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ABSTRACT

A number of trajectory planning algorithms are available for determining a time
history of the joint torques, positions, and velocities required to move a manipulator
along a given geometric path in minimum time. These schemes require knowledge of the
robot's dynamics, which in turn depend upon the characteristics of the payload which
the robot is ca_rrying. In practice, the dynamic properties of the payload will not be
known exactly, so that the dynamics of the robot, and hence the required joint torques,
must be calculated for a nominal set of payload characteristics. But since these trajec-
tory planners generate nominal joint torques which are at the limits of the robot’s capa-
bilities, moving the robot along the desired geometric path at speeds calculated for the
nominal payload may require torques which exceed the robot’s capabilities. In this
paper, bounds on joint torque uncertainties are derived in terms of payload uncertain-
ties. This allows the trajectory planner to incorporate payload uncertainties into the

trajectory planning process.
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1. INTRODUCTION

Various algorithms are available for performing trajectory planning for robots, i.e.,
generating a time history of desired positions, velocities, accelerations and torques
[1, 5, 8]. These trajectory planne:s require knowledge of the robot’s dynamics, which in
turn depend upon the characteristics of the payload being carried. In practice, the exact
characteristics of the payload will not be known; since the trajectory planners refer-
enced above need to know the exact dynamics of the robot, the trajectory planning pro-
cess must be carried out with dynamics which are calculated for a nominal payload.
This practice can lead to difficulties. To see wﬁy this is the case, note that these trajec-
tory planners generate nominal torques which are at the limits of the robot’s capabili-
ties for the given dynamics. 'Moving the robot along the desired path at speeds calcu-
lated for the nominal payload may therefore require torques which are beyond the
robot’s capabilities if the payload differs from the nominal one. If the robot's joints are
controlled by independent servoes, as is usually the case, then attempting to make the
robot move along the nominal trajectory will result in one or more joints ‘‘falling
behind’’, so that the robot strays from the desired geometric path. In other words, the
trajectory generated by the trajectory planner is realizable for the nominal payload, but

not for the actual payload.

There are a number of adaptive controllers which can compensate for the changes
in load, provided that the plant (i.e. the robot joint drive) does not saturate [3, 2].
However if the plant saturates, as may happen if the actual and nominal payloads
differ too much, then these controllers cannot possibly compensate for load changes. It

is the objective of this paper to present an analysis of the torque errors caused by
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payload changes, and incorporate the error information into the trajectory planning

process so as to avoid saturation of the individual actuators.

Changes in payload characteristics will be expressed as errors in the pseudo-inertia
of the payload; the pseudo-inertia is a matrix containing the mass and first and second
moments of the payload. It will be shown that bounds on the joint torque errors can be
calculated in terms of the norm of the error in the pseudo-inertia of the payload, given
the robot’s kinematics. The general trajectory planning algorithm given in [8] can then
be modified to handle uncertainties in the dynamics caused by the payload. If the
actual and nominal payloads are described by the pseudo-inertias I, and Iy respec-
tively, then for a given positive real number E, the algorithm generates a trajectory

which is realizable for all payloads I, for which s -Inll < E.

In order to determine errors in the torques, the dynamic equations of the robot are
required. In tensor notation, the dynamic equations describing the behavior of a robot

take the general form

u, = J., q’ + C,‘,‘k quk + Rl] ql + g, (11)

h h

where u; is the {** generalized force, q‘ is the §** generalized coordinate, J;; is the

inertia matrix, C,j; is an array of Coriolis coefficients, defined by

0, 3l 0
: T o '
aq aq’ dq

1
cijk = —2 (12)
The matrix R,; is the viscous friction matrix, and g, is the gravitational force. The
summation convention has been used here, so that all product terms in (1.1) are
summed from 1 to N over repeated indices, where N is the number of degrees of free-

dom of the robot. The inertia matrix J,;, the Coriolis array C,;; and the gravitational

y?
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loading vector g; are all functions of the position of the robot and the payload pseudo-
inertia.
It will be assumed that the path which the robot is expected to follow has been

given as a parameterized curve in joint space, i.e., the joint coordinates q' are given in

terms of a single scalar \ by the equations

a' =70, 05N < Mo (1.3)

This allows all of the joint positions, velocities, and accelerations to be expressed in
terms of the scalar parameter A and its time derivatives. Plugging these relations into

the dynamic equations gives torque in terms of these quantities also. More specifically,

we have
I KA . R —"’—d’k}z s

where p = X is the pseudo-velocity. The quantities J;;, C,;;, and g, depend upon the
masses and moments of inertia of the robot’s links. The robot’s payload is fixed to the
last link, and hence must be regarded as part of the last link for purposes of calculating
the dynamic coefﬁcients.. Therefore J;;, C,;, and g, will change as the characteristics

of the payload vary.
We may write Eq. (1.4) as

w; = M;(\Iy)p + Qi (\NIv)u2 + Ri(MNp + Si(\Iy) (1.5)

where the coefficients M;, Q;, R,, and S; are given by

M;

Jij(In )"-idi;‘,'
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_ d*f ! df ! drt
Q;, = Jij(IN)W + Ciit (IN)‘T):' %
—g. 4’
R =R, d )\
and
Si =g;(Iy)-

The functional dependence of J;;, C,; and g; on the payload Iy has been shown

explicitly. Then the dynamics of the system after the payload has been perturbed may

be written

u =M\ Iy + AL+ QN Iy + ALy + R(Np + Si(\, Iy + Aly). (1.8)

In order to avoid excessive torque requirements, we wish to compute a set of velo-
cities and accelerations p and 12 such that if the nominal torques u; are given by (1.5),

then the actual torques u' ; given by (1.8) will be realizable, i.e.,

uP0p) < o' < w5\ p). (1.7)

Formally, the Robust Trajectory Planning (RTP) problem may be stated as follows:

Given a geometric path described as a parameterized curve, the torque limits u®
and u/™** as functions of A and p, the dynamics of the robot when carrying the
nominal payload Iy, and a bound £ on the norm of the difference between the
pseudo-inertias of the actual and nominal payloads, determine the fastest trajec-
tory (sequence of (\,u) pairs) such that the torques u' ; given by (1.6) satisfy the
constraints (1.7) for all points on the trajectory and for all payload errors Aly
such that ||AIy|| < E.

We will solve this problem by calculating the worst-case torque error, as a func-
tion of A\, u, and ;.:, for a given payload error, and decreasing the torque limits by this

amount when doing trajectory planning.
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The rest of the paper is organized as follows: in Section 2, torque errors are calcu-
lated in terms of changes to the payload pseudo-inertia. In Section 3, bounds on the
joint torque errors are derived in terms of bounds on the norm of the pseudo-inertia
error. Section 3 also discusses how these results can be incorporated into the trajectory
planning process. Section 4 presents a numerical example, and the paper concludes

with Section 5.

2. CALCULATION OF DYNAMIC COEFFICIENT ERRORS

For a given path, we need to know the changes to the coefficients M;, Q;, R;,
and .S; in Eq. (1.5) which result from changes in the dynamics of the robot. In the
sequel, changes in dynamics will be assumed to come from changes in payload charac-
teristics. While changes in friction coefficients, and hence changes to R,, also contri-

bute to changes in required torques, such changes are independent of changes in pay-

load characteristics, and for the sake of simplicity will not be dealt with here.!

Determining the change to M;, we have

Mi(t) = 3, (1n) 2L (2.)
and

M;(Iy + Aly)=J;(Iy + AIN)%i (2.2)
so that

M (I Aly) = M, (I + Aly) - Mi(Iy) (23)

1Such changes are usually determined experimentally.

Payload Uncertainties 6
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df ' df 7
= {30 + A - 3500 = a0 a4

Differences between nominal and actual payload characteristics cause changes in
the coefficients J;;, C,;;, and g; in equation (1.1). Here we determine the relationship
between changes in these coefficients and changes in payload characteristics.

Changes in payload characteristics will result in changes to the pseudo-inertia ten-
sor of the last joint of the robot, i.e., the pseudo-inertia tensor will have the value
Iy + Aly instead of Iy. In order to obtain §M;, we consider how this affects the iner-
tia matrix. The coefficients in the inertia matrix are given in [4] as

J.’,‘(IN)= E Tr _p I, —

N aT oT.T
k. ] (2.4)
p=max(s 5 ) aq’ dq

where T, is the 4X4 homogeneous transformation matrix which transforms vectors
given in the coordinate system associated with the p link of the robot to world or

base coordinates, and I, is the pseudo-inertia of the p™ link given in the p** link’s

coordinate frame. The pseudo-inertia is defined as the matrix [4]

[ [2%m [zy dm [zz dm [z dm
fzy dm [y%dm [yz dm [y dm
P |fzz dm [yz dm [:2dm [z dm|
| Jzdm [y dm [z dm [ dm

The coordinates z, y, and z are expressed in the p** coordinate frame, and the

integrals are all taken over the p** link.
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Introducing an error Aly into the pseudo-inertia of the last joint gives

N-1 aT, aT,T T aT .t
Li(ly + Aly)= ¥ Tr|—2 2+ T —E Iy + ALy)—2 |.(28)
J I 4 ' 5 N s
p=max(s,5) aq aq 3q aq

Subtracting (2.4) from (2.8) gives

Ty T,y

(2.7)

Note that the error in the inertia matrix is linear in the pseudo-inertia error, and is

independent of the nominal payload. To find §M;, simply plug (2.7) into (2.3), giving

; T
M; =Y, df ! Tr aT}.v aTI.V

(2.8)
Computation of the errors §Q; follows the same pattern as the computation of
6M;. The errors in the Coriolis terms can be determined in much the same way as the

errors in the inertia matrix. From [4] we have

N 3T aT T
C,',} = E Tf e pk p :'
p=max(i,j k) 'dq’dq dq

(2.9)

The errors in the Coriolis terms due to errors in payload characteristics are therefore

given by

8°Ty A TN

60." = TI’ -
* dq’aq* " aq

(2.10)

The definition of @; gives
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T AT T\ 4214
6Q‘- =ZT![ NAIN-—-IY df2
R dq’ aq’ d\

(2.11)

NoAp, ! .
ag’aqt " aq ) dx dx

+ YT

[ Ty TN Y df ' df*
P

Now we need to know the error in the gravitational terms. The gravitational

forces g; are given by [4]

N T, _
gi=Y-mGl—T, 2.12
‘E‘ g (2.12)
where

A

G 0

e

0

is the gravitational force vector, m; is the mass of the k* link, g is the acceleration

due to gravity, and

r

|
r'_‘ N
- n| o] 8

is the center of mass of the k* link given in the coordinates of the k** frame. If we

define w; = m;r;, then we have

N
g =-NGTtw,. (2.13)

9 Payload Uncertainties
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But w; is just the last column of the pseudo-inertia matrix I; , so that

0
N 3T, 0

& =_hz_:_~GT dq’ Lo (314
=3 l

As before, introducing an error into the pseudo-inertia of the last link gives

0
oT
65, = 6g; =-GT—¥ an, [9]. (2.15)
aq' 1

We may now calculate the error in u; by adding up the individual components,
giving

fu; = 6M; p + 6Q; p* + 8S; . (2.18)

3. CALCULATION OF TORQUE ERROR BOUNDS

If the errors Aly were known exactly, then the torque errors could also be com-
puted exactly. Of course, in practice Aly will not be known exactly. However, if

bounds on the norm of Aly can be obtained, then we may find bounds on éu;.

To obtain these bounds, note that §M;, §Q,, and 4S; are all functions of the
pseudo-inertia error Aly; in fact, they are linear in Aly, so that §u; is also linear in

Aly. If we write

su; = Z(Aly), (3.1)

then we wish to maximize or minimize the linear function Z with respect to Aly, sub-

ject to
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laIy|| < E (3.2)

where E is the bound on the pseudo-inertia error.

At this point, some observations are in order. First, as we noted before, the errors
in the 6u; depend linearly upon the pseudo-inertia error Al . Second, note also that
éu; depends only on the kinematics of the robot and on the desired velocity and
acceleration, not on the nominal dynamics. These facts are consequences of the fact
that both kinetic and potential energy are linear in mass. To see this, consider the
form of the Lagrangian, namely L = K - P, where K and P are the kinetic and
potential energies of the robot. Any difference between the actual and nominal dynam-
ics of the robot will cause a corresponding difference in the Lagrangian. If we think of
the error in the pseudo-inertia as a piece of stray material stuck to the end effector,
then both the kinetic and potential energies of this material, and therefore the Lagran-
gian, depend only upon the mass and shape of the stray material and upon the position
and speed of the end effector. The Lagrangian is linear in the mass of the material;
since Lagrange’s differential equations are linear in L, the errors in the generalized
forces can be separated from the forces resulting from the nominal mass of the manipu-
lator. One consequence of this separability of forces is that the errors éu; do not
depend upon the nominal dynamics, as shown above. The implication of this is that

much of the error analysis can proceed without regard to the nominal dynamics of the

robot.

The linearity of the éu; in the pseudo-inertia has some other practical conse-
quences as well. Consider the maximization which must be performed in order to evalu-
ate fu,;. This maximization requires that the space of 4X4 symmetric matrices with

norm less than E be searched, which in general is a rather formidable problem.
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However, by choosing a particular class of matrix norms, the problem can be made

quite simple; in fact, it can be transformed into a linear programming problem.

To see how this transformation can be performed, consider the problem of maxim-

izing the function Z in equation (3.1), namely

Problem A: maximize Z(M) = Y,¥4

LI

M;; (3.3)

i

subject to |[M|| < E and M=MT. (3.4)

Treatment of the minimization problem proceeds analogously to problem A. We will
show that problem A transforms into a linear programming problem if the norm used
to constrain the matrix M in (3.4) is chosen properly. This will be accomplished by

eliminating some absolute values from the constraints.

Z (M), the function to be maximized, is a linear function of M. It remains to be
shown that the constraints can be made linear. Of course if the norm used in problem
A is arbitrary, then in general the constraints will not be linear. However, there is a set
of norms, all very easy to calculate, which will yield linear constraints. Consider the

class of functions F : R***=R™* given by
F (M) = max 0, (M)

where

o;(M) = 243 é"u‘k | M |-

) =1k =1

The matrix 1-norm and oo-norm, max | M;; | and Y} | M;; | are all functions cf this
.,’ ..)j
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form. We now show that, under suitable conditions, F is a norm.

Lemma: If a;;; > 0 for all 4, ;§ and &, and if for every pair of indices (7 ,k)

there is an ¢ such that a;; 7 0, then F (M) is a norm.

Proof: In order to prove that F' is a norm, we must show that
1) F(M) 2 0 for all M,
2)FM)=0iff M =0,

3) F("M) = |~ | F(M) for all scalars v and all matrices M, and
) FX +Y) < F(X)+ F(Y) for all matrices X and Y.

Obviously (1) is true, since F' is the maximum of a set of non-negative quantities.
F(0) = 0, proving the “if”’ part of (2). To prove the “onl).',if” part, observe that if M
is non-zero, then it has some non-zero element M j& - For this particular sk pair, there
is some + such that a;; is non-zero, so that o; > 0 for this /. Therefore F > 0. (3)

is true, since

4 4 4 4
o(M)=Y Yo | Myl =1IvY YoMyl =|v]c;(M)

j=1k=1 j=1k=1

and hence

F(»M) = max 0;(vM) = max |7]0o;(M) = |7|max o;(M) = | 7| F(M).

Finally,

o;(X+Y)= Z%}auk | X + Y, |

]
< ZXEG.‘,} | X | + ZXE“.‘;‘& 1Y | =0,(X) +0,(Y)
J J
so that

13 Payload Uncertainties



RSD-TR-8-85

FX+Y)= m?x{a;(x + Y)} < m?.x{a,-(X) + a,-(Y)}

< m?x{a,-(X)} + m?.x{a,-(Y)} —FX)+FY) W

Problem A with this class of norms becomes

Problem B: maximize Z(M) = Y} 8, M,; (3.5)
) .

4 4
subject tomax| Y, M o [Mj; || < E and M, =M;,;.
' =1k =1

This problem obviously is equivalent to

Problem C: maximize Z(M) =33 8;;M,; (3.6)
iJ )

4 4
subject to 2 Z ok IM# | <E and Mjk = Mkj .
j=lk=1

Problem C may be transformed into a standard linear programming problem by

making the substitutions M;; = P;; - N;; and |M;; | = P;; + N;;

ij» where P;; and

N;; are non-negative real numbers. To prove that this substitution gives the correct

result, first eliminate the symmetry constraint, giving

Payload Uncertainties 14
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4 4
Problem C' : maximize W(M)= } ¥ 8 M,
1=lk=j

4 4
subject to 2 Z a' isk lek I s E

3§ =1k=j

where

' { ;i 1=k
o o= .
isk aip + ag; JF#k

and
{ Bi 1=y
B =gy + 85 i
Then we have the following theorem:

Theorem: Let problem D be defined as:

44
maximize Z(P,.N)= Y} 3 # (P, - Ny)

j=1lk=j

4 4
subject to Y M o' ;4(Pyp +Ny) < E and P;; 20, N;; 20
j=lk=j

Then the optimal W from problem C' is equal to the optimal Z from problem D.

Proof: Let M* be a solution of problem C' , and let W* = W(M’). If we make

the substitutions

16 Payload Uncertainties
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Mi M;2>0
Pie =10 M <0

and

0 Mji >0
-M;; M; <0

N,‘k

then we have M,; = P;; - N;:, and |M;!| = P,; + N;;. Making these substitu-
j j j i J

iy
tions in problem C' gives

W'=WwWM')= é }43/9' #(Pj ~Ny)=2(PN)

j=1k=j

4 4
b bz o ;(Pj +Nj) < E andPy; 20,N;; >0.

The conditions for problem D are satisfied, so we must have W* < Z°*, where Z° is

the optimal value of Z obtained from problem D.

Likewise, let P and N° be an optimal solution to problem D. Then for every
pair of indices (5,k) we have #' ;; > 0,8 ;; =0,0r F 4 <0. If # ; > 0, then
we must have Nj = 0. Otherwise, we could substitute P + Nj; for P; and 0 for
Nj;; these new values still satisfy the required constraints, but increase the ijective
function, contradicting the fact that (P*, N*) is optimal. Similarly, if # ; < 0, then
we must have Pj; = 0. If 8 ; =0, then we may take Pj; = N, = 0, since this
leaves the constraints satisfied and has no effect on the objective function. Therefore
we always have either P;; = 0 or Nj; = 0. Taking M,; =P,; - N;7, it follows that

TE
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|M;; | =P,; + N;;. Making these substitutions in problem D,

4 4
2'=Z2(P'N')=3% Y F M < W’

j=lk=j
4 4
Y Yo M| <E
j=1k=;
Therefore W* < Z°* < W*, proving the theorem. B

Now that torque error bounds can be obtained from pseudo-inertia errors, these
results must be incorporated into the trajectory planning process. Direct use of the
results derived above in the trajectory planner described in [5] is not easy, since this
trajectory planner requires that we solve (1.5) for p in terms of A\, s, and u,. This solu-
tion is required because the trajectory planmer must convert torque ranges into p
ranges. When errors are introduced, we have

WP S M+ Gt R+ S+ min Lobi v 6Q7 + 55,
llaly||<E

S Mg+ Qi+ Rt S+ max {oMii + Q.0 + 65, )
[laly lI<E

5 u‘mu(x’”)‘

For given A\ and u, these inequalities determine a range of values of p However, the
worst-case values of éM;, 6@, , and éS; depend upon p, which in turn depends upon the

values of 6M;, 6Q;, and 45;, so finding the allowable range of values of p explicitly is

17 Payload Uncertainties
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difficult. Of course these equations can be solved numerically. For example, to find the

maximum allowable value of ;'z, the equation

Mip+ Qip*+Rip+Si + ”ATETI’QE{JM;I.‘ +6Q; 4° + 85, } = u,""(\,p)
Nll=

can be solved by bisection for B

A simpler solution to the problem is to use one of the trajectory planners
described in [8] or [7]. These trajectory planners only need to have available a test
function which determines whether or not a given ()‘,p,;l) triple requires excessive
torque; in effect, they automatically perform the numerical search for the allowable
values of p But such a function is easily constructed, since for a given ()\,p,;'z) we can
easily minimize or maximize du; in (2.18), and see if u; + éu,"* exceeds u,”*(\,u) or
u; + 6u™® falls below u™®(\,u). In particular, the following algorithm checks to see if

a particular (X,u,;'x) triple meets all the torque constraints:

for each joint + do

begin ]
compute u¥ = M;(Np + Q;(N)p® + RN + S;(N)

compute fu;"* = max {6M,-()\,AIN b+ 6Q; (N ALy + 63,-()\,AIN)}

llalylI<E
compute 6\1,‘min = min {6M, (X,AIN)}:C + 6Q, (X,AIN )p2 + 65.()\,AIN)}
llaly[|<E

if uN + u™® < u™®(\,p), then return REJECT
if uN 4 6um* > u™*(\,p), then return REJECT

end

return ACCEPT.

Payload Uncertainties 18
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It should be noted that this function is called for each (\,u) pair; it does not, for
example, reject a (X,[l,[-l) triple based on an error which is computed for all positions or
all velocities. As a consequence, speed is sacrificed only when absolutely necessary to
guarantee that the trajectory will be realizable for all payloads within the allowable

range.

4. NUMERICAL EXAMPLE

As an example, we will apply the methods of the previous section to the first three
joints of the Bendix PACS robot arm. This arm is cylindrical in configuration and is
driven by DC servos. Its dynamics and actuator characteristics are described in Table

1. The trajectory planner used is described in [6].

The kinematics of the PACS arm are quite simple. If the coordinate frames of the
base and hand are as shown in Figure 1, then the coordinate transform T; is easily

shown to be

cosd 0 -sinf -rsind
sin® 0 cosé rcosé

— 4.1
T, 0 -1 o0 z (4.1)
0 0 0 1
The partial derivatives of T; are
-0 00 Oq -sin @ 0 —cos @ -rcos 0.
:93:3 _ 0000 :8_'1_‘_.“,‘ _ cosf O -sinf -rsind (4.2)
£ 0001 30 0 0 0O 0
0000 0O 0 o 0

19 Payload Uncertainties
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000 -siné
000 cost
9Ts _ o (4.3)
37 000 O
000 O
There are two non-zero second partials; they are
. - r -
—0sf 0 sinf rsind 0 00 —cost
0*T, -sinf O -cos @ -rcosé 9°T, 000 -siné (4.4)
3¢ | 0 0 o0 0 arg90 000 0 [ '
0 0 0 0 000 0

We are now in a position to compute the §M;. If we let H = Ay and define

Ty . T
i = T'[ 3 oq
q q
then we have
da’
M; = mii

00 0 o]

8T, _ dT," 8T, oT, (00 0 0

m, = Tr "EHaz] and —E;Hi)z = 00 Hy, 0
00 0 0]

Taking the trace of this gives m,, = H,,.

Ty __ dT,T
m,o =My, = Tr -—-SH——-a— l

0z ad
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[ 0O 0 o0 o0 ] T—sinﬂ cosd O 0ﬂ

T, __dT,T 0 0 o0 oO 0 0 00
9z 90  |Hy Ho Hy Hy|| —cosd -sind 0 0}

O 0 0 O ~-rcosf -rsind 0 O

The trace of this matrix is easily found to be zero.

- P -

[0 0 0 o 0 0 00
8T __ dT," 0 0 0 0 0 0 00
"8z - or Hy Hy H3 Hy 0 0 00
0 0 0 o —sinf cosf® 0 O

The trace of this matrix also is zero.

dT, a'rJ]
= Tr| 3g—_3
= 90 a0
3 L0 y ]
—sind 0 —cosd —rcosd| [Hu Hiz His Hu{ [ np  cosd 0 0
T, __ 0T, cosd 0 —sind —rsind | |Hie Ho Ho Hyy 0 0 00
20835 =l 0o 0o o o ||Hyg Hy Hy Hy|| -cost -sind 0 ol
i 0 0 O 0 | |Hy Hy Hy Hy, ~rcosd -rsind O 0‘

The diagonal entries of this matrix are

e¢11 = Hy;sin®0 + 2H ;sinfcosd + 2H ,r sinfcosd + Hyscos’d + 2H 3,1 cos®0 + H y4r *cos®d
¢4y = H,cos0 — 2H ,sinfcosd — 2H ,r sinfcosd + H ,sin’0 + 2H ,r sin®0 + H ,,r %sin’d

€33 = €y = 0.
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Adding these up to get the trace,

dT; _dTy
Mgy = Tf[ 3 ——3-73]=H11+H33+2TH34+1’2H44
r 8T3H8T37']
Mo = Mo =050 o
aT,T
The diagonal entries of — SH—2 are
00 ar

¢y = H,sin’0 + Hg,sinfcosd + H ,,r sinfcosd

€99 = H,c08’0 - H,sinfcosd - H ,,r sinfcosd

333=C44=0.

Adding these up gives my, = H,,.

_7 [aT3HaT3T]
= o oy

[0 0 0 —sind] |[Hu Hie His Hu([ o o o o]

T, __ OTsT 000 cost | |[Hiz Hyp Hopg Hyy 0 0 00
Br  9r |000 O ||H, Hy Hyy Hyyl| 0 0 00
_0 00 O J|Hu Hoy Hyy Hy, _—sino cosd 0 0-

.

H,sin?0 -H ,sinfcosd 0 0]
-H sinfcosd H,cos?d 0 0

0 0 0of
0 0 00,

The trace of thisis m,, = H,,.
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We can now find the éM;. We have

d
6Mz == H44—d—;
6M9 = (Hu + H33 + 2TH34 + f2H44)io + H14—£
dX\ dX\
do d
6Mr = H“—d'x + H447—;'
Ty _ 0Ty
If we define c,;; by ¢;; = Tr[ 3 jaNl: 3 :v , then we have
q oq q
. af dg*
$Qi =my =T oY 4y

We now compute the c;;; . Only six cases need to be considered, since all but two of the

second partials of T3 are zero.

0°T; __ 9T,
= |22
Cz00 "[ PY? Ep
lcosﬂ 0 sinfd r sinﬂq Hyy Hy Hyg Hyy -0 00 0’
0°T,__ 0T, —sind 0 —cosd -r cosd| |Hiz Hoe Hos Hyil 0o 0 0 0
3¢ 9z | 0 0 o0 0 Hys Hys Hys Hy |0 00 0]
| 000 O J|Hu Hyp Hy Hyyl|0 01 0]

The trace of this matrix is zero.

_7 [62T3 0T,
Copp = 1T ———302 W
The di 1t f 32T3H3T3
€ dalagona €rms O 602 W are
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€1 = Hy;sinfcosd - H 38in®0 - H,,rsin®0 + H scos20 - H 338infcosd
- H,rsinfcosd + H,,r cos’d — H,,rsinfcosd - H " 2sinfcosd
€y = —H;sinfcosd — Hscos’l — H rcos®d + H ysin0 + H assindcosd
+ Hy,rsinfcosd + H,rsin0 + H,r sinfcosd + H 147 “sinfcosd

€3 =¢€y =0

The trace is zero.

. [ a2'r3H a*ra
E—3 r -——
Crop PY?)
The di 1t f 82T3H3T3
e 1agona erms o 802 -—37 are

e, = Hsinfcosd - H ,sin’0 - H ,,r sin’0
€9 = —H sinfcosd - H4,c08%0 - H,,r cos®d

€33 = € 44 = 0.

The trace therefore is ¢, g9 = -H 3, - H,,r.

1 [ 9°T, a'r3 ]
TE

0 0 0 —cost] |1 Hiz His Hi g g ¢ o]
8*T, __ 0T, 000 —sind||Hi2 Hyy Hyy Hyllo 00 0
309r 8z |000 0 Hi3 Hys Hyg Hgy| [0 0 0 O
_0 00 0 1|Hy Hy Hy Hy, ,0 01 04
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The trace of this matrix is zero.

_ 82T3 T,
Cor = T\ 300r o0
. 0°T; __ 0T,
The diagonal terms of FTE] arH—EE

¢11 = Hsinfcosd + Hycos’0 + Hyyr cos?d

€9 = —H sinfcosd + H 4sin’0 + H ,,rsin’0

€33 = €4y = (.

The trace is ¢y, = Hyy + Hyyr.

3°Ty __ 3T, ]
cror =T\ G630 ar )
N *T; __ 9T,
The diagonal terms of FTER H—(;: are

€1 = H“sinﬂcoso
€90 = -H ,sinfcosd
e33 =cy =0

The trace is zero.

Calculating the 6Q;,

d?z
6Q, = Hu;'):‘?
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&
d \?

dr do

d%0
6Qo=(Hy + Hyy + 2rHyy + f2H44)";‘;‘2 + Hyy + AH sy + rH“)—d_)\ X

2

d%0 d? dé
6Q, =H“W +H“d—)\2’ -(Hy + 'H«)[ﬂ

The 6S;, the gravitational error coefficients, are easily found to be 65, = H,,g

and 6§54 =4S, = 0, where g is the acceleration due to gravity.

We will use the norm

4 4
Hl|= Y ¥ a;; |H;; |
i=1j=1
where a;; > 0. This makes the problem of finding the error bounds very simple. It is

easily seen that if the functional to be maximized is

Z = Y38 H;;
i

then the maximum over H for |[H|| < E occurs when all the H,; are zero except for

B85

those H;; for which ”
J]

i3 a maximum; this number times E is also the maximum

value of Z. If we use

1 i=j
a,~j =

1/2 isj

then the resulting bounds on the | éu; | are

dz - d?
o+ 2+ gllAalv])

<
lsuzl — dX dxz
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ol o [ 405+ 20,2 L ]
2r5—:u+2 di’Z 2+2;; :: 2
gt S
| bu, | SmaX{ —%ﬁ+§-§-’2 2], [%]uz,
PRV

The joint torques that can be applied to the PACS arm are limited by saturation
of the drive motors, which gives a constant torque or force limit for each joint. In addi-
tion, there are limits on the voltages which can be applied to the motors, so we need to
know how the errors in the joint torques translate into errors in the motor voltages. It
will be assumed that the back-EMF constant, winding resistance, and voltage source
resistance are known exactly, though this is not necessary. Since for a given speed vol-
tage is a linear function of torque, i.e., V; = A;u; + B;, the change in voltage will be
6V, = A,bu;. These changes in voltage can then be added to the nominal voltage and
tested against the motor voltage limits in much the same way that the torques are

checked against the motor torque saturation limits.

The perturbation to the nominal dynamics of the manipulator will be caused by
placing a cube with edges of length L and uniform mass density p in the gripper of the

robot, with its center of mass coincident with the origin of the end effector coordinate
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system. The pseudo-inertia of this cube is

1 5

= oL 0 0 0

12°
o L, o o

N 12
3= 1
0 0 —pL% 0
12°

0 0 0 pL®

The norm of this “‘error” is

1
ALyl = pL® + 2 L8

The maximum torque error for a given range of pseudo-inertia errors occurs when the
error bound E is precisely equal to the norm of the actual pseudo-inertia error. There-
fore the most stringent test of the results of the previous section is to use a tight error

bound, i.e.,

E =|lag|

This has been done for a cube with sides of 5 centimeters and densities of 0, 8, 12, 18,
24, and 30 grams/cc. The path traversed is a straight line from the (Cartesian) point
(0.7,0.7,0.1) to (0.4,-0.4,0.4). For comparison, the true optimal solution has been calcu-
lated, using the actual dynamics (including the effects of the cube in the gripper). The
results are summarized in Tables 2 through 6. Table 2 gives traversal times for the
true optimal solution and for the case in which errors are included. The *‘percent differ-
ence’’ column gives the percentage by which the true optimal traversal time is
exceeded. Tables 3 and 4 give minimum and maximum voltages, respectively. The

actual and nominal values are both computed for the ‘‘nominal” trajectory, i.e. the

Payload Uncertainties 28



RSD-TR-6-85

trajectory which is calculated with errors included. The actual voltages are those
required to move the robot with the cube in the gripper, while the nominal values are
those which are required without the cube (i.e. with the nominal payload.) The
minimum and maximum voltages available are -40 and 40 volts, and it is easily seen
that these limits are not exceeded for any joint or for either payload. Tables 5 and 6
give the minimum and maximum torques or forces for each joint. The torque or force
limifs are given at the head of the column for the appropriate joint; again, the limits

are not exceeded.

The phase plane ( N vs. p ) plot and motor voltage vs. time plot for the zero-
density case are shown in Figures 2a and 2b. Since the error is 1€ro in this case, the
results are exact. For a density of 12 grams/cc., the optimal and nominal (i.e. with
errors included) phase plane plots are shown in Figure 3a. Figure 3b gives joint posi-
tions vs. time; z and r are in meters, # in radians. Figures 3¢ through 3e give nominal
and actual motor voltages required to drive the robot along the nominal trajectory for
the z, 0, and r joints respectively. Figures 3f through 3h give the nominal and actual
torques. (The nominal torques/voltages are those which would be required if the actual
payload were identical to the nominal payload. The actual torques are the torques
required to keep the robot with the perturbed payload on the nominal trajectory.) Fig-

ures 4a through 4h show the same plots for a density of 24 grams/cc.

It was noted above that none of the joint torque or voltage constraints was
violated. However, the minimum voltage for the r joint at one point meets the lower
voltage limit. This indicates that the trajectory which is generated when payload errors
are included is indeed the fastest possible trajectory for the given range of possible pay-

loads; for this particular point, the worst-case payload happens to have the same
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characteristics as the actual payload. A larger payload would have resulted in violation

of a voltage constraint.

Another point to consider is the relationship between the nominal and optimal
phase trajectories. It is expected that the nominal ﬁhase trajectory will be lower than
the optimal trajectory; a nominal trajectory which was higher than the optimal one
would lead to a contradiction of the optimality of the optimal trajectory. Also, the
difference between the optimal and nominal trajectories increases as the payload error
bound increases. This would be expected, since the nominal trajectory must accommo-
date all payloads within a given range; as the range of payloads increases, the worst-
case errors also increase, resulting in more restrictive limifs on the nominal torques, and

hence slower trajectory traversal times.

5. CONCLUSIONS

A method for including payload inertia errors in the manipulator trajectory plan-
ning process has been presented. Errors in the payload inertia are characterized by
bounds on the norm of the difference between the actual and nominal pseudo-inertias
of the payload. Given such a bound, it has been shown that a trajectory can be con-
structed which meets all torque and force constraints for all actual payloads, provided
th-at the norm of the difference of the pseudo-inertias of the actual and nominal pay-
loads differs by less than the given error bound. This technique was applied to the Ben-
dix PACS robot for a number of different payloads, and the resulting trajectories were
shown not to violate any joint torque or motor voltage constraints. In the worst case, in
which the actual payload mass differs from the nominal mass by approximately one
third of the robot’s rated maximum load, the traversal time was less than twenty per-

cent over the optimal value.
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Parameter Description Value
% Saturation torque of § motor 2.0 Nt.-M.
oo Saturation torque of r motor 0.05 Nt.-M.
rlo Saturation torque of z motor 2.0 Nt.-M.
y i Lower voltage limit for ¢ joint -40 v.
y, min Lower voltage limit for r joint -40 v.
y min Lower voltage limit for z joint -40 v.
Vo Upper voltage limit for 8 joint 40 v.
y,max Upper voltage limit for r joint 40 v.
V,max Upper voltage limit for z joint 40 v.
ki Gear ratio for 8 drive 0.01176
kJ Gear ratio for r drive 0.00318 Meters/radian
k! Gear ratio for z drive 0.00318 Meters/radian
kg Motor constant for # joint 0.0397 Nt.-M./amp
kT Motor constant for r joint 0.79557 X107 Nt.-M./amp
K Motor constant for z joint 0.0397 Nt.-M./amp
RY Motor and power supply resistance, # joint 10
R™ Motor and power supply resistance, r joint 10
"R™ Motor and power supply resistance, z joint 10
kg Friction coefficient of 8 joint 8.0 Kg./sec.
k, Friction coefficient of r joint 4.0 Kg./sec.
k, Friction coefficient of z joint 1.0 Kg./sec.
M, Mass of r joint 10.0 Kg.
M, Mass of z joint 40.0 Kg.
Ji Moment of inertia around ¢ axis 12.3183 Kg.-M.?2
K Moment of inertia offset term 3.0 Kg-M.

Table 1. Dynamic coefficients and actuator characteristics for PACS arm
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Density Time (Seconds) percent difference
Nominal___‘=0ptimal
0 1.789 1.789 0
6 1.934 1.844 4.9%
12 2.076 1.898 9.4%
18 2.213 1.950 13.5%
24 2.340 2.002 16.9%
30 2.459 2.054 19.7%

Table 2. Traversal times for nominal and optimal trajectories

Minimum Voltages
Density z joint 0 joint r joint

Nominal | Actual | Nominal | Actual | Nominal | Actual

0 29.86 29.86 -39.93 -39.93 -40.00 -40.00

6 30.34 30.91 -38.26 -38.52 -37.94 -40.00

12 30.54 31.67 -33.05 -33.51 -36.12 -39.98

18 30.67 32.39 -24.92 -25.37 -34.47 -39.99

24 30.78 33.07 -19.94 -20.36 -33.01 -40.00
30 30.86 33.73 -16.80 -17.18 -31.70 -39.96

Table 3. Minimum required voltages for nominal and actual payloads.

Maximum Voltages
Density z joint 0 joint r joint
Nominal | Actual | Nominal ’ Actual | Nominal | Actual
0 37.64 37.64 39.86 39.86 40.00 40.00
6 37.40 38.03 37.14 37.73 32.62 32.60
12 36.79 38.04 17.64 18.25 27.01 27.48
18 35.78 37.61 10.61 11.21 23.79 24.94
24 35.12 37.54 7.30 7.89 21.39 23.41
30 34.69 37.69 5.39 5.98 19.51 22.39

Table 4. Maximum required voltages for nominal and actual payloads.
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Minimum Torques/forces
Density | z joint (Newtons) | 0 joint (Newton-Meters) | r joint (Newtons)
Limit = -629 Nt. Limit = -170 Nt.-M. Limit = -15.7 Nt.
Nominal | Actual | Nominal Actual Nominal | Actual
0 333.52 333.52 | -112.29 -112.29 -9.99 -9.99
6 335.91 342.20 | -104.78 -105.71 -9.47 -9.99
12 363.02 376.62 -87.70 -89.26 -9.02 -9.99
18 373.03 394.00 -62.91 -64.43 -8.61 -9.99
24 377.84 406.17 -48.15 -49.55 -8.24 -9.99
30 380.11 | 415.72 -39.14 -40.43 -7.92 -9.98

Table 5. Minimum required torques/forces for nominal and actual payloads.

Maximum Torques/forces
Density | z joint (Newtons) | & joint (Newton-Meters) | r joint (Newtons)
Limit = 629 Nt. Limit = 170 Nt.-M. Limit = 15.7 Nt.
Nominal | Actual | Nominal Actual Nominal | Actual
0 421.31 421.31 161.72 161.72 10.03 10.03
6 418.68 426.52 150.39 152.36 8.15 8.18
12 414.50 430.04 78.43 80.48 6.76 6.89
18 4006.68 429.55 51.39 53.41 5.96 6.25
24 402.17 432.31 38.18 40.19 5.36 5.87
30 400.42 437.96 30.20 32.20 4.89 5.61

Table 8. Maximum required torques/forces for nominal and actual payloads.
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Figure 1. Kinematics of the Bendix PACS robot
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Figure 2a. Phase plane plot for zero errors.
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Figure 2b. Voltage vs. time for zero errors.
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Figure 3a. Phase plane plots for density 12.0 g./cc.
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Figure 3b. Joint position vs. time for density 12.0 g./cc.
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Figure 3c. Nominal and actual motor voltages for z joint, density 12.0 g./cc.
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Figure 3d Nomina!l and actual motor voltages for § joint, density 12.0 g. /cc.
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Figure 3e. Nominal and actual motor voltages for r joint, density 12.0 g./cc.
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Figure 3f. Nominal and actual joint forces for z joint, density 12.0 g./cc.
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Figure 3g. Nominal and actual joint torques for 8 joint, density 12.0 g./cc.
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Figure 3b. Nominal and actual joint forces for r joint, density 12.0 g./cc.
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Figure 42 Phase plane plots for density 24.0 g./cc.
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Figure 4b. Joint position vs. time for density 24.0 g./cc.
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Figure 4c. Nominal and actual motor voltages for z joint, density 24.0 g./cc.
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Figure 4d. Nominal and actual motor voltages for 6 joint, density 24.0 g./cc.
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Figure 4¢. Nominal and actual motor voltages for r joint, density 24.0 g./cc.
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Figure 4f. Nominal and actual joint forces for z joint, density 24.0 g./cc.
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Figure 4g. Nominal and actual joint torques for # joint, density 24.0 g. /cc.
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