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ABSTRACT

A number of trajectory or path planning algorithms exist for calculating the joint
positions, velocities, and torques which will drive a robotic manipulator along a given
geometric path in minimum time. However, the time depends upon the geometric path,
so the traversal time of the path should be considered again for geometric planning.
There are algorithms available for finding minimum distance paths, but even when obs-
tacle avoidance is not an issue minimum (Cartesian) distance is not necessarily

equivalent to minimum time.

In this report, we have derived and shown geodesics as (i) an exact form of the
minimum time geometric paths under certain restricted conditions, and (ii) an approxi-
mate minimum time geome.tric paths under more general conditions. As a numerical
example, we have applied the path solution to the first three joints of the Bendix PACS
arm, a cylindrical robot. This example has indeed demonstrated that geodesics require
less time than Cartesian straight-line (i.e. minimum-distance) and joint interpolated

paths.
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1. INTRODUCTION

Productivity increase is the goal of the utmost importance in contemporary auto-
mation with programmable robotic manipulators. Driving robotic manipulators as fast
as possible, i.e. minimum time control of manipulétors, i an important means of
achieving this goal. Minimum time control of manipulators generates several interest-
ing but difficult control and planning problems. This report is intended to treat one

such problem, that is minimum time geometric path planning for manipulators.

Loosely speaking, the problem of minimum time control (MTC) of a manipulator
is concerned with the determination of’ control signals that will drive the manipulator
from a given initial configuration to a given final configuration in as short a time as
possible, given constraints on the magnitudes of the control signals and constraints on
the intermediate configurations of the manipulator, i.e. given that the manipulator
must not hit any obstacles. In general, it is extremely difficult, if not impossible, to
obtain an exact closed form solution to the MTC problem due mainly to (i) the non-
linearity and coupling in the manipulator dynamics, and (ii) the complexity involved
with collision avoidance. One way to sidestep the collision avoidance problem (ii) is to
assume that the desired geometric or spatial path has been specified a priori. As to the
difficulty (i), although there are a few suboptimal solutions derived using approximate
manipulator dynamics [2, 3], the MTC problem is usually divided into two subprob-
lems, i.e., trajectory (or path) planning and trajectory (or path) tracking, each of which
is then solved separately. This division of the MTC problem can best be explained by
Figure 1. From a task planner we obtain an ordered sequence of points in Cartesian

space which represent a collision-free path if we connect them properly (e.g. by spline
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functions or straight line segments). The geometric path generator (a) transforms these
Cartesian points to the corresponding points in joint space,! and (b) using the
transformed points in joint space, generates geometric paths which are parameterized
curves in joint space, and chooses the best one in the sense of minimizing the time.
The trajectory planner receives these geometric paths as input and determines a time
history of position, velocity, acceleration, and input torques which are then fed to the

trajectory tracker.

With the division outlined above, we have formulated in [8, 9] the minimum time
trajectory planning (MTTP) problem to determine controls which will drive a given
manipulator along a specified curve in joint space in minimum time, given constraints
on initial and final positions and velocities as well as on control signal magnitudes.
Since a geometric path can be described as a parameterized curve, and the geometric
path is assumed to be given, trajectory planning is relatively simple. By introducing a
single parameter which describes the manipulator’s position, the dimensionality of the
problem has been reduced conmsiderably. The current state (joint positions and veloci-
ties) of the manipulator can be described in terms of the parameter used to describe the
geometric path and its time derivative. The MTTP problem is therefore essentially a

two dimensional minimum time control problem with some state and input constraints.

More formally, assume that the geometric path is given in the form of a

parameterized curve, say

a'=/"(\), 0SNSApa (1)

where q' is the position of the i-th joint, the initial and final points on the trajectory

"This transformation requires the solution of the inverse kinematic problem, which is not, however, a
subject of this report.
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correspond to the points A=0 and A==\_,,, respectively, and the functions f’ are con-
tinuous and piecewise differentiable. Also assume that the bounds on the actuator
torques can be expressed in terms of the state of the system, i.e. the manipulator’s

speed and position, so that

u”%(q,q) < u; < u¥q,q) (2)

ax n

where u; is an n-dimensional vector of actuator torques/forces; u®* and u™" are n-
dimensional vectors that represent the maximum and minimum torque bounds, respec-
tively; and n is the number of joints that the manipulator has. Note that (a) the
torque bounds are usually functions of joint position and velocity, and (b) the vector
inequality (2) denotes component-wise inequalities. Given the functions /', the inequal-
ity (2), the desired initial and final positions and velocities, and the manipulator

dynamic equations to be given in Eq. (4), the MTTP problem is to find g(\) and c.;()\),

and hence the controls u; (X\) which minimize the time T given by

Y s Amax 1
T=[ ldt=[ 7)‘-a!x=f0 ;dk (3)

where p = -%)t‘- is the “speed”” of the manipulator. See [8, 10] for more detailed

descriptions of our solution to the MTTP problem. Bobrow et. al obtained similar solu-

tions independently of ours [1].

In terms of the trajectory planning problem, the geometric path planning problem
is the problem of picking the parametric functions f'. In contrast to the trajectory
planning problem, in which the desired solutions can be expressed in terms of the posi-
tion parameter X and its first and second time derivatives, the geometric path planning

problem requires that a set of functions be chosen from an infinite dimensional space,
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thereby leading to a more difficult problem to solve.

Some of the earlier trajectory planning techniques restricted the form of the
geometric paths to a set of corner points connected by straight lines [4. 7]. The trajec-
tory planner then “‘rounds off”’ the corners. But straight lines are not simple motions to
produce for most manipulators, and so are not necessarily the best paths to choose. It
will be assumed in this report that a more flexible trajectory planning scheme like those

in (1, 8] will be used.

It should also be noted that the shortest path may not be the minimum time

path. In particular, the shortest Cartesian path may have one or more sharp corners,?
and the manipulator would have to come to a complete stop at these points. This is

certainly undesirable in view of minimum time control of manipulators.

In this repoert, we will develop a method for determining the minimum time
geometric path for our previous trajectory planners described above and in [8, 10].
This is a significant departure from most of the conventional planning methods in
which geometric path planning [6, 5] and trajectory planning have been performed
separately and independently. Due to the intimate, synergistic relationship between the
two, it s clear that the conventional methods will lead to inefficient solutions, e.g. not
truly minimum time trajectory solutions or even infeasible solutions. Specifically, we
intend in this report to remedy this inefficiency by combining both geometric path and

trajectory plannings.

This report is organized as follows. In Section 2, we state formally the minimum

time geometric path planning (MTGPP) problem to be solved in conjunction with tra-

*Even if the Cartesian path does not have such sharp corner points, it does not usually yield a
minimum time trajectory, e.g. consider a cylindrical manipulator along the shortest Cartesian path around
its waist.
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jectory planning. Section 3 discusses some interesting dynamic properties of manipula-
tors that are useful for deriving solutions to the MTGPP problem. In Section 4, we
present and show geodesics as (i) an exact solution to the MTGPP problem under cer-
tain restricted conditions, and (ii) an approximate solution to the MTGPP problem
under more general conditions. Section 5 provides a real feeling for our solutions by
presenting some examples which are based on the first three joints of a cylindrical
manipulator, called the PACS arm, manufactured by the Bendix Corp. The report con-

cludes with Section 6.

2. PROBLEM STATEMENT

The minimum time trajectory planning algorithms described in [8, 10] give the
time history of manipulator’s position, velocity, and joint torques required for the
minimum time traversal of a given geometric path. However, these algorithms give no
firm indication of how to pick a geometric path. The chosen geometric path ideally
should be that which avoids all obstacles and can be traversed with the minimum time.

In conjunction with trajectory planning, the minimum time geometric path planning

(MTGPP) problem can be stated as follows.

Problem MTGPP: Given the solution to the minimum time trajectory planning
problem, choose the best geometric path or function f* in Eq. (1)

so as to minimize the traversal time.

We will take approaches to this problem which are totally different from the con-

ventional control techniques such as use of the Pontryagin’s maximum principle.? First,

the minimum time path will be determined for a restricted class of robotic manipulators

3Use of the maximum principle does not in any way lead to a workable solution.
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using some geometric techniques. Second, a method will be proposed for generating
approximate minimum time geometric paths for more general manipulators. Note that
these solutions are derived for collision-free space motions. Extension of the solutions

to the case of obstacle avoidance is also indicated in the Conclusion.

We begin in the next section with a few dynamic properties of manipulators that

are needed.

3. SOME DYNAMIC PROPERTIES OF MANIPULATORS

In this section we will introduce some properties of manipulators which will prove
to be useful later on. Most of these properties relate to the “‘inertia space’ of the mani-
pulator, i.e. that Riemannian space which has the manipulator’s tnertia matriz as its
metric tensor. (See [L1] for an explanation of Riemannian spaces and tensor notation.)
Then the dynamic equations of a manipulator can be derived from Lagrange's equa-

tions, and take the form

u, =J; v+ [k IV VE 4 R; Vv +g, 4)

where u; is the generalized force/torque applied to the i—th joint, v' is the generalized

velocity of the i-th joint, J, is the inertia matrix, R is the viscous friction matrix,

)
and g; is the gravitational force on the i—th joint. The Einstein summation convention
has been used here, so that every term with a repeated index is summed over that
index, i.e. from 1 to n for an n-jointed manipulator. It should also be noted that J;,

R, and g; may in general be functions of the generalized coordinates q' . The symbol

[jk,1 ] is called the Christoffel symbol of the first kind, and is defined by
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J; AP 0J
- — - (5a)

- 1 (9
[7k,¢ ] = — [ :
2 (dq aq’ aq'

The Christoffel symbol of the second kind is defined by

{],k} = J'™ [jk,m ] (5b)

The inertia matrix J™ , written with superscripts, is just the matrix inverse of the iner-

tia matrix J;, i.e. Jv Jip = 8¢ where 6, is the Kronecker delta or identity matrix.

Eq. (4) can be written as

—— +R;Vv +g; (6)

where the operator % is the absolute derivative with respect to time. The absolute

derivative of a contravariant vector (like the velocity v‘) with respect to the scalar ¢ is

defined as
ba' __ da' il dq*
a = fa ! =3 7
o dp +{1k} i 7

The Riemannian approach to geometry is to specify a metric for a given space,
where the metric is quadratic in the differentials of the coordinates of the space, and
investigate the properties which the metric imposes upon the space. If, for example, s
denotes arc length and the metric tensor of the space is A;;, then we may define the
infinitesimal arc ds by the formula ds? = A dq' dq’. The metric tensor A, may in
general be a function of the coordinates q'. If the metric tensor is just the identity

matrix 6;, then we have the usual sum-of-squares form associated with Euclidean
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geometry. Other metric tensors give other geometries.
For our purposes, we will define arc length s by the quadratic form

ds? = Ji dq' dq’ . Since the kinetic energy of the manipulator is given by

_ 1 dd¢ dq_
K= 2 i dt dt (8)

it can be seen that the arc length ds in this space is related to the kinetic energy K of

2
the manipulator by the formula {% ] = 2K.

The dynamic equations may now be expressed in terms of the arc length s and the

time derivatives of s. We have, since the absolute derivative obeys the chain rule,

6v!  ds

uy =J,J—68— W +R,}‘V, + g, (9)

_dq’ ds

Using the relationship v/ = —— , then
ds dt
) - ds ) ds . ds
“;=J;j3;[P’I o +R.',‘P’I + 8 (10)
. 1
where p/ = dq’ is the unit tangent to the manipulator’s path. But
s

53 dt 55 dt P %s \ar

i_di i_d_ i"_
55 at TP dt]

since the absolute derivative of a scalar is just the ordinary derivative. Plugging this

into the dynamic Eq. (10),
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. 2
3,50 [ds i g 4 _"i] Roo 3 4 o
= Jy 7 dt] MR LA rairl iP gy t8 (12)

. . . ds d (ds ) _ d (ds) _ d%
Using the identity 2 27 7.17] T “Jt‘] e
op' ( ds ’ J.pi d’s R. o’ ds
u; = J.‘,’j{; [7 +J;p Tl +R;p — +a& (13)

It is interesting to consider the form of the last equation. The left-hand side con-
sists of externally applied forces. There are four terms on the right-hand side: a term
proportional to the square of the velocity, a term proportional to the acceleration, a
viscous friction term which is proportional to the velocity, and a gravitational term
which is a function only of position. The first two terms are of particular interest. They
are just the Coriolis and tangential acceleration terms respectively. The Coriolis term is

just the (vector) curvature of the path multiplied by the square of the speed, and so

has a form analogous to the familar term encountered in uniform circular

r

motion. The second term, likewise, looks like the ciassical ma term one sees in one-
dimensional problems. The most important fact to note is that it is clear from this
form of the dynamic equations that the Coriolis terms result directly from the curva-

ture of the path in the manipulator’s inertia space.

The work W done on the manipulator is

W=fu,-dq‘ =fu,- d;a’ da=fu;p‘da (14)

Plugging in the expression for u; from Eq. (12),

Minimum Time Geometric Paths 11
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vl sy (4|4 0 1
+ fR,)-p"p"% ds + fg,-p‘a's
sp’

Using the facts that the curvature vector 5 is orthogonal to the unit tangent p’
3

and that p’ is a unit vector, i.e. that J p'p’ =1, Eq. (15) transforms to

d ‘ ds
W= f[ ]ds[ ]ds+fR,-jpp o d3+fg,p ds (16)
2
— 1[4 pip 42 ‘
_z[dt}+fRuppdtda+fg,pda

The power consumed by the manipulator at any given time is just

2
ds i ds
';t_] +8gp dt

In order to obtain minimum-time geometric paths, we need to know one more pro-
perty of manipulator dynamics. This property is that of reversibslity. To give an exam-
ple, consider any frictionless manipulator. If the torques applied to the joints of this
manipulator are given by u(¢) over some time interval [0,T |, the initial and final posi-
tions are A and B, and the initial and final velocities are v, and vy, what can be
determined about the torques required to move the manipuiator from B back to A
along the same curve? If the velocity starting at point B is -v; and the final velocity
at point A is -v,, then the torques required to go from B to A will just be given by

u(T-t) t€[0,T], i.e. the torques required to drive the manipulator from A to B only

12 Minumum Time Geometric Paths
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reversed in time.

To prove this result, consider the dynamic equations of a frictionless manipulator,

namely

wi() = T @)L 4 ik ) AL IO g (g (19)

When ¢ is replaced by T-r, differentiation with respect to ¢ becomes

_d
dr

4 _dr d
dt dt dr

Eq. (18) then becomes

d’q (T-7)

u;(T-1) = J;(q(T-7)) 2z

(19)

- dq’ (T-r dq* (T-r
+ i Na( 7| -2 ) (T |y g (1)
dr dr
After cancelling the minus signs in the Coriolis ierms, this is just the original dynamic
equation with ¢ replaced with r, so that q(T-7) is also a solution to the dynamic equa-
tions (18) if r is replaced by ¢. Since the velocities are negated with time reversed, the

initial and final velocities will be negated, as previously stated.

The usefulness of the reversibility property comes from the fact that it allows the
construction of geometric paths starting from either the beginning or the end of the
path. It implies that the resuits will be the same whether we start at the beginning
and work forwards or start at the end and work backwards. It also allows paths to be
constructed starting at both ends simultaneously, provided the paths meet at some

point and have velocities which add to zero. Note, however, that the reversibility

Minimum Time Geometric Paths 13
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property does not hold if R;; is not negligible.

4. MINIMUM TIME GEOMETRIC PATH PLANNING

As was previously pointed out, use of the maximum principle for solving the
MTGPP problem is practically impossible. Alternative approaches must be sought.
First, using the dynamic properties discussed in Section 3 we derive and show that geo-
desics are an elegant, optimal path solution under some restricted conditions. We will
then show that the same geodesics become an approximate solution to the MTGPP

problem for the more general case.

4.1. A Special Case

It will now be shown that if a manipulator has no friction terms and no gravita-
tional terms and the limitations on the joint torques consist only of limits on the total
power supplied to (or taken from) the manipulator, then the minimum time geometric

paths are geodesics in inertia space. Formally, we have the following theorem:

Theorem 1: If a manipulator is frictionless and has zero gravitational terms, i.e.
R; =0 and g; = 0 in the dynamic equations (4), and the only restrictions on the
torques applied to the manipulator arise from constant, symmetric limits on the total
power supplied to (or taken from) the manipulator, then the minimum-time geometric
path between any two configurations of the manipulator is a geodesic in inertia space

provided that the initial and final velocities are zero.

Proof: Under the stated conditions the dynamic equations for the manipulator

become

14 Minumum Time Geometric Paths
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. 2
. ‘ j g2
u = J; v+ ki v vt = Jij% % ] + 359 % (20)

The total power sunk or sourced by the manipulator is limited by symmetrical
constant bounds, i.e. -P,, < P < P. Then by Eq. (17), applying the constant

maximum power gives

_ _ds d% __ dp
P=Pox=4 . Ma 21)

where p = -31:- . (Note that the gravitational and friction terms have been dropped

from Eq. (17)). Solving the differential Eq. (21) gives

3
1 2=tP,,m,or.fi=—§— 2P . t2

(22)
2

since the manipuiator starts at rest.
Obviously, minimizing the traversal time for a given path requires that we max-

imize the ‘“‘velocity” —‘;% . This in turn requires that the power P be maximized.

Therefore, the maximum distance s which can be traveled in time ¢ is given by Eq.
(22). This leads to the idea of a reachable set, i.e. a set R(t) of points in the
manipulator’s joint space which are reachable in time ¢. In this case, the reachable sets
are sets of points such that the distance from the points of the set to the initial posi-
tion are less than or equal to the distance s given by Eq. (22). These reachable sets
look more or less like spheres, though the underlying space is in general non-
Euclidean. The important point is that the ‘“‘radius’ of the sphere increases monotoni-

cally with time, and is a function of time only.

Minimum Time Geometric Paths 15
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The criteria for reversibility clearly are met in the case at hand, so the reversibil-
ity property may be used freely. Now construct a geodesic from the initial point to
the final point and consider two reachable sets, one centered on the initial point of the
path and one on the final point. If the geodesic distance between the initial and final
points of the path is L, then consider two reachable sets of radius L/2. These sets will
meet at precisely one point, and that point will be on the geodesic between the initial
and final points. Since the velocity depends only on the distance from the center of
the reachable sets, the velocities for the two sets will be additive inverses of one
another at the point of intersection of the reachable sets. But by the reversibility pro-
perty we may reverse the velocity of the final point’s reachable set and negate all the
applied torques, and the manipulator will move from the surface of the second sphere
to the desired final point. Therefore the geodesic between the two points is a realizable
trajectory. If another trajectory is chosen, then it must, in the time required to reach
the surface of the reachable set via the geodesic, either not reach the surface of the
reachable set, or reach the surface at a point other than the midpoint of the con-
structed geodesic by traversing a different geodesic. In either case, it obviously will
take longer to get to .the desired final point with zero velocity than it took to travel
along the geodesic. Therefore the geodesic is the optimal geometric path.

Q.E.D.

The conditions under which this proof of optimality applies are not realistic, par-
ticularly the condition that gravitational terms be absent. The proof of optimality
depends on the absence of gravitatioral terms because the presence of such terms
makes the shapes of the reachable sets non-spherical. If, however, the rate of change of

the potential energy during a traversai of the path is small compared to the power
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supplied to the manipulator, then the shapes of the reachable sets will not differ very
much from spheres. Under these conditions it would be expected that geodesics would

be good approximations to the true minimum time paths.

4.2. Approximate Minimum Time Paths

Since the methods described above do not apply to all robotic manipulators, we
consider in this section a method for generating geometric paths which are approxi-
mately minimum time. Since traversal time depend$ on the velocity and acceleration
limits which the path imposes on the manipulator (8, 9], shortest-distance paths are
not necessarily minimum time paths. Shortest-distance paths will often have corners
at which the manipulator must come to a complete stop. Path segments of high cur-
vature also slow the manipulator down. Thus it is necessary to strike a compromise

between curves of shortest distance and curves of smallest curvature.

In order to reach such a compromise, we choose as an objective function the pro-
duct of the length of the curve and some measure of the total curvature. This, of
course, requires some quantitative measure of both curvature and distance in an n-
dimensional space where n is the number of manipulator joints. The most obvious
measure of total curvature to use is the reciprocal of the maximum velocity. The
length cannot be simple Cartesian distance, since Cartesian distance ignores changes in
orientation. However, if the path is expressed in terms of an arbitrary parameter X,

then the expression

Ao g\
f;

pd V) (23)

would appear to be a good choice, where p=\ and p_,(\) is the velocity limit at

Minimum Time Geometric Paths 17
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position X. This expression is sndependent of the parameterization chosen, and

increases both as the length of the curve increases and as the curvature increases.

In order to use (23), the value of the maximum velocity pp,.(\) is required. In [8,
9] we have derived this bound in terms of the manipulator's torque bounds and its
dynamic equations. The set of admissible accelerations p is given by a set of inequali-

ties of the form

u;min < M,ﬁ + Qipt+Rip+ S <uPfx (24)
where

g4
M =3, d\

' Y N2 AN d)

3]

1’?,’ = R,] %
S{ = g:

For a given position X\ and velocity p, these inequalities gives a range of accelerations
;'1,, and so may be thought of as assigning upper and lower acceleration bounds to each
point (X\,p) in the phase plane. Since these inequalities must hold for all joints of the
manipulator, the acceleration must fall between the greatest of the lower acceleration
bounds and the least of the upper bounds. When one of the upper acceleration
bounds is smaller than one of the lower acceleration bounds for some phase point
(A,n), there are no accelerations which will keep the manipulator on the desired path.

Thus the acceleration bounds generate restrictions on the velocities at the phase points

18 Minumum Time Geometric Paths
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which can be encountered during a traversal of the path. These relationships can be

thought of as assigning velocity limits to a given position \.

Now consider a frictionless manipulator, i.e. one for which the quantities R; are
zero. Also assume that at every point on the path the manipulator is capable of stop-

ping and holding its position. Then we have

' <8 <ul (25a)

min —

at all points on the path. (This will hereafter be referred to as the ‘‘strong manipula-
tor assumption”.) If the parameter X is defined to be the arc length s in inertia space,

b} pj

then @; is just the inertia matrix J;; multiplied by the curvature vector
3

If the path chosen is a geodesic, then the curvature vector is zero, and hence

@; = 0. Then the inequality (24) reduces to

UM< Mip+ S < up (25b)

which is independent of the velocity g, and by the strong manipuiator assumption is
satisfied identically for ﬁ=0. But if the bounds on p are independent of u, there can
be no velocity limits; in other words, gy, (\) = 0o, so that the integrand of (23) is

Zero.

It may appear at first that the geodesic, since it maximizes velocity bounds, must
be the true minimum time path. However, as shown in [8, 9] the manipulator must
meet acceleration as well as velocity constraints, and it is not clear precisely what
effects path changes have on the acceleration bounds. On the other hand, it should be
noted that the velocity bounds are obtained from the acceleration bounds. The velo-

city limits occur because the acceleration bounds become very close. Since the velocity

Minimum Time Geometric Paths 19
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bounds have been eliminated by choosing a geodesic as the path, the acceleration
bounds must never get close. Hence maximizing velocity bounds also gives a large
range of accelerations to choose from. This would lead one to expect that geodesics are

good, if not optimal, choices for geometric paths.

The argument above applies if the friction terms R; are negligible;! if this is not
the case, then there may be finite velocity bounds, causing the integral (23) to become
non-zero. In this case, a more complicated analysis is required as shown below. The

admissible region of the phase plane is given by equations of the form [8, 9]

Ay }l2 + B,’j p+ O,'j + D,'j >0 (26a)

where ¢ and j are joint numbers. The coefficients A,;, B;j, C;, and D; are functions

of M. For constant torque bounds, these coefficients are given by the formulae

B = R; R;
=W

C. = A, A,
Y |M; | |M; |

D. = S}—UJM S,' U,M

M M_

where A; and u,” are given by A; = and u;

respectively. Similar formulae hold if the torque bounds are linearly dependent upon

“As shall be seen later, the gravitational force does not affect the solution.
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velocity, as is the case for DC servos with constant voltage limits.

Bij = _Bji y

Note that for every pair of joints + and j we have 4; = -Aj,

C, = Cj,‘, and D'] = —D

i ;i - Therefore we have two equations for each pair of joints,

namely Eq. (26a) and

9

—A,j [l,2 - B,J p+ C‘, - D Z 0 (26b)

Under the strong manipulator assumption, it can be shown that C;; + D;; > 0 and

Cy - D 2 0, so that the inequalities are always satisfied for p = 0.

Consider one joint pair ¢+ and j. We may without loss of generality assume that
A; 20, since if A; <0 we could simply interchange ¢+ and j. For notational conveni-
ence from here on the i subscript pairs will be dropped. Then (26b) will have two
real roots if A > 0 and one real root if A = 0. If A > 0, then (26b) will be satisfied
for all values of u between the roots. On the other hand, (26a) may have complex
roots, in which case it is always satisfied, or it may have two real roots, with the ine-
quality satisfied for all values of p outside the interval between the roots. Explicitly

calculating the roots, we have

_ —B-VB? - 4A(C+D)

Hia = 24
_ -B+ VB?_ 44(C+D)
Hog 94
by = _B - VB? + 4A(C-D)
1b 24
_ -B + VB? + 4A(C-D)
Hop =

24
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If p,, is real, then so is po,, and we have py; < py, < pog < piop, and p must be
in the interval [u;, ,p;,] or the interval [p,, ,p04 |- Since the velocity p = 0 is admissi-

ble, one of these intervals must contain 0. Note that if B > 0, then p,, < 0 and

oy >0, so that the second interval must contain 0.° If B < 0, then p;; < 0 and
B > 0, so that the first interval contains 0. In any case, the maximum velocity is
given by pu,; ; see Figure 2 for locations of feasible intervals within the phase plane in

the three possible cases.

Going back to the original problem, we have the following theorem which is use-

ful in justifying geodesics as an approximate solution to the the MTGPP problem.

Theorem 2: If B < 0 then lim p,, = oo, and if B > 0 then p,, attains its max-
A—0*

imum value when A = 0, i.e. geodesics are a pointwise optimal solution to the GTPP

problem.

Proof: If B < 0, then both -B and B2+4A(C-D) are greater than zero. Recalling

that

-B + VB? + 4A(C-D)
9A

Hop =

and that C-D > 0 by the strong manipulator assumption, we see that the numerator
in the expression for p,, is greater than or equal to 2|B|, which is greater than zero.

Therefore we have

lim poy 2> lim 2|B|

A—0t A—o+ 24

*In this case, the first interval is in the region of #<0. Hence, it is not in the feasible region {see |8, 9]
for an informal proof).
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If B > 0, then the formula for py, becomes indeterminate, i.e. both numerator

and denominator become zero. Applying L'Hospital’s rule,

p . -B + VB* + 4A(C-D)
im po, = bm

= lim—t&D D
Aot Aot 24 A—0*/B® + 44(C-D) B

In order to prove that p,; attains its maximum for A = 0 it is then sufficient to show

3#21:

that 51

< Oforall A > 0, i.e. that py; increases as A decreases. Evaluating this

partial derivative,

Omas  _ -B + VB® + 44(C-D) 4L 4(C-D)
oA -24° 2A 9V/B? 4 44(C-D)
_ B-VB®+44(c-D) + (C-D)
24°? AV B? + 4A(C-D)

Expressed as a single fraction this is

Opsy  _ BVB® + 4A(C-D) - B® - 44(C-D) + 24(C-D)
94 242V B? + 4A(C-D)

Since the denominator is real and greater than zero for all A > 0, we must only show

that the numerator is less than zero. This is equivalent to showing that

BV B? + 4A(C-D) - B2 - 24(C-D) < 0

or

BV B?® + 4A(C-D) < B? + 2A(C-D)

Since both sides of this inequality are positive, we may square both sides of the
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inequality, giving

B?*(B? + 4A(C-D)) < B* + 4AB*(C-D) + 4A% C-D)?

' )
But this reduces to 44 %(C-D)?> > 0, which is true. Therefore gj: <0.

It follows that the velocity limits are at their maximum, for any given position
and direction in space, when A; == 0. But if all the A, are zero, then we must have
@; = 0 for all joints s. In other words, the curvature is zero, implying that geodesics

are a pointwise optimal solution to the GTPP problem. Q. E.D.

To see that geodesics are local optimum paths, consider two points which are
close together, and draw the short geodesic between them. Now construct a second
curve which has a small (constant) curvature. The tangents to these curves will be the
same, on average, for each curve, differing only by small quantities. The change in
position will be small also, so that the quantities B, C, and D can be regarded as con-
stant. Then the length of the geodesic will be less than the length of the other curve,
since geodesics are curves of shortest distance, and the maximum velocity along the

geodesic will be greater than the maximum velocity for the non-geodesic. Therefore

the objective function f—da——- , which for a short curve will just be ds , will
Prma(8) Hmax($)

be smaller for the geodesic than for any other curve.

This does not prove that geodesics are the true optimal paths, even in the sense
of minimizing (23), since the maximum velocity depends upon direction and position
as well as curvature; however, it does show that for a given position and direction, the
locally optimum path has zero curvature. Thus we see that geodesics are always in

some sense ‘‘good’ paths, whether or not friction and/or gravitation are significant
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effects.

5. EXAMPLES

To demonstrate the utility of the solutions described above, the traversal times for
various geometric path have been calculated, using the method of [8, 9], for the Bendix
PACS arm. This arm is cylindrical in configuration, and is driven by fixed-field D.C.

motors. Only the dynamics of the first three joints are considered here (see Figure 3).

Both construction of geodesics and trajectory planning require that the dynamic
equations (4) of the robot be known. In particular, the inertia matrix and Coriolis coef-
ficients are needed in order to conmstruct geodesics. For the first three joints of the

manipﬁlator the inertia matrix takes the form

(27)

Jo-Kr+ Mr? o 0

0 0 M,

where q' = 0, > = r, and q® = z. The constants M, and M, are the masses which
the r and z axes must move. J; is the moment of inertia around the @ axis when r is
zero. The K term is present because the center of mass of the structure for the r joint
does not coincide with the 4 axis when r is zero. The values of J;, K, M;, and M, are
given in Table 1, along with friction coefficients and actuator characteristics. The
Christoffel symbols of the first kind (Coriolis coefficients), found by differentiating Ji,

are

[11,1] = [13,1] = [31,1] = [22,1] = [23,1] = [32,1] = [33,1] = 0 (28a)

[12,2] = [21,2] = [13,2] = [31.2] = [22,2] = [23,2] = [32,2] = [33,2] = O
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[11,3) = [12,3] = [21,3] = [13,3] = [31,3] = [22,3] = [23,3] = [32,3] = [33,3] = 0

[12,1] = [21,1] = M, r - % (28b)
[11,2] = % - M;r (28c)

dq’ 4 4dg’ dq*
—_— k3| —— —— . Plug-

The geodesics are solutions of the equations 0 = J;

ging Egs. (27) through (28c) into this equation gives the equations of the geodesics as

2
0=(J¢ - Kr +Mtf2)%8—g- +(2Mtf—K)-:—§- % (293)
o (K (40
= Mo + 5 T Mo (29b)
d%s
0= 2T (29¢)

In addition, we have the normality condition

2 2 2
do d d
(Jt —Kf+Mtf2)[—d—;] +M¢ [d—: +Mz[—d§- =1 (30)

It can be shown, after extensive calculations, that the differential equations (29a),
(29b), and (29¢c) can be solved in terms of elliptic integrals. In practice, however, it is

simpler to solve them numerically.

The gravitational terms for this manipulator are particularly simple; the gravita-

tional forces on the r and 4 joints are zero, and the force on the z joint is M, g.
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Trajectory planning also requires knowledge of the robot’s actuator characteristics.
To determine actuator characteristics, consider the circuit shown in Figure 4. It con-
sists of a voltage source, a resistance, an inductance, and an ideal motor, i.e. a device
which generates a torque proportional to the current passing through it. The voltage
source is the power supply, the resistance is the sum of the voltage source resistance
and the motor winding resistance, and the inductance is the inductance of the motor

windings.

It will be assumed here that the inductance L can be neglected. This frequently is
the case for D.C. motors, since the electrical time constant of such systems is generally
much shorter than the mechanical time constant. Given that the torque r is propor-
tional to the current, i.e. 7=k, I, it can be shown from conservation of power that

the voltage V,, across the ideal motor is just &, w, where w is angular velocity. Since,

. . . . Va - Vm Va - kmw
if the motor is not in saturation, 7=k, [ and | = A = L where

V? is the source voltage, we can solve for torque in terms of voltage and angular velo-

city, giving

bn ke
Rm

T =

w (31)

Assuming the power supply has constant voltage limits of V™" and V™% this gives

torque limits of

———-——wSrSk me_(k )hw (32a)

In addition, at some point the iron in the motor saturates, with the resuit that increas-

ing the current through the motor has no effect on the torque. This yields two more
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(constant) torque limits, so we also require that

-7 < r < (32b)

Taking the gear ratio k7 into account, this gives torque limits of

) r_aal km ] ( k _m)2 d N
min ___ _ s y.min _ d q
R - TR =7 i o (352)
and
Tsat km (kim)2 da’
max . ' U max q
s = - y s - 33b
’ mm[ kS R™k? RM(kf?  dX ”] (33b)

A trajectory planner for this robot was written in the C programming language

and run under the UNIX® operating system on a VAX-11/7807. The trajectory planner
was used to generate trajectories for a straight line, a geodesic, and a joint interpolated
curve, each of which extended from the Cartesian point (0.7,0.7,0.1) to (0.4,-0.4,0.4), all
coordinates being measured in meters. Phase plane plots (plots of the speed p versus
position X\), plots of position \ vs. time, .and plots of torque and motor voltage vs. time
are shown in Figures 5a through 7h. Figures 5a through 5h are for the straight line,
Figures 6a through 6h are for the geodesic, and Figures 7a through 7h are for the joint
interpolated curve. The traversal times for these paths are 1.782, 1.588, and 1.796
seconds respectively, showing that the geodesic does indeed have the shortest traversal

time.

SUNIX is a trademark of Bell Laboratories.
"VAX is a trademark of Digital Equipment Corporation.
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When the robot is driven along a given path in minimum time, one or more of the
actuators will be driven to its limit. For the straight line path, the r joint is driven at
its maximum or minimum voltage except for two short intervals when the 4 joint is
saturated. For the joint interpolated curve, the r joint motor voltage is always the lim-
iting factor. For the geodesic, the r joint is saturated most pf the time, but both the ¢
and z joints are driven to their limits at one time or another. The geodesic seems to
distribute the workload more evenly among the joints than the other two curves do,

and this apparently is the the reason that the geodesic can be traversed faster.

8. CONCLUSIONS

Two methods have been proposed for finding geometric paths which allow a
robotic manipulator to move from one point to another in minimum time or approxi-
mately minimum time. While these methods do not directly address the problem of obs-
tacle avoidance, they do demonstrate that the problem of choosing minimum time
paths is not simple, and in particular they show that minimum time is not in general

equivalent to minimum Cartesian distance.

Two approaches to the obstacle avoidance problem suggest themselves. If the geo-
desic which connects the desired initial and final positions of the manipulator happens
to pass through an obstacle, then we may piece together geodesics to give a path which
has shortest geodesic, rather than Cartesian, distance. This again has the disadvantage
that the path will have corners at which the manipulator must stop, but these corners

could presumably be rounded off, as in [7].

On the other hand, Eq. (23) provides a means of evaluating the ‘“goodness’” of
any given path without actually calculating the path’s traversal time. If several paths

can be found which avoid collisions with obstacles, then each one can be evaluated and
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the best one chosen on the basis of formula (23). This presumes that some method can

be developed for generating collision-free paths quickly. It also presumes that at least

some of the paths generated by the algorithm are reasonably close to the optimal path.

But since minimization of the product of curvature and distance gives paths with short

traversal times, some guidelines for generating paths are available.

7. REFERENCES

(1)

30

J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “On the Optimal Control of
Robotic Manipulators with Actuator Constraints,” Proceedings of the 1983

Automatic Control Conference, pp. 782-787 (June 1983).

M. E. Kahn and B. Roth, “The Near-Minimum-Time Control of Open-Loop Arti-
culated Kinematic Chains,” ASME Journal of Dynamic Systems, Measurement,

and Control, pp. 164-172 (September 1971)

B. K. Kim and K. G. Shin, “‘Suboptimal Control of Industrial Manipulators with a
Weighted Minimum Time-Fuel Criterion,” ASME Journal of Dynamic Systems,

Measurement, and Control, pp. 164-172 (September 1971).

B. K. Kim and K. G. Shin, “An Efficient Minimum-Time Robot Path Planning
under Realistic Constraints,” IEEE Trans. on Automatic Control AC-30 (1) (Janu-

ary 1985).

T. Lozano-Perez, ‘“‘Spatial Planning: A Configuration Space Approach,” A. I.

memo 605, MIT Artificial Intelligence Laboratory (December 1980).

T. Lozano-Perez, ““Automatic Planning of Manipulator Transfer Movements,” A.

I. memo 606, MIT Artificial Intelligence Laboratory (December 1980).

Minumum Time Geometric Paths



RSD-TR-17-84

(7) J. Y. S. Luh and C. S. Lin, “Optimum Path Planning for Mechanical Manipula-
tors,” ASME Journal of Dynamic Systems, Measurement, and Control 102 pp.

142-151 (June 1981)

(8) K. G. Shin and N. D. McKay, “Minimum-Time Control of a Robotic Manipulator
with Geometric Path Constraints,” Proceedings of the 22nd CDC, pp. 1449-1457

(Dec. 1983).

(9) K. G. Shin and N. D. McKay, “Minimum-Time Control of a Robotic Manipulator
with Geometric Path Constraints,” [EEE Transactions on Automatic Control

AC-30 (6) (June 1985).

(10) K. G. Shin and N. D. McKay, “Open-Loop Minimum-Time Control of Mechanical
Manipulators and Its Application,” Proc. 1984 American Control Conference, pp.

1231-1236 (June 6-8, 1984).

(11) J. L. Synge and A. Schild, Tensor Calculus, Dover Publications, New York (1978).

Minimum Time Geometric Paths 31



RSD-TR-17-84

Parameter Description __ Value ]
7% Saturation torque of § motor 20 Nt-M. |
5ot Saturation torque of r motor 0.05 Nt.-M.

750 Saturation torque of z motor 2.0 Nt.-M.
Join Lower voltage limit for 4 joint -40 v,
y, mio Lower voltage limit for r joint -40 v,
y,min Lower voltage limit for z joint -40 v.
Vo Upper voltage limit for ¢ joint 40 v,
y, max Upper voltage limit for r joint 40 v,
y,max Upper voltage limit for z joint 40 v,
ki Gear ratio for 6 drive 0.01176
kS Gear ratio for r drive 0.00318 Meters/radian
kS Gear ratio for z drive 0.00318 Meters/radian
v Motor constant for 4 joint 0.0397 Nt.-M./amp
k™ Motor constant for r joint 0.79557 X 10~ Nt.-M./amp
kM Motor constant for z joint 0.0397 Nt.-M./amp
RV Motor and power supply resistance, 6 joint 1Q
R™ Motor and power supply resistance, r joint 10
R Motor and power supply resistance, z joint 10
ky Friction coefficient of § joint 8.0 Kg./sec.
k, Friction coefficient of r joint 4.0 Kg./sec.
k, Friction coefficient of z joint 1.0 Kg./sec.
M, Mass of r joint 10.0 Kg.
M, Mass of z joint 40.0 Kg.
J; Moment of inertia around ¢ axis 12.3183 Kg.-M.?2
K Moment of inertia offset term 3.0 Kg.-M.

Table 1. Dynamic coefficients and actuator characteristics for PACS arm
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(2)

Figure 2. Admissible velocities for

(1) 2y, and p,, complex
(2) 1, and p,, real and negative

(3) 1, and p,, real and positive.
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' 35
Figure 3. Picture of the Bendix PACS robot arm
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Ve ideal motor

Figure 4. Equivalent Circuit for a D.C. Motor Servo Drive
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Figure 5¢. Plot of 6 joint torque vs. t 8 Figure 5d. Plot of r joint force vs. time for straight line
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Figure 5g. Plot of r motor voltage vs. time for straight line
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Figure 5h. Plot of z motor voltage vs. time for strai
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Figure 6a. Phase plane plot for geodesic Figure 6b. Plot of \ vs. time for geodesic
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Figure 6c. Plot of 6 joint torque vs. time for geodesic Figure 6d. Plot of r joint force vs. time for geodesic
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Figure 6e. Plot of z joint force vs. time for geodesic
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Figure 7a. Phase plane plot for joint interpolated curve
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Figure 7c. Plot of 4 joint torque vs. time for joint
interpolated curve
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Figure 7b. Plot of X vs. time for joint interpolated curve
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Figure 7d. Plot of r joint force vs. time for joint
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Figure 7g. Plot of r motor voltage Vvs. time for joint
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