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Nathan James Lanning 

 

 

Chair: Christin Carter-Su 

 

 Growth hormone (GH) regulates overall body growth and metabolism and is used 

therapeutically for a variety of clinical applications.  GH binding to its receptor activates 

the tyrosine kinase, JAK2.  Active JAK2 initiates multiple cellular responses to GH, 

including regulation of the cytoskeleton, that lead to cellular proliferation, differentiation 

and migration.  Recent studies questioned whether JAK2 is the primary kinase 

responsible for transducing all GH signals.  This thesis establishes that JAK2 is the 

primary kinase responsible for GH-mediated activation of Stat1, Stat3, Stat5, ERK1/2 

and Akt in two established models of GH signaling, 3T3-F442A preadipocytes and H4IIE 

hepatoma cells.  This work also characterizes two novel mechanisms by which the 

adaptor protein, SH2B1, may modulate GH-induced regulation of the actin 
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cytoskeleton.  The cytoskeleton scaffolding protein, II-spectrin, was identified as an 

SH2B1 interacting protein.  JAK2 was found to phosphorylate II-spectrin in an 

SH2B1-dependent manner.  GH induced formation of a II-spectrin/SH2B1/JAK2 

complex in 3T3-F442A cells and induced a shift in II-spectrin subcellular localization in 

H4IIE cells.  These results suggest that GH may regulate the cytoskeleton through an 

SH2B1/II-spectrin interaction.  SH2B1 was also found to localize to focal adhesions, 

which are cytoskeletal structures that regulate cell anchorage and motility.  GH 

increased the dynamic cycling of SH2B1 into and out of focal adhesions.  In addition, 

PMA induced redistribution of SH2B1 out of focal adhesions.  Two serines within 

SH2B1 (serines 161 and 165) were implicated in regulating this PMA effect as well as 

the dynamic cycling of SH2B1 into and out of focal adhesions.  Mutation of SH2B1 

serine 165 to glutamate also increased the overall focal adhesion number in cells.  

These results implicate SH2B1 as a novel focal adhesion protein and suggest that 

stimuli that induce phosphorylation of SH2B1 at serines 161 and/or 165 regulate 

SH2B1 dynamics at focal adhesions and may contribute to the regulation of overall 

focal adhesion number.  Taken together, the work in this thesis demonstrates that GH 

activates downstream signaling through JAK2 in 3T3-F442A and H4IIE cells.  This work 

also provides evidence that GH regulates the cytoskeleton through an SH2B1/II-

spectrin interaction and/or modulating SH2B1 at focal adhesions.
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Chapter 1 

 
Introduction 

 

Growth hormone (GH) is a major regulatory factor of overall body growth as 

evidenced by the height extremes in people with abnormal circulating GH levels or GH 

receptor (GHR) disruptions.  GH also affects metabolism, cardiac and immune function, 

mental agility and aging.  Currently, GH is being used therapeutically for a variety of 

clinical conditions including promotion of growth in short statured children, treatment of 

adults with GH deficiency and HIV-associated wasting.  At the cellular level, GH either 

directly or indirectly elicits a variety of responses depending on cell type and context.  

These responses include cellular differentiation of epiphyseal prechondrocytes into 

chondrocytes and 3T3-F442A preadipocytes into mature adipocytes, chemotaxis of 

monocytes, and migration and proliferation of models of breast and endometrial cancer.  

To help reveal previous unrecognized functions of GH, better understand the known 

functions of GH, and avoid adverse consequences that are often associated with 

exogenous GH administration, careful delineation of the molecular mechanisms whereby 

GH induces its diverse effects is needed.  

 

Growth Hormone Signal Transduction 

GH is a peptide hormone that is secreted into the circulation by the anterior 

pituitary and acts upon various target tissues expressing GHR.  GH binding to GHR 

activates the tyrosine kinase Janus kinase 2 (JAK2), thus initiating a multitude of 
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signaling cascades that result in a variety of biological responses including cellular 

proliferation, differentiation and migration, prevention of apoptosis, cytoskeletal 

reorganization and regulation of metabolic pathways.  A number of signaling proteins 

and pathways activated by GH have been identified, including JAKs, signal transducers 

and activators of transcription (Stats), the mitogen activated protein kinase (MAPK) 

pathway, and the phosphatidylinositol 3’-kinase (PI3K) pathway.  Although these signal 

transduction pathways have been well characterized, the manner by which GH activates 

these pathways, the downstream signals induced by these pathways, and the cross-talk 

with other pathways are not completely understood. 

 

GH receptor dimerization and activation 

The downstream signaling pathways mediated by the GHR are initiated upon the 

binding of GH to the extracellular domain of the GHR (Fig. 1.1A).  Early analysis of the 

extracellular domain of GHR in association with GH indicated that one GH molecule 

binds sequentially to two GHR molecules (1).  Formation of this GH-GHR2 trimer 

complex was thought to be necessary and sufficient for GH responses (1).  However, 

other studies indicated that dimerization of the GHR was insufficient for activation of GH-

mediated signaling (2) and that preformed GHR dimers exist prior to GH binding (3).  

These findings, along with newer results from tests of GHR activation, lay the 

groundwork for a revised model of GHR activation.  A recent study (4) confirmed that 

unliganded GHR exists as a dimer, using co-immunoprecipitation, fluorescence 

resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), 

and X-ray crystallography of the extracellular domain of GHR.  Only minor differences 

were observed between the crystal structures of the liganded and unliganded GHR 

extracellular domain dimers.  However, inducing a nominal 40° clockwise rotation in the 

lower -helical transmembrane sequence by insertion of alanine residues or a nominal 
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100° clockwise rotation in the juxtamembrane helix of GHR just N-terminal of the Box 1 

domain containing the JAK2 binding site resulted in constitutive activation of JAK2 and 

Stat5.  From these and other findings, Brown et al. (4) suggested a model whereby GH 

binding asymmetrically at the receptor binding sites of preformed GHR dimers causes 

the intracellular domains of the GHR to undergo relative rotation.  Because the 

cytoplasmic domain of each GHR molecule is thought to bind a single JAK2 molecule, 

this rotation is postulated to bring two JAK2 molecules into sufficient proximity to allow 

each JAK2 molecule to phosphorylate the activating tyrosine residue in the kinase 

domain on the other JAK2 molecule, thereby activating JAK2.  Since GH binding has 

also been reported to increase the co-immunoprecipitation of JAK2 with GHR (5), the 

GH-induced conformational change in GHR may also increase the stability of the GHR-

JAK2 interaction.  More recently, Yang et. al  (6) provided evidence using GHR 

truncation and point mutants and GHR-low density lipoprotein receptor (LDLR) chimera 

receptors suggesting that the dimerization interface is the main contributor to GHR 

predimerization rather than the length of the receptor transmembrane domain.  However, 

they also found that GHR-LDLR receptor chimeras were less sensitive to inhibition of 

GH signaling by a GHR antibody and less sensitive to induced receptor metalloprotease 

cleavage.  Therefore, they concluded that the longer transmembrane domain of the GHR 

compared to the GHR-LDLR receptor chimera does provide added sensitivity to GH-

induced JAK2 activation and presumably, downstream signaling.  Finally, in a 

subsequent study, this group presented data in opposition to the prevailing theory that 

one GH molecule containing two asymmetric binding sites binds one GHR dimer (6).  

Here, Yang et. al showed GHR and JAK2 activation in response to recombinantly 

produced GH-GH and G120R-G120R dimers.  G120R is a naturally occurring GH 

mutant lacking one GHR binding site, rendering the molecule unable to activate GHR-

mediated signaling (Reviewed in (7)).  This study showed that even though G120R-
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G120R molecules contain only one of the two known GHR asymmetric binding sites, the 

dimer molecule was still able to activate JAK2 and Stat5.  While the physiological 

significance of this study remains in question, these results, along with the studies 

describing new models of GHR dimerization and activation, are suitable reminders that 

ongoing research is needed to more precisely define the mechanism(s) initiating GH 

signaling. 

 

 

Figure 1.1 Signal transduction pathways induced by growth hormone.   
(A) GH binds a GHR dimer, inducing a conformational change that activates two JAK2 
molecules.  (B) JAK2 activation induces JAK2 autophosphorylation and JAK2 
phosphorylation on multiple GHR tyrosines.  GH-activated JAK2 also phosphorylates 
and activates multiple signaling proteins and pathways including  (C) Stats,  (D) IRS and 
PI-3 kinase and  (E) MAPK.  (F) The binding of GH to GHR may also activate Src 
tyrosine kinase, initiating other signaling pathways.  (G) GH induces changes in 
cytoskeletal dynamics. 
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GH signal transduction via JAK2 

Activation of JAK2 is thought to be the key step in initiating GH signaling (5). The 

FERM domain of JAK2 is thought to mediate JAK2 binding to the cytoplasmic Box 1 

region of GHR (8-10).  Following GH activation of JAK2, JAK2 autophosphorylates 

multiple tyrosines (11, 12) and subsequently phosphorylates multiple tyrosine residues in 

GHR (13, 14) (Fig. 1A).  Based upon JAK2 overexpression systems, some of the 

autophosphorylation sites in JAK2 appear to be regulatory sites since mutating them has 

been shown to either stimulate (e.g. tyrosine 119, 570) or decrease (e.g. tyrosines 221, 

972, 1007) JAK2 activity (11, 15-18).  For some of those tyrosines, phosphorylation is 

thought to cause a conformational change in JAK2 that alters JAK2 activity.  For 

example, phosphorylation of tyrosine 1007 is thought to expose the substrate and/or 

ATP binding sites (15) whereas phosphorylation of tyrosine 119 is thought to promote 

dissociation of JAK2 from its associated cytokine family receptor (18).  

Autophosphorylation of some tyrosines are alternatively or additionally thought to 

regulate JAK2 activity indirectly by recruiting regulatory proteins to JAK2.  For example, 

phosphorylated tyrosine 1007 has also been shown to bind the negative regulators of 

cytokine signaling SOCS1 (19), SOCS3 (20) and the phosphatase PTP1B (21) 

(discussed in more detail below).  Autophosphorylation of tyrosine 813 appears to 

enhance JAK2 activity as a consequence of recruiting the adaptor protein, SH2B1 (also 

known as SH2-B or PSM1) (12).  SH2B1 has been hypothesized to either stabilize the 

active conformation of JAK2 (22) or promote the dimerization of JAK2 (23).  Some of the 

autophosphorylation sites in JAK2 (e.g. tyrosine 966 (24)) as well as the phosphorylated 

tyrosines in GHR, are thought to serve as docking sites for signaling molecules 

containing Src homology 2 (SH2) or phosphotyrosine binding (PTB) domains.  Based on 

mutational studies, 7 different tyrosines within the cytoplasmic domain of the GHR have 

been implicated in at least one downstream GH response (reviewed in (25)).  For 
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example, 5 or 6 phosphorylated tyrosines in GHR have been hypothesized to bind 

Stat5a and Stat5b, based upon decreased GH-dependent Stat5 tyrosyl phosphorylation 

or Stat5-dependent responses in cells expressing mutated or truncated GHR (13, 14, 

26-28).  Recruitment of these signaling molecules to GHR-JAK2 complexes and their 

activation allows GH to elicit diverse biological and physiological effects.  A number of 

signaling proteins and pathways are thought to be initiated at least in part as a 

consequence of binding to activated GHR-JAK2 complexes (reviewed in (25, 29)). 

Examples include pathways involving Stats 1, 3, 5a and 5b, the MAPK pathway, and the 

phosphatidylinositol 3’-kinase (PI3K) pathway (Fig. 1.1B and C). 

 

GH signal transduction via Src tyrosine kinase 

One of the more interesting recent developments in GH signaling is support for 

the hypothesis that not all GH signaling events lie downstream of JAK2.  Zhu et al. (30) 

provide evidence using both pharmacological inhibitors and kinase inactive proteins in 

NIH3T3 cells that the tyrosine kinase Src is activated by GH independent of JAK2.   

Using the same reagents, the same group reported that full activation of the Ras-like 

small GTPases RalA, RalB, Rap1 and Rap2 by GH requires both c-Src and JAK2 (30, 

31) (Fig. 1.1C) whereas activation of Stat5 requires only JAK2.  Activation of RalA by GH 

was linked to increased phospholipase D activity and the formation of its metabolite, 

phosphatidic acid, which were in turn linked to GH-activation of extracellular regulated 

kinases (ERKs) 1 and 2 and subsequent Elk-1-mediated transcription (30), suggesting 

that GH activation of ERKs 1 and 2 is at least partially dependent upon GH activation of 

Src and independent of JAK2.  GH-dependent Rap1 activity appears to be dependent on 

CrkII-C3G activation and capable of mediating CrkII enhancement of GH-stimulated 

JNK/SAPK activity.  Rap1 was also implicated as an inhibitor of GH activation of RalA 

and its subsequent stimulation of ERKs 1 and 2 (31).  The latter suggests that the 
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balance between Ral and Rap protein activation by GH would affect the relative levels of 

activation of ERKs 1/2 versus JNK/SAPK (Fig. 1.1C).  Using a COS7 cell overexpression 

system, Manabe et al. (32) also found GH to modestly stimulate Src activity.  They 

showed that Src can bind to and phosphorylate GHR and used Src inhibitor or anti-

sense to implicate Src in GH-dependent tyrosyl phosphorylation of GHR and Stat5a/b 

but not JAK2 in F-36P human leukemia cells (Fig. 1.1C).  Cell type specificity was one 

hypothesis put forward to explain the apparent discrepancy between these two groups 

regarding the role of Src in Stat5b phosphorylation (32).  Previous studies in IM-9 and 

CHO cells based upon truncated and mutated GHR and JAK2 inhibitors had suggested 

that regulation of cellular [Ca2+] by GH may also be JAK2 independent (reviewed in (25), 

raising the possibility that this function might also be mediated by Src.   Although recent 

inhibitor studies by Zhang et al. (33) found that human GH-induced increases in 

cytosolic free Ca2+ in, and insulin secretion from, BRIN-BD11 beta cells appeared to be 

dependent upon activation of both JAK2 and Src, these actions were not mediated via 

the GHR but rather the prolactin receptor, which can also bind human GH.  In contrast, 

the rise in cytosolic free Ca2+ elicited by bovine GH, which binds only to the GHR, was 

not blocked by inhibitors of either JAK2 or Src.  Thus, these data support the GHR-

mediated increase in cytosolic free Ca2+ being independent of JAK2.  They also suggest 

that GH binding to the GHR activates an as yet unidentified, early signaling protein in 

addition to JAK2 and Src.  Most recently, in an elegant study by Rowlinson et al. (34), a 

GH-induced conformational change in a loop (F’G’ loop) of one of two -sandwich 

modules in the extracellular domain of GHR was found to be responsible for activating 

the Src family kinase, Lyn, but not JAK2 in FDC-P1 cells.  In combination with a second 

published report, this group also found that liver samples from mice harboring GHR 

mutations rendering the receptor unable to bind JAK2 still displayed Src and ERK1/2 

activation in response to GH treatment (35).  The conclusion from these studies was that 
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GH-induced activation of ERK1/2 is mediated through Src family kinase while STAT5 

activation is mediated through JAK2, and that movement of the F’G’ loop within the GHR 

dictates which signaling pathway will be activated.  Collectively, these results indicate 

that both Src family kinases and JAK2 may transduce the GH signal.  However it is not 

currently clear if both kinases are utilized in all cells, or whether the relative abundance 

of a particular kinase defines utilization.  Therefore, a more complete understanding of 

the relative contribution of each kinase in different cell types remains an important 

question. 

 

GH regulation of Stat transcription factors 

A number of the responses to GH involve transcription factors and gene 

expression.  Among these transcription factors, members of the SH2 domain-containing 

signal transducers and activators of transcription (Stat) family of proteins have been 

shown to be particularly important for JAK2-mediated GH signaling (36) and will be 

discussed below.  The regulation of other transcription factors is outside the scope of 

this thesis, and is described elsewhere in detail (36, 37).  Activation of Stat proteins is 

known to require tyrosine phosphorylation-dependent homo or heterodimerization, a 

process that is facilitated by the GH-dependent creation of Stat binding sites on the 

activated GHR-JAK2 complex (Fig. 1.1B).  Once bound to these sites on the activated 

GHR-JAK2 complex, Stats 1, 3, 5a and 5b are thought to be phosphorylated by JAK2 

after which they dimerize, translocate to the nucleus and act as transcription factors for 

many important GH-regulated genes (36, 38, 39).  Many past and recent studies have 

shown that activation of Stat5a and Stat5b is critical for a variety of GH functions, 

including changes in metabolism, body growth and sex-dependent liver gene regulation 

(reviewed in (36, 39)).   
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Although Stat5a and Stat5b have been implicated in body growth via mouse 

gene deletion studies, only recently have Stat5b binding sites in the IGF-1 gene 

promoter elements been identified and shown to regulate IGF-1 transcription in a GH-

dependent manner through Stat5b (40, 41).  In support of Stat5 being important for GH-

dependent IGF-I levels in serum and body growth, a patient with severe growth 

retardation and immunodeficiency has been found to have a mutation in the Stat5b gene 

that results in the loss of GH-induced tyrosyl phosphorylation of Stat5b (42) (Fig 1.2A).   
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Figure 1.2.  Diseases and disorders associated with abnormal GH-induced JAK-
Stat signaling.   

(A) A patient has recently been identified who has severe growth retardation and 
immunodeficiency as a result of a mutation in the Stat5b gene that abrogates JAK2-
dependent phosphorylation and nuclear localization of Stat5b.  (B) EVB-transformed 
lymphocytes from X-SCID patients lacking the common cytokine receptor (-chain exhibit 
decreased GH-induced JAK2-dependent phosphorylation and nuclear localization of 
Stat5b.  (C) Fibroblasts from several patients exhibiting idiopathic short stature exhibit 
attenuated GH-induced JAK2-dependent phosphorylation and nuclear translocation of 
Stat3, increases in the cell cycle inhibtor, p21, and decreases in cyclins. 

 

 

Recently, an exciting mechanism was proposed whereby Stat5 and the 

transcriptional repressor, B cell lymphoma 6 (Bcl6), interact to regulate GH-induced 

gene expression (43, 44).  Using gene set enrichment analysis to identify novel GH-

regulated genes at time points matching important physiological actions, Chen et. al 
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identified Bcl6 as being strongly inhibited by GH.  They further found that upon GH 

stimulation, there was an increase in Stat5 occupancy on the highly GH-responsive 

gene, SOCS2 (see below for more on SOCS2).  Concomitant with this, Chen et. al found 

a decrease in Bcl6 occupancy of the SOCS2 gene.  Therefore, the results of this study 

for the first time identified GH-regulation of a powerful transcriptional repressor (Bcl6) 

and suggested that Stat5 and Bcl6 compete for regulation of the SOCS2 gene. 

Although current dogma dictates that JAK2 phosphorylates Stat5 through direct 

interactions between GHR, JAK2 and Stat5, Adriani et al. (45) have recently 

demonstrated a requirement for the common cytokine receptor -chain (c) for proper 

GH-mediated Stat5b activation in B cell lines.  These investigators found that in EBV-

transformed lymphocytes from c negative X-SCID patients, GH was able to normally 

activate JAK2, but GH-dependent Stat5b phosphorylation and nuclear localization were 

significantly suppressed. These cells exhibited a total loss of GH-induced proliferation.  

Reconstitution of X-SCID patient lymphoblastoid cell lines with wild-type c resulted in 

normal GH-induced phosphorylation of Stat5b and nuclear localization.  This study 

suggests a novel dependence of GH signaling on the common cytokine receptor -chain 

in certain cell types, consistent with the presence of -chains in non-hematopoietic 

tissues and short stature of X-SCID patients (Fig. 1.2B).  Whether this effect of -chain 

on GHR signaling is a direct or indirect effect remains to be determined. 

Another clinical report in 2006 describes patients diagnosed with idiopathic short 

stature whose fibroblasts exhibit normal activation of Stats 5a and 5b but impaired 

activation of Stat3 (46) (Fig. 1.2C).  Idiopathic short stature is characterized by a normal 

birth weight and no endocrine abnormalities but a retarded growth velocity and a height 

more than two standard deviations below the mean.  In fibroblasts taken from these 

patients, GH-induced Stat3 activation was attenuated, cyclin levels were reduced and 
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levels of p21WAF/CIPI (a negative regulator of the cell cycle) were elevated (46).  The 

idiopathic short stature phenotype and high p21WAF/CIPI levels in the human fibroblasts 

were reversed by treatment of patients with exogenous GH.  Further studies are needed 

to know whether the elevated levels of p21WAF/CIPI and/or suppressed Stat3 activation are 

responsible for the short stature. 

 

GH signal transduction via MAPK and PI3-kinase pathways 

The Ras/MAPK pathway has also been shown to be activated by GH (reviewed 

in (25, 29)).  GH has been shown to stimulate the binding of the adapter protein Shc to 

GHR-JAK2 complexes; the tyrosyl phosphorylation of Shc and its binding to Grb2 and 

the guanine nucleotide exchange factor, SOS; and the activity of Ras, Raf, mitogen-

activated protein kinase/extracellular-regulated protein kinase (MEK) and finally ERKs 1 

and 2 (47-50) (Fig. 1.1D).  Although several groups have linked GH activation of ERKs 1 

and 2 to JAK2, the Lobie laboratory have data suggesting that GH might also regulate 

ERKs 1 and 2 by a Src-dependent, JAK2-independent pathway that involves 

phospholipase D and RalA and RalB (30) or by a c-Src-FAK-Grb2 complex (reviewed in 

(29)).   Alternatively, Yamauchi et al. (51) propose that GH activates the MAPK pathway 

by stimulating tyrosyl phosphorylation of a Grb2 binding site in the epidermal growth 

factor receptor.  GH activation of the Ras/ERK pathway has been linked to GH activation 

of a variety of proteins (reviewed in (29)).  Examples include phospholipase A2, which 

has been linked to GH-induced P450-catalyzed formation of an active arachidonic acid 

metabolite and expression of CYP2C12; and the transcription factor Elk1 whose 

phosphorylation by ERK1/2 is required for transcription via the c-fos serum response 

element (SRE).   More recently, GH-induced ERK1/2 has been shown to phosphorylate 

the transcription factor CEBP, an event that has been implicated in CEBP nuclear 

translocation (52, 53)  (Fig. 1.1C) and differentiation of 3T3-F442A preadipocytes into 
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adipocytes (54).   Although Stat5b has been thought largely responsible for sex-

dependent liver gene expression, including regulation of expression of the CYP2C11 

gene (39), Verma et al. (55) raise the possibility that ERK1/2 may also regulate 

expression of CYP2C11 gene, based upon correlative data using different doses of 

pulsatile GH replacement therapy in mice (Fig 1.1C).   

Recent results from Yang et al. (56) indicate that in 3T3-F442A cells, GHR is 

selectively enriched in caveolar and lipid raft domains of the plasma membrane.  GH 

stimulation induced in this fraction accumulation and activation of Ras/MAPK, but not 

Stat signaling molecules.  Disruption of these fractions using methyl--cycoldextrin 

inhibited GH-induced ERK1/2 activation, but had no effect on GH-stimulated Stat5 

activation.  These findings imply that GHR membrane localization may be important for 

the initiation of different GH-induced signal transduction pathways and that GH induction 

of ERKs 1/2 and Stat5 may require GHR in different cellular compartments.   

In addition to activating the Ras/MAP kinase pathway, GH has also been shown 

to stimulate the PI-3 kinase pathway (reviewed in (29), Fig. 1.1B).  One possible 

mechanism whereby GH activates PI-3 kinase is through tyrosyl phosphorylation of the 

large adaptor proteins designated insulin receptor substrate (IRS) proteins because of 

their known role in insulin signaling.  GH stimulates the tyrosine phosphorylation of IRS-

1, IRS-2 and IRS-3, and phosphorylation of these IRS proteins is known to lead to their 

association with multiple signaling molecules including the p85 subunit of PI-3 kinase.  

Other data suggest that GH might activate PI-3 kinase through a CrkII-IRS-1 interaction 

(57) or through binding of the p85 and p85 subunits of PI-3 kinase (58). Activation of 

PI3 kinase has been linked by inhibitor studies to GH stimulation of glucose transport 

(59) and the anti-apoptotic serine kinase Akt (60).  This GH-dependent activation of Akt 

has been shown to be dependent on the presence of the JAK2 binding region of GHR, 
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and implicated in GH promotion of cell survival, possibly through inhibition of the pro-

apoptotic caspase-3 protein (61).  GH-induced activation of p70S6K, a kinase involved in 

the control of cell proliferation and differentiation, has also been shown to be activated in 

PI-3 kinase-dependent and PKC-dependent manners (62-64). 

 

Negative regulators of GH signaling 

GH is secreted episodically and GH responses are transient.  In contrast, 

prolonged activation of JAK2 has been associated with cell transformation and cancer.  

Thus, precise regulation of GH signaling is vitally important for the proper maintenance 

of body growth and metabolism, with down-regulation of GH signaling being an 

important aspect of proper GH signaling.  Current knowledge of down-regulation of the 

GH signal reviewed here includes blockage or removal of SH2 and PTB binding sites by 

inhibitory molecules or dephosphorylation, and ubiquitin-dependent GHR endocytosis. 

 

Suppressor of cytokine signaling proteins 

The suppressor of cytokine signaling (SOCS) family of proteins plays an 

important role in the negative regulation of GH signaling.  There are eight members of 

the SOCS family, of which GH has been reported to induce the expression of four, 

namely, SOCS-1, -2, -3 and CIS (cytokine-inducible SH2-containing protein) (reviewed 

in (65)).  SOCS proteins share a centrally located SH2 domain and a motif termed the 

SOCS box, which resides in the carboxy-terminus.  Although it has been known for 

some time that the SOCS family is involved in negatively regulating GH signaling, more 

recent studies continue to shed light on the mechanisms of this regulation (Fig. 1.3). 

SOCS-1 is thought to bind the activating tyrosine in the kinase domain of JAK2 and 

inhibit JAK2 activity (19) (Fig. 1.3A).  SOCS-3 has been shown to bind this residue in 

JAK2 as well as to phosphorylated residues in GHR (20, 66, 67).  SOCS-3’s mechanism 
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of GH signaling inhibition is thought to be by inhibition of JAK2 kinase activity through a 

mechanism dependent on SOCS-3 binding to GHR (Fig. 1.3A). SOCS-2 has been 

shown to bind phosphorylated GHR GST fusion proteins and peptides (66-68). CIS has 

also been shown to bind phosphorylated GST-GHR fusion proteins (66, 67).  The 

SOCS-2 and CIS binding sites in GHR were subsequently mapped to tyrosines 487 and 

595 using a mammalian 2-hybrid system (14). The mechanism of SOCS-2 and CIS 

inhibition of GH signaling may be through inhibiting Stat5b binding of GHR, however, in 

SOCS overexpression studies, SOCS-2 and CIS inhibition of GH signaling seems to be 

less effective than that of SOCS-1 and SOCS-3 (66) (Fig 1.3A).  Additionally, while 

SOCS-2 and CIS bound GHR tyrosines 487 and 595 in the mammalian 2-hybrid system, 

Stat5a and Stat5b were found to bind GHR tyrosines 534, 566 and 627 (14).  These 

results suggest that Stat5 does not compete with SOCS-2 or CIS for binding sites on 

GHR.  SOCS-1, and possibly SOCS-2 and SOCS-3, also appear to be involved in the 

ubiquitination of the GHR-JAK2 complex as each have been shown to be associated 

with ubiquitin ligase activity (reviewed in (65), Fig. 1.3B).  Results using pharmacological 

inhibitors of proteasomes and dominant negative forms of CIS indicate that CIS 

negatively regulates GHR signaling at least in part by stimulating GHR internalization 

and proteasomal degradation (69) (Fig 1.3B). New evidence indicates that SOCS-2 may 

also inhibit GH responses in the animal indirectly by antagonizing IGF-1 signaling (70).  

Mice lacking SOCS-2 are large (71), suggesting physiological relevance of SOCS-2 as a 

negative regulator of GHR.  Although at high concentrations, SOCS-3 is able to down-

regulate GH-induced JAK2 activity and has been shown to be associated with ubiquitin 

ligase activity, the physiological significance of SOCS-3 action on GH signaling is 

currently unclear because liver-specific SOCS-3-/- mice do not differ in size from wild-

type littermates (72).  Similarly, CIS-/- and SOCS-1-/- mice are not bigger than normal (73, 

74).  It is always possible that these SOCS proteins share some redundancy in function, 
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and that increased body size would be observed if they were deleted in combination.  

Because SOCS proteins are synthesized in response to other ligands, a number of 

recent studies have investigated whether GH insensitivity is a consequence of elevated 

levels SOCS protein.   In that regard, Leung et al. (75) have implicated SOCS-2 

upregulation in the known ability of estrogen to inhibit GH signaling.  Similarly, increases 

in SOCS 1 and 3 have been implicated in the ability of sepsis to inhibit GH signaling in 

liver (76, 77), and increases in SOCS 2 and 3 in the negative effect of uremia on hepatic 

GH signaling and growth (78). 

 

 

 

Figure 3. Negative regulation of GH signaling. 
(A) SOCS-1 binds JAK2 and inhibits JAK2 kinase activity. SOCS-3 is thought to bind 
phosphorylated GHR and inhibit JAK2 kinase activity. SOCS-2 and CIS bind 
phosphorylated GHR and may compete with Stat5B for GHR binding sites.  (B) 
Internalization and degredation of activated GHR may be facilitated by CIS and the 
ubiquitin ligase activity associated with SOCS proteins.  (C) Protein tyrosine 
phosphatases negative regulate GH signaling by binding the activated receptor complex 
and presumably dephosphorylating phosphotyrosines on JAK2, GHR or associates 
signaling proteins.  SHP2 has been hypothesized to be both a positive and negative 
regulator of GH signaling. 
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Protein tyrosine phosphatases 

Another important mechanism whereby GH signaling is thought to be negatively 

regulated is through protein tyrosine phosphatases (PTPs).  A number of phosphatases 

have been reported to down-regulate GH signaling, including SH2 domain-containing 

protein-tyrosine phosphatase (SHP-1), SHP-2, protein-tyrosine phosphatase (PTP)-H1, 

PTP1, TC-PTP and PTP1b (reviewed in (65), Fig. 1.3C).  SHP-1 has been implicated as 

a negative regulator of GH signaling based upon the observation that GH-dependent 

tyrosyl phosphorylation of JAK2 and DNA binding of Stat5b are prolonged in liver 

extracts from motheaten mice deficient in SHP-1 (79).  SHP-2 is reported to both 

positively and negatively regulate GH signaling.  Based upon phosphatase inactive 

forms of SHP-2, Frank and colleagues (80) observed that overexpression of a 

catalytically inactive form of SHP-2 inhibited GH stimulation of c-fos enhancer-driven 

luciferase reporter, leading them to conclude that SHP-2 is a positive regulator of GH 

signaling.  In contrast, Stofega et al. (81) reported that mutating the SHP-2 binding sites 

in GHR (Y595 and Y487) enhanced and prolonged GH-dependent tyrosyl 

phosphorylation of JAK2, GHR, and Stat5b, leading them to propose that SHP-2 is a 

negative inhibitor of GHR signaling.  However, SOCS-2 and CIS are also reported to 

bind Y595 and Y487 (14).  This raises the possibility that mutating these tyrosines in 

GHR prolongs GH-dependent tyrosyl phosphorylation of JAK2, GHR, and Stat5b due to 

the inability of SOCS-2 and CIS to inhibit signaling.  Because the dominant negative 

forms of SHP-2 could affect multiple steps in GH signaling, not just JAK2 activity, and 

mutation of GHR binding sites for SHP-2 could also affect binding of other proteins to 

GHR, definitive resolution of the role of SHP-2 in GH signaling awaits further studies.  

Interestingly, Stofega et al (82) have also shown that GH stimulates the tyrosyl 

phosphorylation of the JAK2-associated membrane protein SIRP- (signal regulatory 
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protein alpha).  The phosphorylated tyrosines in SIRP- recruit SHP-2 (Fig. 1.3C).  

Mutation of those tyrosines enhances GH signaling, suggesting that recruitment of SHP-

2 to SIRP in response to GH may also contribute to the attenuation of GH signaling 

(82).  Pasquali et al. (83) have recently shown that PTP-H1, PTP1, TC-PTP, and PTP1b 

are all able to dephosphorylate GHR.  PTP1b knockout mice also display increased 

JAK2, Stat5 and Stat3 phosphorylation in response to GH compared to wild type mice 

(84).  Interestingly, Choi and colleagues (85) have recently demonstrated that 

phospholipase C1 provides a physical link between JAK2 and PTP1b in a GH-

dependent manner, leading to attenuation of GH-induced signaling.  Why phospholipase 

C1 would serve as an adapter protein for PTP1b is unclear. 

 

Receptor internalization 

The Strous laboratory has elucidated mechanisms whereby GHR is internalized 

in both ubiquitin-dependent and independent manners.  They have identified a motif in 

the cytosolic domain of GHR that recruits the ubiquitin conjugation system to GHR (86). 

The recruitment of the ubiquitin conjugation system, as well as the activity of the 

proteasome, seem to be necessary for GHR internalization (87, 88).  Although both an 

intact ubiquitin conjugation system and full proteasome activity seem to be required for 

subsequent proteasome-specific degradation of GHR, actual conjugation of ubiquitin to 

GHR does not seem to be necessary.  The ubiquitination, internalization and 

degradation of the GHR/JAK2 complex have also recently been reported by Rico-

Bautista et al. (89) to depend on an intact actin cytoskeleton. 

 

Receptor processing and subcellular localization 
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Like amyloid precursor protein, Notch, and ErbB4, GHR appears to undergo 

“regulated intramembrane processing”, or RIP (90).  Following the same RIP program as 

the three receptors above, the extracellular domain of GHR is initially cleaved by the 

metalloprotease, tumor necrosis factor-(converting enzyme (TACE or ADAM-17), which 

results in shedding of the GHR extracellular domain (91).  The remaining membrane-

bound GHR is clipped within the lipid bi-layer, releasing the intracellular portion of GHR 

into the cytosol (92).  The exact functional significance of the releasing of this domain of 

GHR into the cytosol is currently unknown.  However, studies of other receptors 

undergoing RIP and those classically thought to be membrane-bound that are now being 

found in the cytosol may give hints as to the function of cytosolic GHR domain.  

Following RIP, ErbB4 has been shown to translocate to the nucleus where it plays a role 

in regulating transcription (93).   

It is interesting to note that full-length GHR has been reported in the nucleus of 

various cell types.  Using monoclonal antibodies specific for GHR, Lincoln et al. (94) 

identified GHR in the nucleus of a variety of normal and neoplastic cell types.  Gevers et 

al. (95) found GHR present in the nucleus of both germinal and proliferating 

chondrocytes in the rat growth plate and Vespasiani Gentilucci et al. (88) found GHR in 

the nucleus of hepatocytes from patients in the later stages of chronic liver disease.  

Finally, Conway-Campbell found GHR to localize to the nucleus in response to GH 

stimulation in CHO-K1 cells and found nuclear GHR to be correlated with proliferation in 

a model of liver regenration (96).  It will be interesting to see if the -secretase-processed 

intracellular domain of GHR also translocates to the nucleus and to determine the 

function of nuclear GHR.   

Along with being targeted to the nucleus, GH and GHR have been reported in the 

mitochondria (97, 98).  Perret-Vivancos et al. (99) recently reported that GH and GHR 

internalization through the caveolar pathway was essential for their targeting to the 
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mitochondria, and hypothesized that mitochondrial targeting was required for the 

observed GH stimulation of cellular oxygen consumption. 

 

One outstanding question that remains in the field of GH signal transduction is, 

how are events downstream of GH-induced activation of the GHR/JAK2 complex 

precisely regulated so that the appropriate response can be achieved in differing cell 

types and physiological contexts?  The ability of adaptor molecules to modulate signal 

transduction pathways may be one answer to this question.  Adaptor proteins lack 

intrinsic enzymatic activity but generally contain multiple protein-protein interaction 

domains, serving to recruit additional signaling molecules to the region of activation, 

allowing for specific activation or modification of those signaling molecules.  Additionally, 

some adaptor proteins can be targeted to different subcellular locations, providing an 

added level of specificity to the signaling system.  The adaptor protein, SH2B1, was 

identified as a JAK2 binding protein that is recruited to JAK2 in response to GH (100).  

Subsequent studies have revealed SH2B1 to be a key modulator of GH signaling 

(Reviewed in (101)). 
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SH2B1 in GH Signal Transduction 

 

The SH2B family of adaptor proteins includes SH2B1 (formerly SH2-B for SH2 

domain containing protein B, or PSM for proline rich, pleckstrin homology (PH) and SH2 

domain-containing signaling modulator), SH2B2 (formerly APS for adaptor protein with 

PH and SH2 domains) and SH2B3 (formerly Lnk).  Each SH2B1 family member was first 

described as a signaling molecule in immune cell activation (102-104) and each contains 

a domain structure consisting of a dimerization domain (DD), a PH domain, an SH2 

domain and several proline rich regions.  These proteins are able to homo and SH2B1 

and SH2B2 are able to heterodimerize through their DD domains, presumably allowing 

for tailored responses to particular signals depending on the relative abundance and 

subcellular location of SH2B1 and SH2B2.  The SH2B1 message undergoes alternative 

splicing at the 3’ end that results in four SH2B1 proteins (, , , ) (105).  All four 

isoforms share an N-terminal DD, nuclear localization sequence (NLS) (106) and nuclear 

export sequence (NES) (107) as well as C-terminal PH and SH2 domains.  The isoforms 

differ C-terminal to the SH2 domain, and the variation in the C-terminal sequence is 

known to alter subcellular localization in at least the  isoform (108).  SH2B1 isoforms 

have been implicated in modulating signals from numerous hormones and growth 

factors to enhance kinase activity, recruit additional signaling molecules, regulate gene 

transcription and/or modulate cytoskeletal dynamics (Reviewed in (101)).  These 

multiple functions of SH2B1 allow SH2B1 isoforms to regulate neuronal differentiation 

(109, 110), energy and glucose homeostasis (111), cell motility (112, 113) and 

proliferation (105).  While it is possible that several SH2B1 isoforms modulate GH signal 

transduction, the majority of evidence to date has characterized involvement of SH2B1 

in GH signaling (Fig. 1.4). 
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Figure 1.4. Schematic of SH2B1. 
Abbreviations used are DD for dimerization domain, NLS for nuclear localization 
sequence, NES for nuclear export sequence, PH for pleckstrin homology domain and 
SH2 for SH2 domain.  Tyrosines 439 and 494, which are sites of GH-induced 
phosphorylation, are represented. 
 

 

SH2B1 as a JAK2 binding protein 

 The first indication that SH2B1 might be involved in GH signaling came when 

the C-terminus of SH2B1 containing the SH2 domain was identified as a binding 

partner of active, but not kinase-dead, JAK2 in a yeast-2-hybrid assay (100).  

Subsequent experiments in this study found SH2B1 to co-immunoprecipitate with and 

be phosphorylated by wild type, but not kinase dead JAK2 when both proteins were 

exogenously expressed in COS cells.  Additionally, Rui et al. found endogenous SH2B1 

to co-immunoprecipitate with and be phosphorylated by JAK2 in response GH 

stimulation of 3T3-F442A cells.  Later, SH2B1 was found to enhance JAK2 kinase 

activity, a function that is dependent on the SH2 domain of SH2B1, as well as enhance 

GH-mediated activation of Stat5B (114).  Tyrosine (Tyr) 813 of JAK2 was identified as 

both a GH-induced JAK2 autophosphorylation site and the binding site for the SH2 

domain of SH2B1 (12), indicating that GH- or other cytokine-induced phosphorylation of 

JAK2 is required for SH2 domain-mediated SH2B1 binding to JAK2.  Interestingly, a 

second SH2B1 site that lies outside the SH2 domain was found to be responsible for a 
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lower-affinity interaction with both active and inactive JAK2 (115), perhaps acting as a 

“pre-loading” mechanism to facilitate more efficient signaling upon JAK2 activation.  

Finally JAK2 mediated tyrosyl phosphorylation of SH2B1 was mapped to Tyr439 and 

494 (116), both of which were found to be functionally relevant to GH-induced cellular 

responses (see below). 

 

 SH2B1 in GH-induced regulation of the actin cytoskeleton 

Some cellular responses to GH stimulation include chondrocyte differentiation 

(117), monocyte chemotaxis (118), and proliferation and migration of models of 

epithelial-derived cancer (reviewed in (119)).  An essential aspect of each of these 

responses is a change in cellular morphology, a process that requires regulation of the 

actin cytoskeleton (Reviewed in (120, 121)), see below). 

 

Regulation of the actin cytoskeleton  

 The eukaryotic cytoskeleton is a dynamic structure consisting of microfilaments 

(or actin filaments), intermediate filaments and microtubules.  The cytoskeleton is closely 

linked to the plasma membrane and facilitates cellular motility and division, participates 

in intracellular transport, and provides structural integrity to give the cell its shape.  Actin 

monomers (G-actin) polymerize to form actin filaments (F-actin), which can then be 

organized into higher-order functional structures (e.g. stress fibers, filopodia, 

lamellipodial actin dendritic branches and microspikes).  Therefore, regulation of actin 

polymerization and organization is essential to each of these processes (122).  Because 

intermediate filaments seem to be non-essential for cell shape and microtubules appear 

to have an indirect (although important) effect on cell shape, it is thought that regulation 
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of the actin-based cytoskeleton is of principle importance for proper control of the 

processes mentioned above (reviewed in (123, 124)). 

 An abundance of proteins are known to bind actin to regulate actin 

polymerization, depolymerization, organization and localization, resulting in a complex 

network of regulation (Reviewed in (125)).  Actin nucleating proteins, such as Arp2 and 

Arp3, promote F-actin formation by forming a heterotrimer with G-actin and facilitating 

rapid growth of the filament (reviewed in (126)).  Other proteins, such as the 

WASP/WAVE family of proteins seem to be necessary for Arp2/3-mediated actin 

polymerization (reviewed in (127)).  Rho GTPases (Rac, Rho and Cdc42) have 

historically been known to be among the most potent activators of actin polymerization.  

In recent years, this potent ability to induce formation of F-actin structures such as stress 

fibers, lamellipodia and filopodia, has been shown to be mediated through Rho GTPase 

activation of WASP/WAVE proteins.  Actin depolymerizing factor (ADF) appears to 

promote actin depolymerization by binding to the end of F-actin and facilitating 

dissociation of subunits into G-actin (127).  In addition to the regulation of actin-filament 

dynamics, regulation of higher-order actin filament structures is important for proper 

cellular function.  Actin bundling proteins align F-actin into parallel or anti-parallel linear 

arrays to form structures such as stress fibers, while actin crosslinking proteins organize 

F-actin into more perpendicular arrays to form structures such as the actin meshwork 

that make up lamellipodia (125).  

 These higher-order actin filaments are tethered to the plasma membrane by a 

multitude of structural, scaffolding, and transmembrane proteins.  Actin stress fibers 

terminate at focal adhesions, which are integrin-based macromolecular complexes that 

mediate cell-extracellular matrix (ECM) attachment and facilitate direct signaling 

between the ECM and the cell (reviewed in (128)) (Fig. 1.5B).  Several proteins within 

focal adhesions bind F-actin, and in this way the cytoskeleton becomes a key 
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component of cell adhesion sites. In addition to actin-binding proteins, several adaptor, 

scaffolding and enzymatic proteins are found in focal adhesions.  The formation of new 

adhesion complexes at the leading edge of a cell and the dissolution of focal adhesions 

complexes at the rear of a cell and the base of cell protrusions (together termed “focal 

adhesion turnover”) are important events that facilitate cellular motility.  Changes in the 

protein composition of focal adhesions and the activation status of proteins within focal 

adhesions are two mechanisms by which focal adhesion turnover, and therefore cell 

motility, is regulated (129). 

 

 

Figure 1.5. Components of the actin cytoskeleton. 
(A) Membrane-bound scaffolding proteins such as spectrins form complexes with F-actin 
to provide structural integrity for a cell.  (B) Actin stress fibers are incorporated into 
integrin-based cell adhesion complexes, connecting the actin cytoskeleton to the extra 
cellular matrix. 
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 The actin cytoskeleton can also be integrated into the structural framework of the 

cell by binding scaffolding proteins such as spectrins, which represent a class of actin-

binding and crosslinking proteins that also bind the plasma membrane (Figure 1.5A).  

Many of these proteins, like spectrins, are especially large proteins (> 2000 amino acids) 

that interact with dozens of other proteins to form a complex network of scaffolding, 

adaptor and signaling proteins in close association with F-actin and the plasma 

membrane (reviewed in (130, 131)).  Many of these membrane-associated actin-binding 

proteins are phosphorylated or otherwise modified in response to extracellular and 

intracellular stimuli.  These modifications can alter their localization and/or alter their 

affinity for F-actin, resulting in attachment or detachment of F-actin to the plasma 

membrane.  Modulation of both actin polymerization dynamics and F-actin attachment to 

the plasma membrane/cell adhesion sites are the major mechanisms by which cell 

morphology and motility are regulated. 

 

SH2B1 is required for GH-induced changes in cell morphology 

 The observation that GH drives processes that require regulation of the actin 

cytoskeleton, combined with the finding that SH2B1 is required for neuron growth factor 

(NGF)-induced neurite outgrowth (109, 110)} prompted Herrington et al. (132) to 

investigate the possibility that SH2B1 is involved in GH-mediated regulation of the actin 

cytoskeleton.  Here, it was demonstrated that SH2B1 co-localizes with actin in GH-

induced cell ruffles.  This study further showed SH2B1 to enhance both GH- and 

platelet-derived growth factor (PDGF)-induced ruffling and pinocytosis.  However, 

SH2B1 truncation and point mutants that functionally inactivate the SH2 domain acted 

as dominant negative proteins in these assays even though GH-induced JAK2 activity 

was unaffected.  These results suggested both that the SH2 domain of SH2B1 is 
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necessary for ligand-induced cytoskeletal regulation and that a region N-terminal to the 

SH2 domain interacts with one or more regulators of the actin cytoskeleton.   In addition 

to the SH2 domain, Tyr439/494 were also found to be relevant.  Mutation of these Tyr to 

phenylalanine inhibited GH-induced cell ruffling (116), linking JAK2-mediated 

phosphorylation of SH2B1 to GH-induced cytoskeletal regulation.  These results also 

raise the possibility that proteins containing SH2 or phosphotyrosine binding domains 

(PTB) bind SH2B1 to facilitate this function. 

 The above findings were extended when it was shown that SH2B1 enhances 

GH-mediated lamellipodia activity and cell migration while SH2 domain mutants again 

acted as dominant negative proteins (112).  In this study, additional C-terminal truncation 

mutants were found to act in a dominant negative fashion, again suggesting that the N-

terminus of SH2B1 interacts with a protein or proteins that regulate the cytoskeleton. 

Evidence for the involvement of SH2B1 in cytoskeleton regulation was further 

demonstrated when it was shown that 1) GH activated endogenous Rac, 2) SH2B1 

SH2 domain mutants inhibit constitutively active Rac-induced cell ruffling, and 3) 

SH2B1 amino acids 85-106 bind Rac (112).  As Rac is known to be a major regulator of 

the cytoskeleton (reviewed in (133)), the results of this study provided one mechanism 

wherein GH can regulate the cytoskeleton.  SH2B1 may recruit Rac into the 

appropriate location to be activated by GH and/or GH may induce a SH2B1/active Rac 

complex to localize to ruffles. 

 In addition to its involvement in NGF, PDGF and GH-induced responses, 

SH2B1 is able to cross-link actin filaments in vitro, an action that requires two proposed 

actin-binding domains (a.a. 150-200 and 615-670) (113).  In the prokaryotic system, 

SH2B1 promotes bacterial actin-based motility through an interaction with the bacterial 

actin binding protein, ActA (a functional homologue of eukaryotic WASP) (134).  In 
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addition to SH2B1, other SH2B family members have been implicated in regulating the 

cytoskeleton.  SH2B2 co-localizes with actin in B cells (135), is thought to modulate actin 

dynamics in mast cells (136), and interacts with the cytoskeleton regulatory proteins, 

Vav3 (137) and Enigma (138).  SH2B3 is a binding partner of the actin binding and focal 

adhesion protein, filamin (139).  From the above studies, it can be concluded that 

SH2B1 is an important mediator of GH-induced cytoskeleton regulation, and likely of 

cytoskeletal regulation in general. 

 

Further actions of GH on the cytoskeleton 

In addition to the studies mentioned above, studies specifically investigating GH 

action on the cytoskeleton found GH stimulation of CHO cells to result in a rapid 

depolymerization of actin stress fibers, followed by the formation of focal, filamentous, 

actin-containing complexes (140), as well as alterations in cellular microtubule 

physiology (141).  This latter effect may be due to GH-induced JAK2 phosphorylation of 

tubulin (142).  The Lobie lab has also reported GH to stimulate the formation of a 

p130cas/CrkII/Src complex that also contains the p85 subunit of PI-3 kinase.  They have 

implicated the formation of this complex in the control of cytoskeletal dynamics (143), as 

their data indicate that PI-3 kinase regulates GH-stimulated reorganization of the actin 

cytoskeleton (140) and others have shown that formation of the p130cas-CrkII complex 

is sufficient for cell migration (144).  They also provide evidence for an interaction 

between JAK2 and FAK (focal adhesion kinase, an important regulator of focal 

adhesions and cytoskeletal rearrangement) that results in tyrosyl phosphorylation of FAK 

and two of its focal adhesion substrates, paxillin and tensin (145).  More recently, this 

group has implicated p38 MAPK as being important for GH-induced cytoskeletal 

rearrangements (146).  Interestingly, p130cas, CrkII, Src and FAK are all components of 

focal adhesions.  Mechanistically, as discussed above, the ability of SH2B1 to bind 
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active Rac seems necessary for GH-induced cell ruffling.  It remains to be determined if 

this interaction is sufficient for all of the processes requiring actin cytoskeleton regulation 

that SH2B1 has been shown to modulate, or whether SH2B1 interacts with additional 

components of the cytoskeleton to modulate GH action. 



 

 30 

Thesis Summary 

 

Many of the gross events initiated by GH have been delineated.  As presented 

above, the GH-induced activation of JAK2, ERK1/2 and Stat proteins has been well 

documented across almost all cell and tissue types tested.  In addition, many groups 

have described cellular events such as cytoskeletal reorganization to be a consequence 

of GH administration.  There are also a growing number of studies revealing some of the 

finer aspects of GH action, such as which genes are transcribed in response to GH-

induced Stat activation as opposed to GH-induced ERK1/2 activation (37).  Yet, as these 

aspects of GH action are revealed, further questions arise regarding the specific 

mechanism of a GH-induced response, along with, how well observations represent GH-

induced responses between cell and tissue types.  Within the field of GH signaling, there 

have been an increasing number of reports implicating the Src family kinase proteins as 

transducers of the GH signal in parallel with or in lieu of JAK2.  However, the relative 

importance of JAK2 and SFKs in two well-established models of GH signaling (3T3-

F442A fibroblasts and H4IIE hepatoma cells) had not been assessed.  In addition to this 

question of the primary kinase responsible for GH signaling, the accumulating evidence 

implicating the downstream signaling molecule, SH2B1, as a major channel through 

which GH regulates the cytoskeleton raises the possibility that SH2B1 interacts with 

several actin-regulating molecules and/or is localized to actin cytoskeletal structures. 

Therefore, the objective of this thesis work was to 1) determine the relative contribution 

of JAK2 and Src family kinases to GH-signaling in well-established models of GH signal 

transduction and 2) more fully characterize the mechanism by which SH2B1 modulates 

GH-induced regulation of the cytoskeleton. 
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In Chapter 2, I present data where I, in collaboration with Dr. Hui Jin, utilize 

pharmacological inhibitors, RNA interference and genetic ablation to investigate the role 

of JAK2 and Src family kinases to GH signaling in 3T3-F442A and H4IIE cells.  Multiple 

labs have used both cell lines over several years to delineate numerous actions of GH, 

and therefore, we found it of great importance to determine which kinase(s) were 

responsible for these actions.  We first used antibodies that specifically detect the 

activated forms of Src family kinases or JAK2 to assess the activation status of these 

kinases in response to GH.  While Src family kinases are active even in the serum-

deprived basal state and showed no detectable increase in activation upon GH 

administration, JAK2 is robustly activated in response to GH in both cell types.  To rule 

out the possibility that increases in Src family kinase activity were below the level of 

detection by the antibody that we were using or that GH stimulation recruited active 

SFKs to substrates, we use SFK pharmacological inhibitors to block activation of Src 

family kinases prior to GH treatment.  Compared to control cells, we show that GH is still 

able to activate ERK1/2 and Stat proteins in the presence of the Src family kinase 

inhibitors, although we found Akt activation to be decreased compared to control cells.  

Interestingly, basal Akt activation was also reduced, indicating that the effect of the 

inhibitors on Akt activation may not be directly related to GH stimulation. 

To more fully characterize the contribution of JAK2 to GH signaling in these cells, 

we created 3T3-F442A and H4IIE cells stably expressing control shRNA or shRNA 

against JAK2.  We found that compared to control cells, JAK2 knockdown cells exhibited 

an almost complete inhibition of GH activation of Stat3, ERK1/2 and Akt in 3T3-F442A 

cells and Stat1, Stat5, ERK1/2 and Akt in H4IIE cells.  However, although GH-induced 

Stat5 activation was measurably reduced in knockdown versus control 3T3-F442A cells, 

the level of reduction is less than the level of JAK2 protein reduction, indicating that 

some other kinase may be partially responsible for Stat5 activation in 3T3-F442A cells.  
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To test this possibility, we next assessed Stat5 activation in murine embryonic fibroblasts 

(MEFs) derived from JAK2 knockout mice.  GH treatment of these cells did not result in 

any detectable activation of Stat5, while WT control MEFs exhibited substantial Stat5 

activation.  In addition, transient transfection of JAK2 knockout MEFs with JAK2 cDNA 

rescued the ability of GH to activate Stat5.  Taken together, we reasoned that JAK2 is, in 

fact, the primary kinase responsible for Stat5 activation in these cells.  Additionally, we 

concluded that some signaling molecules are more tightly coupled to the level of JAK2 

activation than others (e.g. when JAK2 levels are reduced by 80%, Stat3, ERK1/2 and 

Akt activation is almost completely abolished while Stat5 activation is reduced to a lesser 

extent, indicating that lower levels of active JAK2 fully activate Stat5 while full activation 

of other signaling molecules require higher levels of active JAK2).  Finally, we showed 

that GH-induces activation of Stat3, Stat5, ERK1/2 and Akt in MEFs derived from triple 

Src family kinase knockout mice, indicating that Src family kinases are dispensable for 

GH-induced activation of these downstream signaling molecules in these cells.  

Together, these results indicate that in 3T3-F442A, H4IIE and MEF cells, JAK2, and not 

Src family kinases, is the primary kinase responsible for Stat, ERK1/2 and Akt activation 

in response to GH. 

In Chapter 3, I further characterized the JAK2-binding protein, SH2B1, as a 

mediator of GH-mediated regulation of the actin cytoskeleton.  Steven Archer, a former 

graduate student in the Carter-Su laboratory, showed that amino acids 105-150 of 

SH2B1 interact with amino acids 2200-2358 of II1-spectrin through yeast-2-hybrid 

and co-immunoprecipitation assays.  Because of the perceived importance of SH2B1 to 

regulation of the actin cytoskeleton, and because spectrins are a major component of 

the actin cytoskeleton, I sought to further characterize the interaction between SH2B1 

and II1-spectrin.  
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II1-spectrin (2200-2358) localizes to the cytoplasm and nucleus in 293T cells.  

SH2B1 exhibits strong plasma membrane and moderate cytoplasmic localization in 

293T cells, and SH2B1 exhibits strong nucleolar localization in 293T cells.  Therefore, I 

first utilized the specific localization patterns of II1-spectrin (2200-2358), SH2B1 and 

SH2B1 in 293T cells to determine if the SH2B1/II1-spectrin interaction was robust 

enough to alter the localization of II1-spectrin (2200-2358).  I showed that SH2B1 

and SH2B1 both recruit II1-spectrin (2200-2358) to their respective subcellular 

locations.  II1-spectrin (2165-2358) localizes to the plasma membrane in 293T cells.  

SH2B1 (148-198) lacks a plasma membrane binding domain, and thus localizes to the 

cytoplasm in 293T cells.  I further showed that II1-spectrin (2165-2358) recruits 

SH2B1 (148-198) to the plasma membrane.  These results suggest that the 

interaction between SH2B1 and II1-spectrin is robust.  

I subsequently showed that SH2B1 and full-length II1-spectrin co-localize at 

the plasma membrane with the SH2B1-binding protein, JAK2, when all three are 

expressed in 293T cells.  Because phosphorylation of spectrins is a major mechanism of 

regulation of spectrin function, I next sought to determine whether JAK2 phosphorylates 

II1-spectrin.  Surprisingly, I found that when both are expressed in 293T cells, JAK2 

phosphorylates both II1-spectrin and its splice variant, II2-spectrin, but does so only 

in an SH2B1-dependent manner.  To further assess the relationship between these 

proteins in an endogenous setting and in the context of GH signaling, I turned to a 3T3-

F442A fibroblast model in which control shRNA or shRNA against SH2B1 is stably 

expressed.  GH stimulation of control cells resulted in formation of a complex of II-

spectrin, SH2B1 and JAK2, although no GH-induced phosphorylation of II-spectrin 

was observed at the 20 min time point tested.  However, GH stimulation of SH2B1 
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knockdown cells resulted in a significant reduction in the formation of the II-

spectrin/SH2B1/JAK2 complex.  These exciting results indicated both that GH treatment 

induces the formation of a novel complex of II-spectrin, SH2B1 and JAK2, and that 

formation of this complex is dependent on SH2B1.  Finally, I demonstrated a possible 

functional relevance to this relationship by showing that GH treatment of H4IIE cells 

results in the redistribution of II1-spectrin from cell-cell contacts into the cytoplasm.  

Together, the results suggest that GH stimulation may induce the formation of a II-

spectrin/SH2B1/JAK2 complex that results in JAK2 phosphorylation of II-spectrin and 

II-spectrin redistribution out of the plasma membrane.  II-spectrin redistribution out of 

the plasma membrane may contribute to cytoskeleton reorganization, and thus, the data 

presented in this Chapter identify a component of the actin cytoskeleton as a novel 

SH2B1-binding protein and suggest a novel mechanism whereby SH2B1 mediates 

GH-induced reorganization of the actin cytoskeleton. 

In Chapter 4, I characterize an additional novel role of SH2B1 in the actin 

cytoskeleton.  James Herrington, a former post-doctoral fellow in the Carter-Su lab, 

observed that GFP-tagged WT SH2B1, but not SH2B1 containing a nonfunctional 

SH2 domain, localized to focal adhesions in NIH 3T3 cells.  I extended these 

observations in 3T3-F442A cells by showing the SH2 domain of SH2B1 is necessary 

and sufficient for focal adhesion localization.  Further, I showed that GH stimulation 

significantly increases the dynamic cycling of SH2B1 into and out of focal adhesions 

(focal adhesion protein turnover).  I found that stimulation with phorbol 12-myristate 13-

acetate (PMA), a potent activator of protein kinase C (PKC), caused SH2B1 to leave 

focal adhesions.  In contrast, SH2B1 with two serines lying within a PKC substrate 

consensus motif (serines 161 and 165) mutated to alanine was not induced to leave 

focal adhesions by PMA stimulation.  I expanded these results by showing that the 
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dynamic turnover of SH2B1 (S161,165A) was significantly reduced and that of SH2B1 

(S165E) was slightly increased compared to WT SH2B1.   Finally, I presented evidence 

suggesting that phosphorylation of serine 165 is functionally relevant by showing that 

cells expressing SH2B1 (S165E) have significantly more focal adhesions than control 

cells.  Taken together, the results presented in Chapter 4 identify SH2B1 as a novel 

focal adhesion protein, whose dynamics at focal adhesions are regulated by GH and 

possibly by PKC-induced phosphorylation of serines 161 and/or 165.  In addition, these 

results suggest that phosphorylation of these serines and subsequent change in 

SH2B1 dynamics at focal adhesions contributes to the overall number of focal 

adhesions in cells.   

In summary, in this thesis, I demonstrate the primary importance of JAK2 to GH 

signal transduction in 3T3-F442A and H4IIE cells.  Additionally, I characterize II-

spectrin as a novel SH2B1-interacting protein and provide evidence suggesting that the 

SH2B1/II-spectrin interaction may play a role in GH-induced regulation of the 

cytoskeleton.  Finally, I identify and characterize SH2B1 as a novel focal adhesion 

protein.
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Portions of Chapter 1 are found in my review of GH signaling published in Reviews in 

Endocrine and Metabolic Disorders (2006). 7:225-2358, under the title, “Recent 

advances in growth hormone signaling” by Nathan J. Lanning and Christin Carter-Su. 
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Chapter 2 

 

JAK2, but not Src family kinases, is required for Stat, ERK, and Akt signaling in 

response to growth hormone in 3T3-F442A preadipocytes and H4IIE hepatoma 

cells 

 
Abstract 

 

Janus kinase 2 (JAK2), a tyrosine kinase that associates with the growth hormone (GH) 

receptor and is activated by GH, has been implicated as a key mediator of GH signaling.  

Several published reports suggest that members of the Src family of tyrosine kinases 

may also participate in GH signaling.  We therefore investigated the extent to which 

JAK2 and Src family kinases mediate GH activation of STATs 1, 3, and 5a/b, ERKs 1 

and 2, and Akt, in the highly GH-responsive cell lines 3T3-F442A preadipocytes and 

H4IIE hepatoma cells.  GH activation of Src family kinases was not detected in either cell 

line.  Further, blocking basal activity of Src kinases with the Src inhibitors PP1 and PP2 

did not inhibit GH activation of STATs 1, 3 or 5a/b, or ERKs 1 and 2.  When levels of 

JAK2 were depressed by shRNA in 3T3-F442A and H4IIE cells, GH-stimulated 

activation of STATs 1, 3 and 5a/b, ERKs 1 and 2, and Akt were significantly reduced, 

however, basal activity of Src family kinases was unaffected.  These results were 

supported genetically by experiments showing that GH robustly activates JAK2, STATs 

3 and 5a/b, ERKs 1 and 2, and Akt in murine embryonic fibroblasts derived from 

Src/Yes/ Fyn (SYF) triple knock out embryos that lack known Src kinases.  These results 
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strongly suggest that JAK2, but not Src family kinases, is critical for transducing these 

GH signals in 3T3-F442A and H4IIE cells. 
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Introduction 

 

Growth hormone (GH) is a peptide hormone that is secreted into the circulation by the 

anterior pituitary.  It is the primary hormone contributing to postnatal body growth (147, 148).  

It also regulates carbohydrate, fat and protein metabolism (147, 148), immune and cardiac 

function (149) and aging (150) and has been implicated in cellular proliferation, 

differentiation, and survival (29).  GH signaling pathways are initiated by GH binding to its 

receptor in the plasma membrane.  This binding activates the GH receptor-associated 

tyrosine kinase Janus kinase 2 (JAK2) which in turn phosphorylates multiple tyrosines within 

both itself and the GH receptor  (5, 25, 151).  Multiple signaling molecules have been shown 

to be recruited to the activated GH receptor-JAK2 complex, leading to the activation of a 

variety of signaling pathways.  Among these pathways are the signal transducer and 

activator of transcription (STAT), phosphoinositide 3-kinase (PI 3-kinase)/Akt, and 

MAPK/extracellular regulated kinase (ERK) signaling pathways (25, 29, 36).   

 Among the seven known mammalian STATs, STATs 1, 3, 5a and 5b have been 

implicated as GH signaling molecules.  In response to GH, these STATs become tyrosyl 

phosphorylated, dimerize and translocate to the nucleus where they regulate target genes 

(36, 38). STATs 5a and 5b are thought to be particularly important mediators of GH 

responses, including body growth, adipose tissue development, and the sexually dimorphic 

expression of a number of hepatocyte specific genes (42, 152-155).   

 GH activation of ERKs 1/2 and the PI3-kinase/Akt pathway has been observed both 

in cell culture (47, 156-160) and in animals (51, 161, 162).  Based upon in vitro studies using 

a number of cell types, several different mechanisms have been proposed by which GH 

activation of JAK2 leads to activation of ERKs 1 and 2.  One proposed mechanism involves 

Shc as the adapter protein linking Grb2 to the activated GH receptor-JAK2 complex, which 

in turn initiates a Grb2/SOS/Ras/Raf/MEK/ERK1/2 cascade (48-50).  GH-induced activation 
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of ERKs 1 and 2 has also been reported to involve JAK2 phosphorylation of the Grb2 

binding site (tyrosine 1068) in the epidermal growth factor receptor and recruitment of Grb2 

(51).  Others (62, 157, 163) suggest that protein kinase C and/or PI3-kinase activity are 

required for GH activation of ERKs 1 and 2.  

 Similarly, several mechanisms for GH activation of the PI3-kinase/Akt pathway have 

been suggested.  One proposed pathway involves JAK2 phosphorylating insulin receptor 

substrate (IRS) proteins which in turn recruit the p85 subunit of PI3-kinase, thereby 

activating PI3-kinase (29, 158, 159, 164).  Others have shown direct binding of the p85 

and  subunits of PI3-kinase to phosphorylated tyrosine residues in the C-terminus of the 

GH receptor, raising the possibility that GH may promote direct binding of p85 subunits to 

GH receptor (58).  

 Although JAK2 is generally believed to be the major tyrosine kinase initiating GH 

signaling pathways, several studies have suggested that Src family kinases are also 

capable of binding to the GH receptor and transducing GH signals.  There are 8 known 

members of the mammalian Src kinase family: c-Src, Yes, Fyn, Lyn, Lck, Hck, Fgr, and Blk 

(165).  Like JAK2, c-Src, Yes, and Fyn are expressed in most tissues whereas the other Src 

family members are expressed predominantly in hematopoietic cells (166).  Lck and Lyn are 

also expressed in neurons (165).  Zhu et al. showed that GH could activate Src and Fyn in 

NIH-3T3 cells (30) and Src in CHO cells ectopically expressing GH receptor (143).  Manabe 

et al. (32) showed that GH can increase Src activity in F-36 human leukemia cells.  Based 

on experiments using the Src family kinase inhibitor, PP2, and antisense c-Src 

oligonucleotides, Manabe et al. also suggest that in F-36 human leukemia cells, Src 

activates STAT5 in lieu of JAK2.  Similarly, Brown et al. (167) report that in FDC-P1 myeloid 

cells, GH activation of ERKs 1 and 2 is dependent on a Src family kinase.  Zhu et al. (30), 
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using NIH-3T3 cells, also concluded that GH-induced activation of ERKs 1 and 2 is 

mediated by a JAK2-independent pathway involving c-Src. 

 In this study, we have examined the relative roles played by endogenous JAK2 and 

Src family kinases in GH signaling in two well-characterized, GH-responsive cell lines, 3T3-

F442A preadipocytes and H4IIE hepatoma cells.  GH is required for differentiation of 3T3-

F442A preadipocytes into mature adipocytes (168) and regulates the actin cytoskeleton 

(132, 169).  In the differentiated, adipocyte form of 3T3-F442A cells, GH regulates lipolysis, 

hormone-sensitive lipase (170) and rates of glucose transport (171).  It also regulates the 

transcription of multiple genes, including insulin-like growth factor-1, a number of early 

response genes, and multiple genes encoding proteins that regulate carbohydrate and lipid 

metabolism (172).  Maximal expression of these genes involves a variety of signaling 

molecules, including STATs 1, 3 and 5a/b, ERKs 1 and 2, and Akt (5, 28, 37, 47, 156, 157, 

160, 173-176).  These signaling proteins have also been shown to be activated in H4IIE 

cells (177-179).  H4IIE cells have been used to study the effect of GH on protein synthesis 

(180) and insulin responsiveness (179, 181, 182). 

 Using an antibody specific to the activated form of Src family members, we provide 

evidence that GH does not detectably activate Src family kinases in 3T3-F442A or H4IIE 

cells.  Using Src family kinase inhibitors and shRNA to JAK2 in 3T3-F442A preadipocytes 

and H4IIE hepatoma cells, and mouse embryo fibroblasts (MEFs) from control, JAK2 

knockout, or Src/Yes/Fyn triple knockout mice, we provide strong evidence that GH 

activation of STATs 1, 3 and 5, ERKs 1 and 2, and Akt are dependent on JAK2 but not Src 

family kinases.  Our studies also reveal that moderate levels of activated JAK2 are sufficient 

for maximal GH activation of STAT5 in 3T3-F442A cells. 
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Results 

 

 GH does not activate Src family kinases in 3T3-F442A preadipocytes or H4IIE 

hepatoma cells.  As an initial step in investigating whether Src family kinases mediate 

actions of GH, we examined whether Src family kinases are activated by GH in the GH-

responsive 3T3-F442A preadipocyte and H4IIE hepatoma cell lines.  3T3-F442A 

preadipocytes and H4IIE hepatoma cells were treated with vehicle alone or with GH 

(500ng/ml) for various times.  Lysates from these cells were subjected to SDS-PAGE and 

subsequent immunoblot analysis with anti-pY416-Src antibody (pY416-Src), which 

recognizes the activated form of the Src family members c-Src, Lyn, Fyn, Lck, Yes and Hck.  

Thus, it would be expected to recognize all forms of Src found in 3T3-F442A and H4IIE 

cells.  As shown in Figs. 2.1A and 2.1B (3rd panel, lane 1), Src family kinases were 

noticeably active in the basal state in both 3T3-F442A preadipocytes and H4IIE hepatoma 

cells, respectively.  However, GH treatment failed to increase Src family kinase activity 

above basal levels in either cell line (Figs. 2.1A and 2.1B, 3rd panel, lanes 2-5).  Levels of 

Src family proteins in cell lysates were also unchanged by GH, as judged by immunoblotting 

cell lysates with anti-Src antibody (Src) (Figs. 2.1A and 2.1B, bottom panel). 
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Figure 2.1. GH does not activate Src family member proteins.  A) 3T3-F442A 
preadipocytes were treated with either vehicle for 0 min (lane 1) or with GH (500 ng/ml) for 

the indicated times (lanes 2-5).  Cell lysates were immunoblotted with pY1007/1008-JAK2 

(reprobed with JAK2) and pY416-Src (reprobed with Src) as indicated (n=3).  B) H4IIE 
hepatoma cells were treated with either vehicle for 0 min (lane 1) or with GH (500 ng/ml) for 
the indicated times (lanes 2-5).  Proteins in an aliquot of H4IIE cell lysates were 

immunoprecipitated with JAK2 prior to blotting with pTyr and reprobing with JAK2 as 

indicated.  Proteins in aliquots of cell lysates were immunoblotted with pY416-Src and 

reprobed with Src as indicated (n=4). 
 

 

 To verify that these cells were responsive to GH, the ability of GH to activate JAK2 in 

3T3-F442A cells was assessed by blotting lysates with anti-pY1007/1008-JAK2 antibody 

(pY1007/1008-JAK2) (Fig. 2.1A, top panel).  This antibody recognizes the phosphorylated 

form of tyrosine(s) 1007 and/or 1008, the activating tyrosines in the kinase domain of JAK2.  

Phosphorylation of tyrosine 1007 is required for JAK2 activity (15) and generally mirrors 

overall tyrosyl phosphorylation of JAK2 assessed using an anti-phosphotyrosine antibody 

(pY) (12). In contrast to what was observed for Src family kinases, GH caused a rapid and 

transient phosphorylation of JAK2 on Tyr1007/1008.  Phosphorylation of JAK2 was 

observed as early as 5 min after GH addition, was maximal at 15 and 30 min, and started to 
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decline within 45 min after GH addition (Fig. 2.1A, top panel).  The ability of GH to activate 

JAK2 in the H4IIE hepatoma cells was assessed by immunoprecipitating JAK2 using JAK2 

and blotting with pY (Fig. 2.1B, top panel).  GH caused a similar rapid and transient tyrosyl 

phosphorylation of JAK2 in H4IIE cells.  A robust signal was evident within 5 min after GH 

addition, and returned to near basal levels by 60 minutes.   Blotting JAK2 

immunoprecipitates with pY1007/1008-JAK2 revealed a similar time course (see Fig. 2.4B, 

top panel, lanes 1-5).  Immunoblotting cell lysates with JAK2 (Figs. 2.1A and B, 2nd panels) 

indicated that endogenous levels of JAK2 were similar for all conditions for both cell types.  

Taken together, the data in Fig. 2.1 suggest that while GH rapidly and substantially activates 

JAK2, GH does not appreciably increase total Src family kinase activity in 3T3-F442A 

preadipocytes or H4IIE hepatoma cells. 

 Inhibition of Src family kinases does not affect GH activation of JAK2 or 

tyrosyl phosphorylation of STATs 1, 3 or 5.  Multiple Src family members exist in 3T3-

F442A preadipocytes and H4IIE hepatoma cells.  Because pY416-Src may detect different 

Src family members with different affinities and Src family kinases are basally active in these 

cells, it is possible that we were unable to detect a small GH-induced increase in kinase 

activity of one or more Src kinase family members that might be important for GH signal 

transduction.  Alternatively, GH might increase Src kinase-substrate interactions by altering 

the subcellular location of already active Src kinases or the availability of Src kinase 

substrates.  We therefore examined whether Src family inhibitors would inhibit GH activation 

of JAK2 or the activation of a variety of other GH signaling molecules.  3T3-F442A 

preadipocytes and H4IIE hepatoma cells were pretreated with vehicle (DMSO), the Src 

family inhibitors PP1 or PP2, or their inactive analogue, PP3 (183, 184), for 60 min before 

GH (500 ng/ml) was added for 15 min.  As predicted, PP1 and PP2, but not PP3, inhibited 

Src family kinase activity (assessed using pY416-Src) in both untreated (Figs. 2.2A and 
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2.2B, top panel, lanes 1-4) and GH-treated cells (Figs. 2.2A and 2.2B, top panel, lanes 5-8).  

In contrast, the number of JAK2 proteins activated in response to GH, assessed using 

pY1007/1008-JAK2 (Figs. 2.2A and 2.2B, 3rd panel, lanes 5-8) and normalized for the 

amount of JAK2 (Figs. 2.2A and 2.2B, 4th panel, lanes 5-8) present in each lane, was similar 

for cells pretreated with vehicle or inhibitors.  The lack of a change in JAK2 activation with 

the Src inhibitors suggests that Src family kinases do not play a role in GH activation of 

JAK2 in 3T3-F442A preadipocytes or H4IIE hepatoma cells. 
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Figure 2.2. GH-stimulated activation of STATs is not blocked by Src kinase inhibitors.  

A) 3T3-F442A preadipocytes were treated with vehicle (DMSO) (-) or 100 M PP1, PP2, or 
PP3 for 60 min before addition of vehicle (-GH) or 500 ng/ml GH (+GH) for 15 min as 

indicated.  Proteins in cell lysates were immunoblotted with pY416-Src (reprobed with 

Src), pY1007/1008-JAK2, JAK2, pY705-STAT3, STAT3, pY694-STAT5, and 

STAT5 as indicated (n=3).  B) H4IIE hepatoma cells were treated with vehicle (DMSO) (-) 

or 100 M PP1, PP2, or PP3 for 60 min before addition of vehicle (-GH) or 500 ng/ml GH 
(+GH) for 15 min as indicated.  Proteins in an aliquot of H4IIE cell lysates were 

immunoprecipitated with JAK2 prior to blotting with pY1007/1008-JAK2 and reprobing 

with JAK2 as indicated.  Proteins in aliquots of cell lysates were immunoblotted with 

pY416-Src (reprobed with Src), pY701-STAT1 (reprobed with STAT1), pY694-

STAT5, and STAT5 as indicated (n=3).  
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 The contribution of Src family kinase activity to GH-activation of STAT proteins was 

assessed using antibodies that recognize the tyrosyl phosphorylated, activated forms of 

STAT1 (pY701-STAT1), STAT3 (pY705-STAT3) or STATs 5a and 5b (pY694-STAT5).  

Phosphorylation of tyrosines 701 (185), 705 (186), and 694/699 (187, 188) is required for 

activation of STATs 1, 3, and 5a/5b, respectively. Because neither pY694-STAT5 nor 

STAT5 can distinguish between the very similar STAT5a and STAT5b, we shall use the 

term STAT5 to indicate both STAT5a and STAT5b.  Fig. 2.2A (lanes 5-8) reveals similar 

levels of GH-stimulated tyrosyl phosphorylation of STAT3 (5th panel) and similar levels of 

GH-stimulated tyrosyl phosphorylation of STAT5 (7th panel) in 3T3-F442A cells treated with 

or without the Src family inhibitors PP1 and PP2.  PP1 and PP2 also had no effect on the 

ability of GH to activate STAT1 (Fig. 2.2B, 5th panel, lanes 5-8) or STAT5 in H4IIE cells (Fig. 

2.2B, 7th panel, lanes 5-8) or levels of the different STATs in either 3T3-F442A or H4IIE cells 

(Figs. 2.2A and 2.2B, 6th and bottom panels).  Thus, Src family kinases appear not to play a 

significant mediator role in GH activation of STAT proteins in either 3T3-F442A 

preadipocytes or H4IIE hepatoma cells.  

 Effect of Src family inhibitors on GH activation of ERK 1, ERK 2 and Akt.  We 

next examined whether Src family kinases are important for GH activation of ERK1, ERK2 or 

Akt.  Dual phosphorylation of ERK1 on T202 and Y204 and ERK2 on T185 and Y187 

(numbering system of human ERKs) is required for their activation.  Proteins in aliquots of 

3T3-F442A and H4IIE cell lysates from Fig. 2.2 were blotted with an antibody that 

specifically recognizes ERKs 1 and 2 that are phosphorylated on both the activating Thr and 

Tyr (pT202/pY204-ERK1/2).  As seen in Fig. 2.3A and 2.3B (top panel, lanes 1 and 5), GH 

activated ERKs 1 and 2 in 3T3-F442A preadipocytes and H4IIE hepatoma cells.  In 3T3-

F442A cells, this activation was not reduced when cells were pretreated with PP1, PP2, or 

PP3 (Fig. 2.3A, top panel, lanes 5-8).  In H4IIE cells, PP1 and PP3 reduced GH activated 
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ERKs 1 and 2, whereas PP2 had no effect (Fig. 2.3B, lanes 5-8, 1st panel).   When 

comparing these results to the results seen in Fig. 2.2B (lanes 5-8, top panel), it becomes 

apparent that the effect of PP1 on ERK activation in H4IIE cells is not specific to inhibition of 

Src family kinases.  This comparison shows that when Src family kinase activity is 

undetectable due to pharmacological inhibition by PP2, GH is still able to fully activate ERKs 

1 and 2 (compare Fig. 2.2B, lane 7, top panel to Fig. 2.3B, lane 7, top panel).  Therefore, the 

ability of PP1 to inhibit GH-mediated ERK 1 and 2 activation in H4IIE cells cannot be 

ascribed to a lack of Src family kinase activity.  Taking this together with the observation that 

the negative control (PP3) also significantly inhibits GH-mediated activation of ERKs 1 and 2 

but not Src family kinase activity, the conclusion can be drawn that in rat hepatoma cells, 

PP1 and PP3 inhibit ERK 1 and 2 activation in a non-Src family kinase-specific manner.  

Thus, these inhibitor studies fail to implicate Src family kinases in GH-mediated activation of 

ERKs 1 and 2 in 3T3-F442A or H4IIE cells.  Whether the PP1/2/3 pattern of inhibition 

indicates the direct or indirect contribution of some other enzyme to the activation of ERKs 1 

and 2 in H4IIE cells but not 3T3-F442A cells is not known.  However, the pattern of inhibition 

does not fit that of tested kinases (189, 190). 
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Figure 2.3. Effect of Src kinase inhibitors on GH activation of Erks 1 and 2 and Akt.  
Proteins in aliquots of cell lysates from 3T3-F442A preadipocytes (A) and H4IIE hepatoma 

cells (B) used in Figure 2 were immunoblotted with pT202/pY204-ERK1/2 (reprobed with 

ERK1/2), pS473-Akt, and Akt as indicated (n=3).  
  
  

 

 Finally, we sought to determine whether Src family kinases are important for GH-

stimulated activation of PI3-kinase signaling.  Akt, a downstream signaling molecule of PI3-

kinase, requires phosphorylation on Ser 473 to be active (191).  As shown in Figs. 2.3A and 

2.3B (3rd panel, lane 1 vs 5) phosphorylation of Akt on Ser 473 was robust in both 3T3-

F442A preadipocytes and H4IIE hepatoma cells stimulated with GH.  In both cell types, this 

level of phosphorylation was substantially reduced in cells pretreated with PP1 and PP2 

(Figs. 2.3A and 2.3B, 3rd panel, lanes 5-8).  A more modest inhibition was observed in cells 

pretreated with PP3.  The ability of PP1 and PP2 to inhibit phosphorylation of Ser473 in Akt 

in response to GH raises the possibility that Src family kinases are important for GH 

activation of Akt.  However, PP1 and PP2 (and to a lesser extent PP3) were also found to 
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reduce basal levels of Akt phosphorylation in both 3T3-F442A and H4IIE cells (Figs. 2.3A 

and 2.3B, 3rd panel, lanes 1-4), indicating that Src family kinase activity may not mediate GH 

activation of Akt per sé.  Rather, GH activation of Akt may depend on basal priming of Akt 

by basally active Src. Taken together, the results of Figs. 2 and 3 in which Src family 

kinases were inhibited in 3T3-F442A preadipocytes and H4IIE hepatoma cells do not 

support the hypothesis that Src family kinases play a mediator role in the ability of GH to 

activate JAK2, STATs 1, 3 or 5, or ERKs 1 and 2.  However, they do suggest that GH 

activation of Akt may require basal Src family kinase activity.  Because of the inhibition of 

basal Akt activity by inhibitors of Src family kinases, these experiments are unable to 

address whether or not Src family kinases play a mediator role in GH activation of Akt. 

 GH-stimulated activation of STATs 1, 3 and 5, ERKs 1 and 2, and Akt is 

diminished when endogenous JAK2 levels are reduced in 3T3-F442A preadipocytes 

and H4IIE hepatoma cells.  To determine the degree to which JAK2 is required for GH-

mediated activation of STAT proteins, ERKs 1 and 2 and Akt, we examined the ability of GH 

to activate these signaling molecules when endogenous JAK2 levels were reduced in both 

3T3-F442A preadipocytes and H4IIE hepatoma cells.  3T3-F442A preadipocytes and H4IIE 

hepatoma cells stably expressing control shRNA (Figs. 2.4A and 2.4B, 2nd panel, lanes 1-5) 

or JAK2 shRNA (Figs. 2.4A and 2.4B, 2nd panel, lanes 6-10) were treated with vehicle or GH 

(500 ng/ml) for various times.  Immunoblotting cell lysates with JAK2 indicated at least an 

80% reduction of endogenous JAK2 protein levels in 3T3-F442A preadipocytes (83% ± 6%, 

n=3) and H4IIE hepatoma cells (89% ± 4%, n=3) as determined by quantification of JAK2 

bands. Immunoblotting with pY1007/1008-JAK2 confirmed that levels of activated JAK2 

are decreased to a similar extent as levels of total JAK2 in the JAK2 shRNA expressing 3T3-

F442A and H4IIE cells (Figs. 2.4A and 2.4B, top panels). 
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Figure 2.4. GH-mediated STAT activation is significantly diminished when JAK2 levels 
are reduced using shRNA to JAK2.  A) 3T3-F442A preadipocytes stably expressing either 
control shRNA or JAK2 shRNA were treated with either vehicle for 0 min or with GH 

(500ng/ml) for the indicated times.  Cell lysates were immunoblotted with pY1007/1008-

JAK2, JAK2, pY705-STAT3, STAT3, pY694-STAT5, and STAT5 as indicated (n=3).  
B) H4IIE hepatoma cells stably expressing either control shRNA or JAK2 shRNA were 
treated with either vehicle for 0 min or with GH (500ng/ml) for the indicated times.  Proteins 

in aliquots of H4IIE cell lysates were immunoprecipitated with JAK2 prior to blotting with 

pY1007/1008-JAK2 and reprobing with JAK2 as indicated.  Aliquots of cell lysates were 

immunoblotted with pY701-STAT1, STAT1, pY694-STAT5, and STAT5 as indicated 
(n=3).  
  
 

 

 In control shRNA 3T3-F442A cells, GH-stimulated phosphorylation of STAT3 on 

Y705 was detectable within 5 min and maximal at 30 min (Fig. 2.4A, 3rd panel, lanes 1-5).  

GH-stimulated tyrosyl phosphorylation of STAT5 on Y694 was also detectable within 5 min 
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but remained elevated even after 45 min (Fig. 2.4A, 5th panel, lanes 1-5).  Reduction of 

levels of endogenous JAK2 using shRNA resulted in a substantially reduced GH-dependent 

phosphorylation of both STAT3 (by 68% ± 4%, n=3) and STAT5 (by 47% ± 7%, n=3) (Fig. 

2.4A, 3rd and 5th panels, respectively).  Reduction of endogenous JAK2 did not alter levels of 

STAT3 or STAT5 (Fig. 2.4A, 4th and 6th panels, respectively).  In control shRNA expressing 

H4IIE cells, GH-stimulated phosphorylation of both STAT1 on Y701 and STAT5 on Y694 

was detectable within 5 min, was maximal at 15 min and returned to near basal values by 60 

min.  In the shRNA-JAK2 H4IIE cells, GH-dependent phosphorylation of both STAT1 and 

STAT5 was substantially reduced at all time points (Fig. 2.4B, 3rd and 5th panels 

respectively).  Reduction of endogenous JAK2 did not alter levels of STAT1 or STAT5 (Fig. 

2.4B, 4th and 6th panels, respectively).  Thus, reduction of endogenous JAK2 substantially 

reduces the ability of GH to activate STAT proteins in both 3T3-F442A preadipocytes and 

H4IIE hepatoma cells. 

 We next determined the importance of JAK2 for GH-mediated activation of ERKs 1 

and 2.  GH stimulation of control shRNA 3T3-F442A preadipocytes resulted in the transient 

activation of ERKs 1 and 2, which was evident within 5 min and over by 45 min (Fig. 2.5A, 

top panel, lanes 1-5).  Activation of ERKs 1 and 2 was almost eliminated in cells expressing 

JAK2 shRNA, being detectable above basal values only at the 5 min time point (Fig. 2.5A, 

top panel, lanes 6-10).  GH stimulation of control shRNA H4IIE hepatoma cells resulted in a 

relatively modest increase in activation of ERKs 1 and 2, visible in Fig. 2.5B (top panel, 

lanes 1-5) at the 15 and 30 min time points.  No GH stimulation of ERKs 1 and 2 was 

detectable in the JAK2 shRNA hepatoma cells (Fig. 2.5B, top panel, lanes 6-10).  Reduction 

of endogenous JAK2 did not alter levels of ERKs 1 or 2 in either cell line (Fig. 2.5A and 

2.5B, 2nd panels).  Thus, reduction of endogenous JAK2 substantially reduces the ability of 

GH to activate ERKs 1 and 2 in both 3T3-F442A preadipocytes and H4IIE hepatoma cells. 
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 For Akt, GH (500 ng/ml) caused a robust increase in phosphorylation of Ser473 

within 5 min in both control shRNA 3T3-F442A preadipocytes and H4IIE hepatoma cells 

(Figs. 2.5A and 2.5B, 3
rd

 panels, lanes 1-5).  Phosphorylation was sustained for 30 min in the 

3T3-F442A cells before declining whereas it started declining within 15 min in the H4IIE 

cells.  For both cell types, however, phosphorylation of Ser473 was reduced to barely 

detectable values at all time points by the reduction of JAK2 with shRNA JAK2 (Figs. 2.5A 

and 2.5B, 3
rd

 panels, lanes 6-10).  Akt levels were not similarly reduced in either control or 

shRNA JAK2 expressing cells (Figs. 2.5A and 2.5B, 4th panels).  The fact that reducing 

JAK2 is so effective in reducing levels of GH activation of Akt supports the hypothesis that 

JAK2 is the primary kinase responsible for GH activation of the PI3 kinase-Akt pathway.  
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Figure 2.5.  GH activation of Erk 1, Erk 2 and Akt is diminished substantially when 
JAK2 levels are reduced using shRNA to JAK2.  Proteins in aliquots of the lysates of (A) 
3T3-F442A preadipocytes stably expressing either control shRNA or JAK2 shRNA or (B) 
H4IIE hepatoma cells stably expressing either control shRNA or JAK2 shRNA used in Figure 

4 were immunoblotted with pT202/pY204-ERK1/2, ERK1/2, pS473-Akt, and Akt as 
indicated (n=3). 
 

 

 To rule out the possibility that reduction of endogenous JAK2 reduces the level of 

Src family kinases, lysates from both 3T3-F442A and H4IIE cells were blotted with pY416-

Src and Src (Figs. 2.6A and 2.6B, panels 3 and 4).  No differences in levels of Src 

activation or Src protein were observed between control and JAK2 knock down cells, 

indicating that reducing the level of JAK2 does not affect basal Src family kinase activity.  

Thus, basal Src family kinase activity appears to be independent of JAK2.  To test whether 



 

 55 

the decreased responsiveness to GH of the JAK2 shRNA cells compared to the control 

shRNA cells could be a result of reduced expression of the GH receptor, control and shRNA 

expressing 3T3-F442A cells were treated with GH for 15 min.  GH receptor levels were 

similar in control and JAK2 shRNA expressing cells as shown by blotting lysates with 

antibody to the intracellular domain of the GH receptor (Fig. 2.6C middle panel). When GH 

receptor was immunoprecipitated using antibody to the extracellular domain of the GH 

receptor and blotted with PY, tyrosyl phosphorylation of GH receptor was found to be 

reduced in JAK2 shRNA cells (Fig. 2.6C, bottom panel) compared to control shRNA cells, as 

one would predict from the decreased levels of JAK2.  Taken together, the data of Figs. 2.4-

2.6 indicate that JAK2 is required for maximal GH-mediated activation of STATs 1, 3 and 5, 

ERKs 1 and 2, and Akt.  In contrast, Src family kinase activity is independent of JAK2. 
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Figure 2.6.  Src family kinase activity is not affected by reducing levels of JAK2. A) 
Proteins in aliquots of the lysates from 3T3-F442A preadipocytes stably expressing either 

control shRNA or JAK2 shRNA used in Figure 4 were immunoblotted with pY1007/1008-

JAK2, JAK2, and pY416-Src (reprobed with Src) as indicated (n=3).  B) Proteins in 
aliquots of the lysates from H4IIE hepatoma cells stably expressing either control shRNA or 

JAK2 shRNA used in Figure 4 were immunoprecipitated with JAK2 prior to blotting with 

pY1007/1008-JAK2 and reprobing with JAK2 as indicated (n=3).  Proteins in aliquots of 

cell lysates were immunoblotted with pY416-Src and reprobed with Src as indicated 
(n=3).  The top 2 panels for (A) and (B) are the same as the top 2 panels in Figs. 4A and 4B, 
respectively.  C) 3T3-F442A preadipocytes stably expressing either control shRNA or JAK2 
shRNA were treated with either vehicle for 0 min or GH (500ng/ml) for the indicated time.  

Aliquots were immunoprecipitated with GHBP prior to blotting with pTyr.  Aliquots of cell 

lysates were immunoblotted with GHR (AL47) as indicated (n=3). 
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 GH activates JAK2, STATs 1, 3 and 5, ERKs 1 and 2, and Akt in cells lacking 

Src family members.  To provide genetic evidence that JAK2, but not Src family kinases, 

plays a direct and essential role in GH-induced activation of signaling molecules, mouse 

embryo fibroblasts (MEFs) derived from embryos from Src/yes/fyn (SYF) triple knock out 

mice (192) were tested for their responses to GH.  SYF MEF cells also lack Lyn expression.  

Thus, these cells lack all Src family members reported to be present in murine fibroblasts 

(192).  This absence of Src family members was confirmed by the absence of any 

detectable signal in Src or pY416 Src immunoblots of SYF MEF cells (Fig. 2.7, top 2 

panels, compare to wild-type MEFs shown in Fig. 2.8A, panels 5 and 6, lanes 1-5).  SYF 

MEFs were treated with vehicle alone or with GH (500 ng/ml) for various times.  

Immunoblots of lysates from these cells revealed that JAK2, STAT3, STAT5, ERK1, ERK2 

and Akt are all robustly phosphorylated in response to GH (Fig. 2.7).  These results provide 

strong evidence that Src family kinases are dispensable for GH activation of these signaling 

proteins. 
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Figure 2.7. GH activates JAK2, STATs 1, 3 and 5, Erks 1 and 2, and Akt in SYF MEF 
cells.  SYF MEF cells were treated with either vehicle (0 min) or with GH (500ng/ml) for the 

indicated time.  Proteins in cell lysates were blotted with pY416-Src (reprobed with Src), 

pY1007/1008-JAK2 (reprobed with JAK2), pY705-STAT3, STAT3, pY694-STAT5, 

STAT5, pT202/Y204-ERK1/2 (reprobed with Erk1/2), pS473-Akt, and Akt as 
indicated (n=3). 
  

 

 GH is unable to activate STAT5 in JAK2-/- MEFs.  The finding that in shRNA-JAK2 

3T3-F442A cells, GH stimulation of STAT5 phosphorylation was reduced to a lesser extent 

than levels of JAK2 (Fig. 2.4A) allows for the possibility that some other kinase contributes 

to that stimulation.  The SYF MEF and Src family inhibitor studies suggest members of the 

Src family of tyrosine kinases do not contribute.  However, those results do not allow us to 

rule out another, unidentified kinase.  To test the possibility that some kinase other than 

JAK2 mediates GH activation of STAT5, we examined to what degree deleting all JAK2 

would block GH activation of STAT5.  Wild-type and JAK2-/- MEFs were treated with vehicle 

alone or with GH (500 ng/ml) for various times.  Immunoblotting cell lysates with JAK2 

confirmed the complete loss of JAK2 expression in the JAK2-/- MEF cells (Fig. 2.8A, 2nd 

panel).  As predicted, blotting the lysates with pY1007/1008-JAK2 showed that, similar to 
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what we observed in 3T3-F442A and HEII4 cells, JAK2 was rapidly and transiently 

phosphorylated on Tyr1007/1008 in wild-type MEFs while no phosphorylated JAK2 was 

detectable in JAK2-/- MEFs (Fig 2.8A, top panel).  Similar to what we observed with lysates 

from SYF MEF cells, immunoblots of the wild-type MEF lysates with pY694-STAT5 

revealed a robust activation of STAT5 that was evident at 5 min and maximal at 10-15 min 

(Fig. 2.8A, lanes 1-5, 3rd panel).  However, there was no detectable phosphorylated STAT5 

in the lysate from JAK2-/- MEFs (Fig. 2.8A, lanes 6-10, 3rd panel), suggesting a total 

dependency on JAK2 of STAT5 activation.  Blotting the lysates with pY416-Src showed no 

difference in Src kinase phosphorylation following GH addition or between the wild-type and 

JAK2-/- MEFs (Fig. 2.8A, panels 5 and 6).  Levels of STAT5 and Src were similar in wild-type 

and JAK2-/- MEFs (Fig. 2.8A, panels 4 and 6).  Therefore, the loss of activation of STAT5 in 

JAK2-/- cells is most likely due to the lack of JAK2, and not indirectly to changes in the 

activity of Src family kinase activity or any other kinases.  Reintroducing wild-type JAK2 into 

JAK2-/- MEFs rescued GH-stimulated STAT5 activation, to a level commensurate with the 

level of reintroduced JAK2 (Fig. 2.8B), providing further support for the hypothesis that JAK2 

is required for GH activation of STAT5. 
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Figure 2.8.  GH is unable to activate STAT5 in MEFs lacking JAK2.  A) Wild-type MEFs 
or MEFs from JAK2-/- mice were treated with either vehicle (0 min) or with GH (500ng/ml) for 

the indicated times.  Cell lysates were immunoblotted with pY1007/1008-JAK2 (reprobed 

withJAK2), pY694-STAT5, STAT5, and pY416-Src (reprobed with Src) as indicated 
(n=3).  B) MEFs from JAK2-/- mice or the same MEFs in which JAK2 was stably reintroduced 
were treated with either vehicle (0 min) or with GH (500ng/ml) for the indicated times.  Cell 

lysates were immunoblotted with either JAK2, pY694-STAT5, or STAT5 as indicated 
(n=2). 
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DISCUSSION 

 

 Because members of the cytokine family of receptors do not have intrinsic kinase 

activity, the signaling events initiated by cytokines are achieved through activation of 

receptor-associated tyrosine kinases, primarily members of the JAK family of tyrosine 

kinases (reviewed in (193)).  However, some cytokine receptors have been reported to bind 

to and activate members of the Src family of tyrosine kinases (165).  In the case of GH, 

JAK2 has classically been thought to be the major kinase responsible for initiating 

downstream signaling events although JAK1 and JAK3 have been shown to be minimally 

activated in some cells (26, 194).  Multiple studies have demonstrated an interaction 

between GH receptor and JAK2 and a robust activation of JAK2 following GH binding of GH 

receptor (4, 5, 25).  However, several studies have suggested that GH may also activate 

members of the Src family of tyrosine kinases and that activation of Src family members 

may contribute to activation of signaling molecules downstream of GH, including STAT5 and 

ERKs 1 and 2 (30, 32).   

 In this study, we sought to determine the relative contribution of Src family kinases to 

GH signaling by assessing the activation status of endogenous GH signaling proteins in cell 

lines that have been well characterized for GH signaling and GH responses.  Using an 

antibody to the phosphorylated form of the activating tyrosine in JAK2 to assess levels of 

activated JAK2, we found that JAK2 was inactive in both 3T3-F442A and H4IIE cells that 

had not seen GH.  Upon GH treatment, JAK2 was rapidly and transiently activated, as 

reported previously (5, 177).  In contrast, using an antibody that recognizes the 

phosphorylated form of the activating tyrosine in Src family kinases to assess levels of 

activated Src family kinases, we found that Src kinases are basally active in 3T3-F442A and 

H4IIE cells.  GH treatment did not appreciably enhance that activity at early time points (30 

sec and 2 min) (data not shown) or over an extended period of treatment (up to 60 min) (Fig. 
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2.1).  Thus, it seems unlikely that in these cell types, Src kinases can substitute for JAK2 as 

important mediators of GH action, unless GH activates only a small, undetectable, subset of 

the Src family kinases or increases Src kinase-substrate interactions (e.g. by altering the 

subcellular location of already active Src kinases or the availability of Src kinase substrates).  

Similarly, Yamauchi et al. (51) reported seeing no GH-induced increase in Src activity.  The 

reason why these results differ from those of the groups observing a GH-induced increase in 

the activity of Src family kinases is not clear.  Possible explanations include differences in 

culture conditions or cell type.  Relevant to the former, we observed no GH-induced 

increase in Src kinase activity in either subconfluent (70-80%) or confluent 3T3-F442A cells 

(data not shown).  Regarding the latter, all the different groups used different cell types.  Zhu 

et al. reported GH induced activity of Src kinases in CHO cells overexpressing GH receptor 

(c-Src and c-Fyn) (143) and in NIH-3T3 cells (c-Src) (30) while Manabe et al. (32) and 

Brown et al. (167) reported GH induction of Src using F-36P human leukemia cells (c-Src) 

and FDC-P1 myeloid cells (Lyn), respectively.  Circulating cells, such as the F-36P and 

FDC-P1 cells, in general seem to have a greater propensity for utilizing Src family kinases 

for cytokine signaling compared to non-circulating cell types (165), raising the question of 

whether the ratio of Src family kinases to JAK2 is higher in these cells or they have 

accessory proteins that enable or enhance cytokine activation of Src kinases.  It is 

interesting to note that even when GH was observed to activate Src family kinases, the 

degree of stimulation when assessed quantitatively, was quite modest, between 30-70% 

(143), in contrast to the degree of GH stimulation of JAK2 that generally shows a robust 

on/off type of response.  It is also important to note that we found the activity of Src family 

kinases to be unaffected by the level of JAK2 and vice-versa.  Thus, reducing levels of JAK2 

in 3T3-F442A and H4IIE cells by shRNA to JAK2 or in MEFs genetically deleted for JAK2 

did not decrease the level of activity of Src kinases, nor did reducing the activity of Src family 

kinases using PP1 and PP2 alter the ability of GH to activate JAK2.  This independence of 
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Src and JAK2 activity supports the previous findings of Zhu et al. (30) in NIH-3T3 cells using 

both pharmacological inhibitors (PP1, PP2 and AG490) and dominant negative constructs of 

Src and JAK2.  It also argues against Src being recruited to GH receptor-JAK2 complexes 

and being activated as a consequence of binding to tyrosines within JAK2 or GH receptor 

that are phosphorylated by JAK2 in response to GH. 

 The fact that GH did not appear to activate Src family kinases in our experiments 

does not a priori exclude them from being mediators of GH signaling, since it is possible that 

GH elicits a small, undetectable increase in the activity of one of more Src kinases, alters 

the subcellular location of already active Src kinases or alters the availability of Src kinase 

substrates.  However, our data using the Src family kinase inhibitors PP1 and PP2 reveal 

that blocking the activity of Src family kinases in 3T3-F442A preadipocytes and H4IIE 

hepatoma cells does not attenuate GH-mediated activation of STATs 1, 3 or 5, indicating 

that activation of these signaling molecules by GH is independent of Src in these cells.  The 

inability of PP1 and PP2 to block GH activation of STAT5 is consistent with the previous 

report of Guren et al. (195) showing no reduction in cultured rat hepatocytes of GH-

mediated STAT5 activation by a different Src kinase inhibitor, CGP77675.  It is also 

consistent with the finding that STAT5 is activated by GH in CHO cells stably expressing 

wild-type GH receptor but not in CHO cells stably expressing a mutated GH receptor lacking 

the binding site for JAK2 (28).  However, it contrasts with the finding of Manabe et al. (32), 

who showed a PP2-dependent, Src antisense oligonucleotide-sensitive, inhibition of GH-

mediated STAT5 phosphorylation in F-36P cells.  One explanation for the apparent 

discrepancy between these studies is a difference in cell type, with fibroblasts, 

preadipocytes and hepatocytes relying solely on JAK2 for GH activation of STAT5 and 

circulating cells being able to utilize Src family kinases in addition to or in place of JAK2.  

Unfortunately, in the latter study, the authors did not explore the relative contributions of 

JAK2 and Src kinases to the GH activation of STAT5, so that it is unclear whether in F-36P 
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cells, Src family kinases mediate or modulate GH activation of STAT5, and whether that 

action is independent of JAK2.  In further support of JAK2 and not Src kinases being 

responsible for GH activation of STAT5, we observed a robust activation of STAT5 by GH in 

SYF MEFs that are genetically deleted for SFKs and the absence of STAT5 activation in 

MEFs genetically deleted for JAK2.  The latter was rescued upon reintroduction of JAK2.  

GH activation of STAT5 was also significantly decreased in 3T3-F442A and H4IIE cells with 

reduced levels of JAK2 due to expression of shRNA to JAK2. 

 Similar to our results with STAT5, our findings with STATS 1 and 3 suggest that their 

activation by GH is highly dependent upon JAK2 and independent of Src family kinases. The 

independence from Src family kinases is supported by the findings that PP1 and PP2 

eliminated Src activity but had no effect on the ability of GH to activate STATs 1 and 3 in 

H4IIE and 3T3-F442A cells, respectively.  In addition, STAT3 was robustly activated by GH 

in SYF MEFs that are genetically deleted for SFKs.  In support of their activation being 

dependent upon JAK2, GH activation of STATs 1 and 3 above basal values was severely 

depressed in H4IIE and 3T3-F442A cells, respectively, in which JAK2 levels were reduced 

using shRNA to JAK2.  The dependence of GH activation of STATs 1 and 3 on JAK2 is 

consistent with the finding of Han et al. (196) that STATs 1 and 3 are activated by GH in 

wild-type H1080 cells but not in H1080 cells lacking intact JAK2.  

 Our Src family kinase chemical inhibitor and SYF MEF experiments also 

demonstrate that GH-mediated activation of ERKs 1 and 2 is not dependant on Src family 

kinases in 3T3-F442A, H4IIE or MEF cells.  This finding is consistent with the previous 

findings that Shc phosphorylation and MAP kinase activity are stimulated by GH in CHO-GH 

receptor cells but not in CHO cells stably expressing a mutated GH receptor lacking the 

binding site for JAK2 (48, 197).  It is also consistent with the report that Shc phosphorylation 

is stimulated by GH in wild-type H1080 cells but not in H1080 cells lacking JAK2 (196).  Zhu 

et al. (30, 31) proposed a JAK-independent, Src-dependent mechanism for activation of 
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ERKs 1 and 2 based on the observations that GH activates c-Src (as well as JAK2) in NIH-

3T3 cells, GH stimulates Ral A and Ral B, GH-activated RalA results in an increase in 

phospholipase D activity and the production of phosphatidic acid, and RalA, phospholipase 

D activity and phosphatidic acid are all required for GH-stimulated activation of ERKs 1 and 

2 as assessed using an Elk-1 reporter assay.  However, this group did not actually test 

directly the effects of decreasing levels of JAK2 or Src family kinase activity (by use of 

pharmacological inhibitors or decreasing levels of expression) on the ability of GH to 

activate ERKs 1 and 2.  Thus, the relative contributions of JAK2 and Src kinases to GH 

activation of ERKs 1 and 2 are not clear, nor is it clear from those studies whether Src is 

sufficient, or simply necessary, for GH activation of ERKs 1 and 2.  Finally, Gu et al. (198) 

raise the possibility of Src regulating GH-mediated activation of ERK2 by showing that 

overexpression of Csk (a protein that inactivates Src family kinases) in cardiac myocytes 

inhibits the ability of GH to activate overexpressed ERK2.  Unfortunately, Src family kinase 

and JAK2 activities were not assessed in the context of Csk overexpression, raising the 

possibility that this effect of Csk overexpression was not Src family kinase-specific.  

Furthermore, inhibitors of JAK2, EGF receptor and Src all blocked GH stimulation of ERKs 1 

and 2 in these cells, confounding the assessment of the role of Src kinases in the process. 

 In the case of Akt, we observed in both 3T3-F442A and H4IIE cells a PP1 and PP2-

dependent inhibition of GH-mediated phosphorylation on Ser473, raising the possibility that 

GH activation of Akt may require Src family kinases.  This would be consistent with studies 

in human neutrophils and BAF3 cells that suggest that the cytokines granulocyte-

macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor 

(G-CSF) may signal to STATs and MAP kinases through JAKs but signal to Akt through Src 

family kinases (199, 200).  However, we found that GH robustly stimulates the 

phosphorylation of Ser-473 in Akt in MEFs genetically deleted for Src family kinases.  

Furthermore, reduction of endogenous JAK2 levels by shRNA reduced GH-mediated Akt 
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activation to barely detectable levels in both 3T3-F442A and H4IIE cells, indicating that 

JAK2 is essential for GH-mediated Akt activation in these cells.  Consistent with Akt 

activation requiring JAK2, Yamauchi et al. (161) found in 2A-GHR cells lacking JAK2, that 

GH is unable to stimulate the tyrosyl phosphorylation of IRS-1, IRS-2, and IRS-3, their 

association with p85 subunit of PI3-kinase and the activation of PI3-kinase, events that are 

thought to link GH receptor to Akt activation.  Similarly, Argetsinger et al. (158, 164) found 

that GH stimulated tyrosyl phosphorylation of IRS 1 and 2 in CHO-GHR cells but not in CHO 

cells stably expressing a mutated GH receptor lacking the binding site for JAK2.  Thus, our 

finding that PP1 and PP2 inhibit GH-induced Ser473 phosphorylation of Akt raises the 

possibility that Src activity, rather than being a necessary component linking GH receptor to 

Akt, may be indirectly required for GH to activate Akt.   Supporting this hypothesis, the Qui 

group (201, 202) has described a potential mechanism whereby Src must phosphorylate Akt 

on Tyr315 and Tyr326 prior to growth factor-dependent phosphorylation of Thr308 and 

Ser473.  Consistent with this, our data show that both PP1 and PP2 inhibit basally active Akt 

(Fig. 2.3 A and B), raising the possibility that maximal phosphorylation of Akt Ser473 by any 

factor is unachievable when Src activity is decreased.  In support of this idea, we found that 

EGF is also unable to stimulate phosphorylation of Ser473 in Akt when 3T3-F442A 

preadipocytes are pretreated with PP1 or PP2 (data not shown).  Because PP3 at the 

concentrations used did not inhibit Src kinase activity, the finding that PP3 inhibits both 

basal and GH stimulated phosphorylation of Ser473 in Akt also raises the possibility that the 

effects of PP1 and PP2 are not mediated exclusively via Src family kinases.  PP1 and PP2 

have been reported to have significant off-target effects (189, 190).  

 An interesting byproduct of our studies is the observation that some signaling 

pathways are more tightly coupled to the level of activation of JAK2 than others.  Thus, 

when JAK2 levels were reduced by ~80% by shRNA against JAK2 in 3T3-F442A 

preadipocytes, the ability of GH to activate JAK2, ERKs 1 and 2, Akt, and STAT3 was 
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reduced to a similar extent.  In contrast, the ability of GH to stimulate the tyrosyl 

phosphorylation of STAT5 was reduced by only ~50%.  In JAK2 shRNA 3T3-F442A cells 

that exhibited only a 50-60% reduction of JAK2 (as quantified from all time points in two 

independent experiments), GH activation of ERKs 1 and 2 and Akt was again almost 

abolished, whereas GH stimulation of STAT5 activity was relatively unaffected (data not 

shown).  Although one could argue that this apparent discrepancy is because another 

kinase is necessary for maximal GH activation of STAT5, the MEF data argue that JAK2 is 

required for GH activation of STAT5 since we detected no GH stimulation of STAT5 when 

JAK2 was completely absent.  These results therefore suggest that in the case of ERKs 1 

and 2, Akt and STAT3, levels of activated JAK2 are rate-limiting, whereas they are not for 

STAT5. The MEF data also show that replacement of only a small amount of JAK2 is able to 

reconstitute substantial GH activation of STAT5.  That levels of STAT5 rather than levels of 

JAK2 appear to be rate-limiting in 3T3-F442A cells and MEFs is not so surprising, given that 

STAT5 is known to be recruited to multiple binding sites in the GH receptor (26), where it is 

rapidly phosphorylated by JAK2 and released from the GH receptor.  It then migrates to the 

nucleus where it is thought to undergo dephosphorylation and then recycle back to the GH 

receptor for reactivation (36).  The conclusion that levels of STAT5 rather than levels of 

JAK2 are sometimes rate-limiting for GH activation of STAT5 would be consistent with the 

finding of Yang et al. (6) using both 3T3-F442A cells and 2A cells expressing ectopic GH 

receptor and JAK2. When these cells were treated with a dimerized form of the GH 

antagonist G120R, GH activation of STAT5 was maintained at normal levels even though 

levels of JAK2 activation are greatly suppressed.  These results emphasize the need to 

consider the rate-limiting step in instances in which one GH signaling pathway (e.g. GH 

activation of STAT5) is inhibited to a lesser extent other GH signaling pathways.  We also 

noticed that in contrast to the 3T3-F442A cells, in H4IIE cells, GH’s ability to activate STAT5 

appears to be more closely linked to levels of JAK2. In JAK2 shRNA cells, the reduction in 
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levels of GH-activated STAT5 was similar to the reduction in levels of JAK2.  This finding 

suggests that the rate-limiting step for a particular GH signaling pathway may vary between 

cell types. 

 In conclusion, our results using pharmacological inhibitors of Src family kinases and 

cells with reduced levels of JAK2 using shRNA suggest that JAK2 and not a Src family 

kinase, is the primary kinase responsible for GH activation of STATs 1, 3, and 5, ERKs 1 

and 2, and Akt in the well characterized, highly GH-responsive 3T3-F442A preadipocytes 

and H4IIE hepatoma cells.  Studies using JAK2 and Src-deficient MEFs further support the 

hypothesis that GH is capable of activating STATs 3 and 5, ERKs 1 and 2, and Akt in the 

absence of Src family kinases and is incapable of activating STAT5 in the absence of JAK2.  

It is conceivable, however, that in different cell lines, perhaps where the ratio of Src family 

kinases to JAK2 is naturally or artificially high, Src family kinases are able to substitute for 

some or all of the actions of JAK2.  One can also envision the levels of some as yet 

unidentified accessory proteins shifting the balance between JAK2 and Src in ways that we 

do not yet understand.  Finally, our data provide a reminder that some signaling pathways 

are more tightly coupled to the level of activation of JAK2 than others and that this level of 

coupling is likely to vary between cell types.  Thus, titrating the level of JAK2 activity should 

enable one to preferentially stimulate or inhibit some pathways more than others in different 

cell types. 
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Materials and Methods 

 

 Reagents: Recombinant 22,000-Da human GH was a kind gift from Eli Lilly & Co. 

(Indianapolis, IN). Dulbecco’s Modified Eagle Medium (DMEM) was from Cambrex.  Swims 

S-77 powder, L-cystine and L-glutamine were from United States Biological.  Fetal bovine 

serum (FBS) was from Hyclone. Calf serum was from Atlanta Biologica.  Sodium 

bicarbonate powder was from Mallinckrodt.  Calcium chloride dihydrate, puromycin and 

polybrene (hexadimethrine bromide) were from Sigma.  The antibiotic-antimycotic solution, 

trypsin-EDTA and Magic Mark XP western standards were from Invitrogen.  Aprotinin, 

leupeptin, and Triton X-100 were from Roche. Recombinant protein A-agarose was from 

Repligen.  Hybond-C Extra nitrocellulose was from Amersham Biosciences.  Src family 

kinase inhibitors PP1 and PP2 were from BioMol (Plymouth Meeting, PA).  PP3 was from 

Calbiochem.  The mammalian expression vector prk5 encoding wild-type murine JAK2 (GI: 

309463) was a generous gift from Dr. J. Ihle (St. Jude Children’s Hospital, Memphis, TN) 

(203). 

 Antibodies: Antibodies recognizing a peptide containing phosphorylated tyrosines 

1007 and 1008 of JAK2 (pY1007/1008, cat. #07-606); phosphotyrosines (PY) (4G10, cat. 

#05-321); and phospho STAT1 (pY701-STAT1, cat. #06-657) were from Upstate 

Biotechnology, Inc.  Antibody recognizing total STAT1 was from Transduction Laboratories 

(cat. # S21120).  Antibody recognizing both total STAT5b and total STAT5a (STAT5, cat. # 

sc-1656) was from Santa Cruz Biotechnology, Inc.  Antibody recognizing both 

phosphoSTAT5a and phospho STAT5b (pY694-STAT5, cat. #71-6900) was from Zymed 

Laboratories, Inc.  Antibodies recognizing phosphoSTAT3 (pY705-STAT3, cat. #9131), 

total STAT3 (STAT3, cat #4904), phosphoERKs 1 and 2 (pT202/pY204-ERK1/2, cat. 

#9106), total ERKs 1 and 2 (ERK1/2, cat. #4695), phosphoAkt (pS473-Akt, cat. #4058), 
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total Akt (Akt, cat. #9272) and phosphoSrc (pY416-Src, cat. #2113) were from Cell 

Signaling Technology. Mouse monoclonal antibody recognizing Src was from Dr. Tony 

Hunter (Salk Institute).  Mouse monoclonal antibody recognizing total JAK2 and used for 

immunoblotting was from BioSource International, Inc.  Polyclonal antibody used for JAK2 

immunoprecipitation was raised against a peptide corresponding to amino acids 758 to 776 

of murine JAK2 and prepared by our laboratory in conjunction with Pel-Freez Biologicals (5).  

Polyclonal GHBP antibody used for GH receptor immunoprecipitation was from Dr. William 

Baumbach (American Cyanamid Company, Princeton, N.J.).  Polyclonal antibody (AL47) 

used for GH receptor immunoblot was a kind gift from Dr. Stuart Frank (University of 

Alabama) (204).  IRDye 800 conjugated affinity purified anti-mouse IgG and anti-rabbit IgG 

were from Rockland.   

 Gene silencing by shRNA and retroviral infection:  The target sequences of 

murine and rat JAK2 were 5'- GGAGAGTATCTGAAGTTTC-3’ (205) and 5’ - 

GGAATGGCTTGCCTTACAA-3’ (206), respectively.  Oligonucleotides were annealed and 

subcloned into pSuperior.retro.puro (Oligoengine) at BglII and XhoI sites.  A control 

sequence of 5’- UUCUCCGAACGUGUCACGU-3’ with no known target (Qiagen-Xeragon, 

Germantown, MD) was also cloned into the same vector. Retroviral infection was performed 

according to Erickson et al. (207).  In brief, the recombinant plasmids were transfected into 

293T cells by calcium phosphate coprecipitation together with the viral packaging vectors 

SV-E-MLV-env and SV-E-MLV (208).  Virus-containing medium was collected 16 h after 

transfection and passed through a 0.45-µm syringe filter.  Polybrene was added to a final 

concentration of 8 µg/ml.  This medium was then applied to subconfluent (~30%) 3T3-F442 

cells or H4IIE cells.  The infection protocol was repeated twice with intervals of 8-16 h.  

When cells achieved ~ 80% confluence, they were trypsinized and cells expressing JAK2 
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shRNA were stably selected in medium containing 2 µg/ml (3T3-F442A cells) or 40 g/ml 

(H4IIE cells) puromycin.   

 Cell culture and transfection: The stock of murine 3T3-F442A preadipocytes was 

kindly provided by H. Green (Harvard University).  H4IIE rat hepatoma cells were a kind gift 

from J. Messina (University of Alabama Birmingham School of Medicine).  SYF (Src/yes/fyn) 

triple knock-out MEFs were kindly provide by P. Soriano (Univ. of Washington, Seattle)  

(192).  JAK2-/- MEFs were a kind gift of J. Ihle (St. Jude Children’s Hospital, Memphis, TN) 

(209).  3T3-F442A cells and 293T cells were grown in DMEM supplemented with 1 mM L-

glutamine, 100 U of penicillin per ml, 100 g of streptomycin per ml, 0.25 g of amphotericin 

per ml, and 8% calf serum.  H4IIE cells were grown in SWIMS 77 medium supplemented 

with 5% FBS, 26.2 mM sodium bicarbonate, 4 mM L-glutamine, 98 M L-cystine and 1.8 

mM calcium chloride dihydrate.  MEFs were grown in DMEM supplemented with 8% FBS, 

100 U of penicillin per ml, 100 g of streptomycin per ml, and 0.25 g of amphotericin per 

ml.  MEFs were transiently transfected using lipofectamine 2000 (Invitrogen, CA).  All cells 

were incubated overnight in serum-free medium containing 1% bovine serum albumin 

before treatment with 100 M PP1, PP2, or PP3 and/or GH (500 ng/ml).  All experiments 

were carried out at 37C. 

Immunoprecipitation and immunoblotting:  For all experiments, cells were grown in 10 

cm culture dishes. After GH treatment, cells were washed and solubilized in lysis buffer (50 

mM Tris [pH 7.5], 0.1% Triton X-100, 150 mM NaCl, 2 mM EGTA, 1 mM Na3VO4, [pH 7.5]), 

containing 1 mM phenylmethylsulfonyl fluoride, 10 g/ml aprotinin, and 10 g/ml leupeptin.  

1% Triton X-100 was used in place of 0.1% Triton X-100 to lyse cells for GH receptor 

studies.  The supernatant was collected.  For H4IIE cells, 50% of the supernatant was 

incubated with JAK2 on ice for 2 h followed by protein G-agarose beads (GE) rotating at 

4C for 1 h.  For GH receptor immunoprecipitation, 60% of the supernatant was incubated 
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with GHBP on ice for 2 h followed by protein G-agarose beads (GE) rotating at 4C for 1 h.  

The beads were washed three times with lysis buffer and boiled for 5 min in a mixture 

(80:20) of lysis buffer and SDS-PAGE sample buffer (250 mM Tris-HCl [pH 6.8], 10% SDS, 

10% ß-mercaptoethanol, 40% glycerol, 0.01% bromophenol blue).  Eluted proteins as well 

as proteins in cell lysates prepared in the same buffer were separated by SDS-PAGE, using 

10% polyacrylamide gels and an acrylamide:bis acrylamide ratio of 30:0.5. Bands on 

Western blots represent 12.5% of the total lysate from a 10 cm culture plate.   For 

immunoblotting, proteins in the gel were transferred to nitrocellulose and detected by 

immunoblotting with the indicated antibody using the ODYSSEY Infrared Imaging System 

(LI-COR Bio-sciences).  The intensity of the bands in immunoblots was quantified using Li-

Cor Odyssey 2.1 software.  Values for phosphorylated proteins were normalized for total 

levels of that protein.  For the shRNA experiments, JAK2 protein levels were normalized for 

total Src (H4IIE) or total ERK1/2 (3T3-F442A)  protein levels.  Every experiment was carried 

out at least twice with similar results.  Most were performed 3 or more times (number 

indicated in the figure legends) with similar results. 

 



 

 73 

Acknowledgements 

We thank Matthew Lee for his help with Western blot analysis and Barbara Hawkins for her 

help in the preparation of this manuscript.  This work was supported in part by National 

Institutes of Health Grants RO1-DK34171 (to C.C.-S.) and K01-DK077915 (to H.J.).  N.J.L. 

was supported by the Training Program in Organogenesis National Institutes of Health 

Grant T32-HD007505. 

This Chapter has been published in Molecular Endocrinology (2008) Vol. 22, No. 8, pgs. 

1825-41, under the title “JAK2, but not Src family kinases, is required for STAT, ERK and 

Akt signaling in response to growth hormone in preadipocytes and hepatoma cells” by Hui 

Jin, Nathan J. Lanning and Christin Carter-Su.  I provided Figs. 2.1-2.3 and 2.7, Hui Jin and 

I collaborated on Figs. 2.4-2.7, and Hui Jin provided Fig. 2.8.  Hui Jin and Nathan J. Lanning 

contributed equally to this work. 



 

 74 

 

 

 

Chapter 3 

 

Growth hormone induces SH2B1 and JAK2 to form a complex with the novel 

SH2B1-interacting partner, II-spectrin, and induces II-spectrin re-localization 

 

Abstract 

 

SH2B1 is a multifunctional adaptor protein that modulates processes involving 

regulation of the cytoskeleton such as cellular motility and differentiation. This raises the 

possibility that SH2B1 interacts with components of the cytoskeleton or proteins that 

regulate the cytoskeleton.  To identify novel SH2B1 interacting proteins, a yeast-two-

hybrid assay was performed. The C-terminal 158 amino acids of the cytoskeleton 

structural protein, II1-spectrin, were identified as interacting with the N-terminal 260 

amino acids of SH2B1.  Subsequent co-immunoprecipitation assays revealed that 

SH2B1 amino acids 105-150 interact with II1-spectrin amino acids 2200-2358, and 

confocal microscopy experiments showed that II1-spectrin co-localizes with both 

SH2B1 and the SH2B1-binding partner, JAK2, at the plasma membrane 

(pm)/cytoskeleton.  Phosphorylation of spectrins has previously been shown to regulate 

spectrin localization and/or function, prompting us to assess the possibility that JAK2 

phosphorylates II-spectrin.  Co-expression of JAK2 with II1-spectrin and the II1-

spectrin splice variant, II2-spectrin, resulted in tyrosyl phosphorylation of both II-

spectrin isoforms.  Interestingly, this phosphorylation was dependent on co-expression 
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of SH2B1.  Finally, growth hormone (GH) stimulation induced an SH2B1-dependent 

formation of a complex of endogenous II-spectrin, SH2B1 and JAK2 in 3T3-F442A cells 

and a redistribution of II2-spectrin from cell-cell contacts to the cytoplasm in H4IIE 

cells.  These results identify a novel interaction between SH2B1, II1-spectrin and 

JAK2, and uncover an SH2B1-dependent phosphorylation of II-spectrin by JAK2 that 

may play a role in GH-mediated redistribution of II-spectrin. 
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Introduction 

 

Adaptor proteins are generally characterized as proteins that lack intrinsic 

enzymatic activity yet serve as important modulators of signal transduction systems by 

recruiting and linking together additional signaling molecules.  Within the SH2B family of 

adaptor proteins, SH2B1 is known to modulate signaling induced by multiple hormones 

and growth factors (reviewed in (101)).  SH2B1 mRNA is alternatively spliced into four 

isoforms, resulting in four proteins (, , , ) that share an N-terminal dimerization 

domain (DD), nuclear localization sequence (NLS) and nuclear export sequence (NES), 

and a C-terminal pleckstrin homology (PH) and Src homology 2 (SH2) domain (see 

schematic in Fig. 1).  Each isoform contains unique sequences C-terminal to the SH2 

domain (105, 210).   

We and others have shown previously that SH2B1 modulates hormone and 

growth factor induced cellular responses that require regulation and/or modification of 

the actin-based cytoskeleton.  These responses include nerve growth factor (NGF)-

induced neurite outgrowth (109, 110); GH and platelet-derived growth factor (PDGF)-

induced cell ruffling and pinocytosis (132); GH-induced phagokinesis, lamellipodia 

activity and cell migration (112); and PDGF and insulin-like growth factor 1 (IGF-1)-

induced mitogenesis (105).  SH2B1 is also able to regulate actin-based bacterial 

motility (134). SH2B1 has been shown to localize with filamentous actin in ruffles (132), 

interact with the cytoskeleton remodeling proteins, Rac (112) and (bacterial) ActA (134), 

and cross-link actin filaments (113).  Interestingly, SH2B1 C-terminal truncation and 

point mutants act as dominant negative proteins in many of the above processes (110, 

112, 132), suggesting that the N-terminus of SH2B1 interacts with one or more proteins 

that are important regulators of the actin cytoskeleton. 



 

 77 

Spectrins are large (>2000 amino acids) rod-like proteins that reside at the pm 

interface and act to cross-link actin filaments, transmembrane proteins and lipids either 

directly or indirectly through spectrin binding partners (reviewed in (131, 211).  In this 

way, spectrins are critical organizers and mediators of cellular signaling, adhesion, 

mechanical stability and polarity (reviewed in (130).  Cytoskeletal spectrins 

predominantly exist as  heterodimers that organize in a head-to-tail fashion to form 

heterotetramers (212, 213).   and  spectrins each contain PH domains as well as 

actin-binding calponin homology (CH) domains.  -spectrins contain an additional Src 

homology 3 (SH3) domain and a calmodulin-related domain.   and  spectrins also 

contain many (between 16 and 30) adjoining spectrin repeats, which typically consist of 

106 amino acid motifs (214) that form triple helical coiled coils (215, 216).  In humans, 

two -spectrin genes (I and II) have been identified along with 6 -spectrin genes (I, 

II, III, IV, V and golgi).  I, II and IV-spectrin mRNA each undergo alternative 

splicing to produce multiple protein isoforms (eg. II1, II2), potentially increasing the 

complexity of spectrin dimer and tetramer composition within the cytoskeleton (reviewed 

in (217)). 

Several groups have shown that both function and localization of  and  

spectrins can be regulated by phosphorylation.  The earliest report (performed prior to 

identification of differing spectrin isoforms) found that phosphorylation of spectrin 

dramatically increased its ability to bind actin and promote actin polymerization (218).  

More recently, TGF- has been found to induce serine phosphorylation and translocation 

of II2-spectrin (also named ELF for embryonic liver fodrin) from the plasma membrane 

into the nucleus in HepG2 cells (219).  II2-spectrin is also thought to be serine and 

threonine phosphorylated by protein kinase casein kinase 2 (PKCK2) and/or protein 

kinase A (PKA) in response to cAMP, which may decrease its affinity for II-spectrin and 
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be necessary for neuritogenesis in PC12 cells (220).  In addition, serine phosphorylation 

is correlated with a redistribution of II-spectrin from the membrane to the cytosol during 

mitosis in CHO and HeLa cells (221).    Casein kinase I-mediated I-spectrin 

phosphorylation has been shown to decrease mechanical stability of erythrocyte 

membranes (222). Finally, tyrosine phosphorylation of II-spectrin is thought to induce 

calpain-mediated cleavage (223).  

Here we identify II1-spectrin as a SH2B1 binding partner and show that JAK2 

is able to phosphorylate both II1 and II2-spectrin in an SH2B1-dependent manner.  

We also show that GH stimulation induces the formation of a II-spectrin/SH2B1/JAK2 

complex in 3T3-F442A cells and causes a shift in subcellular localization of BII spectrin 

in H4IIE hepatoma cells, raising the possibility that some of SH2B1’s regulatory effects 

on GH-mediated cytoskeletal reorganization may be mediated through II-spectrin. 
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Results 

 

Amino acids 105-150 of SH2B1 interact with amino acids 2200-2358 of 

II1-spectrin.  SH2B1 C-terminal truncation and point mutants act as dominant 

negative proteins in assays involving cytoskeletal reorganization (112, 132), suggesting 

that the N-terminus of SH2B1 may bind unknown proteins that are functionally relevant 

for this process.  To identify novel N-terminal SH2B1-interacting proteins, a yeast-2-

hybrid assay was utilized to screen a rat adipose cDNA library using amino acids 1-260 

of SH2B1 as bait (see Fig. 3.1 for SH2B1 schematic).  From 5.85 x 106 initial 

transformants, 22 LacZ+/Leu+ colonies were selected for further characterization.  One 

of these positives comprised amino acids 2200-2358 of the cytoskeletal protein, II1-

spectrin (Fig. 3.1).  To verify the yeast-two-hybrid assay interaction between the C-

terminus of II1-spectrin and the N-terminus of SH2B1, as well as to more precisely 

define the SH2B1 region of interaction, co-immunoprecipitation assays were 

performed.  Myc-tagged full-length and C-terminal SH2B1 truncation mutants were 

expressed with HA-tagged II1-spectrin (2200-2358) in 293T cells (Fig. 3.2A).  Myc-

tagged SH2B1 (1-670), (1-260), (1-200) and (1-150) all co-immunoprecipitated with 

HA-II1-spectrin (2200-2358) (Fig. 3.2A, lanes 2, 3, 4, and 5), while myc-SH2B1 (1-

105) failed to co-immunoprecipitate with HA-II1-spectrin (2200-2358) (lane 6).  These 

results indicate that the SH2B1-spectrin interaction is mediated through amino acids 

105-150 of SH2B1 and amino acids 2200-2358 of II1spectrin. 
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Figure 3.1.  Schematic representations of II1-spectrin and SH2B1.  
Abbreviations used are DD for dimerization domain, NLS for nuclear localization 
sequence, NES for nuclear export sequence, PH for pleckstrin homology domain, SH2 
for SH2 domain and CH for calponin homology domain.  Numbers refer to amino acid 
positions. 

 

 

We have previously characterized several SH2B1 domains as being crucial for 

the subcellular localization and/or function of SH2B1, including the polybasic NLS/pm-

localization region, the NES and the SH2 domain.  Mutation or deletion of the NLS/pm 

localization region inhibits SH2B1 from both binding the pm (Maures, et al. Manuscript 

in preparation) and cycling through the nucleus (107) and prevents SH2B1 from 

enhancing neurite outgrowth (106).  Mutation or deletion of the NES causes nuclear 

accumulation of SH2B1 and also prevents SH2B1 enhancement of NGF-induced 

neurite outgrowth (107).  Mutation and/or deletion of the SH2 domain results in a 

dominant negative phenotype for GH-induced cell ruffling (132), lamellipodia activity, 

phagokinesis and motility (112) and NGF-induced neurite outgrowth.  Each of the above 

processes require cytoskeletal remodeling, therefore, we sought to determine whether 

any of these mutations disrupt the interaction of SH2B1 with II1-spectrin (2200-

2358).  Co-immunoprecipitation experiments showed that myc-tagged II1-spectrin 

(2200-2358) interacts with GFP-tagged SH2B1 lacking the NLS/polybasic region 
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(148-198, Fig. 3.2B, lane 2), lacking a functional NES (mNES, Fig. 3.2, lane 3) or 

lacking a functional SH2 domain (R555E, Fig. 3.2B, lane 4).  

 

Figure 3.2.  Amino acids 105-150 of SH2B1 interact with amino acids 2200-2358 of 

II1-spectrin.  A) HA-tagged II1-spectin (2200-2358) was expressed with myc-

tagged WT SH2B1 or SH2B1 truncation mutants in 293T cells as indicated. Proteins 

from cell lysates were blotted with myc (right panel) or immunoprecipitated with HA 

and blotted with myc (left panel).  B) myc-tagged II1-spectrin (2200-2358) was 

expressed with GFP-tagged WT and mutant SH2B1 and WT SH2B1 in 293T cells.  

Proteins from cell lysates were blotted with GFP (bottom panel) or  immunoprecipitated 

with myc and blotted with GFP (top panel). 
 

 

These results indicate that the NLS, NES and SH2 domains of SH2B1 do not 

affect the ability of with SH2B1 to interact with aa 2200-2358 of II1-spectrin.  GFP-

SH2B1 also co-immunoprecipitated with myc-II1-spectrin (2200-2358) (Fig. 3.2B, 
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lane 5).  This latter finding suggests that II1-spectrin interacts with multiple SH2B1 

isoforms, consistent with the region of interaction lying within the region of SH2B1 

shared among all 4 SH2B1 isoforms.  However, the findings that II1-spectrin (2200-

2358) interacts with SH2B1 (148-198), (mNES), and SH2B1 were somewhat 

unexpected, given that II1-spectrin is characterized as a pm protein, while SH2B1 

primarily localizes to nucleoli (108).  SH2B1 (148-198) has been shown to be primarily 

cytoplasmic and mNES resides primarily in the nucleus.  We therefore wondered 

whether II1 spectrin 2200-2358 might be mislocalized. 

SH2B1 is able to alter II1-spectrin (2200-2358) subcellular localizaton. 

Using confocal microscopy to visualize II1-spectrin in living 293T cells, we found 

II1-spectrin (2200-2358) to localize to the cytoplasm and nucleus (Fig. 3.3A-C), 

revealing that II1-spectrin (2200-2358) is not properly targeted to the pm.  GFP-

SH2B1 localized to both the cytoplasm and pm (see Fig. 3.5B) consistent with previous 

reports (224), while GFP-SH2B1 appeared to localize primarily to nucleoli (Fig. 3.3D-F) 

as reported previously (108).  When co-expressed with GFP-SH2B1, mCherry-II1-

spectrin (2200-2358) remained predominantly in the cytoplasm and nucleus, although 

some pm localization was observed (Fig. 3.3G-I).  When co-expressed with GFP-

SH2B1, mCherry-II1-spectrin (2200-2358) was nearly completely localized to nucleoli 

(Fig. 3J-L).  These results indicate that SH2B1 is able to alter the subcellular localization 

of II1-spectrin (2200-2358), suggesting that the interaction between SH2B1 and II1-

spectrin is robust.  Interestingly, although spectrins are classically described as 

membrane/cytoskeletal proteins, several recent reports show that some spectrins are 

targeted to the nucleus (reviewed in (225)) and nucleoli (226, 227) raising the possibility 

that a nuclear/nucleolar interaction between SH2B1 and II1-spectrin may be 

functionally relevant. 
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Figure 3.3.  SH2B1 is able to alter the localization of II1-spectrin (2200-

2358).  mCherry-II1-spectrin (2200-2358), GFP-SH2B1 and GFP-SH2B1 were 
expressed alone or in combination in 293T cells as indicated.  Cells were fixed and 

imaged by confocal microscopy. Cells expressing mCherry-II1-spectrin (2200-2358) or 

GFP-SH2B1 alone were DAPI stained to visualize nuclei.  Arrows in H indicate co-

localization of mCherry-II1-spectrin (2200-2358) and GFP-SH2B1 at the plasma 
membrane. 

 

 

II1-spectrin (2165-2358) recruits cytosolic SH2B1 (148-198) to the pm.  

II1-spectrin is well characterized as a pm associated protein, indicating that the 

cytosolic/nuclear localization exhibited by II1-spectrin (2200-2358) is atypical.  

Spectrin is thought to participate in the polarization of cuboidal epithelial cells (228, 229) 

and, therefore, cuboidal epithelial cells, such as MDCK cells, are often used to assess 

II-spectrin localization and function. II1-spectrin (2200-2358) expressed in MDCK 
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cells also localized to both the cytoplasm and nucleus (Fig. 3.4C), indicating that this 

localization pattern was not an artifact of expression in 293T cells (Fig. 3.4A).  PH 

domains are known phospholipid and protein-protein interaction domains (reviewed in 

(230)), and the spectrin PH domain has been shown to bind phospholipids in vitro (231, 

232) and be targeted to the pm of COS7 cells (233).  II1-spectrin (2200-2358) consists 

of the extreme C-terminus of II-spectrin, and contains most, but not all, of the spectrin 

PH domain.  Addition of 35 amino acids to II1-spectrin (2200-2358) produced a II1-

spectrin C-terminal fragment that contains an intact PH domain [II1-spectrin (2165-

2358)]. Consistent with a previous report (233), and in contrast to II1-spectrin (2200-

2358) (Fig. 4A, 4C), II1-spectrin (2165-2358) localized almost entirely to the pm in 

both 293T cells (Fig. 3.4B) and MDCK cells (Fig. 3.4D).  

We next asked if, in addition to SH2B1 being able to alter C-terminal II1-

spectrin localization (Fig. 3.3), whether pm localized II1-spectrin (2165-2358) could 

recruit SH2B1 to the pm.  To this end, SH2B1 (148-198), which exhibits decreased 

pm and increased cytosolic localization (Maures, et al. Manuscript in preparation) 

compared to WT SH2B1, was expressed with or without II1-spectrin (2165-2358) in 

293T cells.  Cell lysates were separated into membrane and cytosolic fractions and the 

relative distribution of SH2B1 (148-198) was assessed (Fig. 3.4E).  When expressed 

with II1-spectrin (2165-2358), more SH2B1 (148-198) was found in the membrane 

fraction than when SH2B1 (148-198) was expressed alone (compare Fig. 3.4E, top 

panel, lanes 1 and 2).  Conversely, when expressed with II1-spectrin (2165-2358), 

less SH2B1 (148-198) was found in the cytosolic fraction than when SH2B1 (148-

198) was expressed alone (compare Fig. 3.4E, top panel, lanes 3 and 4).  Because -

spectrins are able to organize structural and signaling proteins to specific regions within 
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the pm (reviewed in (234)), these results suggest that II1-spectrin may be involved in 

the targeting of SH2B1 to distinct regions within the pm. 

 

 

 

Figure 3.4.  II1-spectrin (2165-2358) is targeted to the pm and is able to alter 

SH2B1 (148-198) localization.  GFP-II1-spectrin (2200-2358) was expressed in 

293T (A) or MDCK (C) cells.  GFP-II1-spectrin (2165-2358) was expressed in 293T 
(B) or MDCK (D) cells.  Cells were fixed and imaged by confocal microscopy.  E) GFP-

SH2B1 (148-198) was expressed alone or with II1-spectrin (2165-2358) in 293T 
cells.  Cells were lysed, separated into membrane and cytosolic fractions and blotted 

with GFP. 
 

 

II1-spectrin co-localizes with both SH2B1 and JAK2.  To determine if full-

length II1-spectrin co-localizes with full-length SH2B1, II1-spectrin and SH2B1 

were expressed alone or together in 293T cells (Fig. 3.5).  As expected, when expressed 

alone GFP-II1-spectrin (Fig. 3.5A) and GFP-SH2B1 (Fig. 3.5B) each localized 
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primarily to the pm.  To begin to explore a potential functional significance of the II1-

spectrin/SH2B1 interaction, we investigated the possibility that the SH2B1 binding 

partner, JAK2 ((100), reviewed in (101)), is also a component of this interaction.  

Consistent with previous reports demonstrating JAK2 localization at the pm in HEK293T 

and 2A cells (235, 236), GFP-JAK2 localized primarily to the pm in 293T cells (Fig. 5C).  

CFP-JAK2, GFP-II1-spectrin and mCherry-SH2B1 all co-localized at the pm when all 

three proteins were expressed in 293T cells (Fig. 3.5D-G).  These results raise the 

possibility that II1-spectrin exists in a complex with SH2B1 and JAK2 at the pm and 

that II1-spectrin is a novel target of JAK2 kinase activity.   

 

 

 

Figure 3.5.  II1-spectrin co-localizes with SH2B1 and JAK2 at the plasma 

membrane.  Fluorescently tagged II1-spectrin, SH2B1 and JAK2 were expressed 
alone (Panels A-C) or together (Panels D-G) in 293T cells and image by live confocal 

microscopy.  Arrows in Panel G indicate co-localization on the pm.  Scale bars = 10 m. 
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SH2B1 is necessary JAK2-induced tyrosyl phosphorylation of II1-

spectrin and II2-spectrin.  II-spectrin is known to be tyrosyl phosphorylated by Src 

kinase in COS cells (237), and, although -spectrin can be tyrosyl phosphorylated by 

insulin receptor kinase (238, 239), Src kinase and epidermal growth factor receptor 

kinase (239) in vitro, no studies have yet shown -spectrins to be tyrosyl phosphorylated 

in vivo.  To determine if JAK2 is able to induce tyrosyl phosphorylation of II1-spectrin, 

GFP-II1-spectrin was expressed alone (Fig. 3.6A, lane 3) or with JAK2 (Fig. 3.6A, 

lane 2) in 293T cells.  Co-expression of II1-spectrin and JAK2 did not result in II1-

spectrin tyrosyl phosphorylation (compare Fig. 3.6A, top panel, lanes 2 and 3).  

However, when Flag-SH2B1 was co-expressed with GFP-II1-spectrin and JAK2, 

GFP-II1-spectrin was tyrosyl phosphorylated (Fig. 3.6A, top panel, lane 4).  The 

alternative splice variant of II1-spectrin, II2-spectrin, is ~92% identical to II1-

spectrin at the amino acid level, differing in sequence at the N and C-termini.  To 

determine if JAK2 is also able to mediate tyrosyl phosphorylation of II2-spectrin, myc-

II2-spectrin and JAK2 were expressed without (Fig. 3.6B, lane 1) or with (Fig. 3.6B, 

lane 2) myc-SH2B1.  As with II1-spectrin, JAK2 was only able to induce tyrosyl 

phosphorylation of II2-spectrin when SH2B1 was co-expressed.  
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Figure 3.6.  JAK2 induces SH2B1-dependent tyrosyl phosphorylation of II1-

spectrin and II2-spectrin.  A) GFP-II1-spectrin, JAK2, and Flag-SH2B1 were 
expressed alone or in combination in 293T cells.  Cell lysates were blotted with 

phospho-tyrosine, GFP, JAK2 and Flag as indicated.  B) myc-II2-spectrin and 

JAK2 were expressed with or without myc-SH2B1 in 293T cells.  Cell lysates were 

blotted with phospho-tyrosine, II2-spectrin, JAK2 and myc as indicated. 
 

 

GH induces an SH2B1-dependant II-spectrin/SH2B1/JAK2 complex.  3T3-

F442A cells express SH2B1 (100) and GH stimulation of these cells results in JAK2 

activation (5, 240), making these cells a suitable model to test potential JAK2-mediated 

phosphorylation of II-spectrin in response to ligand activation using endogenous 
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proteins.  To determine if 3T3-F442A cells express II-spectrin, 3T3-F442A cells were 

separated into a cytoskeletal-enriched fraction and a soluble fraction (see materials and 

methods) and blotted with II-spectrin (an antibody that recognizes both II1-spectrin 

and II2-spectrin) and vinculin (Fig. 3.7A).  II-spectrin was found exclusively in the 

cytoskeletal fraction while vinculin was found in both the soluble and cytoskeletal 

fractions, consistent with previous reports (241). 

We have established 3T3-F442A cells that stably express either control shRNA 

(shControl) or shRNA against SH2B1 (shSH2B1) that results in a significant reduction 

of SH2B1 (Fig. 3.7B, bottom panel, compare lanes 1 and 3).  These cells allowed us to 

examine the necessity of SH2B1 for GH-induced JAK2-mediated phosphorylation of 

II-spectrin.  3T3-F442A shControl cells (Fig. 3.7B, lanes 1 and 2) or shSH2B1 cells 

(Fig. 3.7B, lanes 3 and 4) were stimulated with or without GH for 20 min, and proteins 

from cell lysates were immunoprecipitated with II-spectrin.  Western blot analysis 

showed that although II-spectrin was immunoprecipitated (Fig. 3.7B, panel 2), tyrosyl 

phosphorylated II-spectrin was not detected in either shControl or shSH2B1 cells (Fig. 

3.7B, panel 1).  However, GH stimulation induced a significant increase in the 

association between SH2B1 and II-spectrin in shControl cells (Fig. 3.7B, panel 8, 

compare lanes 1 and 2).  In addition, GH stimulation induced co-immunoprecipitation of 

JAK2 with II-spectrin in shControl cells (Fig. 3.7B, panel 4 compare lanes 1 and 2).  As 

expected, a lower amount of SH2B1 co-immunoprecipitated with II-spectrin in 

shSH2B1 cells due to reduced SH2B1 protein expression (Fig. 3.7B, panel 8 compare, 

lanes 3 and 4).  Interestingly, the amount of JAK2 co-immunoprecipitating with II-

spectrin in response to GH was also reduced in shSH2B1 cells (Fig. 3.7B, panel 4, 

compare lanes 3 and 4), compared to shControl cells (Fig. 3.7B, panel 4, compare lanes 

2 and 4).  This was not due to decreased activation of JAK2, as GH induced similar 



 

 91 

levels of tyrosyl-phosphorylated JAK2 in shControl and shSH2B1 cells (Fig. 3.7B, panel 

7, compare lanes 2 and 4).  These results show that II-spectrin and SH2B1 interact in 

the basal state and that GH stimulation results in a significant increase in the II-

spectrin/SH2B1 interaction.  In addition, these results indicate that GH stimulation 

induces the formation of an II-spectrin/SH2B1/JAK2 complex, and suggest that the 

presence of JAK2 in this complex is dependant on SH2B1. 
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Figure 3.7.  GH induces the formation of an II1-spectrin/SH2B1/JAK2 complex.  
A) 3T3-F442A lysates were separated into a cytoskeletal enriched fraction and a soluble 

fraction and blotted with II-spectrin and vinculin antibodies.  B) 3T3-F442A cells 
were serum-deprived overnight and stimulated with or without GH for 20 min.  Proteins 

from cell lysates were immunoprecipitated with II-spectrin and lysates and 

immunoprecipitates were blotted with phospho-tyrosine, II-spectrin, JAK2, and 

SH2B1 as indicated. 
 

 

GH induces subcellular redistribution of II-spectrin.  Previous reports 

described above suggest that phosphorylation of spectrins can alter their subcellular 

distribution.  In HepG2 cells, TGF-induced phosphorylation of II2-spectrin is reported 

to cause II2-spectrin to leave the pm and translocate to the nucleus (219).  To 
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determine if GH causes II2 to translocate to the nucleus,  H4IIE hepatoma cells were 

stimulated with GH or TGF over 30 min.  Western blot analysis of II-spectrin and 

proteins that are phosphorylated downstream of TGF (Smad3) and GH (JAK2) 

indicated that H4IIE cells express II-spectrin and are responsive to both TGF and GH 

(Fig. 3.8A) (177).  Immunofluorescence staining using an II2-spectrin antibody 

revealed that GH, like TGF, stimulates a redistribution of II1-spectrin from cell-cell 

contacts to a more cytoplasmic localization within 15-30 min (Fig. 3.8B). 
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Figure 3.8.  GH induces a shift in II2-spectrin subcellular localization.  H4IIE 
hepatoma cells were serum-deprived overnight and stimulated with or without GH (500 

ng/ml) or TGF- (100 ng/ml).  A) Cells were lysed at the indicated times, and proteins 

from cell lysates were immunoprecipitated with II-spectrin or JAK2 and lysates and 

immunoprecipitates were immunoblotted with II-spectrin, phospho-tyrosine or JAK2 
as indicated (top panels).  Alternately, proteins from cell lysates were 

immunoprecipitated with Smad3 and immunoprecipitates and lysates were 

immunoblotted with phospho-Smad3 or Smad3 as indicated (bottom panels).  B) 

Cells were fixed at the indicated times, immunostained for II2-spectrin and visualized 

by widefield fluorescence microscopy.  Arrows indicate II1-spectrin localization at cell-
cell contacts. 
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Discussion 
 

Here we have identified II1-spectrin as a novel SH2B1 binding partner.  The region 

of interaction lies within amino acids 105-150 of SH2B1 and 2200-2358 of II1-

spectrin.  The interaction between these proteins appears to be robust, as we have 

shown that SH2B1 isoforms that localize to the pm (SH2B1) recruit cytoplasmic and 

nuclear-localized II1-spectrin (2200-2358) to the pm (Fig. 3.3).  Conversely, we 

showed that pm localized II1-spectrin (2165-2358) recruits cytoplasmic localized 

SH2B1 (148-198) to the pm (Fig. 3.4).  These results suggest that SH2B1 and II1-

spectrin interact in the appropriate subcellular locations, and raise the possibility that the 

localization of each protein may be influenced by the localization of the other. In addition, 

it is possible that II1-spectrin recruits SH2B1 to functionally relevant domains within 

the pm as spectrins have been reported to do for other proteins (reviewed in (234)).  The 

region of interaction on SH2B1 is shared between all 4 SH2B1 isoforms, indicating that 

II1-spectrin is likely to interact with all 4 SH2B1 isoforms.  Indeed, we found that 

SH2B1, like SH2B1, co-immunoprecipitates and co-localizes with II1-spectrin 

(2200-2358) (Fig. 3.2).  The co-localization of SH2B1 and II1-spectrin (2200-2358) in 

nucleoli was particularly interesting as several groups have observed spectrin in the 

nucleus and nucleoli (226, 227).   

We and/or others have previously shown that II-spectrin, SH2B1 and JAK2 all 

localize to the pm.  Therefore, it was not surprising that we observed these three 

molecules to co-localize at the pm in 293T cells (Fig. 3.5).  However, we present the 

novel finding that JAK2 induces tyrosine phosphorylation of II1-spectrin and II2-

spectrin, and that this phosphorylation is dependent on SH2B1 (Fig. 3.6).  These data 

raise several questions, including whether JAK2 directly phosphorylates II-spectrins, 
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whether JAK2 can induce phosphorylation of II-spectrins when co-expressed with 

SH2B1 lacking the spectrin-interaction region, and whether SH2B1 physically induces 

a JAK2-II-spectrin interaction or, alternatively, enhances JAK2 activation to a level that 

is necessary for II-spectrin phosphorylation.  Some of these questions can be 

answered by our finding of a GH-induced formation of an endogenous II-

spectrin/SH2B1/JAK2 complex (Fig. 3.7).  We show that co-immunoprecipitation of 

JAK2 with II-spectrin is dependent on the presence of SH2B1, and that GH induces 

JAK2 activation to similar levels in both shControl and shSH2B1 cells.  These results 

suggest that SH2B1 physically brings II-spectrin and JAK2 together rather than 

enhancing JAK2 to a level needed to phosphorylate II-spectrin.  However, we were 

unable to observe GH-induced II-spectrin tyrosyl phosphorylation in this experiment, 

suggesting that although GH induces the formation of a II-spectrin/SH2B1/JAK2 

complex in 3T3-F442A cells, JAK2 may not phosphorylate II-spectrin under these 

conditions.  Alternatively, it is possible that under these conditions, not enough II-

spectrin was tyrosyl-phosphorylated to be observed by immunoblotting with phospho-

tyrosine or that GH induces tyrosyl-phosphorylation of II-spectrin at a time point other 

than 20 min.  Future experiments similar to those performed for Figure 3.7 should clarify 

these remaining questions. 

Historically, spectrins have been known as important structural molecules for the 

cytoskeleton.  Regulated localization of spectrins into or out of the cytoskeleton has 

been thought to be an important event in cytoskeletal reorganization (220, 221, 242).  

Spectrins have also been implicated as central nodes that serve to recruit multiple 

signaling molecules into specialized membrane regions (234).  The SH2B1-II1-

spectrin interaction may fit both models.  II-spectrin is able to bind both JAK2 and 
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SH2B1, and therefore may serve as a node to maintain two signaling molecules in 

close proximity that are important for several ligands, perhaps facilitating more efficient 

signaling.  On the other hand, data demonstrating JAK2-mediated phosphorylation of II-

spectrin and GH-induced redistribution of II2-spectrin out of cell-cell contacts and into 

the cytoplasm support spectrin being a regulated cytoskeletal structural protein.  In 

addition, SH2B1 mutants that are unable to bind the plasma membrane act as 

dominant negatives in the neuronal differentiation of PC12 cells, a process that is also 

regulated by phosphorylation of II2-spectrin (220). 

In summary, we have demonstrated that II1-spectrin is a novel SH2B1 

binding protein and that SH2B1 is required for JAK2-induced tyrosyl phosphorylation of 

both II1-spectrin and II2-spectrin.  In addition, we have shown that in 3T3-F442A 

cells, GH stimulation induces the formation of an endogenous II-spectrin/SH2B1/JAK2 

complex.  Finally, we have shown that GH induces II2-spectrin redistribution from cell-

cell contacts into the cytoplasm.  Taken together, we propose a model wherein SH2B1 

binds II-spectrin at the plasma membrane, and that upon GH stimulation, active JAK2 

recruits the II-spectrin/SH2B1 complex via the SH2 domain of SH2B1, forming a 

tertiary complex.  Active JAK2 then phosphorylates II-spectrin, resulting in the 

translocation of II-spectrin out of the pm allowing for reorganization of the cytoskeleton.  

While the functional relevance of this model is beyond the scope of this study, the 

previously demonstrated importance of II-spectrin, SH2B1 and GH in processes that 

require restructuring of the pm provide grounds for further investigation into this novel 

relationship.  Future studies assessing the impact of the II1-spectrin/SH2B1/JAK2 

interaction in cell motility, ruffling and neuronal differentiation assays will provide further 

clarification of the functional importance of this interaction. 
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Materials and Methods 

 

Antibodies:  The following antibodies were used for Western blotting at a 

dilution of 1:1000:  Anti-myc mouse monoclonal antibody (myc) (Santa Cruz 

Biotechnology, Inc.), anti-HA mouse monoclonal antibody (HA) (Covance), anti-JAK2 

(JAK2) and anti-phosphotyrosine (PY) (4G10) mouse monoclonal antibodies 

(Millipore), anti-Flag M2 mouse monoclonal antibody (Flag) (Sigma), anti-II-spectrin 

rabbit polyclonal antibody (II spectrin) (Bethyl Laboratories, Inc.), anti-Smad3 

(Smad3) and anti-phospho-Smad3 (Ser423/425) (pSmad3) rabbit polyclonal 

antibodies (Cell Signaling Technology), anti-SH2B1 [kind gift of Dr. Liangyou Rui 

(University of Michigan) (243)] (SH2B1) and anti-II2-spectrin {(ELF2), kind gift of 

Dr. Lopa Mishra (Georgetown University)}.  For immunoprecipitation, myc and HA 

were used at a dilution of 1:100, and II-spectrin was used at a dilution of 1:75.  IRDye 

800- and IRDye 700-conjugated affinity-purified anti-mouse IgG and anti-rabbit IgG 

(Rockland Immunochemicals Inc.) were used at a dilution of 1:20,000.  Anti-GFP IRDye 

800-conjugated goat polyclonal antibody (Rockland) (GFP) was used at a dilution of 

1:5000 for Western blotting.  Anti-GFP mouse monoclonal antibody (GFP mab) for 

immunoprecipitation (1:100 dilution) was from Clontech (Mountain View, CA).  -II2-

spectrin was used at a dilution of 1:100 for immunofluorescence.  Alexa Fluor 594 

secondary antibodies (dilution 1:1000) used for immunofluorescence were from 

Invitrogen. 

Reagents:  Recombinant 22,000-Da human GH was a kind gift from Eli Lilly & 

Co.  Dulbecco’s Modified Eagle Medium (DMEM) was from Cambrex.  Fetal bovine 

serum (FBS) was from Hyclone.  Calf serum was from Atlanta Biologicals.  The 

antibiotic-antimycotic solution, trypsin-EDTA and Magic Mark XP western standards 
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were from Invitrogen.  Aprotinin, leupeptin, and Triton X-100 were from Roche. 

Recombinant protein A-agarose was from Repligen.  Hybond-C Extra nitrocellulose was 

from Amersham Biosciences.  Paraformaldehyde was from Electron Microscopy 

Sciences.  

Cell Culture, Transfection and Stimulation:  The stock of murine 3T3-F442A 

fibroblasts was kindly provided by Dr. H. Green (Harvard University), 293T cells were 

from ATCC, MDCK cells were kindly provided by Dr. B. Margolis (University of Michigan, 

Ann Arbor) and H4IIE hepatoma cells were kindly provided by Dr. J. Messina (University 

of Alabama, Birmingham).  3T3-F442A and 293T cells were grown in DMEM 

supplemented with 1 mM L-glutamine, 100 U of penicillin per ml, 100 g of streptomycin 

per ml, 0.25 g of amphotericin per ml, and 8% calf serum.  MDCK cells were grown in 

Messina (University of Alabama, Birmingham).  3T3-F442A and 293T cells were grown 

in DMEM supplemented with 1 mM L-glutamine, 100 U of penicillin per ml, 100 g of 

streptomycin per ml, 0.25 g of amphotericin per ml, and 8% fetal bovine serum.  H4IIE 

cells were grown in SWIMS 77 medium supplemented with 5% FBS, 26.2 mM sodium 

bicarbonate, 4 mM L-glutamine, 98 M L-cystine and 1.8 mM calcium chloride dihydrate. 

293T cells were transiently transfected by calcium phosphate precipitation.  3T3-F442A 

and H4IIE cells were incubated overnight in serum-free medium before treatment with 

GH. 

Plasmids: GFP-tagged SH2B1, SH2B1 (R555E), SH2B1 (148-198) and 

SH2B1 mNES were cloned as described previously (106, 107, 110).  GFP-II1-

spectrin was a kind gift from Dr. Vann Bennett (Duke University) and myc-II1-spectrin 

was a kind gift from Dr. Lopa Mishra (Georgetown University). 

Immunofluorescence:  For fixed-cell imaging, cells were fixed in 4% 

parformaldehyde in PBS, gently washed 3 times in PBS, permeabilized in 0.1% TritonX-
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100 in phosphate buffered saline (PBS) and blocked for 30 min in PBS containing 5% 

normal serum from the species used for secondary antibody production.  Cells were then 

incubated with primary antibody diluted in blocking solution for one hour.  Cells were 

gently washed 3 times in PBS, and then incubated for 1 h with secondary antibody 

diluted in PBS.  Cells were gently washed 3 times in ddH2O, and then mounted on 

Fisherfinest Premium Microscope Slides (Fisher Scientific) using Prolong Gold Antifade 

mounting reagent (Invitrogen).  For live cell imaging, cells were grown on no. 1.5 glass 

bottom dishes (MatTek Corp. Ashland, MA) and imaged in Ringer’s buffer (155 mM 

NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2 6H2O, 2 mM NaH2PO4 H2O, 10 mM HEPES, 

10 mM glucose).  Confocal laser scanning microscopy images were obtained with an 

Olympus FluoView 500 Laser Scanning Confocal Microscope.  Widefield fluorescence 

microscopy images were obtained using a Nikon Eclipse TE200 inverted fluorescence 

microscope. 

 Immunoprecipitation and Immunoblotting:  Cells were grown in 10 cm culture 

dishes, washed and solubilized in lysis buffer (50 mM Tris [pH 7.5], 1% Triton X-100, 150 

mM NaCl, 2 mM EGTA, 1 mM Na3VO4, [pH 7.5]), containing 1 mM phenylmethylsulfonyl 

fluoride, 10 g/ml aprotinin, and 10 g/ml leupeptin. For immunoprecipitation, 60% of the 

supernatant was incubated with antibody on ice for 2 h followed by incubation with protein 

A-agarose beads rotating at 4C for 1 h.  The beads were washed three times with lysis 

buffer and boiled for 5 min in a mixture (80:20) of lysis buffer and SDS-PAGE sample buffer 

(250 mM Tris-HCl [pH 6.8], 10% SDS, 10% ß-mercaptoethanol, 40% glycerol, 0.01% 

bromophenol blue).  Eluted proteins as well as proteins in cell lysates prepared in the same 

buffer were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, using 

10% polyacrylamide gels and an acrylamide:bis acrylamide ratio of 30:0.5.  For 
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immunoblotting, proteins in the gel were transferred to nitrocellulose and detected by 

immunoblotting with the indicated antibody. 

 Cell Fractionation: Membrane and cytosolic fractionation: Cells from a 10 cm dish 

were collected in 1.0 ml ice-cold phosphate-buffered saline containing 2 mM Na3(VO)4 

(PBSV) and pelletted by centrifugation at 1000 RPM for 2 min.  PBSV was aspirated, and 

the pellet was resuspended in 500 l extraction buffer, (50 mM Tris-HCl pH 7.5, 50 mM 

beta-mercaptoethanol, 2 mM EGTA, 0.1 mM EDTA, 0.1 mM NaF, 1 mM 

phenylmethylsulfonyl fluoride, 10 g/ml aprotinin, and 10 g/ml leupeptin).  Samples were 

incubated on ice for 10 min with occasional 10 s vortexing.  Samples were then pelleted by 

centrifugation at 1000 RPM for 1 min.  The supernatant was collected and the pellet was 

discarded.  The supernatant was centrifuged at 120,000 x g for 2 h.  The supernatant was 

designated the cytosolic fraction and was transferred to a new tube.  The pellet was 

designated the membrane fraction and was washed once in extraction buffer and then 

resuspended in 100 l lysis buffer (50 mM Tris pH 7.5, 0.1% Triton X-100, 150 mM NaCl, 2 

mM EGTA, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride, 10 g/ml aprotinin, and 10 

g/ml leupeptin). 

Cytoskeletal enrichment fractionation (241):  Cells were washed with cell solubilization buffer 

(10 mM PIPES, 50 mM KCl, 20 mM EGTA, 3 mM MgCl2, 2 M glycerol, 2 mM NaF, 2 mM 

Na3(VO)4, 10 g/ml aprotinin, and 10 g/ml leupeptin), then incubated on ice in CSB 

containing 1% TritonX-100 for exactly 5 min.  The buffer containing solubilized proteins was 

removed and designated the soluble fraction.  Plates were then washed with CSB and the 

remaining cytoskeletal fraction was collected with extraction buffer (20 mM Tris-HCl, 300 

mM NaCl, 30 mM MgCl2, 1 mM DTT, 10 g/ml aprotinin, and 10 g/ml leupeptin) and 

passed through a 28-gauge syringe 10 times.  Proteins in each fraction were quantified 
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using the bicinchoninic acid protein assay (Pierce Biotechnology), and 50 g of protein was 

used for Western blot analysis. 
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Chapter 4 

 

Identification and characterization of SH2B1 as a novel focal adhesion protein 

 

Abstract 

 

The multifunctional adaptor protein, SH2B1, regulates diverse cellular functions, 

including cell motility.  To gain further insight into the ability of SH2B1 to regulate the 

cytoskeleton and cell motility, we assessed the subcellular localization of GFP-SH2B1 

in fibroblast and epithelial cells.  We found GFP-SH2B1 to localize to focal adhesions 

via its SH2 domain.  Focal adhesions are cell adhesion sites, critical nodes of cell-

extracellular matrix communication and important facilitators of cell motility.  Multiple 

protein kinase C (PKC) isoforms are found in focal adhesions and PKC activation 

induces the formation of focal adhesions and promotes cell motility.  We provide 

evidence that SH2B1 is phosphorylated in response to phorbol 12-myristate 13-acetate 

(PMA)-induced PKC activation and show that PMA stimulation induces a rapid 

redistribution of SH2B1 out of focal adhesions.  Multiple serines in SH2B1 lie within 

PKC consensus substrate phosphorylation motifs.  Mutation to alanine of two of these 

serines (Ser 161 and 165) abrogates the ability of PMA stimulation to induce this 

redistribution.  These mutations also significantly decrease the dynamic cycling of 

SH2B1 into and out of focal adhesions as analyzed by fluorescence recovery after 

photobleaching (FRAP) analysis.  Mutation of Ser 165 to glutamate (mimicking 

phosphorylation) reduces the amount of SH2B1 at focal adhesions, increases the rate 
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of SH2B1 turnover at focal adhesions and significantly increases the number of focal 

adhesions per cell.  Taken together, these results show that SH2B1 localizes to focal 

adhesions through its SH2 domain.  They also provide evidence that PKC activation 

regulates SH2B1 focal adhesion localization through phosphorylation of SH2B1 

serines 161 and/or 165 and that PKC-mediated phosphorylation of SH2B1 at serine165 

regulates focal adhesion formation. 
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Introduction 

 

SH2B1 is a member of the SH2B family of adaptor proteins that includes SH2B1 

(formerly SH2-B/PSM), SH2B2 (formerly APS) and SH2B3 (formerly Lnk).  SH2B1 

mRNA is alternatively spliced to produce SH2B1, ,  and  isoforms (105, 210).  The 

translated products share a dimerization domain (DD), a nuclear localization signal 

(NLS) a nuclear export signal (NES), a pleckstrin homology (PH) domain and a Src 

homology 2 (SH2) domain (see schematic in Fig. 1), but differ at the extreme C-terminus 

of each protein.  SH2B1 is recruited, via its SH2 domain, to multiple activated receptor 

tyrosine kinases and receptor-associated tyrosine kinases, enabling it to serve as an 

adaptor/scaffolding protein for multiple hormones and growth factors, including growth 

hormone (GH) (100), leptin (111), nerve growth factor (100, 109), brain derived 

neurotrophic factor (109), glial derived neurotrophic factor (244), insulin (210, 245), 

insulin-like growth factor I (246), fibroblast growth factor (247), platelet-derived growth 

factor (248) and hepatocyte growth factor (249).  Within the context of these signaling 

systems, SH2B1 has been shown to enhance kinase activity, regulate gene 

transcription and/or modulate cytoskeletal dynamics (reviewed in (101)).  These cellular 

effects contribute to the ability of SH2B1 to promote neuronal differentiation and 

maintenance of a differentiated phenotype (109, 110), regulate energy and glucose 

homeostasis (111), and promote cell motility (112, 113).  All of these effects require 

either regulated intracellular transport or alterations in cell morphology, processes that 

rely on regulation of the actin-based cytoskeleton (reviewed in (121, 122)).  SH2B1 

localizes to the plasma membrane/cytoskeleton (224) and membrane ruffles (132), 

suggesting that SH2B1 localization to cytoskeletal structures may be important for its 

function.  SH2B1 has been shown to regulate cytoskeletal dynamics by enhancing GH, 
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PDGF and prolactin-induced cell ruffling and lamellipodia formation (113, 132), and by 

enhancing GH-dependent cell motility (112).  In addition, SH2B1 has been shown to 

bind activated Rac (112), cross-link actin filaments in vitro (113), and interact with the 

Listeria monocytogenes actin nucleating protein, ActA, to enhance bacterial actin-based 

motility (134).  Other SH2B family members have also been implicated in regulation of 

the cytoskeleton.  SH2B2 co-localizes with actin in B cells (135), is thought to modulate 

actin dynamics in mast cells (136), and interacts with the cytoskeleton regulatory 

proteins, Vav3 (137) and Enigma (138).  SH2B3 is a binding partner of the actin binding 

and focal adhesion protein, filamin, although this interaction was not shown to be 

present in focal adhesions (139).   

Focal adhesions are large integrin-based macromolecular complexes that 

mediate cell-extracellular matrix (ECM) attachment, facilitate direct signaling between 

the extracellular matrix and the cell, and facilitate cell anchorage and motility (reviewed 

in (128)).  The number of proteins identified as localizing to focal adhesions is vast, and 

the number and regulation of interactions between focal adhesion proteins make these 

structures among the most dynamic and complex structures within a cell (see (128)for 

review}).  Individual proteins within focal adhesions contribute to focal adhesion function 

through a number of mechanisms.  Many proteins, such as vinculin, provide structural 

support for focal adhesion complexes and are generally associated with reduced cellular 

motility (250).  Other scaffolding/adaptor proteins, such as paxillin, are generally 

associated with promoting migration by recruiting and assembling critical focal adhesion 

signaling components (251).  All focal adhesion proteins are dynamically regulated so 

that they continually cycle in and out of focal adhesions (focal adhesion protein 

turnover).  Modulation of this focal adhesion protein turnover can directly affect the 

strength and turnover of focal adhesions themselves (252), and thus cell motility.  

Phosphorylation of focal adhesion proteins is a major mechanism by which turnover is 
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regulated.  Several kinases are localized to focal adhesions [e.g. focal adhesion kinase 

(FAK), Src family kinases, ERKs and protein kinase C (PKC)]; when activated, they 

phosphorylate nearby focal adhesion proteins, serving to regulate focal adhesion 

stability, turnover, and cell motility (129, 253).  Several PKC isoforms exist, some of 

which (, , ) have been identified as focal adhesion proteins (254-256).  Active PKC is 

known to phosphorylate focal adhesion proteins (257-259), regulate focal adhesion 

formation (260) leading to an increase in the overall number of focal adhesions per cell 

(253), and promote focal adhesion-dependant processes such as cell adhesion, 

spreading and migration ((261, 262) reviewed in (263)). 

In this study, we identify SH2B1 as a novel focal adhesion protein.  We show 

that SH2B1 localizes to focal adhesions through its SH2 domain, and provide evidence 

that PKC may regulate SH2B1 focal adhesion localization through phosphorylation of 

SH2B1 serines 161 and/or 165.  In addition, we present evidence that phosphorylation 

of serines 161 and/or 165 has a profound effect on overall focal adhesion number which 

may contribute to the ability of SH2B1 to regulate cell motility. 
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Results 

 

SH2B1 is a novel focal adhesion protein.  Our previous studies have 

implicated SH2B1 in the control of cytoskeletal dynamics by enhancing GH and PDGF-

dependent cell ruffling and lamellipodia formation and GH-induced cell motility (112, 

132).  To gain further insight into the role of SH2B1 in cytoskeletal dynamics and cell 

motility, GFP-SH2B1 was visualized in 3T3-F442A fibroblasts.  Initial experiments 

revealed GFP-SH2B1 co-localization with the termini of actin filaments in a pattern 

characteristic of focal adhesion proteins (Fig. 4.2A).  To confirm that SH2B1 is localized 

to focal adhesions, GFP or GFP-SH2B1-expressing 3T3-F442A fibroblasts were fixed 

and stained for the focal adhesion markers, vinculin and FAK.  GFP-SH2B1 co-

localized with both endogenous vinculin (Fig. 4.2B) and endogenous FAK (Fig. 4.2C).  

GFP-SH2B1 also co-localized with mCherry-vinculin when both proteins were 

expressed and visualized in living HeLa cells (Fig. 4.2D), indicating that SH2B1 

localizes to focal adhesions in both fibroblast and epithelial cell types.   
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Figure 4.1.  Schematic representations of SH2B1 truncation, deletion and point 
mutations.  Red lines indicate point mutations that render the respective domains 
nonfunctional (107, 248).  Schematics are represented in the same order as depicted in 
Figure 4.3.  Abbreviations are: DD, dimerization domain; NLS, nuclear localization 
sequence; NES, nuclear export sequence; PH, pleckstrin homology domain; SH2, Src 
homology 2 domain. 
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Figure 4.2.  SH2B1 localizes to focal adhesions.  (A) 3T3-F442A cells expressing 

GFP (top panel) or GFP-SH2B1 (bottom panel), were fixed and stained with phalloidin 

to visualize F-actin.  (B) 3T3-F442A cells expressing GFP (top panel) or GFP-SH2B1 
(bottom panel), were fixed and stained for vinculin to visualize focal adhesions.  (C) 3T3-

F442A cells expressing GFP (top panel) or GFP-SH2B1 (bottom panel) were fixed and 
stained for FAK to visualize focal adhesions.  (D) HeLa cells expressing GFP and 

mCherry-vinculin (top panel) or GFP-SH2B1 and mCherry-vinculin (bottom panel) were 
imaged live.  All images were obtained by confocal microscopy.  Insets in the overlay 

images are magnifications of the boxed areas.  Scale bar = 10 m. 
 

 

The SH2 domain of SH2B1 is necessary and sufficient for focal adhesion 

localization.  To determine the region of SH2B1 responsible for focal adhesion 

localization, a series of GFP-tagged SH2B1 truncation, deletion and point mutants that 

disrupt SH2B1 signaling domains were co-expressed with mCherry-vinculin in 3T3-

F442A fibroblasts (see schematics in Fig. 4.1) and visualized by live confocal 

microscopy (Fig. 4.3).  As expected, GFP-SH2B1 (Fig. 4.3B) but not GFP alone (Fig. 

4.3A) localized to focal adhesions.  Deletion of the dimerization domain [SH2B1 (118-
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670), Fig. 4.3C] or NLS (SH2B1 148-198, Fig. 4.3D) or mutation of the NES (SH2B1 

mNES, Fig. 4.3E) did not prevent GFP-SH2B1 from localizating to focal adhesions.  

GFP-SH2B1 (269-670), which lacks all three of these domains, also retained its ability 

to localize to focal adhesions (Fig. 4.3F).  In contrast, GFP-SH2B1 (1-260), which lacks 

both the PH and SH2 signaling domains, was unable to localize to focal adhesions (Fig. 

4.3G), implicating the PH and/or SH2 domain in SH2B1 focal adhesion localization.  

GFP-SH2B1 (1-555), which contains the PH domain but lacks an intact SH2 domain, 

was also unable to localize to focal adhesions (Fig. 4.3H), indicating that the SH2 

domain is necessary for focal adhesion localization.  GFP-SH2B1 (R555E) lacks a 

functional SH2 domain due to a single point mutation (248). The inability of this mutant 

to localize to focal adhesions (Fig. 4.3I) indicates that the SH2 domain alone, and not the 

region C-terminal to the SH2 domain, is necessary for focal adhesion localization.  

Finally, GFP-SH2B1 (505-670), which includes primarily the SH2 domain, was able to 

localize to focal adhesions (Fig. 4.3J), indicating that the SH2 domain is both necessary 

and sufficient for focal adhesion localization. 
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Figure 4.3.  The SH2 domain of SH2B1 is necessary and sufficient for focal 
adhesion localization.  (A-J) Live 3T3-F442A cells co-expressing mCherry-vinculin with 

GFP, GFP-SH2B1 or the indicated mutant GFP-SH2B1 were visualized by confocal 
microscopy. Insets in the overlay images are magnifications of the boxed areas.  Scale 

bar = 10 m. 
 

 

Growth hormone stimulation increases SH2B1 turnover dynamics at focal 

adhesions.  Tyrosyl and serine phosphorylation is known to alter the rates at which 
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proteins cycle into and out of focal adhesions (focal adhesion protein turnover dynamics) 

(129).  GH stimulation induces JAK2-mediated tyrosyl-phosphorylation of SH2B1 in 

3T3-F442A cells (100).  Therefore, we asked whether GH stimulation alters SH2B1 

turnover dynamics in focal adhesions.  We assessed GFP-SH2B1 turnover dynamics at 

focal adhesions using fluorescence recovery after photobleaching (FRAP) (Fig. 4.4).  

Normalized recovery was substantially increased for GFP-SH2B1 at focal adhesions in 

cells treated with GH compared to control cells (Fig. 4.4A).  While the fraction of mobile 

GFP-SH2B1 calculated for each condition was similar (Fig. 4.4A, left inset), the t1/2, or 

time need to recover to 50% of the maximum (Fig. 4.4A, right inset), was significantly 

reduced in GH-treated cells, indicating that GH treatment significantly increases the rate 

at which SH2B1 cycles in and out of focal adhesions. 

 

 

Figure 4.4.  GH stimulation increases GFP-SH2B1 turnover dynamics at focal 

adhesions. 3T3-F442A cells expressing GFP-SH2B1 were incubated in serum-free 
medium overnight.  During the photobleaching scans, cells were treated with (n=5) or 
without (n=8) 500 ng/ml GH.  FRAP analysis was carried out for 400 seconds.  FRAP 
values were obtained using Fluoview software.  Curves were fit to normalized data using 

SigmaPlot software.  Mobile fraction (left insets) and 1/2 (right insets) values were 
calculated from the curve fit equations.  Error bars indicate s.e.m.  *P <0.05 by Student’s 
t-test. 
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PKC mediates PMA-induced SH2B1 phosphorylation.  We have previously 

shown that SH2B1 is serine phosphorylated in response to the PKC agonist, phorbol 

12-myristate 13-acetate (PMA), in the PC12 neuronal cell line (110).  Our present 

identification of SH2B1 as a focal adhesion protein combined with the previous 

observations that several PKC isoforms localize to focal adhesions raise the possibility 

that PKC regulates SH2B1 at focal adhesions.  We first confirmed that SH2B1 is 

phosphorylated in response to PMA in 3T3-F442A fibroblasts.  PMA stimulation 

activated ERK1/2 (Fig 4.5A, middle panel), consistent with previous studies showing 

PKC-mediated activation of the Raf/MEK/ERK pathway (264-266).  PMA stimulation also 

caused a significant upward shift in SH2B1 mobility in Western blots (Fig. 4.5A, top 

panel), an event that we have previously shown to be indicative of increased 

serine/threonine phosphorylation of SH2B1 (100, 224).  Dose and time course 

experiments revealed PMA stimulation to result in maximal SH2B1 phosphorylation at 

100 nm PMA after 15-30 min (Fig. 4.5B).  Pre-treating cells with the PKC-specific 

inhibitor, bisindolylmaleimide I (bis I), but not its inactive analogue, bisindolylmaleimide V 

(bis V), prior to PMA stimulation inhibited SH2B1 phosphorylation (Fig. 4.5C), indicating 

that PKC or a kinase downstream of PKC mediates the PMA-induced SH2B1 

phosphorylation in 3T3-F442A fibroblasts.  Treatment of 3T3-F442A fibroblasts 

expressing GFP-SH2B1 with PMA also resulted in an upward shift in migration of GFP-

SH2B1 (Fig. 4.5D) consistent with exogenously expressed SH2B1 also being 

phosphorylated in response to PKC activation. 
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Figure 4.5.  PMA induces SH2B1 phosphorylation.  (A) 3T3-F442A cells were 
stimulated with vehicle or 100 nm PMA for 15 min.  Lysates were blotted for total SH2B1 
(top panel), phospho-ERK1/2 (middle panel) or total ERK1/2 (bottom panel).  (B) 3T3-
F442A cells were stimulated with increasing concentrations of PMA for 15 min (top 
panel) or with 100 nm PMA for increasing time periods (bottom panel).  Lysates were 

blotted with SH2B1.  (C) 3T3-F442A cells were pretreated with DMSO, bis I or bis V for 
1 hr, then stimulated with vehicle or 100 nm PMA for 15 min.  Lysates were blotted with 

SH2B1, phospho-ERK1/2 or ERK 1/2.  (D) 3T3-F442A cells expressing GFP-

SH2B1 were stimulated with vehicle or 100 nm PMA for 15 minutes.  Lysates were 

immunoprecipitated with GFP.  Immunoprecipitates (top panel) and lysates (bottom 

panel) were blotted with GFP. 
 

 

Phosphorylation of Serines 161/165 regulates localization of SH2B1 in 

focal adhesions.  We have shown previously by mass spectrometry that serine 161 in 

SH2B1 is phosphorylated and have indirectly implicated phosphorylation of serine 165 

in PMA-stimulated 293T cells (Maures, et al. Manuscript in preparation).  Both serines lie 

within the classic PKC-substrate motif, X(S/T)X(R/K) (Center for Biological Sequence 

Analysis, http://www.cbs.dtu.dk/index.shtml) (Fig. 4.6A).  To investigate the potential for 

phosphorylation of these Ser to regulate SH2B1 at focal adhesions, GFP-SH2B1, 

GFP-SH2B1 (S161,165A) (which lacks these two serines) and GFP-SH2B1 (S165E), 
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(in which Ser 165 has been mutated to glutamate, mimicking phosphorylation) were 

expressed in 3T3-F442A fibroblasts (Fig. 4.6B).  Whereas GFP-SH2B1 localizes to 

focal adhesions and the cytoplasm, GFP-SH2B1 (S161,165A) localized almost 

exclusively to focal adhesions.  Conversely, GFP-SH2B1 (S165E) localized less to 

focal adhesions and more to the cytoplasm.  Additionally, on average, GFP-SH2B1 

(S161,165A)-positive focal adhesions appeared larger than GFP-SH2B1-positive focal 

adhesions.  These results suggest that phosphorylation of Ser 161 and/or 165 regulates 

SH2B1 localization at focal adhesions, and possibly the size of focal adhesions. 

 

 

Figure 4.6.  Serines 161 and 165 regulate SH2B1 localization within focal adhesions.  

(A) Schematic representation of serines 161 and 165 in SH2B1.  Abbreviations are: 
DD, dimerization domain; NLS, nuclear localization sequence; NES, nuclear export 
sequence; PH, pleckstrin homology domain; SH2, Src homology 2 domain.  (B) Live 

3T3-F442A cells expressing WT or mutant GFP-SH2B1 were imaged by confocal 

microscopy.  Scale bar = 10 m. 
 

 

To determine if PKC activation influences SH2B1 localization at focal adhesions 

and whether phosphorylation of Ser 161/165 mediates this potential PKC regulation, 
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3T3-F442A fibroblasts expressing GFP-SH2B1 or GFP-SH2B1 (S161,165A) were 

stimulated with PMA.  While PMA stimulation resulted in a significant upward shift in 

mobility for GFP-SH2B1, GFP-SH2B1 (S161,165A) exhibited a minimal upward shift, 

consistent with PKC inducing phosphorylation of Ser 161 and/or 165 (Fig. 4.7A). 

Interestingly, serines 161 and 165 lie within a 30 amino acid stretch of SH2B1 

that contains 13 serines and threonines.  Ten of these serines and threonines (S137, 

S141, T142, T143, S144, S145, S154, S157, S161, S165) lie within the classic PKC-

substrate motif, X(S/T)X(R/K) (Center for Biological Sequence Analysis, 

http://www.cbs.dtu.dk/index.shtml).  3T3-F442A cells expressing GFP-vinculin, WT GFP-

SH2B1 or GFP-SH2B1 (13SA) (in which all 13 serines and threonines were mutated 

to alanine) were also imaged by confocal microscopy before and after PMA stimulation.  

Confocal images were taken every 5 min for 30 min (Fig. 4.7B) and the fluorescence 

intensity of individual focal adhesions was measured and quantified at each time-point 

(Fig. 4.7C).  PMA stimulation resulted in a significant reduction (> 50%) of GFP-SH2B1 

at focal adhesions over 30 min.  Mutating Ser 161/165 to alanine substantially reduced 

the degree of PMA-mediated depletion of GFP-SH2B1 from focal adhesions (to <20%).  

Interestingly, PMA stimulation of GFP-SH2B1(13SA) resulted in phenotype almost 

identical to that of GFP-SH2B1 (S161,165A) (data not shown).  PMA stimulation only 

significantly reduced GFP-vinculin localization at focal adhesions at the 25 min time 

point, indicating that PMA stimulation does not induce general focal adhesion 

dissolution.  These data suggest that PMA-mediated PKC activation and subsequent 

SH2B1 phosphorylation at Ser 161 and/or 165 lead to SH2B1 dissociation from focal 

adhesions. 

http://www.cbs.dtu.dk/index.shtml


 

 119 

 

Figure 4.7.  PMA stimulation induces a loss of GFP-SH2B1, but not GFP-SH2B1 
(S161,165A), from focal adhesions.  (A) 3T3-F442A cells expressing WT or mutant GFP-

SH2B1 were stimulated with vehicle or 100 nm PMA for 15 min.  Lysates were blotted 

with GFP.  (B) 3T3-F442A cells expressing GFP-SH2B1 were imaged by confocal 
microscopy before and after 100 nm PMA stimulation for up to 30 min.  (C) Metamorph 
imaging software was used to quantify the fluorescence intensity of individual focal 
adhesions.  Three independent experiments assessing focal adhesions from 2-4 cells 

were performed for WT and mutant GFP-SH2B1 and two independent experiments 
assessing focal adhesions from 2-4 were performed for GFP-vinculin.  Error bars 
indicate s.e.m.  *P<0.05 by Student’s t-test. 
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Serines 161/165 regulate SH2B1 focal adhesion dynamics.  The observed 

differences in mutant SH2B1 localization and response to PMA stimulation compared 

to WT SH2B1 suggest that phosphorylation of Ser 161 and/or 165 modulate SH2B1 

turnover dynamics at focal adhesions.  To assess the turnover dynamics of focal 

adhesion-localized SH2B1, and determine whether phosphorylation of Ser 161 and/or 

165 are likely to regulate this turnover, FRAP experiments were performed on focal 

adhesion-localized GFP-SH2B1, GFP-SH2B1 (S161,165A) and GFP-SH2B1 

(S165E) in 3T3-F442A fibroblasts (Fig. 4.8A).  Normalized recovery was substantially 

delayed for GFP-SH2B1 (S161,165A) and slightly accelerated for GFP-SH2B1 

(S165E) compared to WT GFP-SH2B1 (Fig. 4.8B).  The fraction of mobile SH2B1 

(mobile fraction, Fig. 4.8C) and time needed for SH2B1 to recover 50% fluorescence 

intensity (1/2, Fig. 4.8D) were also determined.  While the mobile fraction of both 

mutants was similar to WT, the 1/2 of GFP-SH2B1 (S161,165) was significantly 

increased compared to WT GFP-SH2B1, and the 1/2 of GFP-SH2B1 (S165E) 

appeared to be decreased (although statistical significance was not achieved, p = .09) 

compared to WT GFP-SH2B1 (Fig. 4.8C).  Interestingly, GFP-SH2B1 (13SA) again 

displayed an almost identical phenotype to GFP-SH2B1 (S161,165A) (data not shown).  

These data indicate that while the total fraction of SH2B1 able to dynamically cycle in 

and out of focal adhesions is not affected by mutating Ser 161/165, the rate of turnover 

is significantly decreased when Ser 161 and 165 cannot be phosphorylated.  This 

provides further evidence that phosphorylation of one or both of these residues regulates 

localization of SH2B1 in focal adhesions. 
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Figure 4.8.  Serines 161 and/or 165 regulate SH2B1 focal adhesion dynamics.  (A) 

Confocal microscopy images of focal adhesion-localized WT and mutant GFP-SH2B1 

in 3T3-F442A cells before and after photobleaching. Scale bare = 2 m.  (B) FRAP 
values were obtained using Fluoview software.  Curves were fit to normalized data using 

SigmaPlot software.  Mobile fraction (C) and 1/2 (D) values were calculated from the 
curve fit equations. n=9 (WT and S161,165A); n=10 (S165E). Error bars indicate s.e.m. 
*P <0.01 by Student’s t-test. 
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GFP-SH2B1 (S165E) increases focal adhesion number.  PKC activation is 

associated with increased focal adhesion formation (253).  Intriguingly, expression of 

GFP-SH2B1 (S165E) alone also appeared to produce an increased number of focal 

adhesions per cell as well as smaller focal adhesions compared to cells expressing WT 

GFP-SH2B1 (Fig. 4.9A.)  Quantification of focal adhesions per cell showed that 

expression of GFP-SH2B1 (S165E) resulted in a significant increase in the number of 

focal adhesions per cell compared to cells expressing GFP alone, WT GFP-SH2B1 or 

GFP-SH2B1 (S161,165A) (Fig. 4.9B).  This raises the exciting possibility that in 

addition to regulating focal adhesion-localized SH2B1 turnover, phosphorylation of 

SH2B1 at Ser 165 is a key event in the PKC-mediated regulation of nascent focal 

adhesion formation. 
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Figure 4.9.  SH2B1 (S165E) increases the number of focal adhesions per cell.  (A) 

3T3-F442A cells expressing WT or mutant GFP-SH2B1 were fixed, stained for vinculin 

and imaged by confocal microscopy.  Scale bar = 10 m.  (B) Quantification of number 
of focal adhesions per cell. Three independent experiments assessing focal adhesions 
from at least 10 cells were performed for each condition.  Error bars indicate s.e.m.  *P 
<0.01 by Student’s t-test. 
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Discussion 
 

Here, we have identified SH2B1 as a novel focal adhesion protein that is 

targeted to focal adhesions through its SH2 domain.  We further provide evidence that 

SH2B1 localization at focal adhesions is regulated by PMA-induced phosphorylation, 

most likely of serines 161 and/or 165, and that this phosphorylation regulates overall 

focal adhesion number.  That the SH2 domain of SH2B1 is necessary and sufficient for 

focal adhesion localization indicates that SH2B1 binds a tyrosyl phosphorylated protein 

within the focal adhesion complex.  Focal adhesions are known to contain several 

tyrosyl-phosphorylated proteins, including paxillin (267), vinculin (268, 269), talin (270) 

p130Cas (271), tensin (272), and FAK (267).  The SH2 domains of other focal adhesion 

proteins have been identified as important for focal adhesion localization (273, 274) and 

overall tyrosine phosphorylation of focal adhesion proteins is thought to be an important 

regulatory mechanism of focal adhesion formation, stability and maturation (reviewed in 

(275)).  Therefore, in addition to the regulation of SH2B1 focal adhesion localization by 

PKC activation, it seems likely that mechanisms regulating overall focal adhesion protein 

tyrosyl phosphorylation (eg. Src and FAK activation) also regulate the recruitment of 

SH2B1 to focal adhesion.  In addition to SH2B1, we found SH2B1 and SH2B1 to 

localize to focal adhesions (data not shown), and we predict that SH2B1 also localizes 

to focal adhesions as SH2B1 contains the same SH2 domain as ,  and  isoforms.  

SH2B2 and SH2B3 both contain SH2 domains similar to SH2B1, and all three family 

members have been shown to bind phospho-Tyr813 in JAK2 through their SH2 domains 

(22, 23, 276).  This suggests that SH2B family members may be recruited to similar 

targets through their SH2 domains, and therefore it is possible that SH2B2 and SH2B3, 

like SH2B1, are localized to focal adhesions.  SH2B3 has also been described as a 
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binding partner of the focal adhesion protein, filamin (139),  although this interaction was 

not mediated through the SH2 domain of SH2B3 and not observed at focal adhesions.   

It has recently been shown that the rates at which individual proteins cycle into 

and out of focal adhesions can directly affect the rates of focal adhesion assembly and 

disassembly (129, 252) as well as cell motility.  Therefore, our finding that GH 

stimulation can directly and significantly regulate the turnover dynamics of a focal 

adhesion protein (i.e. SH2B1) (Fig. 4.4A) provides one possible mechanism by which 

GH regulates cell motility.  Consequently, it will be of interest in the future to determine 

the effect that altered rates of SH2B1 turnover dynamics at focal adhesions have on 

cell motility.  

Previous studies have shown that PKC may directly phosphorylate several focal 

adhesion proteins including vinculin (257), talin (258), filamin (259) and integrin (277).  In 

addition, PKC is an important factor in integrin-mediated signaling (reviewed in (263)) 

and is able to induce activation of ERK1/2 (253, 278, 279), RhoA (280), and FAK (281), 

events which lead to an increase in focal adhesion number, cell adhesion and/or cell 

migration.  Our recent work suggests that PKC regulates SH2B1 localization at the 

plasma membrane (PM) in PC-12 neuronal cells and 293T cells through phosphorylation 

at Ser 161 and/or 165 (Maures, et al. Manuscript in preparation).  These data combined 

with the data presented in the present study suggest the existence of an intriguing model 

whereby PKC regulates SH2B1 at multiple levels (ie. at the PM and focal adhesions).  

Interestingly, several studies have shown that different PKC family members are 

localized to distinct subcellular locations including the PM and focal adhesions (reviewed 

in (282)), raising the possibility that specific PKC family members regulate SH2B1 at 

different subcellular locations.  In the PC-12 model, it is thought that positively charged 

amino acids within the NLS recruit SH2B1 to the negatively charged PM.  The negative 
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charge from phosphorylation of Ser 161/165 (which lie adjacent to the positively charged 

NLS) counteracts this positive charge, leading to dissociation of SH2B1 from the PM.  

Here, we show that the NLS is dispensable for SH2B1 focal adhesion localization (Fig. 

4.3), indicating that phosphorylation of Ser 161/165 causes SH2B1 dissociation from 

focal adhesions by some other mechanism (e.g. a phosphorylation-induced 

conformational change leading to a decreased affinity of SH2B1 for a binding partner).  

Precedence exists for serine phosphorylation-mediated regulation of focal adhesion 

protein localization.  Serine phosphorylation of vinculin (283) and paxillin (284) is known 

to cause dissociation of these molecules from focal adhesions.  Serine phosphorylation 

of paxillin has also been shown to regulate paxillin dynamic turnover at focal adhesions 

(129).  Inhibiting Ser 161/165 phosphorylation or mimicking constitutive Ser 165 

phosphorylation similarly altered SH2B1 turnover dynamics at focal adhesions, 

providing further evidence that regulated phosphorylation at these sites is important for 

SH2B1 function at focal adhesions.   

Our surprising finding that focal adhesion numbers per cell were significantly 

increased by mimicking Ser 165 phosphorylation by mutation to Glu suggests that 

phosphorylation of SH2B1 at Ser 165 may be a key step in the formation of new focal 

adhesions.  In addition, cells expressing SH2B1 (S165E) appeared to harbor smaller 

focal adhesions than cells expressing GFP or WT GFP-SH2B1 (Fig. 4.9 and data not 

shown).  Interestingly, FAK null fibroblasts also display increased numbers of focal 

adhesions compared to WT cells (285) and vinculin null fibroblasts display focal 

adhesions that are smaller in size (250).  However FAK null fibroblasts are less motile 

than their WT counterparts while vinculin null fibroblasts are more motile than WT cells 

but have a decreased number of focal adhesions per cell.  SH2B1 (S165E) appears to 

incorporate aspects of both of these opposing phenotypes as we have also found 
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SH2B1 (S165E) to potently increase cell migration (HWS paper}.  Perhaps the 

phenotype that most closely resembles that of SH2B1 (S165E) is that of PMA-induced 

PKC activation in glioma cells, which results in both an increase in focal adhesion 

number and cell migration (253).   

One mechanism by which SH2B1 may regulate focal adhesion number is by 

modulating the dynamic turnover of other focal adhesion proteins.  There is evidence 

indicating that turnover of individual focal adhesion proteins may be directly related to 

the turnover of focal adhesions themselves (252), a process that is linked to the 

formation of new focal adhesions.  After localizing to focal adhesions through its SH2 

domain, SH2B1 may bind and stabilize other focal adhesion proteins through its other 

signaling domains, thus providing additional integrity to the focal adhesion complex.  In 

addition, cells expressing GFP-SH2B1 (S161,165A) appeared to harbor large focal 

adhesions with many fibrillar adhesions (Fig. 4.9 and data not shown) suggesting that 

focal adhesions in GFP-SH2B1 (S161,165A)-expressing cells either mature more 

rapidly or turn over less rapidly than in cells expressing WT GFP-SH2B1.  Taken 

together, these observations suggest that PKC-mediated phosphorylation of SH2B1 

and subsequent redistribution out of focal adhesions may initiate partial destabilization of 

focal adhesions, leading to smaller and increased number of focal adhesions, resulting 

in increased cell motility.  

The regulation of cell signaling, cytoskeletal dynamics and cell motility through 

focal adhesions is crucial for numerous physiological and pathophysiological processes.  

A growing number of studies also implicate SH2B family members in an array of 

physiological processes that are dependent on cytoskeletal dynamics and/or cell motility.  

Our finding of SH2B1 as a novel focal adhesion protein whose phosphorylation 
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dynamically regulates focal adhesion number provides the grounds for further study into 

the precise function and regulation of SH2B1 in focal adhesions. 
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MATERIALS AND METHODS 

 

 Antibodies:  Anti-vinculin mouse monoclonal antibody (-vinculin) was from Sigma-

Aldrich (Cat. # V9131) and anti-FAK mouse monoclonal antibody (-FAK) was from 

Transduction Laboratories (Cat. # F15020).  Both were used at a dilution of 1:100 for 

immunofluorescence. Polyclonal antibody to rat SH2B1 {(SH2B1), kind gift of Dr. Liangyou 

Rui (University of Michigan)}, was raised against an SH2B1β glutathione S-transferase 

fusion protein and used at a dilution of 1:1000 for Western blotting (243).  Anti-phospho-

44/42 MAPK antibody that recognizes both ERK1 and ERK2 that are doubly phosphorylated 

on T202/Y204 (pERK1/2; E10) and anti-total ERK (ERK1/2) were from Cell Signaling 

Technology and were used at a dilution of 1:1000 for Western blotting. IRDye 800- and 

IRDye 700-conjugated affinity-purified antimouse IgG and antirabbit IgG (Rockland 

Immunochemicals Inc.) were used at a dilution of 1:20,000. Anti-GFP IRDye 800-congujated 

goat polyclonal antibody (Rockland) was used at a dilution of 1:5000 for Western blotting.  

Anti-GFP mouse monoclonal antibody (GFP) for immunoprecipitation (1:100 dilution) was 

from Clontech. Alexa Fluor 568-conjugated phalloidin (dilution 1:100) and anti-mouse Alexa 

Fluor 405 and 594 secondary antibodies (dilution 1:1000) for confocal immunofluorescence 

were from Invitrogen.   

 Reagents:  Recombinant 22,000-Da human GH was a kind gift from Eli Lilly & Co.  

PMA (Sigma) was diluted in DMSO.  Dulbecco’s Modified Eagle Medium (DMEM) was from 

Cambrex.  Fetal bovine serum (FBS) was from Hyclone.  Calf serum was from Atlanta 

Biologicals.  The antibiotic-antimycotic solution, trypsin-EDTA and Magic Mark XP western 

standards were from Invitrogen.  Aprotinin, leupeptin, and Triton X-100 were from Roche. 

Recombinant protein A-agarose was from Repligen.  Hybond-C Extra nitrocellulose was 

from Amersham Biosciences.  Bisindolylmaleimide I and bisindolylmaleimide V were from 



 

 130 

Calbiochem.  Human fibronectin was from BD Biosciences.  Paraformaldehyde was from 

Electron Microscopy Sciences. 

 Cell Culture, Transfection and Stimulation:  The stock of murine 3T3-F442A 

fibroblasts was kindly provided by H. Green (Harvard University).  HeLa cells were from 

ATCC.  3T3-F442A cells were grown in DMEM supplemented with 1 mM L-glutamine, 100 U 

of penicillin per ml, 100 g of streptomycin per ml, 0.25 g of amphotericin per ml, and 8% 

calf serum.  HeLa cells were grown in DMEM supplemented with 100 U of penicillin per ml, 

100 g of streptomycin per ml, 0.25 g of amphotericin per ml, and 10% fetal bovine serum. 

3T3-F442A fibroblasts were transiently transfected using Amaxa nucleofector technology 

from Lonza (Colonge, Germany) using solution V and setting U24.  HeLa cells were 

transiently transfected using FuGene HD from Roche (Indianapolis, IN).  All cells were 

incubated overnight in serum-free medium containing 1% bovine serum albumin before 

treatment with PMA or GH. 

Plasmids, Cloning and Mutagenesis:  All cDNAs encoding GFP-tagged 

SH2B1 and SH2B1 point, deletion and truncation mutants were described previously 

(106, 107, 110, 112, 132) (Maures, et al. Manuscript in preparation).  GFP-vinculin was a 

kind gift from Dr. Kenneth Yamada (National Institutes of Health). 

Immunofluorescence:  For fixed-cell imaging cells were fixed in 4% 

paraformaldehyde in phosphate buffered saline (PBS), gently washed 3X in PBS, 

permeabilized in 0.1% TritonX-100 in PBS, blocked for 30 minutes in PBS containing 5% 

normal serum from the species used for secondary antibody production.  Cells were then 

incubated with primary antibody diluted 1:100 in blocking solution for one hour.  Cells 

were gently washed 3X in PBS, and then incubated for 1 h with secondary antibody 

diluted 1:1000 in PBS or alexa fluor-conjugated phalloidin diluted 1:100 in PBS.  Cells 

were gently washed 3X in ddH2O, and then mounted on Fisherfinest Premium 
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Microscope Slides using Prolong Gold Antifade mounting reagent (Invitrogen).  For live 

cell imaging, cells were grown on no. 1.5 glass bottom dishes (MatTek Corp.) and 

imaged in Ringer’s buffer (155 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2 6H2O, 2 

mM NaH2PO4 H2O, 10 mM HEPES, 10 mM glucose).  All images were obtained with an 

Olympus FluoView 500 Laser Scanning Confocal Microscope.  For focal adhesion 

counting, cells were fixed and stained for vinculin.  15-20 random images were obtained 

in each of three independent experiments for each condition, and vinculin-positive focal 

adhesions in each cell were counted. 

Fluorescence Recovery After Photobleaching:  GFP-SH2B1β, GFP-SH2B1 

(S161,165A) or GFP-SH2B1 (S165E) were transiently expressed in 3T3-F442A 

fibroblasts.  The GFP signal in individual focal adhesions was bleached by 3 iterations of 

100% laser power. Fluorescent intensity measurements were taken every 6 or 10 sec.  

Data were normalized to unbleached sections of cytosol after background subtraction. 

SigmaPlot 11.0 was used to fit curves to FRAP data by applying the nonlinear 

regression of exponential rise to maximum and the double fours best fit equation, y = 

a*(1–e–b*x)+c*(1– e–d*x).  The fraction of mobile SH2B1β and τ1/2 (time needed to recover 

to 50% of the mobile fraction) were calculated from the equations.. 
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This Chapter represents a “manuscript in progress” and will be submitted for publication 

under the title “Identification and characterization of SH2B1 as a novel focal adhesion 

protein” by Nathan J. Lanning, James Herrington, Travis J. Maures, and Christin Carter-

Su.  James Herrington made the initial observations that SH2B1 is a focal adhesion 

protein and that the SH2 domain was necessary for focal adhesion localization, Travis J. 

Maures cloned many of the GFP-SH2B1 mutants used in these studies, and I provided 

all figures for this Chapter 
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Chapter 5 

 

Conclusion 

 

The overall goal of my thesis research was to answer some of the important remaining 

questions in GH signal transduction.  In particular, I wanted to identify the primary 

kinase(s) responsible for transducing the GH signal in 3T3-F442A and H4IIE cells and 

then more fully characterize the role of SH2B1 in GH-induced regulation of the actin 

cytoskeleton.  While JAK2 and Src family kinases have both been shown to function 

within the GH signaling pathway, the relative contributions of each to GH signaling in the 

frequently used models of GH signaling, 3T3-F442A preadipocytes and H4IIE hepatoma 

cells, remained unclear.  The interpretation and application of dozens of previous studies 

along with the design of future studies utilizing these cell lines rely on the answer to this 

question.  Additionally, many GH-induced responses such as differentiation, proliferation 

and migration require regulation of the actin cytoskeleton, yet few studies have probed 

the molecular mechanisms of these actions.  From the few studies attempting to identify 

these mechanisms, SH2B1 has clearly emerged as an important modulator of GH-

induced cytoskeletal regulation.   
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JAK2, but not Src family kinases, regulate Stat, ERK1/2 and PI3-kinase activation 

in 3T3-F442A preadipocytes and H4IIE hepatoma cells 

 The results presented in Chapter 2 collectively indicate that JAK2 is primarily 

responsible for GH activation of Stat1, Stat3, Stat5, ERK1/2 and Akt in 3T3-F442A 

fibroblasts, H4IIE hepatoma cells and murine embryonic fibroblasts (MEFs).  While the 

overall interpretation of the results in Chapter 2 is fairly straight forward, there are 

instances where further discussion is warranted.  Prior to the study described in Chapter 

2, JAK2 had been classically thought of as the primary kinase responsible for 

transducing the GH signal (5).  However, in recent years, several reports have surfaced 

indicating that, like other members of the cytokine family, GH also activated members of 

the Src family of kinases (these reports are described in detail in the Introduction section 

of this thesis).  Like JAK2, Src family kinases are able to induce the activation of Stat, 

ERK1/2 and Akt proteins (reviewed in (286)) raising the possibility that GH activation of 

Src family kinases may contribute to some GH signaling events.  Therefore, we sought 

to determine the relative contribution of JAK2 and Src family kinases to GH signaling in 

two highly GH responsive cell types: 3T3-F442A preadipocytes and H4IIE hepatoma 

cells.  3T3-F442A preadipocytes require GH in order to mature into adipocytes (168).  

GH has also been shown to regulate the actin cytoskeleton in these cells (132, 169).  In 

differentiated 3T3-F442A adipocytes, GH regulates the transcription of multiple genes 

(172), as well as lipolysis, hormone-sensitive lipase (170) and rates of glucose transport 

(171).   Hepatocytes are a major target of GH-mediated transcriptional regulation 

(reviewed in (39)), and H4IIE hepatoma cells have been used to study the effect of GH 

on protein synthesis (180) and insulin responsiveness (179, 181, 182).  Therefore, we 

sought to determine the relative contribution of the aforementioned kinases to GH 

signaling in these cells. 
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Src family kinases were not found to be activated in response to GH in either of 

these cell lines.   In data not included in Chapter 2, we were able to identify by molecular 

weight the active forms of all six Src family kinases present in 3T3-F442A and H4IIE 

cells, indicating that the method that we chose to assess Src family kinase activity (i.e. 

blotting with a phospho-specific antibody specific to the activating tyrosine) did not 

overlook activation of any Src family kinase members.  Additionally, as described in 

Chapter 2, we found EGF stimulation of 3T3-F442A cells to significantly further activate 

Src family kinases.  Thus Src family kinases were not maximally activated in the basal 

state, and were capable further activated by physiologically relevant ligands.  

Pretreatment with Src family kinase pharmacological inhibitors reduced the activity of all 

six Src family kinases to levels below detection.  However, the inhibitors had no effect on 

GH-induced activation of JAK2, ERK1/2, Stat1, Stat3, or Stat5.  Collectively, these 

results showed that in 3T3-F442A and H4IIE cells, GH-induced activation of JAK2, 

ERK1/2 and Stat proteins is not dependent on Src family kinase activity.  We cannot rule 

out the possibility that Src family kinases account for a fraction of GH activation of these 

proteins that is too small to be detected by this established method of Src family kinase 

activation detection. However, we hypothesize that any such contributions by Src family 

kinases to the physiological actions of GH in these cells would be negligible.  In addition, 

these results argue against the possibility that GH treatment results in the recruitment of 

basally active Src family kinases to a cellular compartment where they can then activate 

ERKs and Stats. 

 Pharmacological inhibition of Src family kinases did, however, result in a 

significant reduction in GH-induced Akt activation in both cell lines.  However, the 

inhibitors also significantly reduced basal Akt activity, raising the possibility that the Src 

inhibitor-induced reduction in GH-induced Akt activation was not specific to GH-induced 

activation, but was instead related to decreased basal Akt activity. One group has 
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proposed that Src must phosphorylate Akt on Tyr315 and Tyr326 before growth factors 

can activate Akt by stimulating its phosphorylation on Thr308 and Ser473 (201, 202). 

Thus, while Src phosphorylation of Akt may be necessary for GH to induce Akt 

activation, Src may not directly mediate that activation.  In support of this, we found that 

in 3T3-F442A cells pretreated with Src family kinase inhibitors, epidermal growth factor 

was, like GH, unable to activate Akt (data not shown).  Further, we found that reducing 

JAK2 levels by RNAi almost abolished GH-induced activation of Akt, and that GH was 

able to substantially activate Akt in Src family kinase null fibroblasts.  These data 

indicate that GH is able to activate Akt without Src family kinases, but seems unable to 

activate Akt without JAK2.  Additionally, PP3, the inactive analogue of the Src family 

kinase inhibitors, PP1 and PP2, inhibited both basal and GH-stimulated Akt activation.  

This raises the additional possibility that the inhibitory effects of the active Src family 

kinase inhibitors, PP1 and PP2, are not mediated exclusively via Src family kinases, but 

rather have off-target effects as has been previously documented (189, 190). 

The overall results of our study are in direct opposition to those generated by the 

Lobie, Tanaka, and Waters groups who found GH to activate at least one Src family 

kinase in CHO cells, NIH 3T3 cells, F-36P human leukemia cells, FDC-P1 hematopoietic 

progenitor cells, or murine liver tissue (30, 32, 34, 287). The simplest explanation for this 

apparent discrepancy is that different cell types activate different kinases in response to 

GH. For example, cells of hematopoietic origin appear to utilize Src family kinases for 

cytokine signaling to a greater extent than cells of non-hematopoietic origin (165). 

However, the reason why different cell types utilize different kinases for signal 

transduction remains unknown.  One hypothesis is that different cell types express 

different relative amounts of particular kinases.  In a situation in which two kinases are 

able to transduce the same signal, the relative amount of one kinase compared to 

another will determine which kinase is used (i.e. if there are more JAK2 molecules than 
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Src family kinase molecules, JAK2 will transduce the GH signal).  This explanation may 

be satisfactory for the example of F-36P and FDC-P1 cells compared to 3T3-F442A and 

H4IIE cells as F-36P and FDC-P1 cells are of hematopoietic origin, and thus may have 

higher levels of Src family kinases compared to JAK2 than fibroblasts and hepatoma 

cells.  However, this explanation does not seem to explain the differences in results 

between our 3T3-F442A and MEF cells (derived from three separate mice) and those 

obtained by the Lobie group who used NIH 3T3 cells.  All of these cells are derived from 

mouse fibroblasts, and therefore might be expected to contain similar relative levels of 

JAK2 and Src family kinases.  An alternative explanation for the differences between our 

results and those of the Lobie group relates to the method of assessing Src activation.  

We relied on a phospho-specific antibody that detects phosphorylated tyrosine 416 in c-

Src and analogous tyrosines in other Src family kinases as an indication of SFK activity.  

Although the Lobie group relied on analogous phospho-specific antibodies to assess 

JAK2 and ERK1/2 activation, they utilized an in vitro kinase assay to detect GH-

activated Src. In this assay, Src was immunoprecipitated with a polyclonal antibody 

(from Santa Cruz Biotechnology, Inc.) from GH-treated cells, then incubated with a Src 

substrate in the presence of [32-P]ATP (30). We attempted to use a Src polyclonal 

antibody from Santa Cruz Biotechnology, Inc. for detection of total Src but found that 

there were too many non-specific bands present on Western blots to identify c-Src or 

other Src family kinases.  While it is possible that when the Lobie group used this 

antibody for immunoprecipitations and subsequent in vitro kinase assays, a relatively 

pure Src immunoprecipitate was obtained, controls assessing the efficiency of these 

immunoprecipitations were not shown, leaving questions regarding the specificity of 

these results. 

More recently, the Waters group has reported GH activation of Src in mouse liver 

tissues (34, 35). This is in seeming contrast with our H4IIE cells, which are derived from 
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a rat hepatoma.  In their animal studies, the Waters group specifically tested GH-induced 

responses in liver tissue to implicate Src in the activation of ERK, and JAK2 in the 

activation of Stat5, Stat3 and Akt.  These studies were conducted on mice harboring a 

GHR knock-in that contained proline to alanine mutations within the Box 1 region of the 

GHR.  These point mutations disrupt the ability of JAK2 to bind GHR and, therefore, the 

ability of GH to activate JAK2.  In their data using liver from mutant mice, GH clearly 

activates Src.  Additionally, while JAK2, Stat5 and Akt are not activated in these 

experiments, ERK1/2 is activated, indicating that GH can activate ERK1/2 in the 

absence of JAK2 activation.  This finding raises the possibility that JAK2 is responsible 

for GH activation of Stats and Akt in liver tissue while Src is responsible for GH 

activation of ERK1/2.  However, while the two papers characterizing these mutant mice 

(34, 35) both assert that GH induces Src activation in WT mice, there are no convincing 

data to substantiate these claims.  This raises the possibility that GH is only able to 

activate Src in the mutant mice due to the fact that JAK2 is unable to be activated.  If this 

is true, this mouse model of GH-induced Src activation may be an artifact of an inability 

to activate JAK2. 

Future Directions 

  Because GH-mediated activation of Stat, ERK and Akt proteins in 3T3-F442A and 

H4IIE cells appears to be dependent on JAK2, it would be interesting to determine whether 

JAK2 is required for more downstream actions of GH.  GH is necessary for 3T3-F442A 

preadipocyte differentiation into mature adipocytes (168).  Thus, testing the ability of JAK2 

shRNA expressing-3T3-F442A preadipocytes to mature into adipocytes is a logical future 

experiment.  Likewise, assessing the ability of GH to regulate lipolysis, hormone-sensitive 

lipase and glucose transport rates in JAK2 knockdown 3T3-F442A adipocytes would shed 

light on the importance of JAK2 to these previously described actions of GH in 3T3-F442A 

adipocytes (170, 171).  H4IIE cells have been used to study the effect of GH on protein 



 

 139 

synthesis (180) and insulin responsiveness (179, 181, 182), and therefore repeating these 

experiments with H4IIE JAK2 knockdown cells would clarify the importance of JAK2 to these 

GH-induced actions.  

 Perhaps the most outstanding question stemming from this study is why our study 

identified JAk2 as the primary upstream kinase in GH signaling while other groups report Src 

family kinases playing a prominent role in GH signaling.  We have hypothesized that cell 

type and relative kinase abundance may account for these differences.  Others have 

proffered this hypothesis too (35).  Future experiments comparing relative levels of JAK2 

and Src family kinases in 3T3-F442A, H4IIE, NIH 3T3, CHO, F-36P and FDC-P1 cells are a 

logical first step to answering this question.  If our hypothesis is true, I would expect to 

observe significantly higher levels of JAK2 relative to levels of Src family kinases in 3T3-

F442A and H4IIE cells than in NIH 3T3, CHO F-36P and FDC-P1 cells and mouse liver 

tissue. 

 

Growth hormone induces SH2B1 and JAK2 to form a complex with the novel 

SH2B1-interacting partner, II-spectrin, and induces II-spectrin re-localization 

 In Chapter 3, the relationship of SH2B1 to GH-mediated regulation of the actin 

cytoskeleton was investigated by characterizing the novel interaction between SH2B1 

and the cytoskeleton protein, II1-spectrin.  At the time this study was undertaken, Rac 

had previously been identified as an SH2B1-binding protein, providing one mechanism 

whereby SH2B1 could modulate GH-induced changes in the actin cytoskeleton {e.g. 

recruitment of Rac to the actin cytoskeleton via plasma membrane-localized and/or 

JAK2 associated SH2B1) {Diakonova, 2002 #3497}. However, in a yeast 2-hybrid 

screen for novel SH2B1 interacting proteins, the C-terminus of II1-spectrin was 

identified.  The importance of spectrins to the regulation and function of the actin 
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cytoskeleton is well established.  Thus, its binding to SH2B1 raised the possibility of an 

added mechanism whereby SH2B1 is able to mediate or modulate GH-induced 

changes in the actin cytoskeleton.  Subsequent co-immunoprecipitation experiments 

identified amino acids 2200-2358 of II1-spectrin as interacting with amino acids 105-

150 of SH2B1 in a mammalian expression system.  In data not shown, the SH2B1 

region of interaction was further refined to amino acids 118-150.   While amino acids 

2200-2358 include 97% (102 out of 111 amino acids) of II1-spectrin’s PH domain, no 

functional domains are known to lie within amino acids 118-150 of SH2B1, raising the 

possibility of a previously undefined PH domain-interacting region in SH2B1.  

Alternatively, it is possible that the PH domain of II1-spectrin does not mediate the 

interaction with SH2B1, but that the 55 amino acids C-terminal to the PH domain are 

responsible for the interaction.  Like the region of interaction within SH2B1, amino acids 

2304-2358 of II1-spectrin do not contain any known functional domains. 

 Interestingly, the extreme N- and C-terminal domains of II1- and II2-spectrin 

share no sequence commonality, and II1-spectrin amino acids 2200-2358 largely 

consists of almost the entire C-terminal region of dissimilarity between these splice 

variants.  Therefore, I predicted that II2-spectrin will not interact with SH2B1.  In data 

not shown, immunoprecipitation experiments were performed on lysates from 293T cells 

expressing full-length II2-spectrin and SH2B1.  In these experiments, GFP-SH2B1 

was not found to co-immunoprecipitate with myc-II2-spectrin, seemingly verifying the 

hypothesis that SH2B1 binds II1- but not II2-spectrin.  However, it must be noted 

that these experiments were performed with full-length II2-spectrin.  In fact, when the 

same experiment was repeated with full-length II1-spectrin, I found that full-length 

II1-spectrin also failed to co-immunoprecipitate with SH2B1.  Further, II1-spectrin 
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(2165-2358), which contains an intact PH domain, also failed to co-immunoprecipitate 

with SH2B1 in similar experiments.  In summary, II1-spectrin (2200-2358) 

consistently co-immunoprecipitates with SH2B1, while II1-spectrin (2165-2358), full-

length II1-spectrin and full length II2-spectrin all fail to co-immunoprecipitate with 

SH2B1 when exogenously expressed in 293T cells.   

The simplest explanation for these apparent discrepancies takes into account the 

fact that II1-spectrin (2200-2358) is localized to the cytoplasm and nucleus while the 

other spectrins are tightly associated with the plasma membrane (see Figs. 3.4 and 3.7).  

Spectrins that are tightly associated with the plasma membrane have a high likelihood of 

remaining in the insoluble fraction of cell lysates, and therefore remaining unavailable for 

co-immunoprecipitation.  On the other hand, a large percentage of II1-spectrin (2200-

2358) is present in the cytoplasm, and is thus available for co-immunoprecipitation with 

SH2B1.  All of these co-immunoprecipitation experiments were performed under 

conditions using lysis buffer containing 0.1% TritonX-100.  In the 3T3-F442A model that 

revealed a GH-induced complex formation between endogenous II-spectrin, SH2B1 

and JAK2, 1% TritonX-100 lysis buffer was used.  The more powerful 1% TritonX-100 

lysis buffer may account for the positive results observed in the latter experiment. 

In the overexpression co-immunoprecipitation and confocal microscopy 

experiments, II1-spectrin (2200-2358) and SH2B1 appeared to interact constitutively. 

In the co-immunoprecipitation experiment assessing endogenous proteins, a low level of 

interaction was present in the serum-deprived condition and the level of interaction was 

significantly increased with GH stimulation.  Therefore, in the endogenous system, GH-

stimulation (or possibly other ligand stimulation) appears to be necessary for the robust 

interaction between SH2B1 and II-spectrin.  GH and other ligands are present in 

serum, providing a possible explanation for the constitutive nature of the interaction in 
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the overexpression systems.  An alternative explanation is that II1-spectrin (2200-

2358) lacks a region that negatively regulates the interaction with SH2B1, allowing for 

constitutive interaction.  Further insight into a possible mechanism for this interaction 

may be gleaned from the facts that co-expression of JAK2 with both full-length spectrin 

isoforms resulted in tyrosyl phosphorylation of both spectrins, and that GH induced an 

increase in the interaction between II-spectrin and SH2B1. Therefore, it is possible that 

in the basal state, a lower affinity interaction exists between amino acids 2200-2358 of 

II1-spectrin and amino acids 118-150 of SH2B1.  Upon GH stimulation, the 

SH2B1/II1-spectrin complex is recruited to JAK2, resulting in tyrosyl-phosphorylation 

of II1-spectrin by JAK2, thereby creating higher-affinity binding sites for SH2B1’s 

SH2 domain.  Alternatively, JAK2 phosphorylation of II1-spectrin alters its 

conformation, making amino acids 2200-2358 more readily accessible to SH2B1. 

Notice that this model provides for a direct interaction only between II1-

spectrin, but not II2-spectrin (II2-spectrin does not contain amino acids 2200-2358 

of II1-spectrin).  It is possible that a yet undiscovered site of SH2B1 interaction is 

present on II2-spectrin.  It is also possible that II2-spectrin is present in a 

heterotetramer with II1-spectrin and is co-recruited to JAK2 with II1-spectrin, thus 

allowing for phosphorylation by JAK2. 

Interestingly, we found that JAK2 does not phosphorylate amino acids 2200-2358 

of II1-spectrin (data not shown), which is one of the regions of difference between the 

splice variants.  Thus it seems likely that JAK2 phosphorylates II1- and II2-spectrin 

on the same sites.  Finally, all identified metazoan spectrins share 50-60% amino acid 

sequence similarity, with some regions sharing 70-80% sequence similarity (217).  If 

JAK2 phosphorylates II1- and II2-spectrin within these regions of homology 

between all spectrins, it is possible that JAK2-mediated phosphorylation of spectrin 
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repeat-containing proteins is a common and major mode of regulation of the 

cytoskeleton.   

 The functional significance of JAK2-mediated phosphorylation of II-spectrin is 

yet to be established.  Phosphorylation of spectrins is thought to increase their ability to 

bind actin (218), induce their re-localization from the plasma membrane into the 

cytoplasm and/or nucleus (219, 221), decrease their affinity for other spectrins (220), 

decrease their affinity for the plasma membrane (222) and induce their cleavage by 

proteases (237).  Insulin receptor (IR) and epidermal growth factor receptor (EGFR) 

have both been shown to directly tyrosyl phosphorylate -spectrin in in vitro kinase 

assays (238, 239).  However, these assays were used to assess the relative kinase 

activities of IR and EGFR and did not link the phosphorylation of -spectrin with a 

function.  With the exception of tyrosyl-phosphorylation-induced calpain cleavage of II-

spectrin, all known spectrin phosphorylation events linked to a function are induced by 

serine/threonine phosphorylation of spectrin.  This raises the question of whether the 

GH-induced subcellular redistribution of II2-spectrin that we observed in H4IIE cells is 

directly linked to JAK2-mediated tyrosyl-phosphorylation of II2-spectrin or indirectly 

linked via serine/threonine phosphorylation of II2-spectrin by some kinase 

downstream of JAK2 (e.g. ERK1/2).  

One mechanism whereby GH may induce tyrosyl-phosphorylation and 

subsequent subcellular redistribution of II-spectrin is through GH stimulation inducing 

the formation of a complex of II-spectrin, SH2B1 and JAK2.  We observed GH 

treatment to induce the formation of this complex in 3T3-F442A cells.  However, we did 

not observe tyrosyl phosphorylation of II-spectrin at the 20 min time point tested.  One 

explanation for the apparent discrepancies between this result and the ability of JAK2 to 

phosphorylate II-spectrin in the 239T cell overexpression system is that GH induces II-
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spectrin phosphorylation at a time point prior to or after 20 min. This is a possibility that 

can be addressed by performing time courses of GH treatment.  Alternatively, the anti-

phospho-tyrosine antibody used in this experiment may not have been sensitive enough 

to identify GH-induced phosphorylation of endogenous spectrin, or II-spectrin may not 

be tyrosyl phosphorylated in response to GH treatment.  Future studies are required to 

determine if II-spectrin is phosphorylated in response to GH treatment.   

 Dissociation of spectrins from the plasma membrane is thought to be an event 

that precedes proliferation (221). Therefore, JAK2-mediated phosphorylation of spectrin 

and subsequent dissociation of spectrin from the plasma membrane may be a 

mechanism whereby GH can induce proliferation.  Autocrine GH signaling has recently 

been implicated in several cancer-associated phenotypes including enhanced 

proliferation of MCF-7 cells (288).  Accordingly, it is possible that GH-induced 

redistribution of II-spectrin may contribute to the proliferative actions of GH in MCF-7 

cells.  Another example where JAK2 phosphorylation of -spectrins may contribute to 

proliferative disorders may be in the case of the constitutively active JAK2 mutant, JAK2 

V617F, which drives several myeloproliferative disorders, including polycythemia vera, 

essential thrombocythaemia, and myelofibrosis (reviewed in (289)).   

In addition to promoting proliferation, dissociation of spectrin from the plasma 

membrane has been connected to other mechanisms of neoplasia. E-cadherin is a 

critical component of cell-cell contacts, and mislocalization or down-regulation of E-

cadherin is often associated with epithelial to mesenchymal transition (EMT) and 

metastasis (reviewed in (290)).  Proper localization of both II1 and II2-spectrin has 

been demonstrated to be necessary for proper E-cadherin localization (228, 229, 291).  

Autocrine GH has recently been shown to induce relocalization of E-cadherin from 

adherens junctions into the cytoplasm resulting in EMT in MCF-7 cells (292). Based on 
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these combined findings, it is reasonable to hypothesize that GH-induced, JAK2-

mediated phosphorylation of II-spectrin leads to mis-localization of E-cadherin, 

contributing to the autocrine GH-induced EMT phenotype in MCF-7 cells.  It is interesting 

to note that I have also found SH2B1 to be localized to adherens junctions in MCF-7 

cells (data not shown), raising the possibility that the II-spectrin/SH2B1 interaction 

plays a role in this potential mechanism. 

 Overall, the results presented in Chapter 3 establish the basis for additional 

studies investigating the functional significance of the SH2B1-dependent, JAK2-

mediated tyrosyl phosphorylation of II-spectrin and the GH-induced formation of a II-

spectrin/SH2B1/JAK2 complex, as well as the physiological relevance of the GH-induced 

shift in II-spectrin localization. 

Future Directions 

 As mentioned above, my inability to co-immunoprecipitate full length II1- and 

II2-spectrin with SH2B1 may have been due to insufficient solublization of plasma-

membrane associated II-spectrin.  Therefore, I will repeat these co-immunoprecipitation 

experiments with SH2B1 and full-length II1- and II2-spectrin using 1% TritonX-100 

as opposed to 0.1% TritonX-100.  Based on the co-immunoprecipitation results in 3T3-

F442A cells using the 1% TritonX-100 lysis buffer, I predict that both full-length II-

spectrin isoforms will co-immunoprecipitate with SH2B1. 

 One model that can be constructed based on my results in Chapter 3 is that a 

small fraction of SH2B1 and II-spectrin exist in a complex in the cytoskeleton prior to 

GH treatment.  Upon GH stimulation, II-spectrin is recruited with SH2B1 to active 

JAK2.  Active JAK2 phosphorylates II-spectrin, creating additional binding sites for 

SH2B1, and thus increasing the interaction between II-spectrin and SH2B1.  JAK2-

mediated phosphorylation of II-spectrin additionally results in the translocation of II-
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spectrin out of the plasma membrane and into the cytosol.  From the studies by other 

groups described above that assess the functional consequences of altering spectrin 

localization, the functional consequences of this model may include GH-induced 

proliferation, migration or subcellular redistribution of E-cadherin. 

I would like to first determine the mechanism of GH-induced formation of the II-

spectrin/SH2B1/JAK2 complex.  Previous studies showed that GH stimulation 

increases the interaction between SH2B1 and JAK2 (100).  My results showed that 

SH2B1 knockdown decreases the GH-induced interaction between II-spectrin and 

JAK2.  Taken together, these results suggest that GH may induce SH2B1 to recruit II-

spectrin to JAK2.  Figure 3.7 shows that II-spectrin resides almost completely in the 

cytoskeletal fraction.  In contrast, SH2B1 mostly resides in the soluble fraction in this 

experiment, while a small portion resides in the cytoskeletal fraction (data not shown).  It 

is important to note that the membrane fraction is included in the soluble fraction in these 

experiments, as previous reports have shown the majority of SH2B1 to reside in the 

membrane (132).  To determine if GH stimulation induces II-spectrin redistribution out 

of the cytoskeletal fraction and into the membrane fraction (where SH2B1 and JAK2 

are present), parallel cytoskeleton/non-cytoskeleton and membrane/cytosol fractionation 

experiments will be performed in 3T3-F442A and H4IIE cells stimulated with GH from 0-

60 min.  In Fig. 3.8, I showed that GH induced redistribution of II2-spectrin out of cell-

cell contacts and into the cytoplasm starting at 15 min, with almost complete II2-

spectrin cytoplasmic localization by 30 minutes.  Therefore I predict that GH 

administration will recruit II-spectrin out of the cytoskeletal fraction and into the plasma 

membrane fraction by 15 min following GH stimulation.  By 30 min following GH 

stimulation, I expect the majority of II-spectrin to be present in the cytoplasm. 
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To determine the importance of SH2B1 to this proposed subcellular 

redistribution of II-spectrin, I will also perform these experiments in SH2B1 knockdown 

3T3-F442A cells (shSH2B1 3T3-F442A cells).  My results in Fig 3.7 showed reduced 

complex formation between II-spectrin, SH2B1 and JAK2 in shSH2B1 cells 

compared to shControl cells. Therefore, I predict that GH will induce less II-spectrin to 

be redistributed into membrane and cytoplasmic fractions in shSH2B1 cells compared 

to shControl cells.   

Finally, the model proposed above predicts that JAK2-mediated phosphorylation 

of II-spectrin is necessary for GH to induce II-spectrin to redistribute into the 

cytoplasm.  To test this, tyrosine phosphorylation of II-spectrin will also be monitored in 

the different subcellular fractions over the GH time course.  Additionally, if the tyrosine(s) 

phosphorylated by JAK2 are identified (see below), I will express II-spectrin tyrosine to 

phenylalanine mutants in this system.  I expect that GH stimulation will not elicit 

redistribution of II-spectrin tyrosine to phenylalanine mutants into the cytoplasm.  

To identify the tyrosine(s) phosphorylated by JAK2, I will create II1- or II2-

spectrin truncation mutants.  These mutants will be expressed in 293T cells with 

SH2B1 and JAK2 to identify the region of II-spectrin that is tyrosyl phosphorylated.  

Following identification of the region of II-spectrin that is tyrosyl-phosphorylated by 

JAK2, I will create tyrosine to phenylalanine point mutants to identify the individual 

tyrosine(s) on II-spectrin that are phosphorylated by JAK2.  Assuming positive results 

are achieved in these experiments, in vitro kinase assays will be employed to determine 

if JAK2 directly phosphorylates II-spectrin on tyrosines.  The model predicts that tyrosyl 

phosphorylation of II-spectrin creates additional binding sites for SH2B1.  Therefore, 

these tyrosine to phenylalanine point mutants will be utilized in co-immunoprecipitation 
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assays with SH2B1.  I predict that less SH2B1 will co-immunoprecipitate with mutant 

II-spectrin compared to wild type II-spectrin. 

I would like to characterize the functional consequence of GH-induced II-

spectrin-containing complexes, potential II-spectrin tyrosyl phosphorylation and II-

spectrin subcellular re-distribution.  I will create and express SH2B1 truncation mutants 

lacking the II-spectrin binding domain, or II-spectrin mutants lacking the SH2B1 

binding domain or lacking tyrosines phosphorylated by JAK2 in 3T3-F442A, H4IIE or 

autocrine GH-expressing MCF-7 cells.  If II-spectrin phosphorylation or subcellular 

redistribution is necessary for GH-induced proliferation or migration, I predict that 

expression of these mutants will act as dominant negative proteins in assays of GH-

induced proliferation and/or migration. 

 

Identification and characterization of SH2B1 as a novel focal adhesion protein 

In Chapter 4, I further solidify the role of SH2B1 as a component and/or 

regulator of the actin cytoskeleton by the identification of SH2B1 as a focal adhesion 

protein.  Fluorescently tagged SH2B1 consistently localized to focal adhesions in 3T3-

F442A and NIH 3T3 fibroblasts as well as MCF-7 and HeLa epithelial-derived cells, 

indicating that SH2B1 is a component of focal adhesions in multiple cell types. Focal 

adhesions are integrin-based macromolecular complexes that mediate cell-extracellular 

matrix (ECM) attachment and allow direct signaling between the extracellular matrix and 

the cell (reviewed in (128)).   

The finding that the SH2 domain of SH2B1 is necessary and sufficient for focal 

adhesion localization leads to the hypothesis that SH2B1 binds a tyrosyl 

phosphorylated protein within the focal adhesion complex.  Focal adhesions are known 

to contain multiple tyrosyl-phosphorylated proteins (including paxillin (267), vinculin (268, 
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269), talin (270) p130Cas (271), tensin (272), and FAK (267)).  Additionally, the SH2 

domains of other focal adhesion proteins have been identified as important for focal 

adhesion localization (273, 274) and overall tyrosine phosphorylation of focal adhesion 

proteins is thought to be an important regulatory mechanism of focal adhesion formation, 

stability and maturation (reviewed in (275)).  Therefore, it is possible that mechanisms 

regulating overall focal adhesion protein tyrosyl phosphorylation (eg. Src and FAK 

activation) also regulate the recruitment of SH2B1 to focal adhesions.  However, I have 

eliminated both FAK and paxillin as potential SH2B1 interacting molecules.  We have 

identified two additional focal adhesion proteins, vinculin and talin, whose sites of tyrosyl 

phosphorylation make them attractive candidates for SH2B1 binding proteins.  SH2B1 

is known to bind phosphotyrosines that lie within a YXXL motif (12).  Vinculin tyrosine 

822 and talin tyrosines 270 and 2530 are all reported to be phosphorylated and all reside 

within a YXXL motif (269, 293).  Future experiments will explore the possibility that 

SH2B1 interacts with one or both of these proteins within the context of tyrosine 

phosphorylation.  

All SH2 domain-containing SH2B1 mutants were able to localize to focal 

adhesions.  GFP-SH2B1 (118-670), lacking the dimerization domain, GFP-SH2B1 

(150-200), lacking the NLS, and GFP-SH2B1 mNES all displayed focal adhesion 

localization similar to WT.  However, GFP-SH2B1 (269-670), which contains an intact 

SH2 domain but lacks the dimerization domain, NLS and NES, appeared to display 

reduced focal adhesion localization compared to WT GFP-SH2B1 (Fig. 4.3).  These 

data indicate that while individual disruption of the dimerization domain, NLS or NES by 

deletion or point mutation does not affect focal adhesion localization, collective 

disruption of these regions does have an effect.  Alternatively, deleting amino acids 1-
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268 may produce a conformational change in the remaining SH2B1 protein that results 

in atypical protein localization.   

In addition to SH2B1, I found SH2B1 and SH2B1 to localize to focal 

adhesions.  I predict that localization of these SH2B1 isoforms is also mediated through 

the SH2 domain of SH2B1, and I therefore expect that SH2B1 will also localize to focal 

adhesions through its SH2 domain when tested in future experiments.  SH2B2 and 

SH2B3 both contain SH2 domains similar to SH2B1, and are known to bind at least 

some of the same partners as SH2B1 (22, 276, 294). Therefore it is possible that the 

other SH2B family members are also focal adhesion proteins.  Interestingly SH2B3 has 

been described as a binding partner of the focal adhesion protein, filamin (139). 

However, this interaction was not mediated through the SH2 domain of SH2B3.  

Therefore, it is possible that different SH2B family members are targeted to focal 

adhesions through differing mechanisms. 

There are currently greater than 150 proteins identified as focal adhesion 

proteins and almost 700 identified interactions between focal adhesion proteins, making 

these structures among the most complex assembly of proteins within a cell (see (275) 

and (128) for reviews}.  Although the term “focal adhesion” is generally used to denote 

these structures, at least three distinct cell-ECM adhesion complexes have been defined 

in motile cells based on their temporal formation and protein composition (reviewed in 

(295)).  Focal complexes are the earliest integrin-based adhesions to form, can be seen 

underneath the leading edge of lamellipodia, are highly vinculin and paxillin positive and 

contain a high concentration of tyrosyl-phosphorylated proteins (296-298).  These focal 

complexes are the initial sites of attachment at the leading edge of lamellipodia.  They 

have been hypothesized to tether the actin meshwork at the leading edge of lamellipodia 

to a solid substrate, and thus act to direct the force of actin polymerization towards the 
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leading edge.  Some focal complexes mature into focal adhesions, which are located at 

the edges of the cell and dispersed underneath the body of the cell.  Like focal 

complexes, focal adhesions are highly vinculin and paxillin positive and contain many 

tyrosyl-phosphorylated proteins.  However, unlike focal complexes, focal adhesions are 

also zyxin and tensin positive and incorporate actin bundles into the adhesion site (297).  

Focal adhesions can further mature into fibrillar adhesions, which are typically located 

more centrally within the cell and are elongated, rather than punctate adhesion sites.  

While fibrillar adhesions are composed largely of the same proteins that make up focal 

adhesions, fibrillar adhesions display a higher concentration of tensin than focal 

adhesions and contain little or no tyrosyl-phosphorylated proteins (298).  Both focal 

adhesions and fibrillar adhesions are thought to provide traction, monitor mechanical 

forces and monitor the composition of the ECM to facilitate and regulate cell motility.  

Therefore, while motile cells contain three major types of adhesions sites that perform 

varying functions, there are currently only a few known differences in protein 

composition between focal complexes, focal adhesions and fibrillar adhesions.   

Interestingly, I found SH2B1 to constitutively localize to both focal adhesions 

and fibrillar adhesions, but I was unable to conclusively find SH2B1 present in vinculin 

positive focal complexes (Figure 4.1B, bottom left image, punctate dots are focal 

adhesions and slashes are fibrillar adhesions; data not shown).  This raises the 

possibility that, like zyxin and tensin, SH2B1 is specifically a component of more 

mature adhesion sites.  While the functional consequences of zyxin and tensin 

incorporation into mature adhesion sites is unknown, it has been hypothesized that 

these proteins add structural stability to adhesion sites (297).  Focal adhesions have 

half-lives of 10-30 min while focal complexes have half-lives of only a few minutes 

(reviewed in (295)).  The turnover of these adhesion complexes may be related to the 
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dynamic cycling of focal adhesion proteins into and out of focal adhesions themselves 

(called focal adhesion protein turnover dynamics) (252).  Therefore, proteins that exhibit 

reduced turnover dynamics or reduce the turnover dynamics of other focal adhesion 

proteins may in turn reduce the overall turnover of cell adhesion sites.  It is possible that 

SH2B1 functions in a similar fashion to add stability to these adhesion sites.  The 

dynamic turnover of vinculin and paxillin are often monitored to assess the overall 

turnover rates of focal adhesions (129).  I found that co-expression of SH2B1 with 

vinculin does not alter vinculin focal adhesion turnover dynamics compared to vinculin 

expressed alone (data not shown), possibly excluding this hypothesis.  Alternative 

potential functions of SH2B1 in focal adhesions are discussed in greater detail below. 

The data presented in Chapter 4 show that SH2B1 is present in focal adhesions 

prior to stimulation by GH or other stimuli such as serum.  However, GH stimulation 

increases the dynamic cycling of SH2B1 into and out of focal adhesions (SH2B1 focal 

adhesion turnover) (Fig. 4.4).  In additional experiments, I found that SH2B1 focal 

adhesion turnover was increased in cells cultured in serum-containing medium 

compared to cells cultured in serum-free medium.  These observations raise the 

question of how GH and other stimuli act on focal adhesion-localized SH2B1.  Although 

several growth factor receptors have been reported to localize to focal adhesions, GHR 

has not been reported in focal adhesions and in additional experiments, I was unable to 

detect GFP-GHR in focal adhesions.  This seems to rule out the possibility that SH2B1 

associates with and is regulated by a GHR/JAK2 complex at focal adhesions.  It is 

possible that GH and other stimuli induce JAK2 or other regulators to translocate to focal 

adhesions to modify SH2B1, thus altering its focal adhesion turnover dynamics.  

However, I did not observe JAK2 to localize to focal adhesions under serum-deprived, 

GH-stimulated or serum-stimulated conditions.  Alternatively, GH or other stimuli modify 
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SH2B1 at the plasma membrane (e.g. JAK2 phosphorylates SH2B1 at the activated 

GHR/JAK2 complex).  This modified SH2B1 may then be incorporated into focal 

adhesions through the normal process of focal adhesion protein turnover.  As the 

concentration of modified SH2B1 in the cell increases, the concentration of modified 

SH2B1 within focal adhesions will also increase, thus altering SH2B1 turnover 

dynamics at focal adhesions.  Future experiments described below will test these 

hypotheses. 

The fact that rates at which individual proteins cycle into and out of focal 

adhesions can directly affect the rates of focal adhesion turnover (129, 252) and cell 

motility raises the possibility that one mechanism whereby GH induces cell motility is 

through altering the focal adhesion turnover dynamics of SH2B1.  Therefore, it will be 

of interest to determine whether inhibiting the ability of GH to alter SH2B1 turnover 

dynamics also inhibits GH-induced cell motility. GH stimulation induces phosphorylation 

of SH2B1 at tyrosines 439 and 494, and phosphorylation of these tyrosines is thought 

to be required for SH2B1 enhancement of GH-induced cell motility (116).  I found that 

mutation of both tyrosines 439 and 494 in combination does not affect basal focal 

adhesion turnover rates of SH2B1 in 3T3-F442A cells cultured in the presence of 

serum (data not shown).  However, to assess the effect of phosphorylation of tyrosines 

439 and 494 on the ability of GH to increase the turnover rate of SH2B1 at focal 

adhesions, these experiments need to be repeated in cells treated with GH following a 

period of serum deprivation.  

Although GH stimulation is primarily thought to result in tyrosyl phosphorylation of 

SH2B1, NGF and PMA stimulation is thought to result in SH2B1 becoming highly 

serine/threonine phosphorylated (224). In Fig. 4.5, I show that PKC mediates a PMA-

induced upward shift in endogenous SH2B1 mobility, as assessed by Western blot.  This 



 

 154 

upward shift is consistent with SH2B1 being serine/threonine phosphorylated since it is 

reversed by incubation with a phosphatase (224). Recent work in the Carter-Su 

laboratory has identified at least two serines, serine 161 and serine 165, as playing an 

important role in the regulation of SH2B1 at the plasma membrane in response to PMA 

in neuronal PC12 cells (Maures, et al. Manuscript in preparation). Mass spectroscopy 

identified serine 161 as being phosphorylated in cells stimulated with PMA.  Whether 

serine 165 is also phosphorylated is unknown.  Both of these serines lie within classic 

PKC substrate phosphorylation motifs [X(S/T)X(R/K)], and therefore, may be 

phosphorylated by PKC.  I found that PMA stimulation resulted in less of an upward 

mobility shift of GFP-SH2B1 (S161,165A) than WT GFP-SH2B1 in 3T3-F442A cells.  

These results suggest the possibility that PMA stimulates a PKC-mediated 

phosphorylation of SH2B1 at serines 161 and/or 165 in 3T3-F442A cells. 

In Chapter 4, I also show that PMA stimulation causes WT SH2B1, but not 

SH2B1 (S161,165A), to leave focal adhesions.  PKC ,  and  are found in focal 

adhesions (254-256) and PKC is thought to directly phosphorylate vinculin (257), talin 

(258), filamin (259) and integrin (277) at focal adhesions.  Taking these results into 

account, I hypothesize that PMA induces PKC to phosphorylate SH2B1 at serines 161 

and/or 165, which causes SH2B1 to leave focal adhesions.  Adding PMA in the 

presence of PKC-specific inhibitors and examining whether PMA causes SH1B1 to 

leave focal adhesions would lend additional support for PKC in this mechanism.  

Serines 161 and 165 lie within a 30 amino acid stretch of SH2B1 that contains 

13 serines and threonines.  Ten of these serines and threonines (S137, S141, T142, 

T143, S144, S145, S154, S157, S161, S165) lie within the classic PKC-substrate motif, 

X(S/T)X(R/K) (Center for Biological Sequence Analysis, 

http://www.cbs.dtu.dk/index.shtml).  Of these many potential PKC phosphorylation sites, 

http://www.cbs.dtu.dk/index.shtml
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serines 161 and 165 appear particularly important for SH2B1 movement out of focal 

adhesions due to several additional experiments that I have recently performed.  First, 

experiments with SH2B1 containing mutation of 11 additional serines and threonines in 

combination with serines 161 and 165 [SH2B1 (13SA)] gave the same results as 

SH2B1 (S161,165A).  Second, when these experiments were performed on SH2B1 

(13SA) with alanine 165 mutated back to serine [SH2B1 (13SA,A165S)], the results 

were almost identical to WT SH2B1.  This raised the possibility that serine 165 alone 

was responsible for the PMA-induced redistribution out of focal adhesions.  However, 

when these experiments were performed with SH2B1 (S165A), the results were again 

almost identical to WT SH2B1.  Together, these results suggest that PMA-induced 

phosphorylation of either serine 161 or 165 is sufficient for SH2B1 to leave focal 

adhesions.  This comes from the fact that WT SH2B1, SH2B1 (13SA,A165S), and 

SH2B1 (S165A) all have the same phenotype (ie. PMA induces their dissociation from 

focal adhesions), and that SH2B1 (S161,165A) and SH2B1 (13SA) have the same 

phenotype (ie. PMA does not induce their dissociation from focal adhesions). I predict 

that future experiments using SH2B1 (S161A) will also result in a phenotype similar to 

that of WT SH2B1. 

In the PC-12 model, it is thought that the negatively charged plasma membrane 

recruits SH2B1 through its positively charged amino acids within the NLS.  

Phosphorylation of Ser 161/165 (which lie adjacent to the positively charged NLS) would 

add a negative charge to the vicinity of the NLS, counteracting its positive charge, and 

acting as an electrostatic switch.  This is thought to induce dissociation of SH2B1 from 

the PM.  In Fig. 4.3, I show that the NLS is dispensable for SH2B1 focal adhesion 

localization.  This indicates that it is not necessary for SH2B1 to be localized to the 

plasma membrane in order to localize to focal adhesions.  It also indicates that the 
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proposed phosphorylation of Ser 161/165 causes SH2B1 dissociation from focal 

adhesions by some mechanism other than that of an electrostatic switch.  For example, 

a phosphorylation-induced conformational change could lead to a decreased affinity of 

SH2B1 for some binding partner.  Serine phosphorylation of vinculin (283) and paxillin 

(284) induces dissociation of these proteins from focal adhesions, although the 

mechanism of dissociation is also unknown.  Therefore, future investigation into the 

precise mechanism of PMA-induced SH2B1 release from focal adhesions is warranted, 

and may shed light on a general mechanism whereby serine phosphorylation regulates 

localization of focal adhesion proteins. 

The results suggesting a phosphorylation-induced release of SH2B1 from focal 

adhesions are supported by the SH2B1 turnover experiments in Chapter 4 that show 

that compared to WT SH2B1, SH2B1 (S161,165A) has reduced turnover dynamics 

and SH2B1 (S165E) has increased turnover dynamics.  I found that SH2B1 (13SA) 

displayed turnover dynamics almost identical to SH2B1 (S161,165A) in both serum-

deprived and serum-fed conditions.  I predict the turnover dynamics of SH2B1 (S161E) 

will be found to be similar to those of SH2B1 (S165E).  These experiments suggest that 

phosphorylation of SH2B1 at serine 161 and/or 165 regulates the dynamic turnover of 

SH2B1 at focal adhesions.  Serine phosphorylation of paxillin has been shown to 

regulate the dynamic turnover of paxillin at focal adhesions (129), indicating that 

phosphorylation of focal adhesion proteins may be a general mechanism regulating focal 

adhesion protein turnover.   

These differences in SH2B1 turnover dynamics due to mutation of serines 

161/165 are likely to be related to the PMA-induced dissociation of SH2B1 from focal 

adhesions.  PMA stimulation induces strong activation of several PKC isoforms.  Cells 

are not normally exposed to conditions such as this, but rather are exposed to lower 
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levels of PKC activation in response to various cytokines, growth factors and other 

external and internal stimuli.  Therefore, rather than the all or nothing localization 

response observed in the PMA stimulation experiments, a cell will more likely be 

exposed to conditions that either increase or decrease the dynamic cycling SH2B1 into 

and out of focal adhesions.  I hypothesize that conditions that induce the proposed 

phosphorylation of serines 161 and 165 will push the balance of SH2B1 focal adhesion 

dynamics towards increased cycling into and out of focal adhesions (i.e. less SH2B1 in 

focal adhesions and/or SH2B1 remaining in focal adhesions for a shorter period of 

time). Conversely, I hypothesize that conditions that promote dephosphorylation of 

serines 161 and 165 will push the balance of SH2B1 focal adhesion dynamics towards 

decreased cycling into focal adhesions (i.e. more SH2B1 in focal adhesions for a longer 

period of time). 

The functional consequences of changes in SH2B1 focal adhesion turnover 

dynamics seem to support this hypothesis.  Although the data were not quantified in 

Chapter 4, it appeared that focal adhesions in cells expressing GFP-SH2B1 

(S161,165A) were brighter (more intense fluorescence) than focal adhesions in cells 

expressing WT SH2B1.  Conversely, focal adhesions in cells expressing GFP-SH2B1 

(S165E) appeared dimmer (less intense fluorescence) than focal adhesions in cells 

expressing WT GFP-SH2B1.  As described above, a slower SH2B1 (S161,165A) 

turnover rate would lead to more SH2B1 in focal adhesions and vice versa for SH2B1 

(S165E).  The dynamic turnover of SH2B1 at focal adhesions also appeared to affect 

focal adhesion size, as cells expressing GFP-SH2B1 and GFP appeared to have focal 

adhesions of the same size, whereas focal adhesions in cells expressing GFP-SH2B1 

(S161,165A) were larger and those in cells expressing GFP-SH2B1 (S165E) were 

smaller. A finding that these differences in focal adhesion size are statistically significant 
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would implicate the regulation of SH2B1 focal adhesion turnover dynamics as an 

important mediator of overall focal adhesion characteristics.   

The final piece of data presented in Chapter 4 revealed the surprising fact that 

expression of SH2B1 (S165E) alone resulted in a significant increase in the overall 

number of focal adhesions per cell.  Increased dynamic cycling of SH2B1 (S165E) 

appears necessary for this phenotype as opposed to decreased levels of SH2B1 

(S165E) in focal adhesions.  This conclusion is based on the observation that SH2B1 

truncation mutants that do not localize to focal adhesions [e.g. SH2B1 (1-555), SH2B1 

(1-260)] or that appear to exhibit reduced focal adhesion localization [e.g. SH2B1 (269-

670) do not increase the overall number of focal adhesions per cell.  Interestingly, PKC 

activation is able to recruit activated ERK1/2 to focal adhesions (253) as well as activate 

Rho-A (280), events which lead to an increase in the focal adhesion number.  It is 

tempting to hypothesize that PKC-mediated phosphorylation of SH2B1 at serine 161 

and/or 165 plays a role in PKC-mediated recruitment of ERK1/2 to focal adhesions 

and/or activation of RhoA. 

 As discussed above, the functional consequences of the differences between 

composition of focal complexes and more mature adhesions sites have not been 

elucidated. However, the signals that initiate the formation of focal complexes and focal 

adhesions have been characterized.  Rac-1 activity is well known to initiate focal 

complex formation (reviewed in (299)) while focal adhesion formation is dependent on 

Rac-1 inactivation and Rho-A activation (300).  In relation to these mechanisms of 

adhesion formation, it is worth noting that SH2B1 has been found to constitutively bind 

Rac (112).  However, I predict that focal adhesion-localized SH2B1 does not bind Rac, 

as this would inhibit the actual formation of focal adhesions.  Because SH2B1 is 

already known to bind one small GTPase (Rac-1), it may be worthwhile for future studies 
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to investigate the possibility that SH2B1 interacts with additional small GTPases such 

as Rho-A.  Alternatively, SH2B1 may recruit GTPase regulator or effector molecules to 

focal adhesions.  In unpublished data, the Carter-Su lab has identified Vav1 and Vav2 as 

SH2B1 binding partners.  Vav proteins are guanine nucleotide exchange factors 

(GEFs) for small GTPases (301-304).  Vav2 has been shown to localize to focal 

adhesions (305), and expression of constitutively active Vav has been shown to induce 

focal adhesion formation in a manner similar to constitutively active Rho-A (306).  

Therefore, it is possible that SH2B1 regulates focal adhesion dynamics by recruiting 

Vav proteins to focal adhesions.  In support of this hypothesis, in preliminary 

experiments, I found GH stimulation of 3T3-F442A cells expressing GFP-Vav2 to result 

in the recruitment of GFP-Vav2 into the region of focal adhesions, but only when 

mCherry-SH2B1 was co-expressed.  Additionally, focal adhesions in GH-stimulated 

cells co-expressing Vav2 and SH2B1 appeared smaller and finer than in unstimulated 

cells or cells expressing SH2B1 alone.  Khosravi-Far et. al reported a similar phenotype 

when they expressed constitutively active Vav or Rho-A in NIH 3T3 cells (306).   

Taking these observations together, I hypothesize that stimuli that induce 

phosphorylation of SH2B1 on serines 161 and/or 165 increase the rate of SH2B1 

turnover dynamics at focal adhesions.  This, in turn, could allow for increased Vav 

targeting to focal adhesions as SH2B1 quickly cycles into and out of focal adhesions.  

Alternatively, phosphorylation of SH2B1 at serines 161/165 may increase the affinity of 

Vav for SH2B1.  In either case, the interaction between SH2B1 and Vav may result in 

Rho-A activation which would be predicted to promote the formation of new focal 

adhesions.  In support of this hypothesis, as described above, cells expressing GFP-

SH2B1 (S165E) (mimicking phosphorylation of S165) alone exhibit smaller and more 

focal adhesions that appear strikingly similar to focal adhesions in GH-treated cells 
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expressing both Vav2 and SH2B1.  Clearly, additional experiments are needed to 

establish that PKC mediates phosphorylation of SH2B1 at serines 161/165 and 

elucidate the mechanism whereby that modification alters SH2B1 focal adhesion 

turnover dynamics and increases overall focal adhesion number.   

Currently, no fractionation protocols exist to allow complete isolation of focal 

adhesions proteins, and therefore, it is impossible to determine with complete 

confidence whether PKC directly phosphorylates SH2B1 in focal adhesions.  However, 

in vitro kinase assays assessing direct phosphorylation of SH2B1 by specific PKC 

isoforms, PKC-specific inhibitor assays testing the necessity of PKC to regulate SH2B1 

at focal adhesions, and RNAi experiments evaluating the effect of reducing specific PKC 

isoforms can all be employed in future studies to more completely investigate the role of 

PKC in regulating SH2B1 at focal adhesions. 

One final additional mechanism by which SH2B1 may be involved in focal 

adhesion function relates to the emerging role of focal adhesion proteins in the nucleus.  

Intriguingly, proteins (e.g. Vav, VASP, paxillin and the zyxin family of proteins (reviewed 

in (307)) have recently been observed to shuttle between focal adhesion complexes and 

the nucleus.  The mechanism of nuclear translocation for most of these proteins is 

unknown, as most do not contain an NLS.  The Carter-Su lab has shown that SH2B1 

contains both an NLS and NES, undergoes nucleocytoplasmic shuttling (106, 107) and 

binds at least one focal adhesion protein (Vav).  In preliminary experiments, I observed 

accumulation of SH2B1 in the nucleus of 3T3-F442A cells when co-expressed with 

Vav2.  It is possible, therefore, that SH2B1 translocates to the nucleus with, or alters 

the nuclear dynamics of, one or more focal adhesion proteins.  Future experiments 

utilizing photoactivatable-tagged SH2B1 can assess the ability of stimuli such as GH or 

PMA to induce SH2B1 shuttling between focal adhesions and the nucleus.  In addition, 



 

 161 

blocking SH2B1 nuclear import may reveal SH2B1 as a shuttling protein for one or 

more focal adhesion proteins.  

Future Experiments 

 While I have demonstrated that the SH2 domain of SH2B1 is necessary and 

sufficient for focal adhesion localization, I have not yet determined what the SH2 domain 

binds within focal adhesions.  As mentioned above, the focal adhesion proteins talin and 

vinculin, are both phosphorylated on tyrosines lying within YXXL motifs.  Because 

SH2B1 is known to bind pYXXL, I plan to perform co-immunoprecipitation experiments 

with SH2B1 and talin or vinculin.  I have obtained cDNA encoding these proteins and 

have performed preliminary experiments.  Unfortunately, I have run into several 

technical difficulties in these preliminary experiments.  Both talin and vinculin are GFP-

tagged, and I have currently co-expressed GFP-vinculin with Flag-tagged SH2B1 in 

HeLa and 293T cells.  In each case, our anti-Flag conjugated agarose beads efficiently 

pulled down Flag-SH2B1 as well as GFP-vinculin.  However, GFP alone was also 

pulled down, indicating that the anti-Flag beads non-specifically bind GFP.  I 

subsequently expressed GFP-vinculin or GFP-talin with myc-SH2B1 in 293T cells and 

immunoprecipitated with anti-myc antibody.  In this experiment, GFP-vinculin co-

immunoprecipitated with myc-SH2B1, but also with the empty myc-vector control, again 

indicating non-specific co-immunoprecipitation.  Although it appeared that a small 

amount of GFP-talin might have co-immunoprecipitated with myc-SH2B1, the band was 

too faint to draw any conclusions.  I subsequently found by confocal microscopy that 

293T cells do not appear to have any distinguishable focal adhesions, making this cell 

line a poor choice for detecting interactions between focal adhesion proteins.  In future 

experiments, I plan to express GFP-talin or GFP-vinculin in 3T3-F442A cells with myc-

SH2B1 and perform parallel myc and GFP immunoprecipitations.  Michael Doche, a 



 

 162 

fellow graduate student in the Carter-Su laboratory, is performing a tandem affinity 

purification (TAP)-tagged SH2B1 immunoprecipitation assay using 3T3-F442A cells.  It 

is possible that his experiment will also yield an SH2B1-interacting focal adhesion 

protein. 

 I am also interested in whether other SH2B family members are focal adhesion 

proteins, and therefore plan to express GFP-tagged SH2B2 and SH2B3 in 3T3-F442A 

cells and visualize them by confocal microscopy.  Because of their shared SH2 domains 

and shared ability of their SH2 domains to bind phosphorylated tyrosine 813 in JAK2, I 

expect that both proteins will localize to focal adhesions.  Also, because SH2B3 has 

been shown to interact with the focal adhesion protein, filamin, it would be interesting to 

perform co-immunoprecipitation experiments with each SH2B family member and 

filamin.   

 In Fig. 4.4, I showed that GH stimulation increases SH2B1 focal adhesion 

turnover.  I would like to determine if this effect is due to GH-induced tyrosyl 

phosphorylation of SH2B1.  Therefore, I plan to perform additional FRAP experiments 

on focal adhesions in 3T3-F442A cells expressing WT GFP-SH2B1 or GFP-SH2B1 

(Y439,494F) in serum-deprived and GH-stimulated conditions.  If GH-induced tyrosyl 

phosphorylation of SH2B1 is required for GH-induced increases in SH2B1 focal 

adhesion turnover rates, I predict that GH stimulation will be unable to increase GFP-

SH2B1 (Y439,Y494) focal adhesion turnover rates.  A positive finding would suggest 

that the SH2B1 in focal adhesions after GH stimulation has been phosphorylated by 

JAK2.  This raises the question of whether JAK2 phosphorylates SH2B1 at focal 

adhesions or whether SH2B1 that was associated with the GHR/JAK2 complex at the 

plasma membrane translocates to focal adhesions.  To address this question, SH2B1 

could be tagged with a photoactivatable tag.  Immediately prior to, or during GH 
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stimulation, the tag of either focal adhesion-localized or plasma membrane localized 

SH2B1 could be photoactivated and then traced over a period of time.  Because I have 

not been able to identify JAK2 in focal adhesions, I expect that SH2B1 that is 

associated with JAK2 at the plasma membrane will translocate to focal adhesions, thus 

accounting for the increased SH2B1 focal adhesion turnover observed upon GH 

stimulation. 

 I believe that establishing the functional significance of SH2B1 in focal 

adhesions is among the most important issues remaining for this project.  In initial 

experiments, I found 3T3-F442A cells stably overexpressing GFP-SH2B1 to spread 

significantly faster than cells stably expressing GFP alone.  Conversely, I found SH2B1 

knockout MEFs to spread significantly slower than their WT MEF counterparts.  These 

data suggest that levels of SH2B1 in focal adhesions have a general effect on focal 

adhesion function (cell spreading assays are commonly used to assess the effect of 

increasing or decreasing focal adhesion protein levels).  I attempted to repeat these 

experiments with 3T3-F442A cells transiently expressing GFP-SH2B1 (S161,165A) or 

GFP-SH2B1 (S165E).  However, I observed no differences between these cells and 

cells transiently expressing WT GFP-SH2B1 or GFP alone.  It is possible that stable 

cell lines are needed for this assay to succeed.  

 To more directly assess the contribution of focal adhesion localized SH2B1 to 

GH-induced responses, I will test the effect of WT, (S161,165A) and (S165E) SH2B1 

on GH-induced cell migration.  In unpublished data, Dr. Hsiao-Wen Su, a postdoctoral 

fellow in the Carter-Su laboratory, has recently shown WT SH2B1 to enhance GH-

induced cell motility in RAW 264.7 macrophages.  In addition, she found that SH2B1 

(S161,165A) inhibits GH-induced motility while SH2B1 (S165E) enhances basal motility 

to levels above that of GH inducement in these same cells.  These results are consistent 
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with what I would predict based on my characterization of SH2B1 as a focal adhesion 

protein.  However, focal adhesions are difficult to visualize in RAW 264.7 macrophages, 

and therefore, characterization of SH2B1 focal adhesion dynamics in these cells may 

not be possible.  I have attempted to repeat these experiments in 3T3-F442A cells using 

transwell migration assays.  However, I have been unable to observe GH-induced 

motility in this model.  In fact, using live cell confocal microscopy, I failed to detect any 

motility in 3T3-F442A cells in response to GH, EGF or FGF stimulation over a period of 1 

hour.  This indicates that 3T3-F442A cells are not the optimal model to assess effects of 

SH2B1 on cell motility. However, while performing the live cell confocal microscopy 

experiments, I observed GH, EGF and FGF to induce lamellipodia extension and 

retraction as well as changes in overall cell morphology. Formation and dissolution of 

focal adhesions accompanied these processes.  Cells expressing GFP, WT GFP-

SH2B1 and GFP-SH2B1 (S165E) appeared to all respond similarly. However, cells 

expressing GFP-SH2B1 (S161,165A) appeared to be unable to extend lamellipodia or 

change their morphology as fluidly as the other cells.  In fact, I commonly observed 

GFP-SH2B1 (S161,165A) expressing cells attempting to retract a cellular extension, 

and in the process, tear themselves apart.  Interestingly, focal adhesions remained at 

the ends of where the extension had been before the cells were torn.  This raises the 

possibility that these cells were unable to properly dissolve focal adhesions, a function 

that is necessary for cellular motility.  I would like to repeat the transwell assays in the 

MCF-7 model that stably expressed GH.  These cells are known have increased motility 

compared to control MCF-7 cells (308).  I predict that results in these cells will be similar 

to those in the RAW 264.7 macrophage model in part based on some results that I did 

observe in 3T3-F442A cells. 
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Summary 

 

The overall goal of my thesis research was to answer some of the important 

remaining questions in GH signal transduction.  In particular, I wanted to identify the 

primary kinase(s) responsible for transducing the GH signal in 3T3-F442A and H4IIE 

cells and then more fully characterize the role of the adaptor protein, SH2B1, in GH-

induced regulation of the actin cytoskeleton.  I have shown that JAK2 is primarily 

responsible for GH-induced activation of Stat1, Stat3, Stat5, ERK1/2 and Akt in both 

3T3-F442A and H4IIE cells.  I have additionally shown that a major component of the 

actin cytoskeleton, II1-spectrin, is a novel SH2B1 binding partner that is 

phosphorylated by JAK2 in an SH2B1-dependent manner.  I have further demonstrated 

that GH stimulation of 3T3-F442A cells induces the formation of a II-

spectrin/SH2B1/JAK2 complex, and show that GH stimulation of H4IIE cells results in a 

redistribution of II2-spectrin from cell-cell contacts to the cytoplasm.  Finally, I have 

identified SH2B1 as a novel focal adhesion protein whose focal adhesion turnover 

dynamics are regulated by GH stimulation in 3T3-F442A cells.  I have also demonstrated 

that PMA stimulation of 3T3-F442A cells induces a rapid redistribution of SH2B1 out of 

focal adhesions.  I have provided evidence suggesting that phosphorylation of two 

serines within SH2B1 regulates both this PMA-mediated event, SH2B1 turnover at 

focal adhesions, and overall focal adhesion number.  SH2B1 is an adaptor protein in 

several signal transduction pathways, and therefore we predict that SH2B1 localization 

to focal adhesions and the SH2B1/II-spectrin interaction are relevant to many other 

ligands.  In addition, because SH2B1 localizes to focal adhesions in the absence of any 

ligand stimulation, we predict that SH2B1 regulates focal adhesion function in general. 
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