the insulin signal pathway, could 

counteract its stimulatory effect.  In addition, PEPT1 protein, but not mRNA in Caco-2 

cells was increased after insulin treatment.  It was suggested that the increase of 
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membrane PEPT1 by insulin stimulation was because of accelerating PEPT1 

translocation from a preformed cytoplasmic pool (Thamotharan et al., 1999).  Comparing 

to non-treatment control, streptozotocin-induced diabetic rats had significantly lower 

GlySar influx rate when performing an in situ perfusion in the jejunum.  Insulin treatment 

in diabetic rats could increase the influx rate of GlySar to the similar level observed in 

normal rats (Bikhazi et al., 2004).       

Leptin, the ob gene product, is secreted by adipose tissue and works on 

hypothalamus for energy homeostasis by altering energy intake and expenditure.  

Subsequent studies have demonstrated that leptin can be produced by stomach and it 

remains active when reaching the small intestine.  Buyse et al. (2001) showed that leptin 

receptor was present in Caco-2 cells as well as brush border membranes of small 

intestine.  Caco-2 cells were demonstrated to increase GlySar and cephalexin (CFX) 

transport after treated with leptin.  The Vmax was increased and Km remained unaffected 

in GlySar transport comparing to Caco-2 controls.  Moreover, CFX blood concentration 

was increased when intrajejunally perfusing with leptin in rats.  Excess GlyGly could 

diminish leptin’s stimulatory effect on CFX transport, presumably by competing for 

PEPT1 transporters.    

Another important hormone, thyroid hormone T3, regulates growth, development 

and normal energy levels such as through increasing metabolism glucose.  T3 treatment 

demonstrated a completely opposite effect on PEPT1 as compared to the effects of 

insulin or leptin on GlySar uptake in Caco-2 cells.  The reduction in GlySar uptake was 

due to the decrease of Vmax but not Km in the GlySar transport system (Ashida et al., 

2002).  Both mRNA and protein of PEPT1 had been shown to decrease in hyperthyroid 
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than euthyroid rats.  GlySar uptake by everted small intestinal rings decreased in 

hyperthyroid rats with reduction of Vmax and unaffected Km.  The reduced GlySar 

uptake was also confirmed in rats by in situ intestinal perfusion (Ashida et al., 2004).  

 

Inflammation: 

In short-bowel syndrome patients, mucosal biopsy showed PEPT1 mRNA 

abundance was more than five-fold higher than that from healthy human controls, 

indicating the remaining colon tissue might compensate to accommodate di- and 

tripeptide absorption (Ziegler et al., 2002).  In addition, PEPT1 expression was induced 

in colon tissues in patients with chronic ulcerative colitis and Crohn’s disease.  Bacteria, 

such as Escherichia coli, secrete n-formyl peptides like formyl-Met-Leu-Phe (fMLP) as 

chemotactic substances to attract neutrophils to the inflammatory sites.  hPEPT1 can 

transport fMLP so that its upregulation in chronic colon disease might induce intestinal 

inflammation (Merlin et al., 2001).  A recent work revealed possible mechanisms for the 

upregulation of hPEPT1 in colon diseases.  In this regard, tumor necrosis factor - α (TNF 

- α) and interferon - γ (IFN - γ), inflammatory mediators, could enhance hPEPT1 protein 

density and activity as indicated by the increase of GlySar influx rate in a concentration-

dependent manner in Caco-2 cells.  After intraperitoneal injection of TNF - α and/or IFN 

- γ, mouse colon, instead of small intestine, showed higher GlySar uptake compared to 

untreatment controls.  Furthermore, mRNA and protein of hPEPT1 in colon tissues, but 

not small intestine, were upregulated after treatment (Vavricka et al., 2006).  A recent 

report demonstrated that butyrate, a short-chain fatty acid from commensal bacteria, 

upregulated PEPT1 mRNA, protein and functions in Caco2-BBE cells (Dalmasso et al., 
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2008).  In addition, when mice were treated with 5mM butyrate for 24 h, colonic PEPT1 

was observed increases in its mRNA and protein expression levels as well as its transport 

activity in colonic apical membrane vesicles.    

Cryptosporidium parvum, a parasitic protozoa infection is thought to be the 

reason for intestinal malabsorptive syndrome, which leads to malnutrition and/or growth 

failure.  When C.  parvum was administered to neonatal Sprague-Dawley rats, PEPT1 

protein and its ability to transport GlySar from BBMV were reduced at the peak time of 

infection and they returned to normal level after parasites were spontaneously cleared.  

IFN- γ was believed to mediate this PEPT1 change (Marquet et al., 2007). 

 

Physiological factors: 

Most physiological, biochemical, and behavior processes in mammals observe 

diurnal rhythms.  Whether peptide transport obeyed this rule was also investigated (Pan et 

al., 2002).  Wister rats were raised in a room with 12-hr photo-period.  GlySar plasma 

concentrations in portal vein were higher in the dark phase than in the light phase.  

PEPT1 protein and mRNA from small intestines were the highest at 8:00 pm and 

decreased gradually to the lowest point at 8:00 am.  GlySar transport by in situ intestinal 

loop and everted intestinal rings gradually decreased from 12:00 am and dropped to the 

lowest at 12:00 pm.  This pattern change of PEPT1 activity was believed as an adaptation 

to the feeding habits at night in the nocturnal animals.  Renal PEPT1, on the other hand, 

had not shown such a pattern.  A recent study isolated mRNA transcripts of PEPT1 from 

duodenal, jejunal and ileal segments in rats and tested their changes in 24 hours (Qandeel 

et al., 2009).  Surprisingly, PEPT1 mRNA expression and its corresponding transport 
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functions varied diurnally in duodenum and jejunum, but not in ileum.  After abdominal 

vagotomy was performed, diurnal variations in PEPT1 protein expression and function 

(e.g., GlySar uptake), but not mRNA, were absent in duodenum and jejunum, indicating 

diurnal rhythm of PEPT1 was partially mediated by vagal innervations (Qandeel et al., 

2009).  On the molecular mechanistic basis, clock-controlled gene, albumin D site-

binding protein (DBP) has been demonstrated to play a critical role in the circadian 

oscillation of PEPT1 by regulating PEPT1 promotor activity (Saito et al., 2008).  

Interestingly, long-term exposure to different glucose levels in culture medium 

could alter Caco-2 ability to transport dipeptides such as GlySar (D’souza et al., 2003).  

Caco-2 cells cultured in 5.5 mM (physiological concentration) glucose concentrations 

had higher uptake rate of GlySar comparing to Caco-2 cells with 25 mM glucose in the 

culture medium.  Furthermore, high glucose treatment diminished Vmax, increased 

passive diffusion (Kd) but not Km in GlySar transport system.  Changes of PEPT1 

activity with high glucose concentration were unclear since PEPT1 mRNA in confluent 

Caco-2 cells remained the same and protein levels were not reported.  When co-treated 

with thiol antioxidant DTT, Caco-2 cells in high glucose medium restored PEPT1 ability 

by increasing Vmax to the similar levels as that from low glucose concentration.  This 

suggested that long term exposure to high glucose may induce oxidative damage in 

carriers and/or proteins involved in regulating PEPT1 functional activity. 

Because of food deprivation and medical requirements, mammalians may 

experience fed and fasted conditions.  After rats were briefly fasted (1 d), mRNA and 

protein levels of PEPT1 in brush-border membranes from jejunum had been shown to 

increase three-fold as compared to fed rats.  Vmax, but not Km, in GlyGln transport 



 

 23

system was upregulated by two-fold in BBMV (Thamotharan et al., 1999).  Subsequent 

studies further investigated the relationships among PEPT1, feeding conditions and 

diurnal rhythm.  Consistent with the increase of mRNA and protein after a brief fast, 

PEPT1 mRNA and protein from rat small intestines were significantly induced after a 4-d 

deprivation of food.  In normal feeding condition, intestinal PEPT1 mRNA and protein 

levels were highest at 8:00 pm and lowest at 8: 00 am.  However, there was no difference 

in PEPT1 protein levels between 8:00 pm and 8:00 am in rats deprived of food for 2-4 d.  

More interestingly, food deprivation did not alter PEPT1 mRNA diurnal variation and it 

still expressed the highest at 20pm and lowest at 8am.  Mechanisms for inconsistent 

changes between PEPT1 mRNA and protein levels had not been addressed yet.  After rats 

were refed for 2 d, PEPT1 protein restored its diurnal oscillation.  When intraintestinally 

administered with an oral antibiotic ceftibuten, a pharmacological substrate of PEPT1, 

fed rats, but not 4-d fasted rats, had higher Tmax, Cmax and AUC0-3h at 8:00 pm than at 

8:00 am.  Moreover, 4-d fasted rats showed significantly higher Tmax, Cmax and AUC0-

3h both at 8:00 pm and at 8:00 am than fed rats (Pan et al., 2004; Pan et al., 2003).             

PEPT1 mRNA and protein levels changed consistently in rats in different 

development stages.  PEPT1 expression reached maximum 3 to 5 days after birth in the 

duodenum, jejunum, and ileum and declined rapidly to adult levels, which were 

approximately 70% of those observed on d 3-5.  PEPT1 expressed similar level in colons 

with that in small intestines in the first week after birth, but it was undetectable thereafter 

through adulthood (Shen et al., 1999).  PEPT1 expression was less regulated in rat 

kidney.  Its protein level gradually increased from embryo to pups and reached plateau 

around d 14 after birth.    



 

 24

 

Pharmacological agents: 

Antitumor drugs, such as 5-fluorouracil (5-FU), have long been known to cause 

deleterious effects on the intestinal mucosa so that absorption via small intestines will be 

vitiated.  Intestinal peptide transport system, on the other hand, is resistant to tissue 

damage.  To address mechanism of this resistance, rats treated with 5-FU were used to 

explore the possibilities (Tanaka et al., 1998).  After 5-FU treatment, BBMV from small 

intestine kept its ability to transport GlySar, while absorption of free amino acid like 

glycine was dramatically reduced.  Western blot and immunoblot analysis showed that 

PEPT1 protein levels and localization in the 5-FU treated rat were similar with 

untreatment control while other transporters like Na+-dependent glucose transporter 

almost vanished.  In addition, PEPT1 mRNA was slightly increased after 5-FU treatment, 

indicating that accelerated PEPT1 synthesis may explain its resistance to tissue injury.  

α 2-agonist clonidine was observed to induce a two-fold increase in intestinal 

absorption of CFX when performing a single-pass jejunal perfusion in rats (Berlioz et al., 

1999).  Since α 2–adrenergic receptors were also present in intestinal epithelial cells, 

Caco-2 cells stably expressed with α 2A–adrenergic receptors at a density similar to that 

found in normal mucosa, (i. e., Caco-2 3B cells), were used to clarify the enhancement of 

CFX absorption after clonidine treatment (Berlioz et al., 2000).  When treated with 

clonidine, Caco-2 3B, but not Caco-2 cells, showed a two-fold increase in CFX transport 

comparing to the untreated cells and the stimulatory effect would be abolished by excess 

GlySar and α 2–antagonists like yohimbine and RX821002.  Clonidine-treated Caco-2 3B 

cells demonstrated increased Vmax and unaffected Km in CFX transport system.  In 
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addition, disturbing microtubule integrity by colchicine could block the stimulatory effect 

on CFX transport by clonidine.  

Since σ receptors are expressed in non-neuronal tissues (i.e., gastrointestinal tract) 

as well as the central nervous system, its physiological role in the small intestine was also 

investigated.  When treated with (+) pentazocine, a selective σ 1 receptor ligand, Caco-2 

cells displayed an increase of GlySar uptake mediated by PEPT1 in a concentration-

dependent manner.  Further analysis of GlySar kinetics showed that Vmax, but not Km 

was enhanced twice after (+) pentazocine treatment.  In addition, mRNA of PEPT1 was 

increased correspondingly as (+) pentazocine concentration increased in Caco-2 cells 

(Fujita et al., 1999).  

When coadministered with Ca2+ channel blockers (i.e., nifedipine), healthy 

volunteers showed a 30% increase in the absorption rate of cefiximem, an oral antibiotic 

for the treatment of respiratory tract infection (Duverne et al., 1992).  After treated with 

either verapamil, nifedipine, diltiazem, or bepridil, Caco-2 cells had higher uptake rate of 

cefixime while the rate reduced when Ca2+ ionophores like ionomycin and A23187 were 

added to the cells.  Analysis of cefixime transport kinetics in Caco-2 cells showed that 

Ca2+ channel blockers increased Vmax with Km unaltered.  Further measurement of 

intracellular pH indicated that Ca2+ channel blockers may affect pH regulatory systems, 

such as Na+/H+ exchanger on the apical membrane so that the driving force was boosted 

for uptake of cefixime (Wenzel et al., 2002).  

In contrast to Ca2+ channel blockers, dietary phosphodiesterase inhibitors 

caffeine, theophylline, and pentoxifylline would decrease GlySar uptake in Caco-2 cells 

by showing a reduction in Vmax and unaffected Km.  The mechanism of this reduction 
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was not due to its direct inhibition on PEPT1, but rather through inhibition of Na+/H+ 

exchanger.  Since driving force was minimizing for H+–coupled solute transport, GlySar 

influx rate was vitiated in Caco-2 cells (Anderson et al., 2007). 

Because of its dipeptide-like structure, nateglinide, a nonsulfonylurea insulin 

secretagogue, was investigated for its interaction with PEPT1 in Caco-2 and LLC-

rPEPT1 cells (rat PEPT1-transfectants).  Nateglinide could potently inhibit GlySar uptake 

by Caco-2 and LLC-rPEPT1 cells with a reduction in Vmax and unaltered Km.  Analysis 

of the kinetics on GlySar transport revealed that nateglinide was noncompetitively 

inhibited GlySar uptake.  Moreover, the PEPT1-mediated influx rate of nateglinide was 

negligible, suggesting that although not a substrate, nateglinide could inhibit PEPT1.  Its 

inhibitory mechanism remains unclear (Terada et al., 2000).  Various sulfonylureas, such 

as glibenclamide, tolbutamide demonstrated a similar inhibition to that of nateglinide on 

dipeptide transport via PEPT1 (Sawada et al., 1999).  

 

Transcription factors: 

Since PEPT1 is a highly responsive gene, its molecular mechanisms are under 

investigation.  After PEPT1 promoters from various species had been cloned, they were 

used to reveal the direct regulation on PEPT1 by different factors.  Dipeptides and certain 

amino acids like phenylalanine could stimulate rPEPT1 promoter activities in Caco-2 

cells after transfection with PEPT1 promoter-luciferase constructs.  The working region 

spanned from -351 to -171 on the promoter (Shiraga et al., 1999).   Serial deletion 

analysis of hPEPT1 promoter showed that the region of -172 to -35 bp was critical for the 

basal transcriptional activity.  Though lacking a TATA-box, this region contained GC-
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rich sites and the transcription factor Sp1 was found to work on hPEPT1 promoter 

through direct binding to some GC-rich sites (Shimakura et al., 2005). 

Since Sp1 is expressed ubiquitously, it could not be the transcription factor 

responsible for intestine-specific PEPT1 expression.  To its clarify tissue-specific factors, 

several transcription factors were under investigation and only caudal-related homeobox 

protein 2 (Cdx 2) was revealed to trans-activate hPEPT1 promoter.  Further deletion 

analysis showed that Cdx 2 responsive element was located between -172 to -35 bp.  

Chromatin immunoprecipitation confirmed that Cdx 2 associated with the hPEPT1 

promoter.  Protein-protein interactions suggested that Cdx 2 and Sp1 were associated in a 

protein complex in Caco-2 cells.  In addition, analysis of human gastric samples with 

intestinal metaplasia indicated that mRNA levels of PEPT1 were highly correlated with 

that of Cdx 2 (r2=0.8665 in linear regression) (Shimakura et al., 2006).   

As one of the prominent characteristics, PEPT1 is highly inducible in fasting 

conditions.  To elucidate the mechanism underlying PEPT1 induction, pexisome 

proliferator-activated receptor α (PPARα) were intensely explored, which played a 

pivotal role in the adaptive response to fasting in the liver and other tissues.  mRNA 

levels of PPARα were markedly increased in the rat small intestine after fasted for 48-hr, 

accompanied by an increase of PEPT1.  When treated with PPARα ligand, WY-14643, 

Caco-2 cells showed enhanced PEPT1 mRNA levels and a higher transport rate of 

GlySar.  Rats dosed with WY-14643 for 5 d demonstrated an increased mRNA level of 

PEPT1.  Moreover, PPARα null mice had no mRNA changes in fasting condition, 

indicating that PPARα was a regulator for the inducible PEPT1 in the small intestines 

(Shimakura et al., 2006).   
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As shown before, PEPT1 would be induced after leptin treatment.  After the 

possible signal-transduction pathways were analyzed, Nduati et al (2007) revealed that 

cAMP-response element-binding protein (CREB) and CDX2 transcription factors were 

interacted and docked on hPEPT1 promoter to upregulate its expression.  The following 

study about leptin and PEPT1 demonstrated that MAPK pathway and ribosomal protein 

S6 activation were involved in the regulation of PEPT1 in the transcriptional and 

translational levels, respectively (Hindlet et al., 2009).  

 

Since food effect on PEPT1 is one of our research targets, its regulations by diets 

and fasting will be listed separately.  

 

Diet: 

 After rats were fed with protein-free, 5% casein, 20% casein, or 50% casein diets 

for 3 days, PEPT1 mRNA and protein expression levels were upregulated in 20% casein 

and 50% casein diet treatments comparing those to from protein-free fed rats (Shiraga et 

al., 1999).  GlySar uptakes into BBMVs were increased correspondingly.  Similar 

increases were observed in rats fed with diets containing 10% Phe or 20% GlyPhe.  

 When mice were fed with hypercaloric diet (i. e., 36% fat in the diet) for 4 weeks, 

a 30% decrease in PEPT1 protein and a 50% decrease in PEPT1 mRNA were observed in 

the jejunal segments.  PEPT1 - mediated GlySar transport in the jejunal loop showed a 

46% reduction than that from standard laboratory chow-fed mice (i.e., 3% fat in the diet) 

(Hindlet et al., 2009).  These changes in PEPT1 were suggested to be associated with 

leptin receptor down-regulation in the small intestines.    
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Fasting: 

In the first paper about fasting on PEPT1, Thamotharan et al. (1999) observed 

three-fold and two-fold increase of PEPT1 mRNA and protein expressions, respectively, 

in intestinal mucosa and brush-border membrane after rats were fasted for 1 day.  In 

addition, GlyGln uptake rate by BBMVs from 1-d fasted rats were increased by two-fold 

in Vmax with Km unchanged.  A parallel research used western blot analysis and 

immunogold electron microscopic techniques to demonstrate that PEPT1 protein 

expression levels were elevated in the apical microvillous plasma membrane of the 

absorptive epithelial cells of the rat jejunum after 4-d fasting.  But dietary administration 

of amino acids slightly reduced the amount of peptide transporter present (Ogihara et al., 

1999).  

In 2002, Naruhashi et al. measured PEPT1 mRNA abundance and its transport of 

cefadroxil in upper, middle and lower intestinal regions from 2-d fasted rats by Real-time 

PCR and Ussing Chamber Method, respectively.  Whole small intestine was arbitrarily 

divided into 8 segments with the first two segments being upper region, the middle 4 

segments being middle region, and the rest two being lower region.  As a result, PEPT1 

mRNA amount and cefadroxil transports were correlatively increased in the upper and 

middle regions, but not in the lower segments.  After rats were fasted for 2 to 4 days, 

diurnal rhythms of PEPT1 protein expression and transport activity, but not mRNA, were 

disrupted (Pan et al., 2003).  

 PEPT1 expressions in different intestinal regions responded differently to total 

parenteral nutrition (TPN) in rats.  Ihara et al. (2000) revealed that mRNA and protein 

abundance of PEPT1 were both increased in the jejunal mucosa after rats were given 
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TPN for 10 days.  The following study demonstrated that PEPT1 mRNA expression was 

unaffected in the duodenum and increased in the ileum in rats administered with TPN diet 

for 7 days (Howard et al., 2004).    

 Molecular mechanisms underlying the augmentation of PEPT1 by fasting are 

unclear yet.  Shimakura et al. (2006) claimed that peroxisome proliferator-activated 

receptor alpha was mediated the induction of PEPT1 expression in fasting condition 

through the increase of PEPT1 mRNA abundance by WY-14643, a synthetic PPARalpha 

ligand, in rats and the abolishment of PEPT1 mRNA augmentation in fasted PPARalpha-

null mice.  While in an independent study, PEPT1 mRNA was unaffected in wild-type or 

PPARalpha-null mice orally administered with PPARalpha-specific agonists (Hirai et al., 

2007).  

 Finally, a recent report demonstrated higher plasma and brain concentrations of 

oseltamivir, an ester-type prodrug of the neuraminidase inhibitor, were observed in fasted 

overnight rat pups (1-week-old with body weight 16.5 to 20.6 grams) than their fed 

littermates after oral administration (Ogihara et al., 2009).  Oseltamivir was suggested as 

a substrate of PEPT1.  In Caco-2 cells, its uptake was greatly inhibited by GlySar.  In 

adult rats, its absorption was markedly reduced when simultaneously administered with 

milk, casein or GlySar.  

 

2.1.6 Substrate Specificity 

 As the best known reference compound, synthesized [14C] or [3H]-

glycylsarcosine (GlySar) has been extensively to test whether unknown compounds are 

the substrates of PEPT1.  GlySar is relatively stable against intra- and extracellular 
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enzymatic hydrolysis and its transport activity has been characterized in almost all tissues 

known to express PEPT1.  Since an inhibitor on GlySar uptake can be competitive, 

noncompetitive, or even by breaking down the H+ gradients to reduce its uptake, a test 

compound will be performed by other techniques such as the two-microelectrode voltage-

clamp technique in X. oocytes expressing PEPT1 to confirm its substrate specificity.      

 

Di- and tripeptides 

 PEPT1 has a broad substrate spectrum (Daniel and Kottra, 2004) and accept all 

possible di- and tripeptides in a stereospecific manner with a few exceptions.  It cannot 

transport amino acids or tetraepeptides.  For di- and tripeptides, the N-terminal and C-

terminal charged head groups have to separate between 500 to 635 pm (Rubio-Aliaga and 

Daniel, 2008).  PEPT1 has preferences to transport peptides containing L-amino acid 

residues to those composing of D-amino acids (Daniel et al., 1992).  For those peptides 

solely consisting of D-stereoisomers, they will not be transported by PEPT1.  When 

proline is locating in N-terminal position in peptides, they are typically not good 

substrates of PEPT1.  Studies have demonstrated that PEPT1 in Caco-2 cells had little, if 

any, affinity towards Pro-Ala, Pro-Asp, Pro-Ser, Pro-Glu and Pro-Gly as its substrates 

(Brandsch et al., 1999; Vig et al., 2006).  Largely because of the cyclic structure of the 

proline, it provides an exceptional conformational rigidity so that PEPT1 can not bind 

well to those peptides.  

 For peptides containing only basic amino acids such as Arg-Arg or Lys-Lys, they 

will not bind to PEPT1 when performing at a medium pH of 6 (Biegel et al., 2006; Vig et 

al., 2006).  The possible explanation is that both protonated charged side-chains will repel 
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each other.  But in a previous study, Lys-Lys was transported in oocyte-expressing 

PEPT1 when the medium pH was above 7.4 (Amasheh et al., 1997).  It reiterates that the 

protonation state of a substrate at a given pH conclusively determines the substrate 

binding specificity to PEPT1.     

 When modifying the N-terminal amino group or C-terminal carboxyl group by 

methylation, acetylation or other substitutions, the modified peptides shows reduced 

affinity for PEPT1 (Hartrodt et al., 1998; Meredith et al., 2000).  In addition, the N-

terminus modification decreases the affinity to a higher extent than that of C-terminus 

(Biegel et al., 2006).  When either or both of amino and carboxyl termini is removed, 

peptides will totally lose their affinity to PEPT1.  

 A peptide bond is not an essential structural requirement for PEPT1 substrates.  δ-

AA possesses a ketomethylene group instead of a peptide bond, but it is a substrate of 

PEPT1 (Irie et al., 2001).  Ala-ψ[CS-N]-pro, which has an isosteric thioxo peptide bond, 

can be recognized and transported by PEPT1 (Brandsch et al., 1998).  In addition, ω-

amino fatty acids are substrates of PEPT1 though different affinities were reported among 

laboratories (Doring et al., 1998; Terada et al., 2000; Biegle et al., 2006).   

 Rubio-Aliaga and Daniel (2008) summarized essential structural features for di-, 

tripeptides to be substrates of PEPT1, which contain: 1) L-amino acid, 2) an acidic or 

hydrophobic function at the C-terminus, 3) a weakly basic group in the α-position at the 

N-terminus, 4) a ketomethylene or acid amide bond, and 5) a trans conformation of 

peptide bonds.  

 

Xenobiotics  
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 Largely due to structural resemblance to physiologically occurring peptides, 

foreign compounds are potential substrates of PEPT1, which include amino β-lactam 

antibiotics of the cephalosporin and penicillin classes, certain angio-tensin-converting 

enzyme (ACE) inhibitors, selected renin inhibitors, antitumor agents such as bestatin, 

dopamine receptor antagonists such as sulpiride and various amino acid ester prodrugs.   

 Back to 1970s, Addison et al. (1975) showed that high dose of cephalexin 

significantly inhibited GlySarSar in vitro uptake by hamster jejunum.  Not all 

cephalosporins are substrates of PEPT1.  Cephalosporins with an α-amino group increase 

recognition of PEPT1, but this structure is not an absolute requirement for substrate 

interaction (Raeissi et al., 1999).  Ceftibuten (Ganapathy et al., 1997) and cyclacillin (Fei 

et al., 1994) interact with PEPT1 in high affinity (Ki < 1mM).  Cefadroxil (Boll et al., 

1994), cefalor, cephalexin, ampicillin and others are moderately binding to PEPT1 (Ki = 

7-14 mM), while cefapirin, cefuroxime, benzylpenicillin, ceftriaxone, cefesoludin have 

no affinity to PEPT1 (Ki > 20mM) (Bretschneider et al., 1999).  Uptake assays on Caco-2 

cells (Bretschneider et al., 1999) and molecular modeling studies (Biegel et al., 2005) 

suggested structural features of β-lactam antibiotics to be recognized by PEPT1: 1) 

sterical resemblance to the tripeptide backbone, 2) N-terminal peptide bond with α-amino 

group, 3) carboxyl group at dihydrothiazine ring of cephalosporins or thiazolidine of 

penicillin, and 4) substituents on and saturation of the N-terminal ring systems.  

 Just as for β-lactam antibiotics, recognitions of ACE inhibitors by PEPT1 have 

been modified with more evidences published and the transport of some ACE inhibitor 

compounds is still a matter of controversy.  For instance, enalapril showed high affinity 

to PEPT1 in an Ussing Chamber test (Swaan et al., 1995), while Moore et al. (2000) and 
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many others found no affinity of enalapril for PEPT1.  Similar discrepancies were 

observed in captopril (Thwaites et al., 1995; Brandsch et al., 2004).  

 In contrast, fosinopril is undoubtedly a substrate of PEPT1 (Moore et al., 2000).  

It is transported intact by PEPT1 in a saturable process and intracellular accumulation of 

fosinopril is 3 to 4 times higher from the apical side than from the basolateral side.  

Quinapril, on the other hand, is suggested as a noncompetitive, non-transported inhibitor 

of PEPT1 (Chen et al., 1999).  

 Because of its high capacity and broad substrate specificities, PEPT1 has been 

used as a route or mediator to enhance oral bioavailability.  Acyclovir, an antiviral 

compound, is poorly absorbed.  Its prodrug, valacyclovir, showed 3 to 5-fold increase in 

its bioavailability (Weller et al., 1993).  hPEPT1-mediated uptake of valacyclovir into 

intestinal cells was first demonstrated as the underlying mechanism for its elevated 

absorption (Smiley et al., 1996), which was then confirmed by various following studies 

(Balimane et al., 1998; Ganapathy et al., 1998).  Similarly, valganciclovir, the valine ester 

of ganciclovir, has been demonstrated to be a substrate of PEPT1 (Sugawara et al., 2000).  

The prodrug strategy has also been applied to L-α-methyl-dopa.  PEPT1 has been 

revealed to be involved in the translocation of L-dopa-L-Phe and the prodrug will be 

hydrolysed to the active drug within the intestinal cells (Tamai et al., 1998).        

 As an endogenous photosensitizer for fluorescence diagnosis and photodynamic 

tumor therapy, has gained interest and been shown to be well absorbed in the 

gastrointestinal track.  It contains a ketomethylene group instead of a peptide bond.  

Doring et al (1998) and Irie et al (2001) reported that PEPT1 served as a mediator for δ-

ALA good absorption rate.  Since photodynamic tumor therapy is used to treat tumors of 
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extrahepatic biliary duct, δ-ALA has been suggested to accumulate in bile duct tumor 

cells via PEPT1 before photodynamic therapy (Neumann and Brandsch, 2003).  In 

addition, bestatin, an inhibitor of aminopeptidases, has been confirmed as a substrate of 

PEPT1 (Daniel and Adibi 1994; Faria et al., 2004).   

 

2.1.7 Transport Mechanism 

 Intestinal dipeptide uptake was first indicated to be driven by an inwardly directed 

H+ gradient by Ganapathy and Leibach (1983) using brush-border membrane vesicles and 

radiolabelled dipeptide.  The advanced techniques like two-electrode voltage-pump in 

oocytes expressing hPEPT1 or rPEPT1 were able to record electric currents through 

membrane.  It is universally believed that PEPT1 mediates electrogenic uphill transport 

of its substrates into cells.  A transmembrane electrochemical H+ gradient is the driving 

force for PEPT1 transport activity with intervillous pH at jejunum being 6.1 to 6.6 

(Daniel et al., 1989) and intercellular pH of enterocytes being 7.3.  The acidic 

microclimate on the luminal surface of intestinal epithelium is generated and maintained 

by the activity of the apical Na+/H+ antiporter (Aronson et al., 1982).  Coupling of Na+/H+ 

antiporter and PEPT1 in peptide transport has been demonstrated unequivocally 

(Thwaites et al., 1994; Thwaites and Anderson, 2007).  Possible involvement of other H+ 

translocators such as V-type H+ pumps in the acidic microclimate is under investigation 

(Beyenbach and Wieczorek, 2006).  As the driving force for apical Na+/H+ antiporter, 

inwardly directed Na+ gradient is established by Na+ - K+ - ATPase on the basolateral 

membrane of polarized epithelial cells.  It is not clear yet about driving forces for the 

basolateral efflux of peptides except for the concentration gradient.  
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 As already discussed, PEPT1 has a broad substrate spectrum regardless of the 

substrate’s net charge.  But PEPT1 has a preference to transport substrates that carries no 

net charge and they are translocated with a 1:1 stoichiometry in proton to substrate flux 

(Steel et al., 1997).  Generally, PEPT1 will have higher activity when transporting 

anionic substrates at more acidic microclimate, and when transporting cationic substrates 

at more neutral or slightly alkaline extracellular pH.  For dipeptides with glutamate or 

aspartate residues, two protons are required to enter cells with each substrate molecule 

and the second proton is believed to protonate the side chain carboxyl group prior to 

transport (Kottra et al., 2002).  When transporting cationic peptides containing lysine or 

arginine groups, PEPT1 will prefer their neutral form to the charged form with a 1:1 

stoichiometry in both cases.   

 Being a proton-coupled transporter, PEPT1 demonstrates a bell-shaped pH 

dependence with the maximal activity in pH values of 6.5 to 6.0 of the extracellular 

microclimate (Amesheh et al., 1997).  Its transport activity decreases when extracellular 

pH becomes neutral or decreases from 6.0.  However, this pH-dependence is solely 

observed when substrates are zwitterionic and at low concentration.  In addition, PEPT1 

is proposed as a bidirectional transporter with its single proton binding site being 

symmetrically accessible from both sides of the membrane.  Membrane potential will 

determine PEPT1 transporting direction and rate (Nussberger et al., 1997).    

 

2.1.8 Clinical Relevance 

 PEPT1 has pharmaceutical importance for oral drug delivery.  In addition, it is 

clinically relevant for enteral nutrition support.  Small peptide mixtures are intestinally 
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absorbed faster than comparable free amino acid composition, largely due to high 

capacity of PEPT1 (Ganapathy et al., 1994; Daniel 2004).  Consequently, higher 

concentrations of amino acids are detected in blood after absorption from peptide mixture 

than from amino acid mixture.  For insoluble or unstable essential amino acids like 

tyrosine, glutamine and cysteine, those amino acids will be obtained in the 

gastrointestinal track in the form of dipeptides (Adibi, 1997).  In addition, enteral 

nutrients in the peptide form will reduce the tonicity to avoid diarrheal complications of 

enteral nutrition, which is mainly caused by the hyperosmolar free amino acids in the 

solution.   

 Genetic disorders such as Hartnup disease and cystinuria, amino acid transporters 

are dysfunctional for the disrupted essential amino acid intestinal absorption (Seow et al., 

2004; Palacin et al., 2005).  Surprisingly, patients do not show evidences of malnutrition 

because the amino acids are absorbed adequately in the form of small peptides (Daniel, 

2004).  

 PEPT1 has not been reported for genetic disorders. But numerous evidences 

demonstrate its role in diseases such as short-bowel syndrome, chronic ulcerative colitis 

and Crohn’s disease since PEPT1 is pathologically upregulated in colon tissues.  

2.2 Transporters in Small Intestine and Colon 

 
2.2.1 Introduction 

In the gastrointestinal track, nutrients and water from food and drinks will be 

digested and absorbed.  Simultaneously, this organ serves as a host defense/detoxification 

barrier to reduce harmful exogenous substances.  Long-term exposures to those nutritious 
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and harmful stimuli enable small intestine and colon to equip with influx transporters, 

metabolic enzymes and efflux transport systems.  In addition, those transporters and/or 

enzymes have flexibility to accommodate to different dietary uptakes.  For instance, in a 

high protein meal study, human volunteers having 320 to 480 g of protein, which was 

equivalent to 1.5 to 2.8 kg of lean meat, within 8 hours did not yield evidence of a 

limitation of protein assimilation (Daniel, 2004).  

In this chapter, various intestinal and colonic transporter categories will be 

discussed.  

 

2. 2. 2 Influx Transporters 

Amino acid transporters on brush-border membrane 

 After human volunteers were administered with albumin, a model protein, the 

jejunal contents recovered were constituted by 120 to 145 mM of three to six amino acid 

residues and 0.6 to 16 mM of individual free amino acids.  The total concentration of all 

amino acids was between 30 to 60 mM (Adibi and Mercer, 1973).  A number of amino 

acid transporters have been identified by molecular cloning and assigned to different 

amino acid transport system based on their genetic family, driving force, substrate 

specificity and cellular localization.  Unlike peptide transporters, amino acid transporters 

on both apical and basolateral sides of intestinal epithelial cells have been well 

characterized (Halestrap and Meredith, 2004).  For amino acid transporters on the brush-

border membrane, they primarily mediate free amino acid transport from the lumen into 

the enterocytes.  Amino acid transport systems on the basolateral side, on the other hand, 

perform a dual function: they transport free amino acids from the enterocytes into the 
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blood in the absorptive process; in addition, in harsh conditions such as starvation, they 

translocate amino acid from blood back into enterocytes.  

 B0AT1 (SLC6A19) is a major apical neutral amino acid transporter in the 

intestines.  It is a Na+ - dependent amino acid co-transporter (cotransporting one Na+ per 

amino acid) and comprised of 634 amino acids (Broer et al., 2004).  In functional studies, 

B0AT1 transports all neutral amino acids, although its affinities are different (Preston et 

al., 1974).  Functionally related to B0AT1, B0AT2 (SLC6A15) expresses on the apical 

membrane of epithelial cells to transport neutral amino acid (Broer et al., 2006; Takanaga 

et al., 2005).  It mainly transports branched- chain amino acids plus proline with affinities 

from 40 to 200 μM.  In addition, it shows low affinity to phenylalanine and analine.  

 ATB0,+ (SLC6A14) is a Na+ and Cl- dependent transporter to transport neutral and 

cationic amino acids with a steoichiometry of 2 Na+ : 1 Cl- : 1 amino acid (Sloan and 

Mager, 1999).  Its expression in the small intestine has not been confirmed yet, but it is 

abundant in the colon for amino acids colonic absorption (Nakanishi et al., 2001).  

b0, + AT mRNA and rBAT protein have been identified in the microvillus of small 

intestine in 1999 (Pickel et al., 1999).  b0, + AT (SLC7A9) encodes a polytopic 

transmembrane protein comprised of 487 amino acid with 12 putative transmembrane 

helices (Chairoungdua et al., 1999; Pfeiffer et al., 1999).  rBAT (SLC 3A1) encodes a 

highly glycosylated membrane protein with 685 amino acids and a large extracellular 

domain (Bertran et al., 1993; Tate et al., 1992).  These two units are linked by a disulfide 

bond to form a complete transport system b0, + (Palacin and Kanai, 2004).  Cationic amino 

acids and cysteine show high affinity (Km being ~100 μM) to this Na+ - independent 

transport system.  It can also transport neutral amino acids in low affinity fashion.  In 



 

 40

addition, gabapentin, an anti-epileptic agent, is a substrate of b0, + AT-rBAT to show its 

pharmaceutical relevance (Stewart et al., 1993).  

EAAT3 (SLC1A1) is an anionic amino acid transporter, encoded by 524 amino 

acids (Kanai et al., 1992).  It cotransports 3 Na+ and 1 H+ together with each glutamate 

molecule (Zerangue et al., 1996).  As a high-affinity transporter, it shows a preference for 

D-aspartate to L-glutamate.  

The proton amino acid transporter PAT1 (SLC36A1) is an imide acid carrier with 

proline, glycine, alanine, β-alanine, betaine, sarcosine, MeAIB and GABA being its 

substrates (Anderson et al., 2004; Boll et al., 2003). It cotransports 1 H+ together with 

each amino acid.  PAT has been classified as a high-capacity, low-affinity transporter, 

with Km in the mM range.  PAT1 shows similar affinity to D- and L- isoforms of its 

substrates (Boll et al., 2003).  Besides free amino acids, PAT1 also accepts short-chain 

fatty acids (Foltz et al., 2004).  

IMINO (SLC6A20) is another imide acid transporter and functions differently to 

PAT1 among species.  In rat intestines, PAT1 is the major transporter for proline 

absorption, whereas IMINO is dominant in rabbit intestines (Anderson et al., 2004; 

Miyauchi et al., 2005).  Comparing to broad substrate spectrum of PAT1, IMINO has a 

limited transport activity: it accepts only amino acids with secondary, tertiary, or 

quanternary amines, such as proline, sarcosine, betaine, MeAIB (Kowalczuk et al., 2005; 

Takanaga et al., 2005); it cannot carry glycine (Crugeiras et al., 2008); and it is 

stereoselective for L-amino acids (Zvilichovsky et al., 2004).  In addition, IMINO is Na+ 

and Cl-- coupled transporter (Kowalczuk et al., 2005).   
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TauT (SLC6A6), a Na+ and Cl-- dependent transporter, is the major carrier for β- 

amino acids and taurine (Uchida et al., 1992).  It is comprised of 620 amino acids and 

shows high affinity to its substrates (with Km in μM range) (Shimizu and Satsu, 2000).  

 

Amino acid transporters on basolateral membrane transporters 

 4F2hc/LAT2 (SLC3A2/SLC7A8) forms a heteromeric amino acid transporter on 

the basolateral membrane in the intestine, especially in the jejunum and ileum (Pineda et 

al., 1999).  In this transport system, the 4F2hc heavy chain protein is highly glycosylated 

with 520- 530 amino acids depending on the species (Sagawa et al., 1999).  LAT2 is the 

light chain protein, comprising of 500- 530 amino acid residues.  These proteins are 

connected by a disulfide bond extracellularly (Pfeiffer et al., 1998).  Though 

4F2hc/LAT2 accepts all neutral amino acids except proline (Sagawa et al., 1999), it is not 

the major efflux pathway for neutral amino acids in the epithelial cells.  Functional 

analysis showed that LAT2 binds to the outside substrates with Km in μM range, 

whereas, cytosolic affinity was in mM range (Sagawa et al., 1999; Meier et al., 2002).  

Further study verified its role in cysteine efflux through exchange of other extracellular 

neutral amino acids (Bauch et al., 2003).   

 TAT1 (SLC16A10) is the major aromatic amino acid transporter on the 

basolateral side of epithelial cells.  It is comprised of 534 amino acid residues and a Na+- 

independent, facilitative transporter (Kim et al., 2001).  Besides aromatic amino acids, 

TAT1 accepts N-methylated derivatives of these amino acids and L-dopa with low 

affinity, Km in mM range (Ramadan et al., 2006).  
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Like b0, + AT-rBAT, 4F2hc/y+LAT1 (SLC3A2/SLC7A7) forms a heteromeric 

transporter and is the carrier of cationic amino acid efflux in epithelial cells (Pfeiffer et 

al., 1999).  It is a high affinity, Na+- independent transporter for cationic amino acids 

(Km in μM range) (Torrents et al., 1998).  When transporting neutral amino acid, 

4F2hc/y+LAT1 demonstrates much higher affinity in the presence of Na+.  In the absence 

of Na+, proton gradient is the driving force (Kanai et al., 2000).  Interestingly, this 

transport system exports cationic amino acids in exchange for extracellular neutral amino 

acids (Bauch et al., 2003).  The mediator for the subsequent efflux of neutral amino acids 

is not identified yet.  4F2hc/y+LAT2 (SLC3A2/SLC7A6), similarly to 4F2hc/y+LAT1, is 

identified in the intestines, but it functions minimally due to its relatively low expression 

level (Shoji et al., 2002).    

 

Organic anion transporters and organic cation transporters  

 Anionic drug intestinal absorption is mainly through passive diffusion because 

intestinal lumen is more acidic than the intracellular pH.  Most of organic anion 

transporters (OAT) have been characterized extensively in the tissues other than intestine 

(Vanwert et al., 2009).  For instance, there are OAT1- 10 and Urat1 in OAT family and 

only mRNA expression of OAT10 (SLC22A13) was detected in intestine and colon 

tissues (Sweet et al., 1997; Youngblood and Sweet, 2004; Yokoyama et al., 2008; Bahn 

et al., 2008).  Besides OAT family, organic anion transporting polypeptide (OATP/oatp) 

family can accept organic anions as well as conjugated and unconjugated bile salts in a 

Na+- independent manner (Meier and Stieger, 2002).  OAPTB (SLC21A9) is located at 

the apical membrane of intestinal epithelial cells in human (Kobayashi et al., 2003).  
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OATs and OAPTs have wide range of substrates from endogenous bile salts to 

xenobiotics and drugs including dexofenadine, methotrexate, pravastatin and ouabain 

(Bossuyt et al., 1996; Cvetkovic et al., 1999; Dresser et al., 2002). 

Polyspecific organic cation transporters belong to the SLC22 family and the 

MATE (the multidrug and toxin extrusion) H+/drug antiporters family.  In SLC22 family, 

OCT1 (SLC22A1) (Chen et al., 2001), OCT2 (SLC22A2) (Gorboulev et al., 1997) and 

OCT3 (SLC22A3) (Kummer et al., 2006) are passive diffusion organic cation 

transporters, whereas the cation and carnitine transporter OCTN1 (SLC22A4) is a proton-

cation exchanger (Peltekova et al., 2004).  OCTN2 (SLC22A5) is a Na+-dependent, high 

affinity transporter for L-carnitine, acetyl-L-carnitine and cephaloridine (Tamai et al., 

1998).  When transporting cationic substrates such as TEA, choline, verapamil and 

pyrilamine, it is Na+-independent (Ohashi et al., 2001; Wagner et al., 2000).  OCTN3 

(SLC22A9) was only cloned from mouse and is expressed on the basolateral membrane 

of the enterocytes as a Na+-independent transporter (Tamai et al., 2000; Duran et al., 

2005).  MATE1 and 2 strongly express in organs such as liver, kidney, skeletal muscle, 

instead of small intestines (Otsuka et al., 2005; Hiasa et al., 2006).    

OCT1, a 556- amino- acid membrane protein, expresses on intestinal serosal 

membranes (Grundemann et al., 1994; Sekine et al., 1998).  OCT2 is comprised of 593 

amino acid residues (Okuda et al., 1996).  It shares 67% identity with OCT1 and 

predominantly expresses in the basolateral membrane of renal proximal tububules 

(Karbach et al., 2000).  OCT2 mRNA transcript is not detected in the small intestine 

(Okuda et al., 1996).  The cDNA of OCT3 encodes a 551-amino- acid protein (Kekuda et 

al., 1998).  It is a potential-sensitive organic cation transporter and mediates cation uptake 
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across the luminal membrane (Muller et al., 2005).  OCTN1, a protein of 553 amino 

acids, shares 75% similarity to OCTN2, which is comprised of 557 amino acids (Wu et 

al., 2000; Tamai et al., 1998).  In human intestines, all OCT3, OCTN1 and OCTN2 are 

expressing on the brush-border membrane to transport organic cations and carnitines 

from the intestinal lumen, whereas their efflux across the basolateral side is mediated by 

OCT1 (Koepsell et al., 2007).   

 

Other influx transporters 

 Nutritional intestinal glucose absorption is mediated by sodium-dependent 

Na+/glucose co-transporters (SGLT) 1 (SLC5A1) on the brush-border membrane 

(Hediger and Rhoads, 1994).  Facilitated transporter GLUT5 (SLC2A5) is responsible for 

intestinal D-fructose absorption (Hediger et al., 1987).  Efflux of these hexoses from 

serosal membrane is via facilitated transporter GLUT2 (SLC2A2) (Gould and Holman, 

1993).  Long chain fatty acids provide energy especially for heart and muscle tissues in 

fasting conditions.  FATP4 (SLC27A4) is the primary transporting protein in the apical 

membrane for fatty acid intestinal absorption (Hui et al., 1998).  Bile acids are 

synthesized in the liver, secreted into the bile, and passed to the intestinal lumen.  Above 

95% of bile acids are re-absorbed passively in the proximal small intestine, actively in the 

distal ileum, and passively in the colon (Dawson et al., 2009).  ASBT/ISBT (SLC10A2) 

is well characterized as a Na+- and potential- driven transporter on the apical membrane 

to translocate bile acids from intestinal lumen into epithelial cells in the ileum 

(Hagenbuch and Dawson, 2004; Shneider 2001).  Organic solute transporter alpha-beta 

(OSTα-OSTβ) mediates bile acids exit from serosal membrane into the portal circulation 
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(Dawson et al., 2005; Ballatori et al., 2005).  Monocarboxylate transporter MCT1 

(SLC16A1) is a H+- coupled transporter to accept a wide variety of anions, including the 

vitamin B3, nicotinate, short-chain fatty acis butyrate, and acetate (Halestrap and 

Meredith, 2004).  mRNA expression of MCT1 has been detected from stomach to the 

distal colon with the greatest intensity in the caecum (Iwanaga et al., 2006).  Its cellular 

localization is still controversial.  Apical and/or basolateral membrane of enterocytes in 

different species have been immunoblotted with MCT1 (Iwanaga et al., 2006; Tamai et 

al., 1999; Gill et al., 2005).  

   

2. 2. 3 Efflux Transporters 

 Three major ATP-binding cassette efflux transporters express on the apical 

membrane of intestinal epithelial cells to determine oral bioavailability, intestinal efflux 

clearance and drug-drug interaction, especially in cancer treatment, since most of 

anticancer agents are recognized by those efflux transporters (Borst et al., 2000; Chan et 

al., 2004).  The most extensively studied efflux transporter is P-glycoprotein (P-gp), 

which is encoded by human multidrug resistance gene (MDR) 1 and named as ABCB1 

(Ling and Thompson, 1974; Riordan et al., 1985).  It is comprised of 1280 amino acids 

with two equal homologous parts, two ATP-binding domains and 12 putative 

transmembrane domains (Chen et al., 1986).  P-gp expresses in various tissues such as 

adrenal, kidney, liver, and brain (Fojo et al., 1987).  In human intestine, P-gp is highly 

expressed in the ileum and colon, and its expression gradually decreases proximally into 

jejunum, duodenum, and stomach (Ho et al., 2003).  Multidrug resistance-associated 

protein (MRP) 2 (ABCC2) is the second member of human MRP family.  In this family, 
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9 members from named MRP1- 9 have been identified (Takano et al., 2006).  MRP2 is a 

1545-amino-acid protein, comprising of two ATP- binding domains and 17 

transmembrane regions (Buchler et al., 1996).  Unlike P-gp, the expression of MRP2 is 

highly expressed in the proximal regions, and decreases gradually from jejunum to ileum 

(Rost et al., 2002).  In colon tissue, its expression is minimal (Rost et al., 2002).  Breast 

cancer resistance protein (BCRP, ABCG2) contains 655 amino acids (Miyake et al., 

1999).  Comparing to P-gp or MRP2, it only has a single ATP-binding domain at the 

amino terminus and 6 transmembrane domains at carboxyl terminus (Doyle and Ross, 

2003).  In addition, BCRP almost evenly expresses in the whole intestine (Maliepaard et 

al., 2001).  Efflux transporters have diverse and broad substrate spectrum.  A summary of 

their substrates is listed by Takano et al (2006).  MRP3 (ABCC3) is expressed in the 

basolateral membrane of enterocytes and its expression level increases gradually from 

proximal duodenum to the distal ileum and colon for the efflux of its substrates from 

enterocytes to the portal blood (Rost et al., 2002).  

 

2. 2. 4 Intestinal Transporters and Fasting 

 A recent study used the affymetrix GeneChip Mouse Genome 430A array to test 

intestinal transporters and phase I/II metabolism gene changes after mice were fasted for 

24 hours (van den Bosch et al., 2007).  Among them, 243 SLC transporters and 40 ABC 

transporters were analyzed.  No SLC or ABC transporters described in this part have 

been detected mRNA changes after 24-hr fasting.  mRNA of Oatp2a1 (SLCo2A1) on the 

apical side had increased 1.4 folds and MCT4 (SLC16A3) on the basolateral membrane 
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had decreased 1.6 folds in 24-hr fasted mice.  But both transporters do not function 

predominantly in their family.    

 

2. 2. 5 Mice with Targeted Disruption of Intestinal Transporters 

 Knockout mice for OCT1 and OCT2 were generated in 2001 (Jonker et al., 2001; 

Zwart et al., 2001) and double knockout mouse for OCT1 and OCT2 was cloned in 2003 

(Jonker et al., 2003).  All three strains were fertile and had no phenotypic abnormality.  

Because GLUT2 expresses in the plasma membrane of pancreatic β-cells, hepatocytes 

and kidney besides small intestine, GLUT2 knockout mice usually died between two and 

three weeks of age (Guillam et al., 1997).  OSTα-/- mice were viable and fertile, but they 

showed small intestinal hypertrophy and growth retardation (Ballatori et al., 2008).  

OAT1 knockout mice were generated in 2006 (Eraly et al., 2006).  They are 

physiologically similar to wild-type mice.  OAT3 knockout mice, on the other hand, 

showed a 10 to 15% lower blood pressure than wild-type mice (Vallon et al., 2008).  

MDR 1a-/- (Schinkel et al., 1994), MDR 1b-/- (Schinkel et al., 1997), MDR 1a/1b-/- 

(Schinkel et al., 1997) and BCRP1-/- (Jonker et al., 2002) have been generated, but none 

of them had physiological abnormalities.  MRP3-/- mice were healthy and showed 

indistinguishable from wild-type mice (Belinsky et al., 2005).  

 

2.3 Small Peptide Renal Reabsorption and Transporters 

 
Renal elimination of drugs involves glomerular filtration, tubular secretion, and 

tubular reabsorption.  For renal tubular drug secretion, organic anion transport system, 
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organic cation transport system and ATP-dependent primary active transporters are the 

major transport systems.  OAT1 (SLC22A6), OAT2 (SLC22A7), and OAT3 (SLC22A8) 

are locating on the basolateral membranes of renal proximal tubules (Bahn et al., 2005; 

Sweet, 2005; Rizwan and Burckhardt, 2007).  In addition, OAT3 is also found in the 

thick ascending limb of Henle’s loop, distal convoluted tubule, and collecting duct in rats 

(Rizwan and Burckhardt, 2007).  OAT5 (SLC22A19), OAT10 (SLC2213), and human 

URAT1 (SLC22A12) are expressing on the brush-border membranes in the urinary 

lumen of renal proximal tubule (Sweet, 2005).  Substrates of OATs are including 

methotresate, cidofovir, and nonsteroidal anti-inflammatory drugs (NSAIDs) (Cundy et 

al., 1996). 

For organic cation transporters, OCT1 (SLC22A1), OCT2 (SLC22A2) and OCT3 

(SLC22A3) are localized on the basolateral membrane of epithelial cells in renal 

proximal tubules (Koepsell et al., 2007).  The carnitine and cation transporter OCTN2 

(SLC22A5) is expressing on the apical membrane of proximal tubular epithelial cells.   

Small peptides are mainly reabsorbed from the urinary lumen via peptide 

transporters, PEPT1 and PEPT2.  In rats, PEPT1 is localized to the brush-border 

membranes in S1 segments of proximal tubules.  In contrast, PEPT2 is primarily 

expressed in brush-border membranes of the S3 segments of proximal tubules.  When 

small peptides are reabsorbed, they will be transported by the high-capacity, low-affinity 

PEPT1 in early regions of the proximal tubules (pars convolute), and then by the low-

capacity, high-affinity PEPT2 in the later regions of proximal tubules (pars recta) (Inui et 

al., 2000).  In PEPT2 null mice study, Ocheltree et al (2005) demonstrated that PEPT2 

accounted for 86% and PEPT1 accounted for 14% of reabsorbed GlySar.  For drugs such 
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as cefadroxil, PEPT2 was responsible for 95% and PEPT1 contributed to 5% of 

reabsorbed cefadroxil (Shen et al., 2007).  Recently, when GlySar was tested in PEPT1 

null mice, the clearance of GlySar only decreased about 7% after PEPT1 was abolished, 

suggesting that PEPT2 is the major transporter for GlySar reabsorption in the kidney (Hu 

et al., 2008).   
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Figure 2.1 Structural model of PEPT1 with mutations indicated. Histidine residues are 

shown to be subjected to mutagenesis. Amino acid residues are defined using the single-

letter code and residue number, and branched tree represents N-glycosylation sites. 

Figure obtained from Steel A and Hediger MA (1998) News Physiol Sci 13: 123-131. 
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Table 2.1 Amino Acid Residues Involved in PEPT1 Transport Activity and the Expected 

Effect of Mutation.  

 
 

Amino Acid 
TM  

Location 
Expected 

Function in 
Dipeptide 

Uptake 

Major 
Expected 
Result of 
Mutation 

Actual Result of 
Mutation 

W294 7 Participates in 
initial binding Affects Km 

W294A-hPEPT1 
Km   Vmax  

Y12 1 Regulates 
Passage Affects Vmax 

Y12A-hPEPT1 
Vmax   by 25%  

E595 10 Regulates 
passage Affects Vmax 

E595A-hPEPT1 
no transport 

Y91 3 Interacts with 
proton 

Affects pH 
dependence 

Y91F-rPEPT1 
transport  by 80% 

Y167 5 Regulates 
passage Affects Vmax 

Y167A-hPEPT1 
no transport 

H57 2 Regulates 
passage Affects Vmax 

H57Q-hPEPT1 
no transport 

F293 7 Regulates 
passage Affects Vmax 

F293C-hPEPT1 
no transport 

L296 7 Regulates 
passage Affects Vmax 

 L296C-hPEPT1 
no transport 

F297 7 Regulates 
passage Affects Vmax 

F297C-hPEPT1 
no transport 

K278 7 Regulates 
passage Affects Vmax 

K278C-hPEPT1 
transport  by 40% 

Y12 1 Regulates 
passage Affects Vmax 

Y12F-rPEPT1 
transport  by 70% 

Y91 3 Participates in 
initial binding Affects Km 

Y91F-rPEPT1 
Km   Vmax 

Y167 5 Regulates 
passage Affects Vmax 

Y167F-rPEPT1 
transport  by 90% 

Y345 8 Regulates 
passage Affects Vmax 

Y345F-rPEPT1 
transport  by 15% 

Y56 2 Participates in 
initial binding Affects Km 

Y56F-rPEPT1 
Km   Vmax 
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CHAPTER III 

 
PEPTIDE TRANSPORTER 1 IS RESPONSIBLE FOR THE IN VITRO 

INTESTINAL UPTAKE OF GLYCYLSARCOSINE IN WILD-TYPE VERSUS 

PEPT1 NULL MICE 

Abstract 

 
The H+-coupled peptide cotransporter 1, PEPT1, is primarily expressed at brush-

border membranes of intestinal absorptive epithelial cells, suggesting that it may play a 

role in the transport of small peptides (di- and tri-peptides).  To determine the role and 

relevance of PEPT1 in the uptake of peptides/peptidomimetics in mouse small intestinal 

tissue, we used glycylsarcosine (GlySar) as a model compound to compare its uptake in 

everted jejunual rings from wild-type and PEPT1 null mice.  Our findings showed that 4 

μM GlySar uptake was linear through 30 sec in wild-type mice and reached a plateau 

value of 1.2 pmol/mg at 7.5 min.  Compared to wild-type mice, PEPT1 null mice 

exhibited a 78% reduction in GlySar uptake (p < 0.001) under physiologic conditions (pH 

6.0, 37 oC).  The 4 μM GlySar uptakes showed pH dependence with peak values between 

pH 6.0 to 6.5 in wild type-mice, while no such tendency was observed in PEPT1 null 

mice.  GlySar exhibited Michaelis-Menten uptake kinetics with a Vmax of 233 

pmol/mg/20 s, a Km of 10 mM and a minor nonsaturable component (i.e., Kd) in wild-

type mice.  In contrast, PEPT1 null mice demonstrated that GlySar jejunual uptake was 

governed by a nonsaturable component alone (i.e., Kd).  A wide variety of substrates like 
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dipeptides (i.e., carnosine, GlyGly and GlySar), amniocephalosporins (i.e., cephradine 

and cefadroxil), angiotensin-converting enzyme inhibitors (i.e., lisinopril, captopril and 

enalapril) and the peptidomimetic prodrug valacyclovir significantly inhibited GlySar 

uptake in wild-type mice (p<0.01), while no such inhibition was observed in the uptake 

of GlySar in PEPT1 null mice.  These findings demonstrate that PEPT1 plays a critical 

role in the uptake of GlySar in the small intestine.  This study indicates that PEPT1 might 

be the major transporter responsible for the small peptides absorption in the small 

intestines.  Moreover, the ability of PEPT1 to transport small peptides/peptidomimetics in 

the small intestine may also be useful as a targeting protein for drug delivery.    
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Introduction 

 
As mammalian small intestine has acid microclimate, usually pH 5-6.8, at its 

luminal surface (Daniel et al., 1985; Shimada and Hoshi 1988; McKie et al., 1988; 

McConnell et al., 2008), transporters carrying various solutes via uphill transport across 

intestinal brush-border membranes have been found to utilize proton/sodium gradients as 

driving forces.  Transporters include the excitatory amino acid transporter EAAC1 

(SLC1A1 in the SoLute Carrier (SLC) gene nomenclature system by the Human Genome 

Organization) for L-glutamate, L- and D-aspartate, and L-cysteine absorption (Kanai and 

Hediger, 2004); sodium-coupled glucose cotransporter SGLT1 (SLC5A1) to transport D-

glucose and D-galactose (Wright and Turk, 2004); monocarboxylate transporter MCT1 

(SLC16A1) to translocate short-chain fatty acids (Tamai et al., 1995) and di/tripeptide 

transporter PEPT1 (SLC15A1) to transport small oligopeptides (Fei et al., 1994).  

PEPT1 belongs to mammalian proton-coupled oligopeptide transporter (POT) 

superfamily.  Besides PEPT1, this superfamily consists of PEPT2 (SLC15A2), PHT1 

(SLC15A3) and PHT2 (SLC15A4).  PEPT1 was the first proton-coupled organic solute 

transporter identified in vertebrate (Fei et al., 1994).  A complementary DNA screening 

from rabbit intestinal library showed that this gene encoded a predicted 707-amino-acid 

transmembrane protein on the brush-border membrane.  A subsequent topology study 

indicated that PEPT1 has 12-transmembrane domains (TMD) with its N- and C-termini 

facing the cytosol (Covitz et al., 1998).  Site-directed mutations in PEPT1 suggested that 

His-57 in the second putative TMD (Fei et al., 1997), Arg-282 in the seventh TMD 

(Meredith 2004; Meredith 2008), Tyr-167 in the fifth TMD, Trp 294 in the seventh TMD 
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and Glu-595 in the tenth TMD (Bolger et al., 1998) were critical for its binding with 

protons and substrates.  PEPT1 will utilize one proton when cotransporting one neutral or 

cationic dipeptide molecule (Kottra et al., 2002; Steel et al., 1997).  If anionic dipeptides 

are in their neutral forms, PEPT1 will require one proton for their transport to 

enterocytes.  Two proton molecules are necessary for PEPT1 when translocating charged 

anionic dipeptides (Machenzie et al., 1996).  PEPT1 has a wide spectrum of substrates 

variable in molecular size, net charge and solubility from di- and tripeptides (Liang et al., 

1995), peptide-like drugs such as beta-lactam antibiotics (Wenzel et al., 1995) and 

selected angiotensin converting enzyme (ACE) (Knutter et al., 2008).  It has been 

classified as a low affinity (i.e., mM Km values), high capacity transporter (Mackenzie et 

al., 1996).  In addition, PEPT1 has been successfully used as a tool to improve poor 

bioavailability of antiviral drugs (Ganapathy et al., 1998; Han et al., 1998; Sugawara et 

al., 2000); low-permeability in rebamipide (Kikuchi et al., 2008), and polarity of 

anticancer drug gemcitabine (Song et al., 2005) via their prodrug forms.  Though mainly 

expressed in the small intestine (Freeman et al., 1995), PEPT1 has been shown to be 

responsible for uptake of delta-amniolevulinic acid (δ-ALA) in cancer cells of human 

extrahepatic biliary duct.  ALA is a precursor of cellular porphyrin synthesis and used in 

photodynamic tumor therapy. Rather than a peptide bond, δ-ALA contains a 

ketomethylene group (Peng et al., 1997).  

PEPT2 was cloned from human kidney cDNA library through probing from rabbit 

PEPT1 (Liu et al., 1995) and has been characterized as a high affinity, low capacity 

transporter (Boll et al., 1996).  Human PEPT1 and PEPT2 proteins share 50% identity 

and 70% similarity in their primary structures and have comparably wide spectrum of 
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substrates (Biegel et al., 2006).  PEPT2 primarily functions in proximal tubule of kidney 

(Shen et al., 1999) and brain, especially apical membrane of choroid plexus epithelial 

cells (Shen et al., 2003), for renal reabsorption of small peptides (Shen et al., 2007) and 

removal of di- and tripeptides from cerebrospinal fluid (Ocheltree et al., 2005), 

respectively.  In contrast to the extensively studied PEPT1 and PEPT2, PHT1 and PHT2 

are far less explored.  Their substrate specificity has not been fully described, yet PHT1 

and PHT2 do accept free histidine as a substrate (Sakata et al., 2001). 

The recent generation of PEPT1 knockout mice by our laboratory (Hu et al., 

2008) has provided a research tool to thoroughly examine the functional role of PEPT1 in 

the transport of peptide/mimetics in its expressed organ systems under physiological 

conditions.  The functional properties of PEPT1-mediated transport were evaluated 

through comparison of jejunual uptake of glycylsarcosine (GlySar) in wild-type and 

PEPT1 null mice.  Our findings are novel in demonstrating that a lack of PEPT1 

abolished pH-dependency in the uptake of dipeptides; vitiation of PEPT1 resulted in a 

nonsaturable transport process; and absence of PEPT1 was affected little if any by a 

variety of inhibitors when transporting dipeptides.   
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Materials and Methods 

 
Materials.  [14C]GlySar (106 mCi/mmol) was purchased from Amersham 

Biosciences (Chicago, IL) and [3H] mannitol (20 Ci/mmol) from American Radiolabeled 

Chemicals (St. Louis, MO).  PEPT1 null mice were generated on a C57BL/6 mouse 

background as described by Hu et al. (2008).  Glycylsarcosine, glycylglycine, histidine, 

sarcosine, glycine, carnosine, cephapirin, cephalothin, cephradine, cefadroxil, lisinopril, 

captopril, enalapril, tetraethylammonium (TEA), 4-acetamido-4'-isothiocyano-2,2'-

disulfonic acid (SITS) were obtained from Sigma-Aldrich (St. Louis, MO).  Acyclovir 

and valacyclovir were kind gifts from GlaxoSmithKline Company (Durham, NC).  

Hyamine hydroxide was purchased from ICN Pharmaceuticals (Costa Mesa, CA).  All 

other chemicals were obtained from standard sources and were of the highest quality 

available.  

Preparation of Everted Small Intestinal Ring.  Gender and weight-matched 

transgenic mice of each genotype (n≥3, PEPT1+/+; n≥3, PEPT1-/-) were anesthetized with 

sodium pentobarbital (65 ug/g ip).  Two 2-cm segments from the proximal end of 

jejunum were isolated from each mouse for uptake study.  After isolation, jejunual 

segments were transferred to ice-cold incubation medium.  Composition of the incubation 

medium was as follows (in mM): 129 NaCl, 5.1 KCl, 1.4 CaCl2, 1.3 NaH2PO4, and 1.3 

Na2HPO4 (pH 6.0) (Pan et al., 2002).  For pH-dependent analysis, different combination 

of 10 mM Tris and/or MES were obtained to achieve pH values among 5.5 to 8.0, with 

osmolarity and concentration of Na+ being held constant.  After a rapid wash, the jejunual 

segments were everted and fixed over glass rods 3 mm in diameter by surgical threads.  

Everted jejunual segments were equilibrated in incubation medium gassed with 5% CO2-
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95% O2 at 37oC (water bath) for 5 min.  After the recovery period, each jejunual segment 

was placed in 1 ml of pre-warmed incubation medium containing 4 µM 14C-GlySar and 2 

µM  3H-mannitol (an extracellular marker), or different concentrations of 14C-GlySar 

shown in the concentration- dependent study at 37oC.  The uptake was terminated by 

transferring each segment to ice-cold wash buffer (the composition was the same as the 

incubation medium).  The jejunual segments were washed for 20 seconds, blotted on 

filter paper, weighed and soaked overnight in 0.33 ml of 1 M hyamine hydroxide (as a 

tissue solubilizer).  Radioactivity was determined in 6 ml of CytoScint (+) scintillation 

cocktail by a dual-channel liquid scintillation counter. 

The uptake of radiolabeled GlySar into small intestine, in microliters per 

milligram of tissue weight, was calculated according to the following equation: 

Substrate Uptake =

[ ] TimehtTissueWeigMediaSMannitolGlySarMannitolSGlySarS //)(/)/(*)()( −  

Where S(GlySar) is the total substrate (GlySar) concentration in the everted jejunal ring 

and S(Media) is the concentration of substrate in the external media.  The term 

S(Mannitol)*(GlySar/Mannitol) is to correct extracellular space, where S(Mannitol) is the 

total mannitol concentration in the everted jejunal ring.  Multiplying S(Mannitol) by the 

ratio of 14C-GlySar to 3H-mannitol in the external medium provides an estimate of the 

extracellular content of GlySar.      

Data analysis.  For kinetic studies, the concentration-dependent uptake of GlySar 

by wild-type and PEPT1 null mice was simultaneously fit to Michaelis-Menten 

relationship with a same nonsaturable component:  

CKd
CKm
CVV ⋅+

+
⋅

=
max  
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Where Vmax was the maximal rate of saturable uptake, Km was the Michaelis 

constant, Kd was the rate constant for nonsaturable processes and C was the substrate 

concentration.   

GlySar uptake in two jejunual segments was combined for an average number to 

indicate uptake in one mouse.  All data were expressed as the mean ± S.E. of at least 3 

independent experiments (n≥3).  Statistical comparisons between null and wild-type 

groups were performed using an analysis of variance (ANOVA), and pairwise 

comparisons with the control values were processed using Dunnett’s test.  A probability 

of p ≤0.05 was considered statistically significant.  In the analyses for linear and 

nonlinear regression, the quality of fit was determined by evaluating the coefficient of 

determination (r2) and the coefficient of variation of the parameter estimates, and by 

visual inspection of the residuals.  All statistical analyses were performed using Prism 

version 5 (GraphPad Software, Inc., San Diego, CA). 
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Results 

 
Time-Dependent Uptake of GlySar.  The uptake of GlySar (4 μM) was first 

studied in whole everted jejunual tissue isolated from wild-type mice.  As shown in 

Figure 3.1, GlySar showed a linear uptake for approximately 30 sec (r2 = 0.999).  The y-

intercept value was not significantly different from zero (p ≥ 0.05), suggesting that 

nonspecific binding was negligible.  Based on these results and to maximize radiotracer 

uptake in the linear region, an uptake time of 20 sec would be used to perform the 

subsequent experiments in wild type and PEPT1 null mice.  GlySar reached a plateau 

value of approximately 1.2 pmol/mg at 7.5 min to 15 min into the experiment.  

Temperature-Dependent, Sodium-Independent Uptake of GlySar.  Compared 

to PEPT1+/+ mice, the PEPT1-/- mice demonstrated a 78% reduction (p < 0.0001) in 4 μM 

GlySar uptake by everted jejunual rings at 37oC.  In addition, GlySar uptake in both 

genotypes, at 4oC, was less than 10% of the value observed in wild type mice at 

physiological temperature.  In contrast, no statistical difference was observed between 

genotypes at the lower temperature.  These results suggest that PEPT1 is responsible for 

the majority (about 80%) of GlySar uptake into the jejunum of wild type mice, with only 

a small percentage being governed by nonspecific processes (about 10- 20%).  GlySar 

uptakes in sodium-containing and low sodium incubation buffers were comparable in 

both PEPT1+/+ and PEPT1-/- mice, indicating that PEPT1 is a Na+-independent transporter 

in our in vitro system (Figure 3.3).  

pH-Dependent Uptake of GlySar.  Since PEPT1 is a proton-coupled transporter, 

GlySar uptake was explored as a function of pH (pH from 5.5 to 8.0) in the buffer system 

in both genotypes.  As shown in Figure 3.4, the GlySar uptake profile in PEPT1+/+ mice 
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resembled a bell-shape with peak numbers at pH 6.0 to pH 7.0 and a minimal value at pH 

8.0.  In contrast, GlySar uptake did not alter as a function of pH in PEPT1-/- mice.   

Concentration-Dependent Uptake of GlySar.  A series of concentrations from 

0.1- 40 mM of GlySar was investigated in both genotypes under physiological conditions.  

As shown in Figure 3.5, PEPT1+/+ mice demonstrated saturable transport with a 

maximum velocity (Vmax) of 233 pmol mg-1 20 sec-1, a Michaelis constant (Km) of 9.96 

mM, and a nonsaturable rate constant (Kd) of 0.0081 µl mg-1 20 sec-1.  In contrast, 

PEPT1-/- mice exhibited a linear uptake with Kd of 0.0081 µl mg-1 20 sec-1.  The carrier-

mediated component accounted for 74.3% of transport, while the nonspecific component 

accounted for 25.7% of the total GlySar uptake in PEPT1+/+ mice.  The complete kinetic 

data are summarized in Table 3.1.   

Inhibitor Analysis of GlySar Uptake.  Potential inhibitors were classified into 

six groups: A) amino acids, B) di- and tripeptides, C) cephalosporins, D) ACE inhibitors, 

E) organic anions and cations, and F) antiviral prodrug.  As shown in Figure 3.6, L-

histidine, sarcosine and glycine had no inhibition of GlySar uptakes in either wild type or 

PEPT1 null mice relative to control values.  The dipeptides, carnosine, GlyGly and 

GlySar, showed significant reduction on GlySar uptake in PEPT1+/+ mice (GlySar uptake 

dropped to 62.4%, 47.4%, and 39.2%, respectively), while inhibition was absent in 

PEPT1-/- mice.  Based on the presence of α-amino carbons, cephalosporins were divided 

into two groups, cephradine and cefadroxil containing α-amino carbons whereas 

cephapirin and cephalothin do not.  Both cephardine and cefadroxil remarkably reduced 

GlySar uptake in PEPT1+/+ mice (GlySar uptakes were reduced to 60.8%, and 53.6%, 

respectively), where GlySar uptake remained unchanged in the presence of cephalothin 
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and cephapirin in PEPT1+/+ mice compared with the control.  All cephalosporins showed 

no inhibitory effects on GlySar uptake in PEPT1-/- mice.  ACE inhibitors like lisinopril, 

captopril, and enalapril significantly inhibited the uptake of GlySar in PEPT1+/+ mice 

(GlySar uptakes were inhibited to 66.0%, 34.0%, and 30.9%, respectively).  No effect of 

ACE inhibitors was observed in PEPT1-/- mice.  SITS and TEA showed no effect in the 

GlySar uptake in both PEPT1+/+ and PEPT1-/- mice.  Finally, valacyclovir, but not 

acyclovir, inhibited GlySar uptake in PEPT1+/+ mice to 60.8% of control values.  
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Discussion 

 
Protein assimilation in the gut stems from its degradation by a spectra of proteases 

and peptidases, which are in their free forms in intestinal lumen and in the bound forms 

on brush border membrane of enterocytes (Daniel 2004).  The subsequent oligopeptides 

and individual amino acids will be absorbed through passive diffusion (Mizuma et al., 

1997) and transporter mediated processes (Buyse et al., 2001).  Various transporters such 

as di-, tripeptide transporter PEPT1 and amino acid transporter B(0)AT1 have been 

shown to express along human digestive tract in different expression patterns (Terada et 

al., 2005).  Though PEPT1 could be induced for more peptide/mimetics absorption 

(Hindlet et al., 2007), there is no solid evidence to show how dipeptides are absorbed in 

the small intestines if PEPT1 is absent.  Gene knockout is an elegant approach to 

exclusively characterize physiological and pharmacologic significance of a transporter in 

its gene families.  By using our PEPT1 knockout mice, we could get better insight into 

the role and relevance of PEPT1 in the absorption of small peptide/mimetics in the small 

intestines.     

As a neutral dipeptide, GlySar has been widely confirmed to be a substrate of 

PEPT1 and been used as a model compound to indicate dipeptide absorption via PEPT1 

(Boll et al., 1994; Hindlet et al., 2007).  In our preliminary study to describe PEPT1 null 

animals (Hu et al., 2008), we found that the in vitro jejunual uptake GlySar uptake (4 

µM) was vitiated by about 80% after PEPT1 has been knocked out.  To more fully 

describe how jejunum tackled small peptides in the absence of PEPT1, we performed this 

study and observed different behaviors of jejunum in transport of GlySar in PEPT1 null 

mice.  In our concentration-dependent study, we demonstrated that PEPT1 contributed 
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about 75% to GlySar intestinal transport, while passive diffusion only counted for about 

25%.  The role of passive diffusion in β-lactam antibiotics and di-/tripeptides absorption 

in the small intestines has long been debatable (Yamashita et al., 1986; Sugawara et al., 

1990).  Cephalexin has been widely used to study PEPT1 since it is believed to be 

absorbed mainly via PEPT1 (Covitz et al., 1996; Okamura et al., 2003).  A recent paper 

(Hironaka et al., 2008) compared cephalexin absorption in different intestinal segments 

by in situ closed loop and in vivo study in the absence or presence of PEPT1 competitor.  

They claimed that although total absorption of cephalexin was 50% due to PEPT1, the 

passive diffusion could compensate for PEPT1-mediated absorption of cephalexin after 

PEPT1 ablation or saturation.  Similar results were reported in the oral absorption of 

ampicillin in everted gut sac model in rats (Lafforgue et al., 2008).  These studies 

highlighted that passive diffusion might be underappreciated, at least for β-lactam 

antibiotic absorption like cephalexin and ampicillin in the small intestine.  

Paracellular permeability is largely influenced by the dynamic structures of tight 

junctions.  Tight junctions are composed of multiple transmembrane, scaffolding, and 

signaling proteins.  A variety of stimuli has been demonstrated to alter tight junction 

properties.  Cytokines like IFN-γ (Youakim et al., 1999), TNF-α (Ozaki et al., 1999), IL-

1 (Marcus et al., 1996), IL-4 (Ahdieh et al., 2001), IL-6 (Yang et al., 2001) and IL-13 

(Prasad et al., 2005) would induce actin remodeling to increase permeability in epithelial 

barriers.  Growth factors (Grant-Tschudy et al., 2005; Singh et al., 2007) would either 

enhance or reduce paracellular permeability based on different cellular environments.  

Other factors include drugs (Oshima et al., 2008, Amesheh et al., 2008) and hormones 

(Savidge et al., 2007).  
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Similarly, PEPT1 is a regulatory protein responding to environmental changes in 

the GI track (Thamotharan et al., 1999), drug treatments (Hirai et al., 2007), and disease 

conditions (Bikhazi et al., 2004).  Although the absorption route of cephalexin is 

debatable using in vitro research and in situ perfusion, this β-lactam antibiotic has been 

used extensively as a model compound when testing PEPT1 regulation.  Its permeability 

was correlated to PEPT1 expression levels in Caco-2 cells after they were infected with 

different titers of adenoviral hPEPT1 (Chu et al., 2001).  When PEPT1 was stimulated by 

leptin in Caco-2 cells, cephalexin diffusion was enhanced correspondingly (Hindlet et al., 

2007).  The pdzk1 gene encodes postsynaptic density95/disk-large/ZO-1(PDZ) domain-

containing protein PDZK1 and is an upstream gene to govern PEPT1 expression.  

PDZK1 knockout mice showed decreased expression levels of PEPT1 along with delayed 

absorption of cephalexin in the GI track after oral administration (Sugiura et al., 2008).  

These studies indicate that cephalexin absorption is via PEPT1, even though a change of 

passive diffusion may not be ruled out.     

In Caco-2 cells, the affinity of PEPT1 for cephalexin was 10- to 15-fold less than 

GlySar (Brandsch et al., 1997).  Cephalexin only modestly inhibited PEPT1-mediated 

GlySar uptake in LLC-PK1 cells stably transfected with PEPT1 cDNA (Terada et al., 

1997).  Sodium ampicillin was calculated to have 95% zwitterionic form at pH 6.0 and 

this percentage was reduced as solution pH increased due to its pK values of 2.5 and 7.3 

(Lafforgue et al., 2008).  Since pH of gastric fluid rises along GI tract, PEPT1 is 

predicted to have less important role in transporting ampicillin, while paracellular route 

might dominate over PEPT1 for the absorption of ampicillin in the distal small intestine.  
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In our concentration-dependent analysis, we revealed an uptake curve of GlySar 

(from 4 µM to 40 mM) in wild-type mice, which could be clearly divided into saturable 

(i.e., PEPT1) and nonsaturable (i.e., passive diffusion) components.  After PEPT1 

ablation, the GlySar absorption profile resembled a linear curve, presumably only the 

paracellular route remaining.  From what we observed, PEPT1 plays a predominant role 

in small peptide absorption from jejunum, which could suggest a minor passive diffusion 

of small peptide absorption.        

In our system, the everted jejunual rings were intact with mucosa being exposed 

to the drug solution, and submucosa and serosa adhering to the glass rod.  The everted 

jejunual rings maintained good viability and functionality over time according to their 

GlySar uptake analysis at different time points, and supported by other research (Molina 

et al., 2007).  The maximal pH effects on GlySar uptake in the small intestine of wild-

type mice were found at pH 6.0 to pH 6.5, similar to the pH range of GlySar uptake in 

Caco-2 monolayers and dropping dramatically at pH 7.0 (Thwaites et al., 1993).  Due to 

our using the entire tissue and unstirred water layers in the in vitro jejunal ring model, 

GlySar uptake did not change as much to pH as observed in Caco-2 monolayers.  A less 

dramatic change was also observed in amino acid absorption in rat everted intestinal rings 

(Inigo et al., 2006).  After PEPT1 was abolished, GlySar uptake was insensitive to pH 

changes in buffer, indicating no pH responsive uptake of GlySar in PEPT1 null mice.    

After cDNA cloning for PHT1 and PHT2 (Yamashita et al., 1997; Sakata et al., 

2001), little has been discovered about their functionality in the small intestines.  We 

used L-histidine to probe the possible involvement of PHT1/2 in the jejunal uptake of 

GlySar.  We found no inhibition in both wild-type and PEPT1 null mice, indicating that 
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PHTs were not involved in the jejunual transport of GlySar.  Cephalosporins with α-

amino carbons (cephradine and cefadroxil) demonstrated inhibitory effects on GlySar 

uptake in wild-type mice, while little, if any, change was observed in PEPT1 null mice.  

The increasing permeability of valacyclovir, but not acyclovir, in small intestine was 

attributed to the involvement of several carrier-mediated pathways, one of which was 

believed to be PEPT1 (Ganapathy et al., 1998; Han et al., 1998; Thomsen et al., 2004).  

In our system, valacyclovir inhibited GlySar transport in wild-type mice, confirming the 

previous reports.  However, valacyclovir also showed inhibitory effect on GlySar uptake 

in PEPT1 null mice.  We are unsure of the mechanism for this interaction, but it may be 

an artifact of measuring few uptakes.  

In conclusion, our novel findings have confirmed that PEPT1 is the primary 

transporter responsible for small peptide uptake in the jejunum.  Without PEPT1, 

transport of di-, tripeptides was provided by nonspecific, pH-independent processes.  

Future studies will be directed at the absorption of cefadroxil in wild-type and PEPT1 

knockout mice to clarify the relative roles of PEPT1 and passive diffusion in peptide-like 

drug absorption.  
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Figure 3.1 Time-dependent uptake of 14C-GlySar in the jejunum of wild-type mice (4 

µM GlySar in external medium).  Studies were performed at 37oC in small intestine 

incubation buffer (pH 6.0).  Data are expressed as mean ± S.E. (n=3-4). 
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Figure 3.2 Temperature-dependent uptake of 14C-GlySar in the jejunum of PEPT1+/+ and 

PEPT1-/- mice (4 µM GlySar in external medium).  Studies were performed at 37oC and 

4oC in small intestine incubation buffer (pH 6.0).  Data are expressed as mean ± S.E. 

(n=3-4).  ***p< 0.001 for null versus wild-type animals at 37oC.  
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Figure 3.3 Sodium-dependent uptake of 14C-GlySar in the jejunum of PEPT1+/+ and 

PEPT1-/- mice (4 µM GlySar in external medium).  Studies were performed at 37oC under 

normal sodium and low sodium conditions (pH 6.0).  Data are expressed as mean ± S.E. 

(n=3-4).   
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Figure 3.4 pH-dependent uptake of 14C-GlySar in the jejunum of PEPT1+/+ and PEPT1-/- 

mice (4 µM GlySar in external medium).  Studies were performed at 37oC in small 

intestine Tris-MES incubation buffer.  Data are expressed as mean ± S.E. (n=3).  * p < 

0.05, ** p < 0.01 as compared to pH 8.0 for each genotype. 
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Figure 3.5 Concentration-dependent uptake of 14C-GlySar in the jejunum of PEPT1+/+ 

and PEPT1-/- mice (0.1-40 mM total GlySar in external medium).  Studies were 

performed at 37oC in small intestine incubation buffer (pH 6.0).  Data are expressed as 

mean ± S.E. (n=3).   
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Figure 3.6 Effect of potential inhibitors (10 mM) on the uptake of 14C-GlySar in the 

jejunum of PEPT1+/+ and PEPT1-/- mice (4 µM GlySar in external medium).  Studies 

were performed at 37oC in small intestine incubation buffer (pH 6.0).  GlyGly represents 

glycylglycine, GlySar represents glycylsarcosine, TEA represents tetraethylammonium 

and SITS represents 4-acetamido-4'-isothiocyanato-stilbene-2,2'-disulfonic acid.  Data are 

expressed as mean ± S.E. (n=3-6).    
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Table 3.1 Uptake kinetics of GlySar in wild-type and PEPT1 null mice. 
 

 
*Parameter estimates (± SE) were calculated by nonlinear (or linear) least square 

regression models. r2 is the coefficient of determination.  

 

  

Parameter* 

 

PEPT1+/+ PEPT1-/- 

Vmax (pmol mg-1 20sec-1) 233 (36) - 

Km (mM) 9.96 (3.59) - 

Kd (µl mg-1 20sec-1) 0.0081 (0.0003) 0.0081 (0.0003) 

Vmax/Km (µl mg-1 20sec-1) 0.0234 - 

% Kd in (Kd+ Vmax/Km) 25.7% - 

% (Vmax/Km) in (Kd+ max/Km) 74.3% - 

r2 0.9382 0.9564 
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CHAPTER IV 

 
INFLUENCE OF FED-FASTED STATE ON INTESTINAL PEPT1 EXPRESSION 

AND IN VIVO PHARMACOKINETICS OF GLYCYLSARCOSINE IN WILD-

TYPE AND PEPT1 KNOCKOUT MICE 

Abstract 

 
The proton-oligopeptide cotransporter 1 PEPT1 is the major protein for di-,tri-

peptide uptake in small intestines, and its expression has been shown to be responsive to 

dietary intake.  The aim of this study was to investigate whether food and fasting 

conditions can alter the regional expression of PEPT1 in intestine, and if these changes 

can influence the in vivo systemic exposure of a model dipeptide, glycylsarcosine 

(GlySar).  The in vivo pharmacokinetics of GlySar was determined in wild-type (WT) 

and PEPT1 knockout (KO) mice after fed and fasted conditions: 1) mice fed a liquid diet 

ad libitum (control), and 2) mice fasted for 16 hours (16-hr fasted).  [14C]GlySar was 

administered (5 nmol/g body weight) by gavage and intravenous injection to both 

genotypes following the two conditions.  Serial blood samples were obtained over 120 

min after intravenous dosing and over 360 min after oral dosing.  PEPT1 transcript and 

protein levels were measured longitudinally in mouse small intestine and colon by real 

time-PCR and immunoblot analyses, respectively.  Upper small intestinal transit was 

detected by the distance traveled after a charcoal meal, 30 min post administration in fed-
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fasted states.  Histopathological analysis was reported by a pathologist after small 

intestines from wild-type and PEPT1 knockout mice were prepared in Swiss rolls.  

Although minimal changes were observed between WT control and 16-hr fasted mice for 

intestinal PEPT1 mRNA, protein levels of PEPT1 were increased 2.3-fold in the 

duodenum (p<0.001), 2.4-fold in the jejunum (p<0.01), and 1.6-fold in the ileum 

(p<0.001) of fasted animals.  After oral dosing, the Cmax of GlySar was significantly 

increased in 16-hr fasted mice (from 1.7 to 2.8 µM; p<0.0001) as was area under the 

plasma concentration-time curve, AUC (from 415 to 581 µM · min; p<0.01).  In contrast, 

no significant differences in Cmax or AUC were observed between KO control and 16-hr 

fasted mice.  As expected, the Cmax and AUC values of WT mice > KO animals under 

both fed and 16-hr fasted conditions (p<0.001). With respect to intravenous dosing, there 

were no differences in Cmax or AUC as a function of genotype and fed-fasted states.  

Upper small intestine quotients were about 75% in wild-type and PEPT1 knockout mice 

in both fed and fasted conditions.  No phenotypical abnormality was observed in PEPT1 

knockout or in fasted condition.  These findings reveal that during brief fasting 

conditions, the intestinal uptake of GlySar is significantly increased because of greater 

PEPT1 protein expression in all regions of small intestine. In the absence of PEPT1, food 

has little if any effect on GlySar absorption.  
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Introduction 

 
As a regulatory gene, PEPT1 responds to a variety of factors ranging from food 

intake like high-protein diet (Shiraga et al., 1999); hormones such as leptin (Hindlet et al., 

2009) and hyperthyroidism condition (Ashida et al., 2004); pathological states, for 

instance, Crohn’s disease and short-bowel syndrome (Adibi, 2003) for the elevated or 

reduced absorption of its substrates.  Because of proton being its driving force, any 

alteration of the pH gradients or membrane voltage will affect PEPT1 transport activity 

(Wenzel U et al., 2002; Rexhepaj et al., 2009).   

PEPT1 predominantly expresses on the apical membrane of enterocytes in the 

small intestines with comparable expression levels from duodenal to ileal segments in 

rats (Qandeel et al., 2009).  In kidney, it is located on the apical membranes of epithelial 

cells in S1 segments of proximal tubule (Shen et al., 1999).  In addition, the expression 

and/or function of PEPT1 have been detected in nuclei of vascular smooth muscle cells in 

pancreas (Bockman et al., 1997); apical membrane of epithelial cells in bile duct (Knutter 

et al., 2002); plasma membrane of nonpolarized immune cells (Charrier et al., 2006).  

PEPT1 transports a broad spectrum of substrates from all possible di- and tripeptides in a 

stereospecific manner except for a few exceptions; amino β-lactam antibiotics of the 

cephalosporin and penicillin classes; certain angiotensin-converting enzyme inhibitors to 

various amino acid ester pro-drugs (Brandsch et al., 2008).  

Back to 1999, mRNA and protein levels of PEPT1 in the intestinal mucosa from 

rats were induced 3- to 4-fold, respectively, after 1 day of fasting (Thamotharan et al., 

1999), along with a 2-fold increase in the uptake of a model compound Gly-Gln by brush 
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border membrane vesicles.  Subsequent studies demonstrated that intestinal PEPT1 

expression and function were upregulated after 2-d fasting (Naruhashi et al., 2002) and 4-

d fasting (Pan et al., 2003) in rats.  A recent paper described higher plasma and brain 

concentrations of oseltamivir, an ester-type prodrug of the neuaminidase inhibitor, in 

overnight fasted rat pups than their milk-fed littermates after its oral administration.  This 

prodrug was suggested as a substrate of PEPT1 and its absorption was greatly reduced 

when simultaneously administered with milk, casein or GlySar in adult rats (Ogihara et 

al., 2009).  Although the data suggested an upregulation of PEPT1 in intestine under 

fasting condition, PEPT1 protein expression was not determined nor was it correlated to 

its in vivo function.    

Meal intake may change gastric emptying and/or gastric pH so that the absorption 

rate of drugs will be altered (Chen et al., 2007).  In addition, food may affect the 

expression of intestinal transporters and/or enzymes to modify the absorption rate and/or 

extent of oral drugs (Grenier et al., 2006).  P-gp, an efflux transporter in the small 

intestine, has been extensively studied with respect to its regulation by dietary 

components (Zhang et al., 2009).  Little research, however, has been performed to 

explore the possible relationship between food, drug and PEPT1 expression/activity.   

Keeping its function and regulation in mind, we tried to explore whether fed and 

fasted conditions would alter regional expression of PEPT1 in the small intestine.  If so, 

to what extent would it affect the in vivo systemic exposure of the model compound, 

glycylsarcosine (GlySar).  Our unique PEPT1 knockout mice enabled us to specifically 

investigate the food-PEPT1 interaction on drug absorption.  In addition, we examined any 
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physiological changes that might occur in our wild-type and knockout mice during fed 

and fasted conditions.  
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Materials and Methods 

 
Materials.  14C-GlySar (106 mCi/mmol) was purchased from Amersham 

Biosciences (Chicago, IL) and 3H-dextran 70,000 (265 mCi/gm) from American 

Radiolabeled Chemicals (St. Louis, MO).  PEPT1 knockout mice were generated on a 

C57BL/6 mouse background as described by Hu et al. (2008).  Glycylsarcosine was 

obtained from Sigma-Aldrich (St. Louis, MO).  Diet LD 101 was obtained from TestDiet 

(Richmond, IN).  It arrived as a dry powder and a liquid suspension was prepared 

afterwards for rodents.  In this liquid diet, crude protein, crude fat, crude fiber and ash 

were no less than 16.0%, 15.0%, 10.0% and 5.0%, respectively.  The growth rate of 

rodents maintained on this diet was similar to that maintained on a good quality, standard 

rodent solid diet.  Hyamine hydroxide was obtained from ICN Pharmaceuticals (Costa 

Mesa, CA).  All other chemicals were obtained from standard sources.  

Diet Treatment.  Animal studies were conducted in accordance with the Guide 

for the Care and Use of Laboratory Animals as adopted and promulgated by the U.S. 

National Institute of Health.  Gender- and weight-matched PEPT1+/+ and PEPT1-/- mice, 

6 to 8 weeks of age, were used for all phenotypic analyses unless otherwise noted.  The 

mice were kept in a temperature-controlled environment with a 12-h light and 12-h dark 

cycle, and received a standard diet and water ad libitum (Unit for Laboratory Animal 

medicine, University of Michigan, Ann Arbor, MI).  Before conducting fed-fasted 

experiments, mice were fed with Diet LD101 instead of standard chow for 4 days (Anji 

and Kumari, 2008).  On average, a male and a female mouse consumed about 15 ml/ 24 

hr and 13.5 ml/ 24 hr, respectively, of Diet LD101.  For the fed control group, mice were 

maintained on a liquid diet.  In the fasted group, liquid diet was removed from cages at 5 
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pm and water was accessible to the mice ad libitum.  Experiments were performed at 9 

am the next day, which represented 16-hr of fasting to mice.  The experimental design for 

fed-fasted treatments is shown below: 

 Liquid Diet 
Day 1 Day 2 Day 3 Day 4 Day 5 

Fed group LD101 LD101 LD101 LD101 Experiments
Fasted group LD101 LD101 LD101 LD101, fasted overnight Experiments

 

Real-Time PCR Analysis.  After mice during fed-fasted conditions were 

anesthetized with sodium pentobarbital (65 ug/g ip), the intestine and colon were opened 

longitudinally and the mucus layer was gently scraped off from duodenal, jejunal, ileal, 

proximal and distal colonic segments by glass slides.  Total RNA was isolated separately 

according to the manufacturer’s protocol using TriZol reagent (Invitrogen, Carlsbad, 

CA).  After genomic DNA was removed from total RNA by DNAse I treatment 

(Ambion, Austin, TX), first strand cDNA was synthesized by reverse-transcriptase III 

(Invitrogen, Carlsbad, CA).  PEPT1 and house-keeping gene 18s rRNA primers were 

designed with Primer Express 3.0 software (Applied Biosystems, Foster City, CA) and 

synthesized by Integrated DNA Technologies (Coralville, IA).  Forward and reverse 

primers for PEPT1 were CTTGGAGCCACCACAATGG and 

ACAGAATTCATTGACCACGATGA; forward and reverse primers for 18s rRNA were 

GGCGTCCCCCAACTTCTTA and GGGCATCACAGACCTGTTATTG.  Thermal 

profile for real-time PCR was 1 cycle at 50 oC for 2 min, 1 cycle at 95 oC for 10 min, 40 

cycles at 95 oC for 15s and 60 oC for 1 min.  Relative abundance of PEPT1 transcripts 

were calculated based on the Ct cycles and normalized for 18s rRNA.  
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Immunoblot Analysis.  Total protein of the mucus layer was resolved on 7.5% 

SDS-PAGE gel.  After it was transferred to PVDF membrane, polyclonal rabbit anti - 

mouse PEPT1 antisera (raised against the COOH- terminal region, 

KGIGKENPYSSLEPVSQTNM; Lampire Biological Laboratories, Pipersville, PA) 

(1:1000 dilution) was used to detect specific PEPT1 expression, followed by goat anti - 

rabbit IgG conjugated to horseradish peroxidase (Bio-Rad, Hercules, CA) (1:3000 

dilution).  For loading control β-actin, the same membrane was blotted with a mouse 

monoclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) (1: 1000 dilution), and 

then incubated with goat anti - mouse IgG conjugated to horseradish peroxidase (Bio-

Rad, Hercules, CA) (1:3000 dilution).  The membrane bound with specific antibodies 

was detected with Immobilon Western Chemiluminescent Substrate (Millipore, Billerica, 

MA).  

In Vivo Phamacokinetic Studies.  Gender-matched PEPT1+/+ and PEPT1-/- mice 

in fed-fasted conditions were anesthetized with sodium pentobarbital (65 ug/g ip) prior to 

administration of 14C-GlySar (5 nmol/g body weight) by tail vein injection.  For the oral 

study, conscious mice were administered 14C-GlySar (5 nmol/g body weight) by gavage.  

After intravenous dosing, serial blood samples were collected at 0.25, 1, 5, 15, 30, 60, 90 

and 120 min; after oral dosing, serial blood samples were collected at 5, 15, 30, 45, 60, 

90, 120, 240 and 360 min.  Blood samples (15 to 20 µl) were obtained via tail 

transections and the plasma was harvested.  Animals after oral gavage were returned to 

their cages in between blood sampling with free access to water.  Radioactivity in plasma 

was measured by a dual-channel liquid scintillation counter.   
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Tissue Distribution Studies.  At the end of blood sampling, 3H-dextran 70,000 (2 

µCi/mouse) was administered i.v. 2 min prior to tissue harvest to correct extracellular 

space for GlySar tissue concentration.  The mouse was immediately decapitated and 

multiple tissues/organs were obtained (i. e., cerebral cortex, eye, lung, heart, liver, 

stomach, duodenum, jejunum, ileum, colon, spleen, kidney, skeletal muscle and 

testis/ovary).  Tissue samples were blotted dry, weighted, and digested in 0.33 ml of 1 M 

hyamine hydroxide (a tissue solubilizer) at 37oC.  A 20-µL aliquot of 33% H2O2 was 

added to each solubilized tissue followed by Ecolite (+) liquid scintillation cocktail (MP 

Biomedicals).  Radioactivity in each sample was detected by a dual-channel liquid 

scintillation counter (Beckman LS 3801; Beckman Coulter, Fullerton, CA).  Corrected 

tissue concentrations of GlySar (nmol/g of wet weight) were calculated as Ctiss - DS·Cb, 

where Ctiss is the uncorrected GlySar tissue concentration (nmol/g), DS is the dextran 

space, and Cb is the GlySar blood concentration (nmol/ml). 

Pharmacokinetics of GlySar Plasma Concentrations.  The plasma 

concentration-time curves were fitted using a noncompartmental approach after oral and 

intravenous administrations in WinNonlin (version 5.2; Pharsight, Mountain View, CA).  

Gastrointestinal Transit.  Gender-matched PEPT1+/+ and PEPT1-/- mice in their 

fed-fasted states were orally administered a meal of 10% activated charcoal (Sigma, St. 

Louis, MO) in 5% gum Arabic solution at a volume of 10 µl/g body weight.  At 30 min, 

animals were sacrificed by cervical dislocation after brief anesthesia.  The stomach and 

small intestine were separated from the omentum and dissected.  The distance traveled by 

the leading edge of the charcoal suspension and the total length of small intestine from 

pyloric sphincter to ileocecal junction were measured.  Gastrointestinal transit for each 
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animal was determined as the percentage of the distance traveled by charcoal relative to 

the total length of the small intestine: percent transit = (charcoal distance)/ (small 

intestine length) × 100 (Matsuda et al., 2006).  

Morphometric Analysis.  Duodenum, jejunum, ileum and colon were obtained 

from mice in fed-fasted conditions in both genotypes.  Samples were fixed overnight in 

10% formaldehyde at 4oC, transferred to 70% (vol/vol) ethanol, and then sent to the 

Cancer Center at the University of Michigan to prepare ematoxylin and eosin stained 

sections.  Prepared sections were analyzed by the Core Pathology Laboratory at the 

University of Michigan and histopathological reports were provided.  

Statistical Analysis.  Data are reported as mean ± S.E.  One way analysis of 

variance (ANOVA) was performed to test the statistic difference among multiple 

treatments for a given parameter.  If ANOVA showed significant difference among 

treatments, the Tukey method of multiple comparisons was used to determine differences 

among groups.  All statistical analyses were operated using Prism version 5 (GraphPad 

Software, Inc., San Diego, CA).  
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 Results 

 
PEPT1 mRNA Expression in Wild-Type Intestinal Mucosa after 16-Hour 

Fasting.  PEPT1 mRNA expression in the 3 segments of small intestine and 2 segments 

of colon were determined by real-time PCR in wild-type fed control and 16-hr fasted 

animals.  PEPT1 mRNA level of duodenal mucosa in fed group was arbitrarily assigned a 

value of unity.  All other mucosal PEPT1 mRNA expressions were compared to this 

arbitrary unit 1.  As shown in Figure 4.1, mRNA expression of PEPT1 in jejunal mucosa 

in fed mice was the highest and about 3-fold greater than that in duodenal site.  Ileum, 

proximal colon and distal colon had expression values that were 1.6-fold, 0.07-fold and 

0.50-fold of duodenal PEPT1 in fed mice, respectively.  When mice were fasted for 16 

hr, PEPT1 mRNA expression values decreased in the duodenal and distal colonic 

segments (p < 0.05) and increased (not significantly) in jejunal, ileal and proximal 

colonic segments compared to their corresponding levels in fed animals.  

PEPT1 Protein Expression in Wild-Type Intestinal Mucosa after 16-Hour 

Fasting.  PEPT1 proteins from small intestinal and colonic mucosa were detected by 

immunostaining with our specific rabbit anti-mouse PEPT1 antibody.  The level in fed 

group in each segment was arbitrarily assigned a value of unity.  Compared to the fed 

control, PEPT1 protein levels increased about 2.3-fold (p < 0.001), 2.4-fold (p < 0.01) 

and 1.6-fold (p < 0.001), respectively, in duodenal, jejunal and ileal mucosa after mice 

were fasted for 16 hr.  In fed or fasted mice, no PEPT1 signals were detected in either 

proximal or distal colon (Figure 4.2).   

Pharmacokinetics of Intravenously Administered GlySar after 16-Hour 

Fasting.  As shown in Figure 4.3 (A and B), GlySar plasma concentration-time curves 
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were almost superimposable in fed and fasted wild-type mice.  A similar pattern was 

observed in PEPT1 null mice.  In addition, the plasma concentration-time profiles were 

similar across genotypes.  Pharmacokinetic parameters derived from i.v. administration 

for each genotype in their fed-fasted conditions are summarized in Table 4.1.  PEPT1 

ablation or diet in the fed state did not affect the iv pharmacokinetics of GlySar.  

However, differences were observed in the terminal half-life (t1/2), volume of 

distribution steady-state (Vdss), and mean residence time (MRT) between wild-type and 

PEPT1 null mice in their fasted condition.  

Tissue Distribution of Intravenously Administered GlySar at 120 Min after 

16-Hour Fasting.  After i.v. bolus injection of GlySar, different tissues were harvested at 

2 hr and GlySar tissue concentrations were corrected for vascular space by dextran 

70,000.  Figure 4.4 A displays the concentrations of GlySar in the tissues and blood.  

Although GlySar blood concentrations were similar at 120 min in all four groups, GlySar 

concentrations in ileum were higher in wild-type fasted over fed mice; lung, stomach, 

duodenum, colon, spleen and teste/ovary had higher GlySar concentrations in PEPT1 null 

fed over fasted mice; liver, stomach, duodenum, jejunum, and ileum showed higher 

GlySar concentrations in fasted wild-type over PEPT1 null mice.  Tissue concentrations 

of GlySar:blood ratios are shown in Figure 4.4 B.  

Pharmacokinetics of Orally Administered GlySar after 16-Hour Fasting.  

Figure 4.5 (A and B) displays GlySar plasma concentration-time profiles in wild-type and 

PEPT1 null mice during fed-fasted conditions.  A summary of the pharmacokinetic 

parameters for all treatment groups is presented in Table 2.  GlySar peak concentrations 

(Cmax) and area under the plasma concentration-time curve (AUC0-360min) in fasted wild-
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type mice were about 1.5-fold of that in fed animals.  The Cmax and AUC0-360min from fed 

wild-type mice were significantly higher than values in PEPT1 null.  In addition, the 

plasma concentration-time curves were superimposable in PEPT1 null mice in fed-fasted 

conditions, as shown by the comparable Cmax and AUC0-360min values in these two groups.  

Tissue Distribution of Orally Administered GlySar at 360 Min after 16-Hour 

Fasting.  As shown in Figure 4.6 A, after oral administration, GlySar distributed evenly 

in all tissues except for testis/ovary in wild-type and PEPT1 null mice as a function of 

diet.  Tissue concentration of GlySar:blood ratios are shown in Figure 4.6 B.  

Gastrointestinal Transit (upper GI motility).  A charcoal meal was 

administered orally as a method to compare intestinal transit times in wild-type and 

PEPT1 knockout mice during fed-fasted conditions.  Transit was reported as percent of 

the leading edge of charcoal travelled relative to the total length of the small intestine, 30 

min after the meal.  As shown in Figure 4.7, the small intestinal transit was about 75% in 

all four groups.  No significant differences were observed between genotypes or as a 

function of diet.  

Morphometric Study.  Duodenum, jejunum, ileum and colon were isolated from 

wild-type and PEPT1 knockout mice during fed-fasted conditions.  Small intestinal and 

colonic segments were prepared as Swiss rolls (Freeman et al., 1995) and interpreted by 

the Core Pathology Laboratory at the University of Michigan.  Mucosal height and 

composition, proprial lymphoplasmacytic cells, degree of mitotic activity, submucosal 

and muscular thickness, appearance, and overall morphology were analyzed in each 

group (n=6).  No significant histological differences were observed between wild-type 

and PEPT1 knockout mice or as a function of diet.  Morphology of both wild-type and 



 

 117

PEPT1 null mice were normal.  Representative histologies of jejunum in wild-type and 

PEPT1 null mice during fed-fasted conditions are shown in Figure 4.8 and Figure 4.9, 

respectively.   
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Discussion 

 
We have previously shown that PEPT1 deletion reduced the oral absorption of 

GlySar by about 50% following gastric gavage and that plasma concentration-time 

profiles of GlySar after intravenous dosing were superimposable in wild-type and PEPT1 

null mice (Hu et al., 2008).  Since PEPT1 is inducible after a brief fast (Naruhashi et al., 

2002), we tried to explore how food affects the expression of PEPT1, the correlation of 

PEPT1 expression to its functionality, and the food-PEPT1 interaction on drug 

absorption.  

In PEPT1 studies performed in rats, the duration of fasting has been explored 

from 1- 4 days (Ogihara et al., 1999; Thamotharan et al., 1999).  Because mice have 

relatively smaller body weights than rats, and because drug absorption studies in mouse 

and human are usually performed after overnight fast (Sheikh Hassan et al., 2009; 

Scallion and Moore, 2009), we chose a 16-hr fast for our research design.  A model 

compound, GlySar, was dissolved in isotonic saline solution for intravenous and oral 

dosing.  To minimize any potential solid food effects, we changed the regular chow to a 

liquid diet (crude protein content was no less than 16%) in our fed-fasted studies, which 

has been shown to provide satisfactory nutrition to rodents and been tested previously 

(Anji and Kumari, 2008).  In addition, a previous study showed that expression of PEPT1 

was comparable in rats fed with an amino acid liquid mixture as those fed with regular 

chow (Ogihara et al., 1999).     

We first examined the expression of PEPT1 transcripts in small intestine and 

colon of wild-type mice.  In both fed and fasted animals, mRNA levels were highest in 

the jejunum, followed by ileum and then duodenum.  Compared to its abundant 
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expression in the small intestine, colonic segments had very low expression levels of 

PEPT1.  The PEPT1 mRNA expression pattern observed in our mouse study is consistent 

with that of a previous study in humans (Englund et al., 2006).  In rats, it expressed 

similarly in duodenum, jejunum and ileum (Howard et al., 2004).  With respect to human 

PEPT1 mRNA expression in the intestines, it was reported variably.  Terada et al (2005) 

used normal human mucosal specimens to claim that PEPT1 mRNA levels were highest 

in the duodenum, followed by jejunum and then ileum (duodenum> jejunum> ileum), 

while another study revealed that the mRNA expression levels were comparable in the 

duodenum and ileum from human histologically normal biopsies (Meier et al., 2007).  It 

is widely believed that normal human colonic tissues express low levels of PEPT1.  In 

disease states such as colon cancer, the colonic mRNA expression of PEPT1 is 

significantly induced (Anderson et al., 2009).   

After 16-hr fasting, PEPT1 mRNA increased slightly in jejunal and ileal segments 

(p> 0.05) but not in duodenal tissue (Figure 4.1), which was inconsistent with changes 

observed in rat PEPT1.  In 2-d fasted rats, the PEPT1 mRNA increased from 2- to 5-fold 

in different intestinal segments (Naruhashi et al., 2002).  However, when we measured 

PEPT1 protein levels in the same tissue segments, we found that PEPT1 increased in 

duodenum, jejunum and ileum on the order of 1.6- to 2.4-fold (Figure 4.2).   

A 5 nmol/g intravenous bolus dose of GlySar was administered to wild-type and 

PEPT1 null mice during fed and fasted conditions to explore if diet would affect the 

GlySar plasma concentration-time profiles of dipeptide.  We found all four plasma 

profiles to be almost superimposable (Figure 4.3) with AUC and CL showing no 

differences (Table 1).  Since renal PEPT1 is not regulated during fasted conditions (Pan 
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et al., 2003), our observation confirmed this characteristic by showing no changes of CL 

in fed vs fasted wild-type mice.  Previously, we reported that PEPT2 accounted for 84% 

of the total reabsorption of GlySar in kidney when studied in wild-type and PEPT2 null 

mice after a 50 nmol/g iv bolus dose of dipeptide (Ocheltree et al., 2005).  In the present 

study, we revealed that the CL of GlySar was comparable between wild-type and PEPT1 

null mice in both the fed and fasted states.  This finding emphasizes that PEPT1 is a 

minor transporter for GlySar renal reabsorption and indicates that the functionality of 

PEPT2 in kidney was not altered after PEPT1 was abolished.   

Due to the expression of PEPT1 on apical membranes of enterocytes, a 5 nmol/g 

oral dose of GlySar was administered to wild-type and PEPT1 null mice during fed and 

fasted conditions.  As shown in the plasma concentration-time profiles (Figure 4.5), we 

observed different degrees of GlySar absorption between genotypes and feeding 

conditions, with the greatest systemic exposure of GlySar occurring in fasted wild-type 

mice (i.e., AUC of 580 µM · min and Cmax of 2.80 µM) followed by fed wild-type 

animals (i.e., AUC of 415 µM · min and Cmax of 1.67 µM).  After PEPT1 ablation, 

GlySar absorption was comparable in fed and fasted states, both of which were the lowest 

in all four test groups (i.e., AUCs of 268 µM · min and 302 µM · min, and Cmaxs of 1.15 

µM and 1.25 µM, respectively, for fed and fasted PEPT1 null mice).  We also observed 

that PEPT1 protein levels were upregulated after the 16-hr fast (Figure 4.2).  By 

comparing the absorption of GlySar between genotypes and feeding conditions, we 

concluded that the increase of GlySar systemic exposure was due to an upregulation of 

PEPT1 protein in wild-type mice.  We also observed that changes in protein expression 

of PEPT1 corresponded to similar changes in in vivo functionality.  Therefore, food 
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deprivation served to upregulate intestinal PEPT1 expression, which then served to 

increase GlySar absorption.  

Food-drug interactions have been extensively studied (Welling 1996; Custodio et 

al., 2008).  Since the small intestines express a variety of influx and efflux transporters 

(Takano et al., 2006), food effects on drugs through regulated transporters have been 

addressed as well.  For instance, grapefruit juice (GFJ) reduced the oral bioavailability of 

fexofenadine probably through its inhibition of influx-directed organic anion transporter 

polypeptides (OATPs) (Greenblatt 2009).  Because of its efflux activity and broad 

substrate spectrum, P-gp is of great interest in transporter-based drug interaction profiles.  

In this case, the bioavailability (F) of dextromethorphan, a substrate of P-gp, increased 

significantly when taken orally with GFJ in human healthy volunteers, largely due to 

GFJ’s inhibitory effects on P-gp (Di Marco, et al., 2002).  A recent review (Zhang et al., 

2009) listed potential effects of food components on P-gp.   

In our tissue distribution study after oral administration, we observed little change 

in the tissue concentrations of GlySar (at 360 min) between genotypes or feeding 

conditions.  With the advancement of technology, gastric emptying and gastrointestinal 

transit times were shown to be longer than previously thought.  Schwarz et al (2002) used 

nuclear magnetic resonance to demonstrate that the exponential decay constant for 

stomach emptying in mice was 74 min, ant that there was a small amount of reagent 

remaining in the stomach for as long as 3 days.  In addition, they showed that 20% of the 

contrast agent remained in the GI track even after 10 hours post administration.  In light 

of these findings, it should not be surprising that GlySar exhibited a slow rate of 

absorption in our study.  
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When we examined the plasma concentration-time profiles of GlySar, we found 

that GlySar peak time (Tmax) did not change because of genotype or feeding conditions, 

averaging about 50 min.  We, thereby, examined the upper small intestinal transit in our 

four groups by oral administration of a charcoal meal.  Upper intestinal transit, 

represented by the percent of charcoal meal travelled relative to the length of the small 

intestine (30 min after the meal), have been extensively used as a parameter for intestinal 

physiology (Charoenthongtrakul et al., 2009).  The upper small intestine transit times 

measured by a charcoal meal were laboratory-dependent in fasted 16-hr mice, and ranged 

from 50% to 85% (Matwyshyn et al., 2006; Matsuda et al., 2006).  In the current study, 

we observed an upper small intestine transit time of 75% in all four groups. 

In contrast to the present study, Mittelstadt and Spruell observed that the 

gastrointestinal transit time was significantly shorter in fasted rats (50% versus 40% in 

fed rats) (2005).  One of the primary differences between the two studies is the fasting 

period.  We fasted mice for 16-hr, whereas, in the previous study, food was removed 

from rats for only 6-hr by claiming this time period was adequate enough for the stomach 

to be emptied.  In another study, a gastric half-emptying time of 86.9 ± 8.4 min was 

observed in overnight fasted mice (Moechars et al., 2006).  It is possible that fasting 

period could affect the physiology of the gastrointestinal tract, that is small intestine 

transit was rapid after a short fast (i.e., 6-hr), while it slowed down to its original level as 

in fed condition after a prolonged fasting (i.e., 16-hr).   

Another difference between the present study and Mittelstadt and Spruell (2005) 

is the animal diet.  Here, we used a liquid diet to replace the regular rodent chow.  Gastric 

half-emptying time was shorter for liquid meals than for solid meals in mice (Symonds et 
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al., 2003).  It is also possible that charcoal molecules release faster from a liquid-filled 

stomach than from a stomach containing solid food.  In addition, species differences may 

contribute to this inconsistency.  Regardless, the upper small intestine transit time was 

not different in fed versus fasted conditions for our mice.  

The colony of PEPT1 knockout mice had no obvious phenotypical abnormality.  

The intestines from wild-type and PEPT1 knockout mice had no significant histological 

differences, in fed or fasted states, thereby questioning the importance of PEPT1 in 

nutrition and/or survival.  A similar finding was observed in mice carrying targeted 

disruption(s) of other intestinal transporter genes such as mdr1a (Schinkel et al., 1994), 

mdr1b (Schinkel et al., 1997), mdr1a/1b (Schinkel et al., 1997), and bcrp1 (Jonker et al., 

2002).  However, like our PEPT1 knockout mice, those other null mice demonstrated 

significant differences in drug exposure, emphasizing their importance in 

pharmacological and pharmaceutical fields.  

In concluding, our findings conclusively demonstrate that PEPT1 protein 

expression is induced in duodenum, jejunum and ileum of wild-type mice after 16-hr fast; 

no changes are observed in the pharmacokinetics of GlySar after iv dosing as a function 

of genotype or diet; the AUC and Cmax of GlySar are significantly increased in wild-

type after oral dosing during a 16-hr fast, while no such pattern is observed after PEPT1 

ablation; the small intestinal transit (at 30 min) is about 75%, regardless of diet and 

genotypes.  These findings support PEPT1 as a pharmaceutically relevant transporter, in 

which its upregulation correlates to changes in functionality (i.e., increased intestinal 

absorption of GlySar).  
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Figure 4.1 PEPT1 mRNA expression in 5 different intestinal segments during fed and 

fasted conditions of wild-type mice.  Data are reported as mean ± SE (n = 6).  The mRNA 

expression in duodenum from fed mice was considered as a control value and arbitrarily 

assigned a value of unity.  All other expression values were compared to the control.  

Statistical analyses were performed between treatments for a specific intestinal segment 

by student t-test with p ≤ 0.05 being significant.  
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Figure 4.2 PEPT1 protein expression in 5 different intestinal segments of wild-type mice 

during fed-fasted conditions.  Data are reported as mean ± SE (n = 6).  The protein 

expressions in fed mice were the controls and arbitrarily assigned a value of unity.  

Expression values of fasted mice were compared to their corresponding controls.  

Statistical analyses were performed by student t-test with p ≤ 0.05 being significant. 
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Figure 4.3A Plasma concentration-time profiles of GlySar in PEPT1+/+ and PEPT1-/- 

mice, during fed-fasted conditions, after intravenous bolus administration of dipeptide at 

5 nmol/g body weight (y-axis shown as log scale).  Data are reported as mean ± SE (n = 

6). 
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Figure 4.3B Plasma concentration-time profiles of GlySar in PEPT1+/+ and PEPT1-/- 

mice, during fed-fasted conditions, after intravenous bolus administration of drug at 5 

nmol/g body weight (y-axis shown as linear scale).  Data are reported as mean ± SE (n = 

6). 
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Figure 4.4A Tissue distribution of GlySar in PEPT1+/+ and PEPT1-/- mice, during fed-

fasted conditions, 120 min after intravenous bolus administration of dipeptide at 5 nmol/g 

body weight.  Data are reported as mean ± SE (n = 6).  Statistical analyses were 

performed by one-way analysis of variance (ANOVA)-Tukey test.  ARepresents 

significant differences between fed and fasted conditions in wild-type mice, Brepresents 

significant differences between fed and fasted conditions in PEPT1 null mice, Crepresents 

significant differences between wild-type and PEPT1 null mice in fed condition, and 
Drepresents significant differences between wild-type and PEPT1 null mice in fasted 

conditions.  
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Figure 4.4B Tissue/blood concentration ratios of GlySar in PEPT1+/+ and PEPT1-/- mice, 

during fed-fasted conditions, 120 min after intravenous bolus administration of dipeptide 

at 5 nmol/g body weight.  Data are reported as mean ± SE (n = 6).  Statistical analyses 

were performed by one-way analysis of variance (ANOVA)-Tukey test.  ARepresents 

significant differences between fed and fasted conditions in wild-type mice, Brepresents 

significant differences between fed and fasted conditions in PEPT1 null mice, Crepresents 

significant differences between wild-type and PEPT1 null mice in fed condition, and 
Drepresents significant differences between wild-type and PEPT1 null mice in fasted 

conditions.  
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Figure 4.5A Plasma concentration-time profiles of GlySar in PEPT1+/+ and PEPT1-/- 

mice, during fed-fasted conditions, after oral administration of dipeptide at 5 nmol/g body 

weight (y-axis shown as log scale).  Data are reported as mean ± SE (n = 6). 
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Figure 4.5B Plasma concentration-time profiles of GlySar in PEPT1+/+ and PEPT1-/- 

mice, during fed-fasted conditions, after oral administration of dipeptide at 5 nmol/g body 

weight (y-axis shown as linear scale).  Data are reported as mean ± SE (n = 6). 
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Figure 4.6A Tissue distribution of GlySar in PEPT1+/+ and PEPT1-/- mice, during fed-

fasted conditions, 360 min after oral administration of dipeptide at 5 nmol/g body weight.  

Data are reported as mean ± SE (n = 6).  Statistical analyses were performed by one-way 

analysis of variance (ANOVA)-Tukey test.  ARepresents significant differences between 

fed and fasted conditions in wild-type mice, Brepresents significant differences between 

fed and fasted conditions in PEPT1 null mice, Crepresents significant differences between 

wild-type and PEPT1 null mice in fed condition, and Drepresents significant differences 

between wild-type and PEPT1 null mice in fasted conditions.  
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Figure 4.6B Tissue/blood concentration ratios of GlySar in PEPT1+/+ and PEPT1-/- mice, 

during fed-fasted conditions, 360 min after oral administration of dipeptide at 5 nmol/g 

body weight.  Data are reported as mean ± SE (n = 6).  Statistical analyses were 

performed by one-way analysis of variance (ANOVA)-Tukey test. ARepresents 

significant differences between fed and fasted conditions in wild-type mice, Brepresents 

significant differences between fed and fasted conditions in PEPT1 null mice, Crepresents 

significant differences between wild-type and PEPT1 null mice in fed condition, and 

Drepresents significant differences between wild-type and PEPT1 null mice in fasted 

conditions.  
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Figure 4.7 Upper gastrointestinal transit in PEPT1+/+ and PEPT1-/- mice, during fed-

fasted conditions, in which a charcoal meal was administered by gavage to each mouse.  

Thirty minutes later, mice were sacrificed and GI transit was expressed as percent of the 

distance travelled by the charcoal relative to that of total small intestinal length.  Data are 

reported as mean ± S.E. (n=6).  Statistical analyses were performed by one-way analysis 

of variance (ANOVA)-Tukey test. 
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Figure 4.8 Histology of jejunum in fed PEPT1+/+ and PEPT1-/- mice.  Sections were 

stained with H &E and examined by light microscopy.  For PEPT1+/+ mice, the bar = 1 

mm (A) and bar = 100 µm (B).  For PEPT1-/- mice, the bar = 1 mm (C) and bar = 100 µm 

(D). 
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Figure 4.9 Histology of jejunum in fasted PEPT1+/+ and PEPT1-/- mice.  Sections were 

stained with H &E and examined by light microscopy.  For PEPT1+/+ mice, the bar = 1 

mm (A) and bar = 100 µm (B).  For PEPT1-/- mice, the bar = 1 mm (C) and bar = 100 µm 

(D). 
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Table 4.1 Pharmacokinetics of GlySar plasma concentrations after a 5 nmol/g 

intravenous bolus dose of dipeptide in PEPT1+/+ and PEPT1-/- mice during fed-fasted 

conditions.  

 
Data are represented as mean (± SE) (n = 6) 

CL, total plasma clearance; Vdss, volume of distribution steady-state; MRT, mean 

residence time; t1/2, terminal half-life 

One-way ANOVA-Tukey test was performed to analyze differences among groups; 
ARepresents significant differences between fed and fasted conditions in wild-type mice, 
Brepresents significant differences between fed and fasted conditions in PEPT1 null mice, 
Crepresents significant differences between wild-type and PEPT1 null mice in fed 

condition, and Drepresents significant differences between wild-type and PEPT1 null 

mice in fasted condition. 

 
  

Parameters PEPT1+/+ PEPT1-/- 

Fed Fasted 16 hr Fed Fasted 16 hr 
CL (µl/min) 216 (19) 253 (21)  223 (13)  221 (11)  
Vdss (ml) 8.6 (1.2) 13.2 (2.0)D 8.1 (0.8) 6.9 (0.6)D 
MRT (min) 33.5 (1.8)   39.1 (2.0)D 32.9 (1.6) 29.0 (1.6)D 
t1/2 (min) 44.6 (5.5)   59.1 (6.3)D 37.9 (2.6) 34.1 (2.4)D 
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Table 4.2 Pharmacokinetics of GlySar plasma concentrations after a 5 nmol/g oral dose 

of dipeptide in PEPT1+/+ and PEPT1-/- mice during fed-fasted conditions.  

  
 
Data are represented as mean (± SE) (n = 6) 

AUC, area under the plasma concentration-time curve; Cmax, peak concentration; Tmax, 

time to peak concentration; t1/2, terminal half-life 

One-way ANOVA-Tukey test was performed to analyze differences among groups; 
ARepresents significant differences between fed and fasted conditions in wild-type mice, 
Brepresents significant differences between fed and fasted conditions in PEPT1 null mice, 
Crepresents significant differences between wild-type and PEPT1 null mice in fed 

condition, and Drepresents significant differences between wild-type and PEPT1 null 

mice in fasted condition. 

 

 

 

  

Parameters PEPT1+/+ PEPT1-/- 

Fed Fasted 16 hr Fed Fasted 16 hr 
AUC0-360min  (µM · min) 415 (11)A,C 581 (46)A,D 268 (8)C 302 (13)D 
Cmax (µM) 1.67 (0.03)A,C 2.80 (0.10)A,D  1.15 (0.07)C 1.21 (0.03)D 
Tmax (min) 47.5 (4.6)  52.5 (3.4) 45.0 (3.9)   55.0 (7.4) 
t1/2 (min) 350 (16) 410 (47) 374 (31) 401 (47) 
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APPENDIX A 

INDIVIDUAL DATA FROM CHAPTER III 

Table A.1 Time-dependent uptake of 14C-GlySar in the jejunum of wild-type mice (4 µM 

GlySar in external medium).  

Time (min) 0.167 0.333 0.5 1.0 1.5 2.0 4.0 5.0 7.5 10.0 15.0 

Trial 1 0.084 0.227 0.183 0.460 0.550 0.725 0.960 1.132 1.312 1.113 1.304

Trial 2 0.054 0.158 0.305 0.440 0.570 0.890 0.980 1.354 1.198 1.207 1.562

Trial 3 0.180 0.160 0.240 0.520 0.720 0.780 1.030 0.880 1.224 1.085 1.273

Trial 4 0.095 0.180 0.325 - - 0.610 - 1.290 - 1.860 - 

Mean 0.103 0.181 0.263 0.473 0.613 0.751 0.990 1.164 1.244 1.316 1.380

SE 0.027 0.016 0.032 0.024 0.054 0.058 0.021 0.106 0.034 0.183 0.092
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Table A.2 Temperature-dependent uptake of 14C-GlySar in the jejunum of PEPT1+/+ and 

PEPT1-/- mice (4 µM GlySar in external medium). 

 

 PEPT1+/+  

Temperature (oC)        37oC        4oC 

Trial 1 0.936 0.088 

Trial 2 1.034 0.072 

Trial 3 1.072 0.131 

Trial 4 0.859 - 

Mean 0.975 0.097 

SE 0.048 0.018 

 

 

 

 PEPT1-/-  

Temperature (oC)        37oC        4oC 

Trial 1 0.232 0.057 

Trial 2 0.240 0.075 

Trial 3 0.193 0.039 

Mean 0.222 0.057 

SE 0.014 0.010 
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Table A.3 pH-dependent uptake of 14C-GlySar in the jejunum of PEPT1+/+ and PEPT1-/- 

mice (4 µM GlySar in external medium). 

 
 
   PEPT1+/+    

pH 8.0 7.5 7.0 6.5 6.0 5.5 

Trial 1 0.090 0.167 0.204 0.227 0.194 0.169 

Trial 2 0.127 0.177 0.176 0.209 0.238 0.185 

Trial 3 0.130 0.170 0.237 0.202 0.224 0.150 

Mean 0.116 0.171 0.206 0.213 0.218 0.168 

SE 0.013 0.003 0.018 0.008 0.013 0.010 

 
 
 
 
   PEPT1-/-    

pH 8.0 7.5 7.0 6.5 6.0 5.5

Trial 1 0.046 0.056 0.036 0.045 0.025 0.027

Trial 2 0.031 0.057 0.036 0.038 0.024 0.038

Trial 3 0.039 0.042 0.045 0.050 0.041 0.042

Mean 0.039 0.052 0.039 0.044 0.030 0.035

SE 0.004 0.005 0.003 0.003 0.006 0.005

 
 
 
 
 
 
 
 
 
 
 
 
  



 

147 
 

Table A.4 Sodium-dependent uptake of 14C-GlySar in the jejunum of PEPT1+/+ and 

PEPT1-/- mice (4 µM GlySar in external medium). 

 
 

 PEPT1+/+  

Sodium concentration        High        Low 

Trial 1 0.182 0.193 

Trial 2 0.201 0.234 

Trial 3 0.208 0.204 

Trial 4 0.186 - 

Mean 0.194 0.210 

SE 0.006 0.012 

 
 
 

 PEPT1-/-  

Sodium concentration        High        Low 

Trial 1 0.045 0.034 

Trial 2 0.047 0.028 

Trial 3 0.038 0.039 

Mean 0.043 0.034 

SE 0.003 0.003 
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Table A.5 Concentration-dependent uptake of 14C-GlySar in the jejunum of PEPT1+/+ 

and PEPT1-/- mice (0.1-40 mM total GlySar in external medium). 

 
 
 
 

 
 
 
 
 
  

PEPT1+/+ 

Concentration 

(mM) 0.1 1.0 2.5 5.0 7.5 10.0 15.0 20.0 30.0 40.0 

Trial 1 2.919 27.91 63.01 78.64 152.5 180.6 283.5 365.2 427.4 536.5 

Trial 2 3.471 30.53 60.99 85.52 174.0 139.1 303.0 328.6 386.4 552.1 

Trial 3 2.953 24.14 45.94 116.2 133.7 267.3 305.5 337.3 436.2 347.5 

Mean 3.114 27.53 56.65 93.44 153.4 195.7 297.3 343.7 416.6 478.7 

SE 0.179 1.854 5.384 11.53 11.66 37.78 6.96 11.03 15.35 65.77 

PEPT1-/- 

Concentration 

(mM) 0.1 1.0 2.5 5.0 7.5 10.0 15.0 20.0 30.0 40.0 

Trial 1 0.843 7.751 26.00 42.87 58.98 87.54 154.1 137.1 291.4 253.6 

Trial 2 1.403 9.205 13.90 46.41 43.70 104.6 129.2 179.8 245.0 322.8 

Trial 3 1.040 7.213 21.64 43.49 54.49 97.65 173.0 163.8 260.2 324.8 

Mean 1.095 8.056 20.51 44.26 52.39 96.61 152.1 160.2 265.5 300.4 

SE 0.164 0.595 3.538 1.092 4.534 4.966 12.71 12.44 13.66 23.43 
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Table A.6 Effect of potential inhibitors (10 mM) on the uptake of 14C-GlySar in the jejunum of PEPT1+/+ and PEPT1-/- mice (4 µM 

GlySar in external medium). 

PEPT1+/+ 
 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Mean SE 

Control 0.182 0.201 0.208 0.186 - - 0.194 0.006 
Histidine 0.200 0.226 0.208 - - - 0.211 0.008 
Sarcosine 0.158 0.196 0.211 - - - 0.188 0.016 
Glycine 0.177 0.219 0.186 - - - 0.194 0.013 

Carnosine 0.141 0.084 0.138 - - - 0.121 0.019 
GlyGly 0.102 0.086 0.089 - - - 0.092 0.005 
GlySar 0.072 0.082 0.076 - - - 0.076 0.003 

Cephapirin 0.191 0.192 0.221 - - - 0.201 0.010 
Cephalothin 0.178 0.175 0.194 - - - 0.182 0.006 
Cephradine 0.108 0.133 0.114 - - - 0.118 0.007 
Cefadroxil 0.109 0.097 0.105 - - - 0.104 0.003 
Lisinopril 0.116 0.148 0.123 - - - 0.129 0.010 
Captopril 0.060 0.056 0.084 - - - 0.066 0.009 
Enalapril 0.063 0.057 0.060 - - - 0.060 0.002 

TEA 0.221 0.172 0.184 - - - 0.192 0.015 
SITS 0.172 0.195 0.158 - - - 0.175 0.011 

Acyclovir 0.192 0.179 0.193 - - - 0.188 0.005 
Valacyclovir 0.102 0.120 0.142 - - - 0.121 0.012 
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PEPT1-/- 
 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Mean SE 

Control 0.045 0.047 0.038 - - - 0.043 0.003 
Histidine 0.040 0.038 0.044 - - - 0.041 0.002 
Sarcosine 0.047 0.051 0.042 - - - 0.047 0.002 
Glycine 0.043 0.039 0.032 - - - 0.038 0.003 

Carnosine 0.023 0.036 0.037 - - - 0.032 0.004 
GlyGly 0.043 0.038 0.043 - - - 0.041 0.002 
GlySar 0.032 0.032 0.032 - - - 0.032 0.000 

Cephapirin 0.033 0.038 0.039 - - - 0.036 0.002 
Cephalothin 0.052 0.066 0.057 - - - 0.058 0.004 
Cephradine 0.027 0.025 0.044 - - - 0.032 0.006 
Cefadroxil 0.036 0.048 0.034 - - - 0.039 0.005 
Lisinopril 0.026 0.036 0.026 - - - 0.029 0.003 
Captopril 0.035 0.036 0.040 - - - 0.037 0.002 
Enalapril 0.032 0.037 0.055 - - - 0.041 0.007 

TEA 0.029 0.041 0.028 - - - 0.032 0.004 
SITS 0.036 0.030 0.029 - - - 0.031 0.002 

Acyclovir 0.036 0.038 0.039 - - - 0.038 0.001 
Valacyclovir 0.017 0.022 0.025 0.017 0.017 0.011 0.018 0.002 
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APPENDIX B 

INDIVIDUAL DATA FROM CHAPTER IV 

Table B.1 PEPT1 relative mRNA expression in 5 different intestinal segments during fed 

and fasted conditions of wild-type mice. 

PEPT1+/+ Fed 
Intestinal 
Segment 

 
Duodenum 

 
Jejunum 

 
Ileum 

 
P. Colon 

 
D. Colon 

Trial 1 1.050 3.720 2.100 0.110 0.360 
Trial 2 0.950 2.350 1.560 0.040 0.660 
Trial 3 1.050 3.540 0.810 0.020 0.560 
Trial 4 0.950 3.370 1.860 0.100 0.500 
Trial 5 1.050 3.460 1.970 0.040 0.490 
Trial 6 0.950 3.250 1.230 0.080 0.450 
Mean 1.000 3.282 1.588 0.065 0.503 

SE 0.022 0.197 0.201 0.015 0.041 
 
 
 

PEPT1+/+ Fasted 
Intestinal 
Segment 

 
Duodenum 

 
Jejunum 

 
Ileum 

 
P. Colon 

 
D. Colon 

Trial 1 0.580 4.240 4.750 0.160 0.310 
Trial 2 0.660 4.320 1.850 0.060 0.099 
Trial 3 0.880 3.500 1.870 0.042 0.170 
Trial 4 0.780 4.020 4.230 0.089 0.220 
Trial 5 0.810 4.110 1.990 0.100 0.140 
Trial 6 0.740 3.980 2.060 0.096 0.240 
Mean 0.742 4.028 2.792 0.091 0.197 

SE 0.044 0.118 0.542 0.017 0.031 
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Table B.2 PEPT1 protein expression in 5 different intestinal segments of wild-type mice 

during fed-fasted conditions.   

PEPT1+/+ Fed 
Intestinal 
Segment 

 
Duodenum 

 
Jejunum 

 
Ileum 

 
P. Colon 

 
D. Colon 

Trial 1 1.050 1.050 1.050 - - 
Trial 2 0.950 0.950 0.950 - - 
Trial 3 1.050 1.050 1.050 - - 
Trial 4 0.950 0.950 0.950 - - 
Trial 5 1.050 1.050 1.050 - - 
Trial 6 0.950 0.950 0.950 - - 
Mean 1.000 1.000 1.000 - - 

SE 0.022 0.022 0.022 - - 
 
 
 

PEPT1+/+ Fasted 
Intestinal 
Segment 

 
Duodenum 

 
Jejunum 

 
Ileum 

 
P. Colon 

 
D. Colon 

Trial 1 2.004 2.046 1.561 - - 
Trial 2 2.782 2.598 1.782 - - 
Trial 3 2.120 2.678 1.307 - - 
Trial 4 2.256 3.786 1.450 - - 
Trial 5 2.253 1.589 1.869 - - 
Trial 6 2.647 1.738 1.580 - - 
Mean 2.344 2.406 1.592 - - 

SE 0.125 0.330 0.085 - - 
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Table B.3 Plasma concentration-time profiles of GlySar in PEPT1+/+ and PEPT1-/- mice, 

during fed-fasted conditions, after intravenous bolus administration of dipeptide at 5 

nmol/g body weight.   

PEPT1+/+ Fed 

Time 

(min) 0.5 1 5 15 30 60 90 120 

Trial 1 42.15 26.60 15.60 8.44 4.50 1.39 - 0.80 

Trial 2 21.25 18.92 14.41 6.49 2.33 0.99 0.81 0.75 

Trial 3 37.86 30.64 16.32 8.72 3.71 1.36 1.03 0.96 

Trial 4 29.10 22.23 16.55 3.55 1.78 0.60 0.59 0.58 

Trial 5 38.04 27.08 19.28 11.66 5.16 1.63 1.23 0.54 

Trial 6 29.85 22.48 14.59 4.01 3.48 0.85 0.74 0.41 

Mean 33.04 24.66 16.12 7.15 3.50 1.13 0.88 0.67 

SE 3.14 1.72 0.72 1.26 0.52 0.16 0.11 0.08 

 

 
 

PEPT1+/+ Fasted 

Time 

(min) 0.5 1 5 15 30 60 90 120 

Trial 1 22.91 20.82 15.23 5.10 1.91 0.89 0.68 0.66 

Trial 2 17.64 13.73 8.52 4.17 1.54 0.68 0.62 0.59 

Trial 3 47.82 22.06 13.00 6.10 2.01 1.44 1.05 0.86 

Trial 4 32.64 24.01 12.42 5.43 2.15 1.06 0.93 0.67 

Trial 5 35.48 18.48 14.08 8.10 4.83 1.70 1.36 0.52 

Trial 6 30.25 20.48 11.48 4.72 1.58 0.78 0.69 0.55 

Mean 31.12 19.92 12.45 5.59 2.34 1.09 0.89 0.64 

SE 4.28 1.44 0.95 0.56 0.51 0.16 0.12 0.05 
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PEPT1-/- Fed 

Time 

(min) 0.5 1 5 15 30 60 90 120 

Trial 1 28.11 18.12 12.62 7.50 3.49 1.08 - 0.61 

Trial 2 23.62 18.80 11.16 6.62 3.49 1.16 0.65 0.64 

Trial 3 40.95 18.67 14.38 17.15 5.33 0.96 0.66 0.66 

Trial 4 22.96 19.55 13.30 6.46 5.01 1.35 0.77 0.76 

Trial 5 60.95 31.88 11.58 5.83 2.48 1.14 0.91 0.65 

Trial 6 20.56 15.49 12.48 6.47 3.49 1.05 0.72 0.64 

Mean 32.86 20.42 12.59 8.34 3.88 1.12 0.74 0.66 

SE 6.36 2.36 0.48 1.78 0.44 0.05 0.05 0.02 

 
 
 

PEPT1-/- Fasted 

Time 

(min) 0.5 1 5 15 30 60 90 120 

Trial 1 54.48 25.99 15.49 10.38 5.03 0.73 0.53 0.43 

Trial 2 48.33 24.84 12.19 6.91 3.30 1.06 1.02 0.53 

Trial 3 29.66 25.70 12.32 7.64 4.54 2.39 - 0.47 

Trial 4 28.11 18.12 12.62 7.50 3.49 1.08 - 0.61 

Trial 5 56.41 28.62 9.63 5.10 2.11 0.87 0.60 0.44 

Trial 6 31.48 22.69 14.30 8.41 4.02 1.26 0.81 0.57 

Mean 41.41 24.33 12.76 7.66 3.75 1.23 0.74 0.51 

SE 5.35 1.47 0.82 0.71 0.42 0.24 0.11 0.03 
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Table B.4 Tissue distribution of GlySar in PEPT1+/+ and PEPT1-/- mice, during fed-

fasted conditions, 120 min after intravenous bolus administration of dipeptide at 5 nmol/g 

body weight.   

PEPT1+/+ Fed 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.103 0.204 0.201 0.122 0.140 0.198 0.162 0.018 
Eye 0.368 0.613 0.782 0.447 0.459 0.700 0.561 0.066 

Lung 2.333 3.261 4.383 2.193 3.002 3.747 3.153 0.341 
Heart 0.384 0.694 1.070 0.472 0.412 0.700 0.622 0.106 
Liver 1.776 3.214 4.278 2.242 2.410 2.874 2.799 0.359 

Stomach 2.435 3.877 5.367 2.887 3.504 3.741 3.635 0.412 
Duodenum 2.223 3.789 4.804 2.507 3.589 4.102 3.502 0.399 
Jejunum 2.000 5.258 8.026 3.136 2.008 4.103 4.089 0.939 

Ileum 1.492 3.673 6.140 2.685 2.015 3.987 3.332 0.682 
Colon 2.326 3.335 4.932 2.154 3.026 3.547 3.220 0.409 
Spleen 1.589 1.747 3.649 1.464 2.001 2.401 2.142 0.331 
Kidney 9.156 9.625 11.788 7.113 6.871 6.874 8.571 0.810 

Sk. Muscle 0.391 0.576 0.868 0.450 0.500 0.853 0.606 0.084 
Testis/Ovary 0.714 0.521 0.910 0.335 0.600 0.503 0.597 0.081 

Blood 0.242 0.424 0.893 0.343 0.401 0.399 0.450 0.093 
 
 
 
 

PEPT1+/+ Fasted 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.135 0.148 0.275 0.192 0.174 1.590 0.181 0.021 
Eye 0.508 0.549 1.073 0.572 0.574 0.677 0.659 0.086 

Lung 2.448 2.311 2.198 2.545 2.756 2.143 2.400 0.094 
Heart 0.555 0.723 0.556 0.593 0.504 0.631 0.594 0.031 
Liver 2.879 3.200 4.617 4.101 3.077 4.000 3.646 0.282 

Stomach 3.524 2.760 3.147 3.619 3.000 3.345 3.232 0.133 
Duodenum 3.224 3.811 4.083 3.891 3.542 3.842 3.732 0.124 
Jejunum 4.606 5.958 4.249 4.527 4.424 4.736 4.750 0.251 

Ileum 4.714 5.649 8.386 4.850 5.777 5.003 5.730 0.560 
Colon 3.382 2.792 2.159 1.853 2.569 3.006 2.627 0.228 
Spleen 1.587 1.750 1.881 1.824 1.572 1.600 1.702 0.055 
Kidney 7.723 11.007 9.081 9.638 2.660 8.742 8.142 1.182 

Sk. Muscle 0.534 0.947 0.278 0.346 0.340 0.400 0.474 0.101 
Testis/Ovary 0.460 0.476 0.541 0.446 0.403 0.490 0.470 0.019 

Blood 0.367 0.355 0.595 0.451 0.360 0.402 0.422 0.038 
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PEPT1-/- Fed 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.103 0.117 0.212 0.260 0.140 0.198 0.172 0.025 
Eye 0.368 0.675 0.638 0.652 0.459 0.700 0.582 0.055 

Lung 2.333 3.938 4.421 3.562 3.002 3.747 3.500 0.301 
Heart 0.384 0.541 0.749 0.860 0.412 0.700 0.608 0.078 
Liver 1.776 2.803 2.857 4.087 2.410 2.874 2.801 0.309 

Stomach 2.435 3.418 4.466 3.923 3.504 3.741 3.581 0.275 
Duodenum 2.223 4.482 4.078 5.730 3.589 4.102 4.034 0.468 
Jejunum 2.000 4.120 4.566 4.828 2.008 4.103 3.604 0.518 

Ileum 1.492 3.101 4.920 5.090 2.015 3.987 3.434 0.610 
Colon 2.326 3.261 3.379 3.688 3.026 3.547 3.204 0.199 
Spleen 1.589 2.289 1.913 3.104 2.001 2.401 2.216 0.213 
Kidney 9.156 14.856 13.451 20.982 6.871 6.874 12.030 2.248 

Sk. Muscle 0.391 0.605 0.743 0.907 0.500 0.853 0.666 0.083 
Testis/Ovary 0.714 0.527 0.492 0.662 0.600 0.503 0.583 0.037 

Blood 0.242 0.350 0.245 0.462 0.401 0.399 0.350 0.037 
 
 
 

PEPT1-/- Fasted 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.153 0.205 0.166 0.165 0.140 0.175 0.168 0.009 
Eye 0.483 0.396 0.441 0.423 0.400 0.430 0.429 0.013 

Lung 1.367 2.440 1.527 1.857 1.649 1.874 1.786 0.153 
Heart 0.435 0.444 0.496 0.388 0.401 0.430 0.433 0.015 
Liver 2.270 1.789 1.936 1.847 2.001 1.699 1.923 0.082 

Stomach 1.869 2.090 1.785 1.905 1.678 1.842 1.862 0.056 
Duodenum 2.308 2.097 2.545 2.206 1.998 2.348 2.250 0.079 
Jejunum 2.270 2.028 2.393 2.014 1.987 2.004 2.116 0.070 

Ileum 2.018 2.457 3.122 2.553 2.248 2.547 2.491 0.152 
Colon 1.912 1.688 2.587 1.876 1.705 2.187 1.993 0.140 
Spleen 1.344 1.354 1.577 1.246 1.285 1.402 1.368 0.047 
Kidney 10.969 10.519 11.176 10.019 9.985 10.025 10.450 0.215 

Sk. Muscle 0.537 0.508 0.630 0.552 0.540 0.524 0.549 0.017 
Testis/Ovary 0.285 0.277 0.306 0.284 0.284 0.269 0.284 0.005 

Blood 0.294 0.292 0.317 0.220 0.300 0.287 0.285 0.014 
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Table B.5 Tissue/blood concentration ratios of GlySar in PEPT1+/+ and PEPT1-/- mice, 

during fed-fasted conditions, 120 min after intravenous bolus administration of dipeptide 

at 5 nmol/g body weight.   

PEPT1+/+ Fed 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.426 0.480 0.225 0.357 0.451 0.287 0.371 0.041 
Eye 1.522 1.444 0.875 1.303 1.184 1.241 1.262 0.093 

Lung 9.639 7.689 4.906 6.399 5.502 9.940 7.346 0.863 
Heart 1.587 1.637 1.198 1.379 1.222 1.844 1.478 0.104 
Liver 7.337 7.579 4.789 6.544 6.777 6.884 6.652 0.403 

Stomach 10.06 9.142 6.007 8.425 6.809 9.759 8.367 0.669 
Duodenum 9.186 8.934 5.378 7.317 5.883 9.834 7.755 0.755 
Jejunum 8.263 12.399 8.984 9.152 4.519 14.823 9.690 1.452 

Ileum 6.167 8.660 6.873 7.837 6.653 9.943 7.689 0.580 
Colon 9.610 7.864 5.521 6.286 5.556 11.712 7.758 1.018 
Spleen 6.567 4.119 4.085 4.272 4.469 5.004 4.752 0.388 
Kidney 37.84 22.70 13.20 20.76 15.58 20.91 21.83 3.524 

Sk. Muscle 1.615 1.358 0.972 1.312 0.927 1.594 1.296 0.121 
Testis/Ovary 2.951 1.228 1.018 0.979 1.137 1.142 1.409 0.311 

Blood 0.242 0.424 0.893 0.343 0.443 0.402 0.458 0.092 
 
 
 

PEPT1+/+ Fasted 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.369 0.416 0.463 0.426 0.484 3.958 1.019 0.588 
Eye 1.383 1.547 1.803 1.270 1.597 1.686 1.548 0.080 

Lung 6.671 6.509 3.695 5.648 7.665 5.337 5.921 0.557 
Heart 1.511 2.036 0.934 1.316 1.402 1.572 1.462 0.147 
Liver 7.844 9.012 7.761 9.100 8.557 9.962 8.706 0.341 

Stomach 9.601 7.772 5.290 8.032 8.343 8.330 7.895 0.581 
Duodenum 8.784 10.733 6.863 8.635 9.849 9.567 9.072 0.540 
Jejunum 12.55 16.78 7.143 10.05 12.30 11.79 11.77 1.296 

Ileum 12.84 15.91 14.10 10.76 16.07 12.46 13.69 0.847 
Colon 9.216 7.863 3.629 4.111 7.144 7.486 6.575 0.904 
Spleen 4.324 4.928 3.162 4.049 4.372 3.985 4.137 0.238 
Kidney 21.04 31.00 15.27 21.39 7.397 21.77 19.64 3.202 

Sk. Muscle 1.454 2.666 0.468 0.767 0.946 0.997 1.216 0.318 
Testis/Ovary 1.253 1.342 0.910 0.991 1.122 1.221 1.140 0.067 

Blood 0.367 0.355 0.595 0.451 0.360 0.402 0.422 0.038 
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PEPT1-/- Fed 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.426 0.333 0.868 0.563 0.349 0.497 0.506 0.081 
Eye 1.522 1.929 2.609 1.413 1.144 1.756 1.729 0.208 

Lung 9.639 11.25 18.07 7.714 7.482 9.398 10.59 1.599 
Heart 1.587 1.546 3.062 1.863 1.028 1.756 1.807 0.277 
Liver 7.337 8.009 11.68 8.852 6.007 7.209 8.182 0.798 

Stomach 10.06 9.765 18.26 8.497 8.733 9.383 10.78 1.515 
Duodenum 9.186 12.81 16.67 12.41 8.945 10.29 11.72 1.188 
Jejunum 8.263 11.77 18.67 10.46 5.005 10.29 10.74 1.855 

Ileum 6.167 8.86 20.12 11.03 5.022 10.00 10.20 2.190 
Colon 9.610 9.317 13.81 7.989 7.540 8.897 9.528 0.915 
Spleen 6.567 6.539 7.819 6.724 4.987 6.022 6.443 0.378 
Kidney 37.84 42.44 54.99 45.45 17.12 17.24 35.85 6.332 

Sk. Muscle 1.615 1.729 3.036 1.964 1.246 2.140 1.955 0.250 
Testis/Ovary 2.951 1.506 2.013 1.434 1.496 1.262 1.777 0.256 

Blood 0.242 0.350 0.245 0.462 0.401 0.399 0.350 0.037 
 
 
 

PEPT1-/- Fasted 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.522 0.702 0.523 0.751 0.467 0.610 0.596 0.046 
Eye 1.645 1.357 1.390 1.922 1.334 1.496 1.524 0.092 

Lung 4.655 8.357 4.817 8.441 5.495 6.520 6.381 0.692 
Heart 1.480 1.522 1.565 1.764 1.338 1.498 1.528 0.057 
Liver 7.731 6.126 6.106 8.397 6.669 5.909 6.823 0.415 

Stomach 6.366 7.159 5.633 8.657 5.595 6.408 6.636 0.468 
Duodenum 7.860 7.181 8.029 10.026 6.660 8.169 7.988 0.470 
Jejunum 7.731 6.945 7.550 9.157 6.624 6.972 7.497 0.372 

Ileum 6.874 8.415 9.850 11.605 7.494 8.861 8.850 0.696 
Colon 6.512 5.783 8.162 8.527 5.682 7.609 7.046 0.500 
Spleen 4.578 4.636 4.976 5.663 4.285 4.878 4.836 0.193 
Kidney 37.36 36.03 35.26 45.54 33.28 34.88 37.06 1.783 

Sk. Muscle 1.827 1.741 1.988 2.511 1.801 1.824 1.949 0.117 
Testis/Ovary 0.969 0.948 0.967 1.292 0.947 0.937 1.010 0.057 

Blood 0.294 0.292 0.317 0.220 0.300 0.287 0.285 0.014 
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Table B.6 Plasma concentration-time profiles of GlySar in PEPT1+/+ and PEPT1-/- mice, 

during fed-fasted conditions, after oral administration of dipeptide at 5 nmol/g body 

weight.   

PEPT1+/+ Fed 

Time 

(min) 5 15 30 45 60 90 120 240 360 

Trial 1 - 0.952 1.414 1.696 1.672 1.469 1.308 1.067 0.956 

Trial 2 - 1.103 1.460 1.620 1.635 1.445 1.372 1.077 0.937 

Trial 3 - 0.987 1.103 1.685 1.677 1.669 1.420 1.140 0.987 

Trial 4 - 0.514 1.742 1.652 1.649 1.295 1.130 0.853 0.803 

Trial 5 0.334 1.226 1.516 1.563 1.552 1.424 1.294 0.952 0.787 

Trial 6 0.357 1.048 1.442 1.665 1.682 1.440 1.370 0.974 0.893 

Mean 0.346 0.972 1.446 1.647 1.645 1.457 1.316 1.011 0.894 

SE 0.011 0.100 0.084 0.020 0.020 0.049 0.042 0.042 0.034 

 

 
 

PEPT1+/+ Fasted 

Time 

(min) 5 15 30 45 60 90 120 240 360 

Trial 1 0.327 1.334 2.127 2.137 2.706 2.317 2.201 1.833 1.538 

Trial 2 0.279 0.976 1.813 2.297 3.175 2.059 1.933 1.665 1.460 

Trial 3 0.212 1.022 2.023 2.830 2.763 2.446 1.719 0.982 0.813 

Trial 4 0.508 1.382 2.564 2.624 2.544 2.254 1.068 0.929 0.993 

Trial 5 0.473 1.604 1.703 2.481 1.916 1.551 1.416 0.938 0.998 

Trial 6 0.537 1.618 2.342 2.548 2.987 2.540 2.037 1.847 1.543 

Mean 0.389 1.323 2.095 2.486 2.682 2.195 1.729 1.366 1.224 

SE 0.055 0.113 0.132 0.100 0.178 0.145 0.173 0.188 0.133 
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PEPT1-/- Fed 

Time 

(min) 5 15 30 45 60 90 120 240 360 

Trial 1 0.199 0.378 0.877 1.108 1.113 1.089 0.772 0.691 0.575

Trial 2 0.203 0.579 1.059 1.112 0.999 0.936 0.677 0.637 0.636

Trial 3 0.285 0.445 0.902 1.012 0.851 0.841 0.758 0.633 0.522

Trial 4 0.187 0.478 0.852 1.005 0.903 0.900 0.891 0.712 0.541

Trial 5 0.423 0.804 1.479 1.421 1.282 1.050 0.952 0.690 0.579

Trial 6 0.192 0.471 0.874 1.159 1.048 1.000 0.784 0.669 0.574

Mean 0.248 0.526 1.007 1.136 1.033 0.970 0.806 0.672 0.571

SE 0.038 0.062 0.099 0.062 0.063 0.038 0.041 0.013 0.016

 
 
 

PEPT1-/- Fasted 

Time 

(min) 5 15 30 45 60 90 120 240 360 

Trial 1 0.152 0.741 0.917 0.907 0.952 1.068 0.710 0.767 0.411

Trial 2 0.163 0.811 1.201 1.306 1.209 1.154 1.077 0.860 0.742

Trial 3 0.174 0.942 1.140 1.270 1.170 1.105 0.987 0.842 0.604

Trial 4 0.144 0.702 1.050 1.190 1.080 1.080 0.954 0.850 0.621

Trial 5 0.234 0.813 1.074 1.207 1.087 1.008 0.951 0.754 0.612

Trial 6 0.099 0.351 0.816 1.054 1.214 1.086 0.906 0.762 0.692

Mean 0.161 0.727 1.033 1.156 1.119 1.083 0.931 0.806 0.614

SE 0.018 0.082 0.058 0.061 0.041 0.019 0.050 0.020 0.046
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Table B.7 Tissue distribution of GlySar in PEPT1+/+ and PEPT1-/- mice, during fed-

fasted conditions, 360 min after oral administration of dipeptide at 5 nmol/g body weight.   

PEPT1+/+ Fed 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.276 0.253 0.256 0.230 0.416 0.222 0.276 0.029 
Eye 0.429 0.411 0.356 0.332 0.559 0.299 0.398 0.038 

Lung 0.919 0.961 0.478 0.487 0.345 0.648 0.640 0.103 
Heart 0.589 0.494 0.375 0.378 0.584 0.402 0.470 0.041 
Liver 2.848 2.453 1.875 1.948 3.167 1.648 2.323 0.245 

Stomach 2.402 2.394 2.287 2.298 2.248 2.178 2.301 0.035 
Duodenum 6.559 3.484 4.586 5.003 12.08 5.994 6.285 1.240 
Jejunum 5.241 3.347 3.589 3.697 6.031 3.489 4.232 0.458 

Ileum 2.155 2.301 1.987 1.985 2.683 1.845 2.159 0.123 
Colon 1.492 3.385 1.979 2.000 3.116 1.748 2.287 0.316 
Spleen 0.787 0.781 0.570 0.571 0.924 0.415 0.675 0.076 
Kidney 2.263 2.028 1.024 1.120 3.935 1.987 2.060 0.429 

Sk. Muscle 0.406 0.418 0.350 0.349 0.683 0.301 0.418 0.056 
Testis/Ovary 0.363 0.332 0.332 0.322 0.560 0.287 0.366 0.040 

Blood 0.567 0.494 0.426 0.452 0.593 0.500 0.505 0.026 
 

 

PEPT1+/+ Fasted 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.468 0.145 0.382 0.359 0.544 0.200 0.350 0.063 
Eye 0.572 0.238 0.486 0.427 0.839 0.345 0.485 0.085 

Lung 0.927 0.429 0.864 0.763 0.838 0.398 0.703 0.094 
Heart 0.432 0.325 0.510 0.442 1.059 0.324 0.516 0.113 
Liver 2.751 2.727 3.379 3.681 8.002 1.998 3.756 0.882 

Stomach 2.537 0.893 1.514 2.357 3.876 0.999 2.029 0.462 
Duodenum 8.229 5.101 6.240 7.138 8.332 4.998 6.673 0.602 
Jejunum 3.030 1.971 3.267 5.054 6.895 2.501 3.787 0.754 

Ileum 1.657 1.877 2.484 2.292 3.996 1.589 2.316 0.366 
Colon 1.177 1.454 1.237 1.400 3.717 1.204 1.698 0.406 
Spleen 0.534 0.528 0.830 0.769 1.553 0.420 0.773 0.169 
Kidney 1.761 1.142 1.780 1.870 4.141 1.026 1.953 0.461 

Sk. Muscle 0.259 0.195 0.347 0.296 0.655 0.202 0.326 0.070 
Testis/Ovary 1.084 0.686 0.413 0.376 0.778 0.604 0.657 0.106 

Blood 0.500 0.333 0.594 0.593 0.706 0.452 0.530 0.053 
 

  



 

162 
 

PEPT1-/- Fed 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.281 0.112 0.278 0.256 0.322 0.231 0.247 0.030 
Eye 0.256 0.361 0.300 0.298 0.274 0.703 0.365 0.069 

Lung 0.557 0.948 0.569 0.574 0.930 1.430 0.835 0.141 
Heart 0.370 0.385 0.253 0.260 0.559 1.080 0.485 0.128 
Liver 2.198 2.712 2.003 1.998 3.467 3.732 2.685 0.310 

Stomach 2.179 2.796 2.405 2.305 1.947 9.403 3.506 1.185 
Duodenum 1.536 3.168 2.500 2.783 2.227 14.670 4.481 2.050 
Jejunum 2.028 3.363 3.005 2.997 4.950 4.361 3.451 0.429 

Ileum 2.647 1.442 2.005 1.998 3.624 2.751 2.411 0.312 
Colon 2.473 2.834 2.648 2.658 1.723 2.938 2.546 0.177 
Spleen 0.622 0.704 0.551 0.560 0.856 1.261 0.759 0.111 
Kidney 1.722 1.790 1.136 1.201 1.784 3.166 1.800 0.298 

Sk. Muscle 0.196 0.517 0.340 0.356 0.235 0.528 0.362 0.056 
Testis/Ovary 0.682 1.596 1.005 1.127 0.989 0.936 1.056 0.124 

Blood 0.599 0.459 0.558 0.413 0.606 0.612 0.541 0.035 
 
 
 

PEPT1-/- Fasted 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.395 0.341 0.350 0.349 0.371 0.270 0.346 0.017 
Eye 0.389 0.347 0.332 0.340 0.422 0.712 0.424 0.059 

Lung 0.756 0.742 0.500 0.500 0.759 2.707 0.994 0.346 
Heart 0.425 0.378 0.289 0.300 0.545 1.034 0.495 0.114 
Liver 2.196 2.238 1.913 1.900 2.705 4.623 2.596 0.423 

Stomach 1.400 1.490 1.310 1.339 1.791 3.123 1.742 0.285 
Duodenum 2.245 2.365 2.203 2.198 3.643 10.22 3.813 1.302 
Jejunum 3.268 2.881 3.000 2.997 3.607 3.649 3.234 0.135 

Ileum 2.478 2.966 3.001 2.998 3.480 3.247 3.028 0.137 
Colon 2.335 1.938 2.100 2.113 2.738 1.863 2.181 0.130 
Spleen 0.791 0.671 0.612 0.600 0.842 0.971 0.748 0.060 
Kidney 1.678 1.550 0.977 0.980 1.804 2.711 1.617 0.262 

Sk. Muscle 0.264 0.224 0.202 0.199 0.333 0.415 0.273 0.035 
Testis/Ovary 0.354 0.313 0.320 0.315 0.361 0.752 0.402 0.070 

Blood 0.543 0.499 0.413 0.448 0.555 0.568 0.504 0.026 
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Table B.8 Tissue/blood concentration ratios of GlySar in PEPT1+/+ and PEPT1-/- mice, 

during fed-fasted conditions, 360 min after oral administration of dipeptide at 5 nmol/g 

body weight.   

PEPT1+/+ Fed 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.487 0.512 0.602 0.510 0.701 0.444 0.543 0.038 
Eye 0.756 0.832 0.835 0.735 0.943 0.598 0.783 0.048 

Lung 1.621 1.946 1.123 1.078 0.582 1.295 1.274 0.193 
Heart 1.039 1.000 0.882 0.837 0.985 0.803 0.924 0.039 
Liver 5.026 4.966 4.404 4.308 5.344 3.294 4.557 0.299 

Stomach 4.239 4.846 5.372 5.084 3.793 4.352 4.614 0.240 
Duodenum 11.57 7.052 10.77 11.07 20.38 11.98 12.14 1.800 
Jejunum 9.248 6.773 8.430 8.178 10.18 6.972 8.296 0.534 

Ileum 3.802 4.656 4.668 4.391 4.526 3.687 4.288 0.177 
Colon 2.633 6.852 4.647 4.425 5.257 3.494 4.551 0.595 
Spleen 1.389 1.581 1.339 1.264 1.559 0.830 1.327 0.112 
Kidney 3.993 4.105 2.404 2.478 6.640 3.971 3.932 0.628 

Sk. Muscle 0.717 0.846 0.823 0.772 1.153 0.602 0.819 0.076 
Testis/Ovary 0.641 0.671 0.781 0.713 0.945 0.574 0.721 0.053 

Blood 0.567 0.494 0.426 0.452 0.593 0.500 0.505 0.026 
 
 
 

PEPT1+/+ Fasted 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.938 0.435 0.643 0.605 0.771 0.442 0.639 0.079 
Eye 1.144 0.713 0.819 0.721 1.188 0.763 0.891 0.088 

Lung 1.856 1.288 1.455 1.286 1.186 0.880 1.325 0.132 
Heart 0.864 0.977 0.860 0.746 1.500 0.717 0.944 0.118 
Liver 5.505 8.185 5.691 6.207 11.33 4.417 6.889 1.022 

Stomach 5.077 2.678 2.551 3.973 5.488 2.209 3.663 0.570 
Duodenum 16.47 15.31 10.51 12.03 11.80 11.05 12.86 0.994 
Jejunum 6.064 5.916 5.503 8.522 9.762 5.529 6.883 0.738 

Ileum 3.316 5.633 4.184 3.864 5.658 3.513 4.361 0.424 
Colon 2.355 4.364 2.083 2.361 5.262 2.663 3.181 0.534 
Spleen 1.070 1.585 1.399 1.296 2.199 0.929 1.413 0.184 
Kidney 3.524 3.428 2.998 3.153 5.862 2.269 3.539 0.499 

Sk. Muscle 0.518 0.586 0.584 0.498 0.927 0.447 0.594 0.070 
Testis/Ovary 2.170 2.058 0.696 0.634 1.101 1.336 1.332 0.269 

Blood 0.500 0.333 0.594 0.593 0.706 0.452 0.530 0.053 
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PEPT1-/- Fed 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 0.470 0.244 0.499 0.621 0.532 0.377 0.457 0.054 
Eye 0.428 0.785 0.539 0.722 0.452 1.149 0.679 0.111 

Lung 0.929 2.064 1.020 1.392 1.534 2.338 1.546 0.229 
Heart 0.617 0.839 0.454 0.631 0.923 1.766 0.872 0.192 
Liver 3.667 5.904 3.591 4.844 5.719 6.100 4.971 0.459 

Stomach 3.636 6.085 4.312 5.589 3.212 15.37 6.367 1.856 
Duodenum 2.564 6.896 4.482 6.747 3.674 23.98 8.057 3.259 
Jejunum 3.384 7.321 5.388 7.265 8.166 7.128 6.442 0.716 

Ileum 4.417 3.138 3.594 4.845 5.979 4.496 4.411 0.406 
Colon 4.126 6.169 4.748 6.444 2.842 4.803 4.855 0.543 
Spleen 1.037 1.533 0.987 1.358 1.412 2.061 1.398 0.159 
Kidney 2.874 3.895 2.037 2.911 2.942 5.174 3.305 0.444 

Sk. Muscle 0.328 1.125 0.610 0.863 0.387 0.863 0.696 0.126 
Testis/Ovary 1.138 3.475 1.802 2.732 1.631 1.531 2.051 0.358 

Blood 0.599 0.459 0.558 0.413 0.606 0.612 0.541 0.035 
 
 
 

PEPT1-/- Fasted 
Sample 1 2 3 4 5 6 Mean SE 

C. Cortex 1.217 2.125 1.063 1.385 0.703 0.871 1.227 0.205 
Eye 1.114 2.269 0.942 1.225 2.143 0.680 1.396 0.268 

Lung 2.830 4.084 1.770 2.243 1.312 2.211 2.408 0.394 
Heart 1.560 2.497 1.082 1.430 0.550 1.047 1.361 0.269 
Liver 7.486 16.15 6.622 8.163 8.326 5.221 8.661 1.568 

Stomach 5.822 15.33 7.175 8.666 4.276 6.500 7.962 1.588 
Duodenum 8.275 19.60 8.044 10.20 44.70 4.878 15.95 6.102 
Jejunum 9.749 16.37 9.442 12.50 13.29 4.545 10.98 1.654 

Ileum 7.545 7.776 10.33 13.38 8.382 9.734 9.524 0.891 
Colon 6.472 9.483 5.389 7.346 8.954 3.267 6.818 0.944 
Spleen 2.542 5.209 2.414 2.995 3.843 1.372 3.063 0.541 
Kidney 5.555 10.73 2.642 3.274 3.552 3.384 4.856 1.241 

Sk. Muscle 0.853 1.792 0.806 1.019 1.609 0.529 1.101 0.202 
Testis/Ovary 1.153 2.040 1.039 1.376 1.330 0.680 1.270 0.185 

Blood 0.543 0.499 0.413 0.448 0.555 0.568 0.504 0.026 
 
 
 
 
 



 
 

Table B.9 Upper gastrointestinal transit in PEPT1+/+ and PEPT1-/- mice, during fed-fasted 

conditions, in which a charcoal meal was administered by gavage to each mouse.   

 PEPT1+/+  

Feeding condition Fed Fasted 

Trial 1 83.21 84.40 

Trial 2 71.43 77.78 

Trial 3 71.11 79.02 

Trail 4 76.06 69.84 

Trial 5 72.22 75.63 

Trial 6 63.57 74.49 

Mean 72.93 76.86 

SE 2.640 1.989 

 

 

 

 PEPT1-/-  

Feeding condition Fed Fasted 

Trial 1 81.89 64.90 

Trial 2 65.73 73.28 

Trial 3 77.94 79.07 

Trail 4 78.62 71.14 

Trial 5 75.17 82.05 

Trial 6 76.56 72.27 

Mean 75.99 73.79 

SE 2.249 2.481 
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Table B.10 Pharmacokinetics of GlySar plasma concentrations after a 5 nmol/g 

intravenous bolus dose of dipeptide in PEPT1+/+ and PEPT1-/- mice during fed-fasted 

conditions.  

PEPT1+/+ Fed 

PK parameter CL (µl/min) Vdss (ml) MRT (min) t1/2 (min) 

Trial 1 183.4 6.665 33.50 39.02 

Trial 2 237.5 12.02 38.86 57.63 

Trial 3 178.9 7.804 36.65 48.13 

Trail 4 269.9 12.39 35.27 61.61 

Trial 5 164.8 4.710 27.65 29.43 

Trial 6 263.9 7.725 28.98 31.84 

Mean 216.4 8.552 33.48 44.61 

SE 18.9 1.243 1.793 5.464 

 

 

 

PEPT1+/+ Fasted 

PK parameter CL (µl/min) Vdss (ml) MRT (min) t1/2 (min) 

Trial 1 254.7 12.60 37.41 60.46 

Trial 2 334.3 21.55 45.11 69.97 

Trial 3 204.2 12.80 44.12 73.54 

Trail 4 243.8 11.86 38.94 57.62 

Trial 5 197.0 6.502 32.44 30.21 

Trial 6 286.3 14.02 36.30 62.75 

Mean 253.4 13.22 39.05 59.09 

SE 21.07 1.980 1.969 6.267 
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PEPT1-/- Fed 

PK parameter CL (µl/min) Vdss (ml) MRT (min) t1/2 (min) 

Trial 1 234.1 8.399 32.76 38.57 

Trial 2 250.8 9.366 34.60 36.69 

Trial 3 164.5 4.583 25.54 31.22 

Trail 4 217.3 8.075 36.05 33.36 

Trial 5 218.0 8.456 33.14 49.20 

Trial 6 252.2 9.669 35.25 38.12 

Mean 222.8 8.091 32.89 37.86 

SE 13.20 0.745 1.556 2.548 

 
 
 

PEPT1-/- Fasted 

PK parameter CL (µl/min) Vdss (ml) MRT (min) t1/2 (min) 

Trial 1 189.8 4.387 22.14 27.11 

Trial 2 222.9 7.279 30.35 37.64 

Trial 3 198.0 6.290 31.64 27.14 

Trail 4 233.7 8.431 32.91 38.75 

Trial 5 266.6 8.057 27.08 40.76 

Trial 6 212.1 6.708 29.89 33.04 

Mean 220.5 6.858 29.00 34.07 

SE 11.29 0.593 1.587 2.429 
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Table B.11 Pharmacokinetics of GlySar plasma concentrations after a 5 nmol/g oral dose 

of dipeptide in PEPT1+/+ and PEPT1-/- mice during fed-fasted conditions.  

PEPT1+/+ Fed 

PK  

parameter 

AUC0-360min  

(µM · min) 

Cmax (µM) Tmax (min) t1/2 (min) 

Trial 1 426.1 1.696 45.00 391.9 

Trial 2 431.3 1.635 60.00 385.6 

Trial 3 446.9 1.685 45.00 374.2 

Trail 4 369.9 1.742 30.00 314.1 

Trial 5 400.1 1.563 45.00 303.1 

Trial 6 416.7 1.682 60.00 331.0 

Mean 415.2 1.667 47.50 350.0 

SE 11.06 0.025 4.610 15.76 

 
 
 

PEPT1+/+ Fasted 

PK  

parameter 

AUC0-360min  

(µM · min) 

Cmax (µM) Tmax (min) t1/2 (min) 

Trial 1 690.9 2.706 60.00 402.7 

Trial 2 641.5 3.175 60.00 346.5 

Trial 3 518.4 2.831 45.00 165.1 

Trail 4 469.5 2.624 45.00 212.3 

Trial 5 454.6 2.481 45.00 319.4 

Trial 6 708.0 2.987 60.00 356.6 

Mean 580.5 2.801 52.50 300.4 

SE 46.25 0.103 3.354 37.49 

 
 
 
 
 
 
 

PEPT1-/- Fed 
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PK  

parameter 

AUC0-360min  

(µM · min) 

Cmax (µM) Tmax (min) t1/2 (min) 

Trial 1 269.0 1.113 60.00 323.0 

Trial 2 257.3 1.112 45.00 492.1 

Trial 3 244.9 1.012 45.00 415.9 

Trail 4 267.3 1.005 45.00 390.3 

Trial 5 306.0 1.479 30.00 275.3 

Trial 6 265.0 1.159 45.00 351.8 

Mean 268.3 1.147 45.00 374.7 

SE 8.375 0.071 3.873 30.97 

 
 
 

PEPT1-/- Fasted 

PK  

parameter 

AUC0-360min  

(µM · min) 

Cmax (µM) Tmax (min) t1/2 (min) 

Trial 1 249.5 1.068 90.00 247.4 

Trial 2 339.3 1.306 45.00 416.0 

Trial 3 320.0 1.270 45.00 328.4 

Trail 4 311.0 1.190 45.00 383.1 

Trial 5 299.4 1.207 45.00 365.1 

Trial 6 293.9 1.214 60.00 390.1 

Mean 302.2 1.209 55.00 355.0 

SE 12.42 0.033 7.416 24.59 

 


