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ABSTRACT

This thesis has three major purposes. First, we will derive an new asymptotic approx-

imation for the linear Kelvin wave on sphere which fills the gap between two limits

which have known asymptotic solutions. The second major purpose is to study how

the nonlinearity changes the properties, like spatial structure and phase speed, of the

steadily translating(traveling) nonlinear Kelvin waves either on the sphere or on the

equatorial-beta plane. The third major purpose is to study the origin of two different

kinds of westward propagating Tropical Instability Waves observed in the equatorial

Pacific ocean.

The Kelvin wave is the slowest eastward propagating eigenmode of Laplace’s Tidal

Equation. It is widely observed in both the ocean and the atmosphere. On the sphere,

in the absence of mean currents, the Kelvin wave depends on two parameters: the

zonal wavenumber s [always an integer] and Lamb’s parameter ε which is a nondi-

mensional reciprocal depth of the fluid. First, for the linear Kelvin wave we derive

an asymptotic approximation valid in the limit
√

s2 + ε >> 1, which generalizes the

usual “equatorial wave” limit that ε → ∞ for fixed s and we also show that the width

of the Kelvin wave is {ε + s2}−1/4 rather than ε−1/4 as in the classical equatorial

beta-plane approximation.

The nonlinear traveling Kelvin wave on the sphere depends on three parameters:

the zonal wavenumber s, Lamb’s parameter ε and the wave amplitude. For fixed

wavenumber s , we derive the asymptotic solution of the traveling Kelvin wave in

the limit when both ε and amplitude are small with a perturbation method. As

xiv



the perturbation method fails when either ε or the wave amplitude is big, we use

a numerical method which combines coordinate mapping,Galerkin method,Newton

iteration and continuation method. We show that for sufficiently small amplitude,

there are Kelvin traveling waves (cnoidal waves); as the amplitude increases, the

branch of traveling waves terminates in a so-called “corner wave” with a discontinuous

first derivative in longitude only. Corner waves give maximum wave amplitude of

steadily translating nonlinear Kelvin waves. All waves larger than the corner wave

evolve to fronts and break. As the dispersion weakens with increasing ε (“Lamb’s

parameter”), the amplitude of the corner wave decreases rapidly and the longitudinal

profile of the corner wave narrows dramatically.

On the equatorial beta-plane, we study the linear and nonlinear traveling Kelvin

waves in the presence of a jet. The jet has the form of U = U0e
−3y2

, where y is

nondimensional latitude(in the equatorial ocean, nondimensional unit y is about 300

km and unit U0 is is about 2 m/s). We show that the linear Kelvin waves have much

more complicated structures than the Kelvin wave with a rest background. Phase

speed decreases as wavenumber increases regardless whether the jet is eastward or

westward. For sufficiently small amplitude, again there are nonlinear Kelvin traveling

waves (cnoidal waves). As the amplitude increases, the waves narrow in longitude; in

latitude, the waves narrow for a westward jet but widen for an eastward jet; phase

speeds also increase to the east. However, the phase speeds are largely determined

by the linear Kelvin waves’ dynamics; nonlinearity only increases the phase speeds

by several percent. For a westward jet, the traveling waves also terminate in a corner

wave and have the same singularity as that of the corner Kelvin waves on the sphere

without mean currents. For an eastward jet, calculation of nonlinear Kelvin waves

with large amplitude is numerically impossible due to the resonance with waves of

higher wavenumbers.

Tropical Instability Waves (TIWs) are prominent intraseasonal oscillations in both

xv



the equatorial Pacific and Atlantic oceans. We study how the nonlinearity of the TIWs

affects the development of the instabilities through both linear stability analysis and

numerical simulation. In the early stage of TIWs, unstable wave centered near 5◦N

with a wavelength about 1000 km and a period about one month which are consistent

with the stability analysis, dominate the whole domain. However neutral Yanai waves

with periods of about 15-22 days emerge near the equator when the unstable TIWs

grow into fully nonlinear vortices and begin to rotate, which stabilizes the mean states

substantially. Meanwhile the original TIWs centered near 5◦N are slowed down and

weakened. The strength of these Yanai waves is sensitive to the instability of the

initial mean flow and the external forcing. The external forcing terms are found to

be important for the TIWs centered near 5◦N to retain their dominance from 3◦N to

7◦N and also be able to suppress the late emerging Yanai waves if strong enough.

xvi



CHAPTER I

Introduction

1.1 Purposes

This thesis has three major purposes. First, we will derive an new asymptotic

approximation for the linear Kelvin wave on sphere which will fill the gap between two

limits which have known asymptotic solutions. The second major purpose is to study

how the nonlinearity changes the properties, like spatial structure and phase speed,

of the steadily translating(traveling) noninear Kelvin waves. Solitary/traveling waves

are the result of balance between nonlinearity and dispersion. The nonlinearity comes

from the wave-wave interaction terms in the nonlinear equations and the dispersion

could come from either the spherical geometry or the background mean flow. We will

study two different kinds of nonlinear traveling Kelvin waves, Kelvin waves on sphere

without a background mean whose dispersion comes from the spherical geometry and

Kelvin waves on the equatorial beta-plane with a background mean whose dispersion

comes from the background mean. The third major purpose is to study the origin of

two different kinds of Tropical Instability Waves(TIWs). Tropical instability waves

are westward propagating oscillation observed in both the equatorial Pacific ocean

and Atlantic ocean. We will compare the nonlinearity development of these instability

waves with the result from linear stability analysis and show how the nonlinearity gives

rise to two different types of TIWs. All these works will be based on the shallow-water
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model either on the spherical coordinate or on the equatorial beta-plane.

1.2 Shallow Water Equations(SWEs)

Laplace showed more than two centuries ago that the free oscillations of a layer of

homogeneous fluid and uniform depth on a rotating, spherical earth are governed by

a trio of nonlinear partial differential equations which are usually called the “Laplace

Tidal Equations” or the “nonlinear shallow water equations”. The nonlinear shallow

water equations in spherical coordinates over a flat sea bottom are
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where θ is colatitude(π/2 minus latitude), λ is longitude, t′ is the dimensional time, u′

is the dimensional eastward velocity, v′ is the dimensional northward velocity, h′ is the

total depth of the fluid, and a is the radius of the planet. (Note that following the usual

geophysical convention, v′ = − a Dθ/Dt where D/Dt is the total derivative because

colatitude θ is increasing southward.) In Chapter IV, we will show that this set of

equations can be simplified when applying the equatorial beta-plane approximation.

This set of equations also describes the baroclinic mode of a two-layer model in

the limit that the lower layer depth is infinite, in which case motion is confined to the

upper layer, a so-called “one-and-a-half-layer” model (Gill , 1982). This is a decent

first approximation to the ocean, especially in the tropics. The only modification

is that the actual mean depth is replaced by the “equivalent depth”, which is the

product of the mean depth with the fractional density difference between the two

layers (Pedlosky, 1987) . As explained in Chapman and Lindzen (1970), Majda (2003)
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and Marshall and Boyd (1987), the shallow water equations can also be profitably

employed for continuously-stratified (rather than homogeneous) fluids if the depth is

interpreted as the “equivalent depth” of a given baroclinic mode of a continuously

stratified fluid as first observed by G. I. Taylor more than seventy years ago; the

main effect of continuous stratification is to slightly weaken the nonlinearity because

of coupling between different vertical modes.

1.3 Linear Kelvin waves on sphere

When shallow water wave equations are linearized about a state of rest, the tidal

equations can be written (Longuet-Higgins , 1968),

σU − µṼ − sφ = 0 (1.4)

µU − σṼ + (1 − µ2)φµ = 0 (1.5)

sU − (1 − µ2)Ṽµ − ε σ(1 − µ2) φ = 0 (1.6)

where µ = cos(θ) , θ is colatitude, λ is longitude, φ is the height and σ the nondimen-

sional frequency. All variables have been nondimensionalized using a as the length

scale, 2Ω as the time scale and H as the depth scale. U and Ṽ are the nondimensional

“Margules-Robert” velocities:

U =
1

2Ω

dλ

dt

√
1 − µ2; Ṽ = −i

1

2Ω

dθ

dt

√
1 − µ2 (1.7)

These three equation have four unknowns(U , Ṽ , φ and σ) and two free parameters

(wavenumber s and Lamb’s parameter ε). The zonal wavenumber s is always a

positive integer(The case of s = 0 is a nonpropagating mode which is not relevant to
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our analysis). Lamb’s parameter ε is a nondimensional mean depth which is explicitly

ε =
4Ω2a2

gH
(1.8)

where Ω is the angular frequency of the earth’s rotation in radians per second, a is the

radius of the planet, g is the gravitational constant, which is 9.8 m/s2 for earth, and H

is the mean depth of the fluid. The eigenmodes which are commonly called “Hough”1

functions represent many types of motion of the atmosphere and the ocean, including

Rossby waves(or Rossby-Howitz waves on the sphere), inertial gravity waves, mixed

Rossby-gravity waves(or Yanai waves preferred by oceanographers) and Kelvin waves.

The slowest eastward-travelling wave has been given the special name of the

“Kelvin wave” because of many striking similarities to the coastally-trapped waves

analyzed by Lord Kelvin in the nineteenth century (Thomson, 1880). The Kelvin

wave has enormous practical importance as reviewed in sources as diverse as Chap-

man and Lindzen (1970), Majda (2003) and Andrews et al. (1987). A Kelvin wave

is the main oceanic component of the coupled ocean/atmosphere oscillation known

as ENSO (El Niño-Southern Oscillation) which relates torrential rains in California

with the drought known as “The Great Dry” in Australia. Kelvin waves are impor-

tant in the troposphere and the middle atmosphere, and are primary drivers of the

semiannual oscillation in the tropical upper stratosphere and the Quasi-Biennial Os-

cillation in the tropical lower stratosphere in Lindzen and Holton’s theory(in recent

years however gravity waves have come to be seen as a major contributor). Kelvin

waves are also important in Martian atmospheric dynamics (Zurek , 1976). Because

the Kelvin wave is the lowest mode of the atmosphere, it is the most strongly excited

wave from any sort of broadband forcing.

Longuet-Higgins (1968) carried out a magisterial study of the Hough functions in

1“Hough” is pronounced “Huf” in honor of Sydney Samuel Hough, F. R. S., (1870-1922), for
Hough (1897, 1898).
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Table 1.1: Lamb’s Parameter
ε Description Source

0.012 External mode: Venus Lindzen (1970)
6.5 External mode: Mars Zurek (1976)
12.0 External mode: Earth (7.5 km equivalent depth) Lindzen (1970)
2.6 Jupiter: simulate Galileo data Williams (1996)
21.5 Jupiter Williams (1996)
43.0 Jupiter Williams (1996)
260 Jupiter Williams (1996)
2600 Jupiter Williams and Wilson (1988)

87,000 ocean: first baroclinic mode (1 meter equivalent depth) Moore & Philander (1977)
> 100, 000 ocean: higher baroclinic modes Moore & Philander (1977)

general and the Kelvin wave in particular nearly forty years ago. Even so, there are

some gaps in the theory which we fill.

Since the set of linearized shallow-water equations has two free parameters, the

Kelvin wave also depends on these parameters. The zonal wavenumber s is always a

positive integer. Lamb’s parameter ε is which is a nondimensional reciprocal depth of

the fluid. When SWEs are employed for a thick layer of fluid which has large depth

H, ε is very small. When SWEs are employed for continuously-stratified (rather than

homogeneous) fluids , the depth H is interpreted as the “equivalent depth” of a given

baroclinic mode. In this case, H could be very small and ε could be very large. Thus,

to describe all possible varieties of Kelvin waves in a three-dimensional stratified

ocean or atmosphere, one needs to solve Laplace’s Tidal Equations for a very wide

range of ε ranging from very small (for the “barotropic” or nearly-barotropic waves)

to very large (for high order baroclinic modes) as illustrated in Table 1.1.

When s and ε are both small, the Kelvin wave fills the entire globe from pole

to pole. When ε is getting large, the Kelvin wave is becoming equatorially-trapped.

In the limit ε → ∞, Kelvin waves are completely equatorially-trapped. The usual

derivation assumes that s is fixed as this limit is taken. Figure 1.1 shows that when

s >>
√

ε (and not necessarily large), the velocity potential χ ≈ exp(isλ) P s
s (µ) where

P s
s is the usual associated Legendre function and the frequency σ ≈

√
s(s + 1)/

√
ε.

When r =
√

s2 + ε is large compared to one, the Kelvin wave is equatorially-trapped,
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Figure 1.1: The Kelvin wave lives in a two-dimensional parameter space where the
horizontal axis is the square root of Lamb’s parameter ε and the vertical
axis is the zonal wavenumber s. When s and ε are both small, the Kelvin
wave fills the entire globe from pole to pole. When r =

√
s2 + ε is large

compared to one, the Kelvin wave is equatorially-trapped, proportional to
exp(−(1/2)rµ2) where µ is the sine of latitude. The horizontal axis is

√
ε

rather than ε itself so that r is just distance from the origin in this map of
the parameter space. When ε is large and much greater than s2, the Kelvin
wave is well-approximated by the equatorial beta-plane. When s >>

√
ε

(and not necessarily large), the velocity potential χ ≈ exp(isλ) P s
s (µ)

where P s
s is the usual associated Legendre function and the frequency

σ ≈
√

s(s + 1)/
√

ε. The regions of validity of these two regimes are
marked by the dashed lines. The new asymptotic approximation derived
in Chapter 2 fills the gap between these two previously-known limits.
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proportional to exp(−(1/2)rµ2) where µ is the sine of latitude. So in these two limits,

there are known solutions. But there is gap between these two limits. In this thesis,

we will derive an asymptotic solution which fills the gap. Especially, we will show

that the structure and speed of the Kelvin wave are significantly modified when s is

large. Our approximation is uniformly valid for large s and/or ε regardless of the size

of the smaller parameter. The new approximation turns to be surprisingly accurate

outside its formal range of validity in the region where both s and ε are small.

Twenty years ago, Boyd (1985) showed that for Rossby waves, the parameter that

controls the width of an equatorially-trapped wave is not ε, but rather

εeff ≡ ε + s2, (1.9)

Furthermore, even in the barotropic limit (ε = 0), a Rossby wave of large zonal

wavenumber s and low latitudinal mode number is confined to low latitudes. The

new asymptotic approximation shows that the same is true for the Kelvin wave.

1.4 Nonlinear Kelvin waves on sphere

The nonlinear self-interaction of Kelvin waves has been studied by Boyd (1980,

1984, 1991, 1998),Chen and Boyd (2002), Marshall and Boyd (1987), Ripa (1982,

1985), Long and Chang (1990), Fedorov and Melville (2000), Greatbatch (1985), Majda

et al. (1999), Le Sommer et al. (2004), Milewski and Tabak (1999). In spite of these

work, there are still significant gaps in both linear and nonlinear theory. Some of the

linear gaps have recently been filled by Boyd (2005d) and Boyd and Zhou (2008b).

But for the nonlinear Kelvin waves, there are still many unsolved problems. For

example, are there any steadily translating (traveling) nonlinear Kelvin waves? If

any, how does the nonlinearity change the spatial structure and phase speed? When

in the presence of a background mean, how does it change the spatial structure and
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phase speed? As for the first question, since solitary/traveling waves are the result of

balance between nonlinearity and dispersion, the nonlinearity comes from the wave-

wave interaction terms in the nonlinear equations and the dispersion could come from

either the spherical geometry or the background mean flow, so it is possible to get

traveling nonlinear Kelvin waves.

In Chapter III, we will show how to get such traveling waves. We extend the

nonlinear shallow water equations theory in a couple of ways. First, instead of using

the equatorial beta-plane, which corresponds to the limit of a very thin ocean, we

explicitly include the effects of the earth’s sphericity and finite depth (i. e., finite

“Lamb’s parameter”.) In the equatorial beta-plane approximation, traveling waves

can be modeled by applying the method of multiple scales to derive the Korteweg-

deVries (KdV) equation (with mean currents) or the inviscid Burgers equation (ne-

glecting mean currents) and then invoking the known analytic traveling waves of

these models. On the sphere, it is impossible to derive an analytic solution. However,

a mixture of perturbation theory (for small amplitude) and a continuation/Fourier-

Galerkin/Newton iteration algorithm (for larger amplitude) allows us to describe the

nonlinear Kelvin wave on the sphere.

The nonlinear Kelvin wave exhibits, with increasing amplitude, the so-called

Cnoidal/Corner/Breaking (CCB) Scenario. That is, for small amplitude, nonlinear

Kelvin waves are steadily-traveling periodic waves similar to the cnoidal waves of the

Korteweg-deVries equation. The branch of solutions terminates in a wave of finite

amplitude which is a “corner wave” in the sense that there is a slope discontinuity at

the crest (Boyd (2003, 2006)). For waves whose initial amplitude is higher than that

of the corner wave, the wave rapidly steepens to an infinite slope (“wave-breaking”).

Much is known about the CCB Scenario as reviewed in Boyd (2005b), Boyd

(2003), Boyd (2005c) and Grimshaw et al. (1998). Pioneering work was done by

Stokes (1847), Ostrovsky (1978) and Shrira (1981, 1986). Near-corner waves are de-

8



scribed through matched asymptotic expansions in Longuet-Higgins and Fox (1996)

and Boyd (2005a). Although we shall not compute initial-value solutions here, the

statement that large amplitude Kelvin waves break is demonstrated in Boyd (2006),

Boyd (2005b) and Chen and Boyd (2002).

Kelvin breaking has been discussed elsewhere (Boyd (1980, 1998); Chen and Boyd

(2002); Fedorov and Melville (2000); Le Sommer et al. (2004)). Here, we will attempt

to describe the traveling waves up to and including the corner wave. This poses a

severe numerical challenge because in the corner wave limit, the wave will have a

discontinuous x-derivative at the peak of the wave . The convergence rate of Fourier

coefficients of functions with a slope discontinuity is only O(K−2), where K is the

degree of Fourier coefficients. By employing the Kepler mapping developed in Boyd

(2006), the convergence rate can be improved to O(K−4).

1.5 Nonlinear Kelvin waves on the equatorial beta-plane

Linear Kelvin waves on the equatorial beta-plane in the presence of a zonal shear

flow or jet have been studied by McPhaden and Knox (1979) and Philander (1979)

three decades ago. However, the nonlinearity has been left out when obtaining these

steadily traveling waves. Unlike the Kelvin wave on the sphere, Kelvin waves on the

equatorial beta-plane without mean currents are nondispersive. It has been shown

that an inviscid Burger’s equation can be derived by applying the method of mul-

tiple scales and finite Kelvin waves always evolve to fronts and break (Boyd , 1980).

Without the dispersive mean flow terms, such traveling wave solutions do not exist

since the nonlinear traveling solution is the result of the perfect balance between

dispersion and nonlinearity. By adding a background jet, we can introduce the nec-

essary dispersion terms. Such jets are an observed feature of the tropical ocean and

atmosphere.
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1.6 Tropic instability waves

Tropical Instability Waves (TIWs) are westward propagating oscillations observed

in both equatorial Pacific and Atlantic oceans. Each year around June, an cold

area called cold tongue with sea surface temperature less than 25◦C appears in the

east equatorial Pacific ocean in response to the intensified winds and a shallowing

of the thermocline. Soon after the cold tongue forms, its north boundary(North

Equatorial Front)and also south boundary undergo westward oscillations which are

called Tropical Instability Waves. Around March next year when cold tongue weakens

and disappears, TIWs also weaken and disappear. They were first detected in satellite

infrared images as cusplike deformations of the North Equatorial Front in the Pacific

ocean by Legeckis (1977). Subsequent measurements observed TIWs with various

wavelengths and periods, in ranges of 600-2000 km and 16-40 days, respectively (Qiao

and Weisberg , 1995). They are stronger during the warm phase of ENSO cycle and

weaker during the cold phase. In strong La Ninã years, TIWs can extend as far as

160◦E in Pacific ocean. They play an important role in mixing and cross equator

transport of sea water. Figure 1.2 shows the evolution of TIWs in Pacific Ocean

observed in SST images from June 1,1998 to August 30, 1998.

Even though the TIWs in Figure 1.2 appear to be just one instability wave prop-

agating westward at first glance, previous studies have shown that TIWs generally

fall into two categories(see Figure 11 in Kennan and Flament (2000) for an example).

The first has periods around 15-23 days, is most prominent in meridional velocity,

and has been observed within a few degrees of the equator(Halpern et al., 1988; Qiao

and Weisberg , 1995; Flament et al., 1996; Kennan and Flament , 2000; Lyman et al.,

2007). The second has periods around one month and has been observed in sea sur-

face height, thermocline depth, velocity, and subsurface temperature centered about

5◦N(Miller et al., 1985; Flament et al., 1996; Kennan and Flament , 2000; Lyman

et al., 2005, 2007; Shinoda et al., 2009). Flament et al. (1996) and Kennan and Fla-
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ment (2000) observed two drastically different propagation speeds of TIWs at the

same time, 0.8 ms−1 along the equator and 0.3 ms−1 along 4.5◦N . They suggested

they were two distinct phenomena. Lyman et al. (2007) also observed two different

types of TIWs: unstable Rossby waves at a period of about 33 days characterized

by subsurface temperature at 5◦N and Yanai waves at a period of about 17 days

characterized by fluctuations in meridional velocity at the equator and in subsurface

temperature at 2◦N and 2◦S.
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Figure 1.2: Tropical instability waves (TIW) seen in SST from the Tropical Rain-
fall Measuring Mission (TRMM) Microwave Imager (TMI). TMI imagery
courtesy of Remote Sensing Systems (http://www.ssmi.com/). Cold area,
called cold tongue, forms each year around June. Soon after it forms, its
south and north boundaries(between the cold water(blue) and warm wa-
ter(red)) are subjected to cusp shape deformation which propagate to
the west with a wavelength of about 1000 km and a period of about
15∼45 days. These oscillations are associated with the Tropical Instabil-
ity Waves.
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Nonlinear models by McCreary and Yu (1992) and Yu et al. (1995) produced

two waves with distinct periods (wave 1 with periods about 20 days and wave 2

with periods about 40-50 days (Yu et al., 1995)). These two waves have almost

identical phase speeds, which suggests they may arise from the same critical latitude

(Proehl , 1996). The nonlinear 2-1/2-layer model by Donohue and Wimbush (1998)

also generated a 15-day wave with a phase speed about 0.88 ms−1 and a strong

meridional signal centered on the equator and a 30-day wave with a phase speed about

0.42 ms−1 and sea level maxima near 6◦N . They argued that the 15-day wave arose

from the barotropic instability of the cyclonic shear of south flank of the north South

Equatorial Current (SEC) while the 30-day waves arose from both the barotropic

instability of the anticyclonic shear of the north flank of SEC and the baroclinic

conversion near the core of SEC. With observational data and a projected linearized

model, Lyman et al. (2007) were able to identify the 33-day waves as unstable first

meridional mode Rossby waves; however, the fast 17-day waves did not show up as

unstable waves when the authors ran the linearized model with five vertical modes

and gradually increased the shear of the mean equatorial currents. So how these 17-20

day Yanai-like waves with relative fast propagation speed are generated still remains

unclear.

1.7 Outline

In Chapter II, we will derive a new asymptotic approximation of linear Kelvin

wave on the sphere valid in the limit
√

s2 + ε >> 1.

In Chapter III, we apply perturbation theory to analyze traveling waves of small

amplitude. We then describe the numerical methods that will be employed. Our

perturbative and numerical analysis will explicitly treat only low zonal wavenumbers,

s = 1 and s = 2. However, the methodologies are completely general. We concentrate

on small zonal wavenumbers because as illustrated in Boyd and Zhou (2008b), Kelvin
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waves of moderate and large s are equatorial rather than global modes and are there-

fore well-modeled by the equatorial beta-plane studies of previous work Boyd (1998,

2006). The spatial structure of the corner wave is analyzed. Variations of the phase

speed and height of the corner wave are described and comparisons with observations

are then discussed followed by a summary.

In Chapter IV, we first study how a background jet modifies the linear Kelvin

waves, like spatial structures and phase speeds. Then we calculate the nonlinear

traveling Kelvin waves following the same numerical methods employed in Chapter

III.

In Chapter V, we focus on the TIWs arising from the barotropic instability and

investigate how the nonlinearity changes their strength, periods, etc. Especially, we

explain how the two distinct types of waves with different propagating speeds arise.

We then evaluate the effect of external forcings on these two types of waves.

Final conclusion comes in Chapter VI. Since we already give detailed summary or

conclusion in each separate chapter, we only briefly summarize the main results. Also

we talk about limitations of our theory and possible future work in this chapter.
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CHAPTER II

Uniform Asymptotics for the Linear Kelvin Wave

in Spherical Geometry

In this chapter, we will derive a new asymptotic approximation of the linear Kelvin

wave on the sphere valid in the limit
√

s2 + ε >> 1.

2.1 A New Asymptotic Approximation

2.1.1 Derivation

The linear tidal equations can be written, as in Longuet-Higgins (1968),

σU − µṼ − sφ = 0 (2.1)

µU − σṼ + (1 − µ2)φµ = 0 (2.2)

sU − (1 − µ2)Ṽµ − ε σ(1 − µ2) φ = 0 (2.3)

where µ = cos(θ) , θ is colatitude, λ is longitude, φ is the height and σ the nondimen-

sional frequency. All variables have been nondimensionalized using a as the length

scale, 2Ω as the time scale and H as the depth scale. U and Ṽ are the nondimensional

“Margules-Robert” velocities:

U =
1

2Ω

dλ

dt

√
1 − µ2; Ṽ = −i

1

2Ω

dθ

dt

√
1 − µ2 (2.4)
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The factor of i =
√
−1 accounts for a quarter-of-a-wavelength phase differences be-

tween the north-south velocity and the other fields; the minus sign ensures that V is

positive for a northward flow, as is the usual meteorological convention (but opposite

to the velocity as defined using a physicist’s longitude-colatitude spherical coordinates

since θ increases from zero at the north pole to π at the south pole).

It is convenient to define a new pressure/height unknown so that for the Kelvin

wave, U will approximately equal the new unknown h where

h = (s/σ)φ ↔ φ = (σ/s) h (2.5)

Solving the longitudinal momentum equation for U in terms of the other variables

reduces the set to two equations in two unknowns:

{ s

σ2
µ2 − s

}
Ṽ +

s

σ
µh + (1 − µ2) hµ = 0

µṼ /σ − (1 − µ2)Ṽµ/s +

{
1 − ε

σ2

s2
(1 − µ2)

}
h = 0 (2.6)

Fig. 2.1 shows how this pair of equations is simplified to yet another set (2.12 ) which

is solved exactly below.

The first approximating principle is that when either s or ε is large, the Kelvin

mode will be confined very close to the equator. Equatorial confinement was demon-

strated for large ε by Longuet-Higgins; Fig. 2.2 shows that even for ε = 0, the Kelvin

wave becomes more and confined to low latitude as the zonal wavenumber s increases.

It follows that in the region where the wave has significant amplitude, the neighbor-

hood of µ = 0, it will be a good approximation to replace (1 − µ2) by one.

The second approximating principle is that for all ε, the frequency σ is close to its

beta-plane value s/
√

ε with a relative error which falls rapidly with increasing s or ε.

To be precise, Longuet-Higgins has demonstrated numerically that σ/(s/
√

ε) varies

monotonically between its ε = 0 limit (
√

1 + 1/s ) and ε = ∞ limits (one), implying
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{ (s/σ2) µ2 - s } V + (s/σ) µ h +(1-µ2) hµ =0

(µ/σ) V - (1/s) (1-µ2) Vµ + { 1 − ε (σ2/s2) (1-µ2)   } h =0

(1-µ2)⇒ 1

σ⇒(s/√ε) + σ1

-s V +  hµ

σ⇒s/√ε

+ √ε µ h

(1-µ2)⇒ 1

σ⇒s/√ε

(1-µ2)⇒ 1

~

~

~

- (1/s) Vµ

(1-µ2)⇒ 1

 µ (√ε/s) V

~

~~

σ⇒s/√ε

+ {−2 ( √ε /s) σ1+µ2 } h

&

&

Figure 2.1: Schematic of the approximation of the exact pair of equations (middle
inside the dotted rectangle) by the terms at the top and bottom of the
diagram; this simplified pair of equations is then solved exactly.

that

σ =
s√
ε
{1 + ζ} , ζ ≤

√
1 + 1/s − 1 ≤ 1/(2s) (2.7)

For fixed s and large ε, Longuet-Higgins showed that ζ ∼ 1/(4ε). It follows that for

either large s or ε, it is a good approximation to replace σ by s/
√

ε.

There are subtleties in the two terms which require both approximations simulta-

neously (marked by hollow arrows). In the upper left of the diagram, the frequency

approximation suggests

(s/σ2)µ2 − s ≈ −s
(
1 − ε

s2
µ2

)
(2.8)

When ε ≤ s2, the µ2 term can be neglected compared to the one in the parentheses.

The subtlety is that when ε → ∞ for fixed s, the usual rules of the equatorial beta-

plane apply, and in this limit, the scale of µ is O(ε−1/4) so that the term in µ2 is
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Figure 2.2: The latitudinal structure of u or φ (which are identical) for the lowest ten
zonal wavenumbers s for ε = 0 [barotropic waves]. u = (1 − µ2)s/2. The
widest curve is s = 1 and the waves become more and more narrow as s
increases. The dotted curves are guidelines that show that the half-width
of the wave is within the tropics ( |latitude| ≤ 300) for s ≥ 5.

emphatically not small compared to one. However, in this same limit, Ṽ tends to

zero as O(ε−3/4) relative to h as shown by Longuet-Higgins (1968) . Therefore, the

replacement {(s/σ2)µ2 − s}Ṽ ≈ −sṼ yields small errors relative to the other terms

in the equation for s or ε or both large.

In the last term in the second equation (bottom right of the figure), the factor

1 − ε
σ2

s2
(1 − µ2) =

{
1 − ε

σ2

s2

}
+ ε

σ2

s2
µ2 (2.9)

consists of a (µ-independent) constant plus a term quadratic in µ2, which we might

naively think could be neglected. However, when σ is equal to its limiting value as

ε → ∞, the constant in the braces is zero. It follows that, no matter how large ε is,

it is never a good approximation to neglect the µ2 part of this factor. However, in

the limit ε → ∞, Ṽ diminshes rapidly compared to h, and µ2 will be small in the

equatorial region where the wave has most of its amplitude. It follows that although
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1 − εσ2/s2 is small compared to one, this term is not negligible. Therefore, writing

σ = s/
√

ε + σ1(ε, s) (2.10)

we shall treat this factor with near-cancellations as

1 − ε
σ2

s2
(1 − µ2) ≈ −2

√
ε

s
σ1 + µ2 (2.11)

Everywhere else in (2.6), 1 − µ2 → 1 and σ → s/
√

ε, yielding the approximate

equations

−sṼ +
√

εµh + hµ = 0 (2.12)

µ

√
ε

s
Ṽ − Ṽµ/s +

{
−2

√
ε

s
σ1 + µ2

}
h = 0

The exact solution of this simplified pair of equations is

h = exp
(
−(1/2)

√
ε + s2 µ2

)
(2.13)

Ṽ =

{√
ε

s
−

√
1 +

ε

s2

}
µ exp

(
−(1/2)

√
ε + s2 µ2

)
(2.14)

σ1 = − 1

2s
+

1

2
√

ε

√
1 +

ε

s2
(2.15)

There is one further refinement that is helpful for small zonal wavenumber s. All

of the unknowns U , Ṽ and φ have expansions in spherical harmonics, and all spherical

harmonics of a given wavenumber have a common factor of (1 − µ2)s/2 which forces

all these fields to have a root of order s/2 at each pole. (This property is true of

all scalars in spherical geometry when expanded in a longitudinal Fourier series as

discussed in Boyd (2001).) For small s and ε, the Gaussian factors of µ in (2.13) and
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(2.14) do not enforce these zeros. It is therefore desirable to make the replacement

exp
(
−(1/2)

√
ε + s2 µ2

)
≈ (1 − µ2)s/2 exp

(
−(1/2)

{√
ε + s2 − s

}
µ2

)
(2.16)

Because (1 − µ2)s/2 = exp((s/2) log(1 − µ2)) ≈ exp(−(s/2)µ2) for small µ, these two

expressions in (2.16) are indistinguishable when either s or ε or both are large, but

separation of the s/2 order zeros at the poles yields a better approximation when s

and ε are small.

2.1.2 Results

Converting back to the original variables gives the final asymptotic approximation,

uniformly accurate when either s or ε or both are large:

φ = (1 − µ2)s/2 exp
(
−(1/2)

{√
ε + s2 − s

}
µ2

)
(2.17)

Ṽ =
s

σ

{√
ε

s
−

√
1 +

ε

s2

}
µ (1 − µ2)s/2 exp

(
−(1/2)

{√
ε + s2 − s

}
µ2

)
(2.18)

U =
s

σ
φ +

µ

σ
Ṽ (2.19)

σ = s/
√

ε − 1

2s
+

1

2
√

ε

√
1 +

ε

s2
(2.20)

For fixed s and large ε, this frequency approximation simplifies to the formula derived

nearly forty years ago by Longuet-Higgins (1968) , σ = s/
√

ε
{

1 + 1
4
√

ε

}
.

The price for the simplicity of these approximations is that their derivation is not

based on systematic power series expansions, but rather more on the sort of math-

ematical banging-on-pipes that engineers do without apology (“if the dam holds,

hurrah!”) and that physicists dignify with the fine-sounding German word ansatz.

In this instance, no apologies are necessary because the full parameter space is only

two-dimensional (Fig. 1.1) and we have a highly accurate numerical method to com-
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Figure 2.3: The thick black curve is the exact Kelvin mode for s = 5 and ε = 5.
The red curve is the improved new asymptotic approximation, φ ≈
(1 − µ2)s/2 exp(−(1/2)

{√
ε + s2 − s

}
µ2) which is graphically indistin-

guishable from the Kelvin wave. The dashed curve is the new asymptotic
approximation without the (1 − µ2) factor, φ ≈ exp(−(1/2)

√
ε + s2µ2).

The dotted curve is the classical equatorial beta-plane approximation,
φ ≈ exp(−(1/2)

√
εµ2).

pute “exact” solutions to compare with the approximations throughout the whole

of parameter space, and thus validate the approximations with a thoroughness that

even a mathematician can accept.

2.2 Results and Numerical Plots of Errors

The maximum relative errors in the new approximation for the frequency σ for

all ε ∈ [0,∞] are 6.1 % [s = 1], 2.5 % [s = 2], 1.2 % [s = 3] and 0.70 % [s = 4]

and in general O(1/(8s2)). It is remarkable that an approximation derived for large

s and/or ε is in fact rather accurate even for small s and ε.

Fig. 2.3 compares the exact Kelvin wave on the sphere, as computed numerically,

with three different asymptotic approximations for a typical pair of parameter values

(ε = 5, s = 5). The equatorial beta-plane approximation (dots) is terrible. The

21



asymptotic approximation which is unconstrained to vanish at the poles is much

better, but not too good at high latitudes. The asymptotic approximation which is

proportional to (1 − µ2)s/2, in contrast, is visually indistinguishable from the exact

height field.

Fig. 2.4 shows the error in frequency σ [upper left] and of (u, v, φ) [in the L∞ norm,

that is, the maximum error for any latitude] for the new asymptotic approximation in

the
√

ε− s plane. The frequency error is not one-signed, but rather has an accidental

zero along a ray s ≈ 3
√

ε. This is not important, but the fact that the error is small

everywhere is gratifying. The errors in the velocities and height are very small for

small
√

ε because of the built-in factor of (1−µ2)s/2: u and φ are approximately equal

to this factor for small ε. However, again the error is uniformly small everywhere in

the two-dimensional parameter space.

2.3 Summary

We have derived a new asymptotic approximation for the Kelvin wave that fills the

gap between the equatorial beta-plane (fixed zonal wavnumber s, Lamb’s parameter

ε → ∞) and the small ε, velocity-potential-is-P n
n (µ) exp(isλ) approximation. The

new approximation was derived under the assumption that at least one of (s, ε) is

large, but numerically, is moderately good even when both parameters are small.

The approximation shows that the degree of equatorial confinement is not con-

trolled by ε alone, but rather by the parameter

εeff = s2 + ε (2.21)

Boyd (1985) showed that the same is true for Rossby waves. A Kelvin wave of

moderate zonal wavenumber s will be confined to the tropics even for ε = 0, a

barotropic wave, as illustrated in Fig. 2.2.
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Figure 2.4: Log10(errors) in the new asymptotic approximation to the Kelvin wave
for the frequency (upper left) and the three unknowns (remaining three
panels). The frequency error is the error in σ/(s/

√
ε), which is close to

one for all s and ε. The eigenfunctions are normalized by scaling the
height to have a maximum of one, so the errors are both the absolute
and relative errors in this variable. u and v were scaled by dividing the
absolute errors by the global maximum of each velocity, and plotting these
scaled variables.
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CHAPTER III

Kelvin Waves in the Nonlinear Shallow Water

Equations on the Sphere: Nonlinear Traveling

Waves and the Corner Wave Bifurcation

In linear wave dynamics, assumption is made that the wave amplitude is small

so that the wave-wave interaction terms could be dropped. However, in nonlinear

wave dynamics the wave amplitude is no longer small so the wave-wave interaction

terms need to be retained. So instead of living in a two dimensional parameter

space of wavenumber s and Lamb’s parameter ε like linear Kelvin waves, nonlinear

Kelvin waves live in a three dimensional parameter space with the wave amplitude

as the third dimension. If we fix wavenumber s, then we only need to consider

two dimensions. When ε=0 and wave amplitude is infinitesimal, we know that the

Kelvin wave solution is just the linear Kelvin wave solution for ε=0. So we could

derive the asymptotic solution of nonlinear Kelvin waves when s and ε are both small

by expanding the unknowns in a double power series in the wave amplitude and

in the square root of Lamb’s parameter ε, so called “perturbation method”. The

perturbation method fails when either wave amplitude or ε becomes large enough.

And we will use numerical method to pursue the solution when the perturbation

method fails.
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3.1 Nonlinear Kelvin wave on sphere by perturbation theory

3.1.1 Introduction

In this section, we shall approximate the traveling wave solution of the nonlinear

Kelvin wave on the sphere by a perturbation series. First, the nonlinear shallow water

equations will be nondimensionalized. Second, we will simplify by shifting to the

velocity variables introduced by Margules and changing the north-south coordinate.

Finally, the traveling wave solution with period 2π will be perturbatively derived by

expanding the unknowns in a double power series in the wave amplitude and in the

square root of Lamb’s parameter ε.

3.1.2 Nonlinear shallow Water Equations on the Sphere

The nonlinear shallow water equations in spherical coordinate over a flat sea bot-

tom are

∂u′

∂t′
+

u′

asin(θ)

∂u′

∂λ
− v′

a

∂u′

∂θ
−

(
2Ωcos(θ) +

u′cot(θ)

a

)
v′ +

g

asin(θ)

∂h′

∂λ
= 0 (3.1)

∂v′

∂t′
+

u′

asin(θ)

∂v′

∂λ
− v′

a

∂v′

∂θ
+

(
2Ωcos(θ) +

u′cot(θ)

a

)
u′ − g

a

∂h′

∂θ
= 0 (3.2)

∂h′

∂t′
+

u′

asin(θ)

∂h′

∂λ
− v′

a

∂h′

∂θ
+

h′

asin(θ)

(
∂u′

∂λ
− sin(θ)

∂v′

∂θ
− v′cos(θ)

)
= 0 (3.3)

where θ is colatitude, λ is longitude, t′ is the dimensional time, u′ is the dimensional

eastward velocity, v′ is the dimensional northward velocity, h′ is the total depth of

the fluid, and a is the radius of the planet. (Note that following the usual geophysical

convention, v′ = − a Dθ/Dt where D/Dt is the total derivative because colatitude θ

is increasing southward.)

It is convenient to nondimensionalize the variables as follows:

t′ = (1/[2Ω])
√

ε t (3.4)
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u′ = 2Ωa
û

sin(θ)
, v′ = 2Ωa

v̂

sin(θ)
, (3.5)

h = H (1 +
√

ε φ) (3.6)

Note that û and v̂ are the “Margules velocities”, introduced in the early twentieth

century by the Austrian meteorologist Max Margules because the sin(θ) factors ensure

that these modified velocities have the same behavior at the poles as scalar variables

such as the height h.

It is common in tidal theory to rescale time by 2Ω, velocities by 2Ωa and the devi-

ation height field by ε. We have chosen different scales for time and φ for convenience

in applying perturbation theory as explained in the next section. We employed the

same scalings for the numerical studies to facilitate comparisons between perturbative

and numerical results.

For notational simplicity, we omit the accents on the Margules velocities below.

In the meridional direction, we change the coordinate from θ to µ via

cos(θ) = µ, sin(θ) =
√

1 − µ2,
∂

∂θ
→ −

√
1 − µ2

∂

∂µ
(3.7)

We now specialize to traveling waves of the form u(λ− ct, µ) and similarly for the

other variables where c is the nondimensional phase speed. The usual dimensional

phase speed in units meters/second is

cdim = a
2Ω√

ε
c (3.8)

The eigenmodes of Laplace’s tidal equations, which are the linearization of the

shallow water equations about a state of rest, are standing waves in latitude and

propagate only east-west, and this is true of the nonlinear traveling waves as well.

To explicitly collapse the number of coordinates from three (λ, µ, t) to two, it is

convenient to define a new coordinate in a frame of reference that moves with the
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wave:

x ≡ λ − ct (3.9)

Then

∂

∂t
→ −c

∂

∂x
,

∂

∂λ
→ ∂

∂x
(3.10)

After all these steps and defining δ ≡
√

ε, the shallow water equations become,

without approximation,

(
c(1 − µ2) − δu

) ∂u

∂x
− δ(1 − µ2)v

∂u

∂µ
− (1 − µ2)

∂φ

∂x
+ δµ(1 − µ2)v = 0 (3.11)

(c(1 − µ2) − δu)
∂v

∂x
− δ(1 − µ2)v

∂v

∂µ
− (1 − µ2)2 ∂φ

∂µ
− δµ

{
u2 + v2 + (1 − µ2)u

}
= 0 (3.12)

(c(1 − µ2) − δu)
∂φ

∂x
− δ(1 − µ2)v

∂φ

∂µ
− (1 + δφ)

(
∂u

∂x
+ (1 − µ2)

∂v

∂µ

)
= 0 (3.13)

3.1.3 Traveling waves by perturbative double expansion

The traveling wave solution of (3.11 )–(3.13) can be approximated by perturbation

theory. As is standard in nonlinear wave theory, we assume the wave amplitude is

small as measured by a placeholder variable A. Unfortunately, linearizing in A merely

generates Laplace’s tidal equations whose solutions, the Hough functions, cannot be

found analytically except in the limits ε → 0 and ε → ∞. We therefore perform a

double expansion on the further assumption that ε is sufficiently small. Then u,v,φ,c

can be expressed as series of A and δ, which is
√

ε.

u =
n∑

i=0

m∑
j=1

ui,jδ
iAj, v =

n∑
i=0

m∑
j=1

vi,jδ
iAj, φ =

n∑
i=0

m∑
j=1

φi,jδ
iAj, c =

n∑
i=0

m∑
j=0

ci,jδ
iAj

(3.14)

Substitute these expressions into (2.11)-(2.13) and collect the coefficients of δiAj from

each equation. Perturbation theory requires all these coefficients should be zero. The

lowest order equations, coefficients of δ0A1, are simply the ε = 0 limit of Laplace’s
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(linear) tidal equations,

c0,0u0,1,x − φ0,1,x = 0 (3.15)

c0,0v0,1,x − (1 − µ2)φ0,1,µ = 0 (3.16)

u0,1,x + (1 − µ2)v0,1,µ − c0,0(1 − µ2)φ0,1,x = 0 (3.17)

φ0,1 and v0,1 can be quickly eliminated and the equations become one single equation

of u0,1(x, µ) and c0,0. Further more, let u0,1(x, µ) = U(µ)cos(sx) where s is the zonal

wave number. We get

(1 − µ2)
∂2U(µ)

∂µ2
− 2µ

∂U(µ)

∂µ
+

(
c2
0,0 s2 − s2

1 − µ2

)
U(µ) = 0 (3.18)

This is Legendre’s equation. Since c0,0 is unknown, it is an eigenvalue problem. The

solutions bounded on the sphere are

U(µ) = P s
l (µ), l = s, s + 1, s + 2, ... &, c0,0 =

√
l(l + 1)

s
(3.19)

Note that the Legendre equation (3.18) also has a negative root for c0,0 since the

eigenvalue is the square of the phase speed; however, the reduction from three equa-

tions to one requires dividing by a factor that is zero for c0,0 = −
√

s(s + 1)/s.

Thus, the “anti-Kelvin” wave, as this spurious mode has been dubbed, is not a true

eigenfunction of the original system of three linearized equations; the only true l = s

eigenmode has a positive (eastward) phase speed.
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When l = s, the solution is the well known linear Kelvin wave on the sphere:

c0,0 =

√
s(s + 1)

s
(3.20)

u0,1(x, µ) = P s
s (µ)cos(sx) (3.21)

v0,1(x, µ) = (1 − µ2)
∂P s

s (µ)

∂µ

sin(sx)

s
(3.22)

φ0,1(x, µ) = c0,0P
s
s (µ)cos(sx) (3.23)

The higher order equations almost have the same form as equations (3.15), (3.16)

and (3.17), except they have forcing terms from lower order solutions on the right

hand side of these equations. After eliminating φi,j and vi,j, there is always an in-

homogeneous Legendre equation for ui,j with inhomogeneous part containing ci,j−1.

By employing the Fredholm solvability condition, which requires the inner product

of the eigenfuction and inhomogeneous term be zero, we can get the eigenvalue ci,j−1,

and then get the particular solution for ui,j. The homogenous solutions can always be

absorbed to the lowest order solution because they have the same form of the lowest

order solutions. A is a placeholder used to order the variables.

For the s = 1 case (i.e., a longitudinal period of 2π ), the nonlinear Kelvin wave

on the sphere is, to the lowest nonlinear order,

c =
√

2 − 1

4
δ +

17
√

2

320
δ2 − 1

160
δ3 +

61
√

2

40
δ2A2 − 83

40
δ3A2 (3.24)

u =
√

1 − µ2cos(x)A −
√

2

2
(1 + µ2)

√
1 − µ2cos(x)δA (3.25)

+
27

40
(1 + µ2)

√
1 − µ2cos(x)δ2A + 2

√
2(1 − µ2)cos(2x)δA2
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v = −µ
√

1 − µ2sin(x)A + µ
√

2(1 − µ2)sin(x)δA (3.26)

+
µ

20

√
1 − µ2(2µ2 − 29)sin(x)δ2A − 2

√
2µ(1 − µ2)sin(2x)δA2

φ =
√

2(1 − µ2)cos(x)A − 5

4

√
1 − µ2cos(x)δA (3.27)

−
√

2

320
(64µ2 − 273)

√
1 − µ2cos(x)δ2A + (

15

4
(1 − µ2)cos(2x) − µ2

4
)δA2

The extension to s > 1 is straightforward.

3.2 Kepler mapping/Galerkin method/Newton continuation

method

In this section, we shall calculate the same traveling wave solution derived in

the previous section, but without the restriction to small wave amplitude and small

Lamb’s parameter. We shall combine a change of coordinate (“Kepler mapping”)

with a spectral Galerkin method and Newton continuation.

3.2.1 Kepler mapping

To improve the Fourier rate of convergence from second order to fourth order in

the degree of the coefficients, we transformed the longitudinal coordinate from x to

a new stretched coordinate z. The “Kepler mapping”, so named because inverting

the transformation requires solving the Kepler equation of celestial mechanics, con-

centrates high resolution near the discontinuous corner at x = 0 while preserving

the periodic behavior in longitude (Boyd, 2006). This creates a mild complication

because we apply the numerical method to waves of different longitudinal periods

2π/s where s is the zonal wavenumber of the lowest nonzero longitudinal Fourier
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component. The form of Kepler mapping has a slightly different form for different s:

x = z − sin(sz)

s
(3.28)

∂

∂x
→ 1

1 − cos(sz)

∂

∂z
(3.29)

The mapping preserves spatial periodicity and x = z at z = nπ/s, n = 0,±1,±2, ...

3.2.2 Galerkin method

The Galerkin method for discretizing a differential equation demands that when

the truncated Fourier series for each unknown is substituted into the shallow water

equations to obtain the so-called “residual” function, the leading terms of the Fourier

series of the residual are zero. These constraints are obtained by evaluating the

integral inner product of the basis functions with the residual function and demanding

that this integral should be zero or equivalently, that each basis function is orthogonal

to the residual function. The number of orthogonality conditions is equal to the

number of undetermined coefficients in the Fourier series for the unknowns, thus

deriving a consistent set of nonlinear algebraic equations for the Fourier coefficients

of u, v and φ. A full discussion is given in Boyd (2001).

To reduce the number of unknowns by a factor of four, we assume that u and

φ are symmetric about the equator and z = 0, and v is antisymmetric about the

equator z = 0. (Our success in computing solutions with the assumed symmetries is

an a posteriori justification for these assumptions.) The domain of the entire globe

is [0, 2π] in longitude and [0, π] in colatitude. But by employing the periodicity and

parities of the Kelvin wave, we can reduce the domain by a factor of 2s in longitude

and half it in latitude. So we only need to calculate the unknowns in the region of

[0, π
s
] in x or z and [0, π

2
] in θ.

As explained in Boyd (1984), the nonlinear traveling wave eigenproblem has a
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unique solution only after specification of the longitudinally-averaged zonal flow,

in this case, zero. By integrating geostrophic balance around a circle of latitude,

one finds that a zero mean for u at each latitude implies that φgeostrophic must have

a zero mean and vice-versa. Integrating the full latitudinal momentum equation

around a circle of latitude gives, denoting the zonal mean by an overline, g ∂h/∂θ =

u∂v/∂λ/ sin(θ)−(1/2)∂v2/∂θ+cot(θ)u2. As usual, however, such a cyclostrophically-

balanced flow is negligible Boyd (1976); in our computations, the mean height field h

was always less than one part in ten thousand relative to the maximum of the wave.

Also by employing the parities of the unknowns, we can halve the number of basis

functions used in both directions. In z, the basis functions of u and φ are

ψ
(z)
sym,0 = 1

ψ
(z)
sym,1 = cos(sz) +

1

2
(3.30)

ψ(z)
sym,m = cos(smz), m = 2, 3, . . .M (3.31)

where the constant ψ
(z)
sym,0 is used only for φ and the basis functions of v are

ψ(z)
asym,m = sin(smz), m = 1, 2, . . .M (3.32)

The additive factor of (1/2) in ψ
(z)
sym,1 ensures that all basis functions with m > 0

individually have a zero longitudinal mean, despite the change of coordinate from

longitude to the Kepler coordinate s, so that the Kelvin wave will not be accompanied

by a zonal mean flow; note that
∫ π

0
cos(sz(x))dx = −π/2, (Boyd, 2006).

In colatitude, the basis functions of u and φ are

ψ(θ)
sym,n = cos((2n − 2)θ) sin(θ)s, n = 1, 2, . . . N (3.33)
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and the basis functions of v are

ψ(θ)
asym,n = cos((2n − 1)θ) sin(θ)s, n = 1, 2, . . . N (3.34)

The reason for the sins factor is explained in Orszag (1974), Boyd (1978a) and Chapter

18, Sec. 8, of Boyd (2001); suffice it to say that the rate of convergence is greatly

improved in spherical geometry by multiplying the cosines by sins(θ).

Finally, we expand u, φ and v as

u =
M∑

m=1

N∑
n=1

au
mnψ

(z)
sym,m ψ(θ)

sym,n (3.35)

φ =
M∑

m=0

N∑
n=1

aφ
mnψ

(z)
sym,mψ(θ)

sym,n (3.36)

v =
M∑

m=1

N∑
n=1

av
mnψ

(z)
asym,mψ(θ)

asym,n (3.37)

where au
mn, aφ

mn and aφ
mn are the coefficients u, φ and v, whose sizes are M × N ,

M × (N + 1) and M × N .

The number of points used in z should be no fewer than the number of basis

function used in z. So it requires Mpts > M . Similarly, Npts > N .

To apply the Galerkin method, first substitute the (truncated) Fourier series into

the nonlinear shallow water equations. The resulting “residual functions” are just

the Left-Hand Sides (L. H. S.) of (3.11) to (3.13). The residual functions depend

on the spectral coefficients {au
mn, a

v
mn, a

φ
mn} and the phase speed c. We then demand

that the residual should be orthogonal to a set of test functions when integrated over

the domain. In “mean weighted residual” methods, the test functions can be very

general; Galerkin’s method is the special case in which the test functions are the basis

functions. Thus, for Eq. (3.11) and (3.13), the test functions are ψ
(z)
asym in z and ψ

(θ)
sym

in θ. For Eq. (3.12) the test functions are ψ
(z)
sym in z, ψ

(θ)
asym in θ;
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The Galerkin residual is

r1,mn =

∫ ∫
LHS(3.11) × ψ(z)

sym,m(θ) × ψ(z)
asym,n(z) dzdθ (3.38)

r2,mn =

∫ ∫
LHS(3.12) × ψ(θ)

asym,m(θ) × ψ(z)
sym,n(z) dzdθ (3.39)

r3,mn =

∫ ∫
LHS(3.13) × ψ(θ)

sym,m(θ) × ψ(z)
asym,n(z) dzdθ (3.40)

where m = 1 . . .M, n = 1 . . . N . The sizes of ~~r1, ~~r2 and ~~r3 are M × N , M × (N + 1)

and M × N , so there are in total 3MN + M residual elements.

The integrals are numerically approximated using Mpts quadrature points in z,

z =
(2 i − 1)

2Mpts

π

s
, i = 1, 2, . . . ,Mpts (3.41)

so z ∈ (0, π
s
), which is also the range of the unmapped coordinate x. We use Npts

points in colatitude,

θ =
(2j − 1)

4 Npts

π, j = 1, 2 . . . Npts (3.42)

Because the integrands are periodic in both z and θ, the trapezoidal rule converges

exponentially fast in Mpts and Npts except for the corner wave. Because of parity

symmetry, the range of the quadrature points may be halved, just like the number of

basis functions, in each coordinate. So the span is only half of the one hemisphere.

3.2.3 Newton continuation method

The 3MN + M + 1 unknowns are the scalar c plus three vectors of lengths MN ,

M(N + 1) and MN : au, aφ and av. However, there are only 3MN + M values of ~~r1,

~~r2 and ~~r3. So in addition, we require that value of φ at x = 0, latitude = 0, or φ00 for

short, is fixed during the iteration. This gives us an additional residual r4.

We can reshape the coefficient matrices au,aφ and av to three vectors. Stacking
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these and c together to form a (3MN + M + 1) × 1 vector ~a(3MN+M+1)×1. Similarly,

we can form a vector ~r(3MN+M+1)×1 from ~~r1, ~~r2 and ~~r3 and r4.

The algebraic system ~r (~a) = ~0 is solved by a Newton/continuation method. The

Newton iteration is to iterate the following until the difference between successive

iterates is below a (tiny) user-chosen error tolerance:

~a(n+1) = ~a(n) − ~J−1(r(n)) (3.43)

where
~~J is the Jacobian matrix

Jij =
∂ri

∂aj

, i = 1 . . . 3MN + M + 11, j = 1 . . . 3MN + M + 1. (3.44)

and n is the iterative number. Unfortunately, all iterative methods require a “first

guess” or “initialization”.

Parameter continuation provides the required first guess. To trace a complete

branch of solutions, we march from small amplitude (where the initialization is pro-

vided by perturbation theory as in the previous section) to large amplitude while

keeping all other parameters fixed. We chose φ00, which is the equatorial height at

the crest of the wave, φ(x = 0, θ = π/2), as the amplitude parameter (though other

choices are possible). The continuation strategy is to march in small steps of the

amplitude parameter. The computed solution for the k-th value of φ00 is used as

the initialization for Newton’s iteration to compute the Fourier coefficients ~a for the

(k + 1)-st value of φ00.

As the amplitude of Kelvin wave increases, it evolves to the corner wave, so-called

because it has a slope discontinuity at the crest Boyd (2005b). The branch of traveling

waves ends abruptly at the corner wave: there are no solutions for larger amplitude.

(Instead, all waves larger than the corner wave break.) The corner wave is a sort of

anti-bifurcation point in the sense that no additional branches are born at the corner
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wave, but rather the branch simply dies. So when the amplitude is a little greater

than that of the corner wave, Newton’s iteration will fail.
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ε 0.01 0.1 0.5 1 3 5 15 30

s = 1 0.0007 0.002 0.0005 0.0008 0.007 0.001 0.004 0.009

s = 2 0.001 0.002 0.008 0.009 0.004 0.003 0.003 0.007

Table 3.1: Relative coarse-fine differences in the L∞ norm

3.2.4 Resolution Check

Two different resolutions were used as a self-consistency check. The coarse solu-

tions used M = 20 basis functions in longitude, N = 10 in latitude with Mpts = 30

[longitude] and Npts = 15 [latitude]. All high resolution computations set M = 30,

N = 15, Mpts = 40 and Npts = 20. The difference between these two results for the

corner waves are given in Table 3.1, which catalogues the L∞ norm of the difference

between the coarse and fine grid approximations, divided by φ00, for various ε and

s. We see that coarse resolution gives very decent results: the coarse-fine relative

differences are all less than 0.9%.
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Figure 3.1: Normalized absolute values of Fourier coefficients of φ. φ is the solution
of the corner wave of s = 1 and ε = 1 case. m and n are coefficient degree
in longitudinal and latitudinal directions respectively. The solid line has
a slope proportional to K−4, confirming the predicted fourth order rate
of convergence when the Kepler change-of-coordinate is used. The rate of
convergence is good enough to show that the solution of the corner wave
is reliable.

3.3 Spatial Structure of the Corner Wave

We computed steadily-propagating Kelvin waves of s = 1 (longitudinal period

of 2π) and s = 2 (longitudinal period π) for various Lamb’s parameter ε using the

numerical methods described in the previous section.

Figure 3.1 shows the normalized absolute values of Fourier coefficients of φ in the

corner wave limit. The rate of convergence is about O(K−4), where K =
√

m2 + n2

is the total degree of the Fourier basis function indexed by m and n. When the

amplitude is less than its corner wave limit, the rate of convergence is exponential.

At the corner wave limit, the rate slows to O(K−4).

It would be helpful if the solution of the discretized partial differential system

terminated at the corner wave, but alas, this is not true. The algebraic system has

a solution even beyond the corner wave limit because the branches of the solution

to a finite dimensional system of polynomial equations cannot simply stop. Instead,

when φ00 is beyond the corner wave limit, the Fourier coefficients cease to converge so
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Figure 3.2: Traveling Kelvin wave solutions with s = 1 and ε = 1. Left: equa-
torial section of φ for φ00 = 0.1705, 0.1755, 0.1805, 0.1855 and 0.1905,
respectively. φ(x, θ = π/2) steepens with the increasing φ00. When
φ00 = 0.1905, φ(x, π/2) is the corner wave, discontinuous in its first
derivative at the crest. Right: A zoom in plot of φ(x, π/2) with
φ00 = 0.1755, 0.1805, 0.1855, 0.1905, 0.1955, 0.2005. The heavy curve is
for φ00 = 0.1905. Note that this graph includes two values of φ00 larger
than that of the corner wave (dashed); these are unphysical as indicated
by their unphysical oscillations near x = 0. The interval in longitude is
from 0 to 0.1, which is about 1.6% of the total width. (Note that the
plot is in the physical longitudinal coordinate x; the circles on each curve
show the points of the grid, which is evenly spaced in z, but very heavily
concentrated in x near x = 0.) This graph shows that the corner wave is
easily distinguished by eye from near-corner waves with a zoom plot.

that the finite-dimensional Galerkin-discretized polynomial system no longer yields

a good approximation to the solution of the differential equation, which is a system

of infinite dimension. The subtleties of identifying the corner wave are discussed in

detail in Boyd (2006). However, we will discuss graphical clues to spurious solutions

below.

Figure 3.2 shows traveling Kelvin wave at the equator for s = 1 and ε = 1 of

different amplitude φ00. The right figure of Figure 3.2 is a zoom plot of the same five

solutions illustrated in the left panel. All five solutions are very close to the corner
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Figure 3.3: φ of the corner wave for s = 1 and ε = 1 on sphere; left and right differ
only in viewing angle. The peak value of φ00 is 0.1905. The comparison
shows that only the longitudinal derivative is discontinuous at the peak.

wave, and seem to rise to a corner at x = 0 in the left figure. Graphical magnification

by plotting the variable on a small x-interval shows that the slope discontinuities

are only optical illusions for four of the five: the lower four solid curves have narrow

regions of high curvature very close to the origin where these waves flatten out to

zero slope at x = 0. In contrast, when φ00 = 0.1905, the corner wave is almost

linear all the way to x = 0. Thus, the corner wave is easily distinguished by eye

from near-corner waves with a zoom plot Boyd (2003). The two dashed curves are

physically spurious solutions whose amplitude is larger than that of the corner wave;

these are genuine solutions of the system of polynomial equations generated by the

Galerkin discretization, but these are not approximations to solutions of the shallow

water equations. The coefficients of these spurious solutions converge slowly. These

spurious solution vary when the number of basis function changes while the real

physical solutions with amplitude smaller than φ00 = 0.1905 do not change.

Surface mesh plots φ for the corner wave limit are shown in Figure 3.3. One

question is: Are both components of the gradient of φ discontinuous at the peak,

or only one? We visually answered this question by plotting φ twice from different

viewing angles. The left diagram shows that the longitudinal derivative is (at least
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Figure 3.4: Profile of φ along the equator (solid) and the profile of φ at x = 0 as a
function of latitude (dashed) for the corner wave for s = 1 for two different
values of Lamb’s parameter.[Left: ε = 1. Right: ε = 30.] The horizontal
axis does doubly duty, being longitude for φ(x, latitude = 0) and latitude
for φ(x = 0, latitude). In both panels, the longitudinal derivative (solid)
is clearly discontinuous at the crest whereas the north-south derivative
shows not the slightest hint of non-smoothness.

visually) discontinuous. However, rotating the viewing angle by roughly a quarter-

turn shows only a smooth, rounded crest: the north-south derivative shows no signs

of discontinuity.

Figure 3.4 displays line graphs that, for two different values of ε, make the same

point. In each, the solid curve is a longitudinal cross-section at the equator while

the dashed curve shows φ(0, y). The x-derivative is discontinuous, but the latitudinal

derivative is smooth.

Just as for infinitesimal amplitude Kelvin waves, u of the corner wave is graphically

indistinguishable from φ and so is not plotted. The first derivative of the northward

velocity v is everywhere continuous, so v is not plotted.

Figure 3.5 compares φ(x, y = 0), normalized by dividing by φ00, for many different

ε. As ε increases, the corner wave becomes narrower and narrower in longitude. This

trend is also evident by comparing the left and right panels of Fig. 3.4. Dispersion and

the height of the corner wave both diminish rapidly as ε increases; it is remarkable

that the corner wave becomes narrower, more focused in longitude, in this same limit.
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Figure 3.5: Normalized φ(x, θ = π/2) [longitudinal section at the equator] of the
corner wave solution of s = 1 and ε = 0.01, 1, 5, 30. The profiles of
φ(x, θ = π/2) are scaled by their corresponding maxima, φ00. The shape
of φ at the equator becomes narrower and narrower as ε increases.

The latitudinal width, not shown, becomes narrower and narrower as captured by the

equatorial beta-plane approximation, φ(x, θ) ∼ A(x) exp (−
√

ε(θ − π/2)2). However,

the latitudinal width is controlled by linear dynamics whereas the longitudinal focus-

ing is caused entirely by nonlinearity : when the amplitude is much smaller than the

corner wave, the longitudinal structure of the Kelvin mode is approximately cos(sλ).

Another interesting question is how far does the slope discontinuity extend from

the equator to the poles? To answer this question, we calculated dφ/dx. Figure 3.6

shows φx at several latitudes, shown on the full longitudinal range at left and as a zoom

plot on the right. A finite spectral series must always impose a truncation-dependent

smoothing on a discontinuity. Even so, it is clear the slope rapidly diminishes away

from the equator. It seems likely that the Kelvin wave is discontinuous only at the

equator.

The graphs for s = 2 were so similar to those for s = 1 that they are omitted.

However, the maximum equatorial height φ00(ε) and phase speed c(ε) for the corner

wave are discussed for both s = 1 and s = 2 in the next section.
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ε 0.01 0.1 0.5 1 3 5 15 30

Phase speed c 1.4327 1.3792 1.3008 1.2551 1.1758 1.141 1.082 1.0572

φ00 3.5 0.95 0.32 0.19 0.074 0.045 0.0145 0.0071

(c2 − 1)/(3
√

ε) 3.5088 0.9510 0.3262 0.1918 0.0736 0.0450 0.0147 0.0072

h00 ≡ φ00

√
ε 0.3500 0.3004 0.2263 0.1900 0.1282 0.1006 0.0562 0.0389

Table 3.2: Parameters in the corner wave limit for s=1 case

3.4 Variations of Phase Speed and Corner Height

The parameters of the corner wave for different ε are summarized in Table 3.2

[s = 1] and Table 3.3 [zonal wavenumber two]. From the table,we can see both φ00

and phase speed c decrease as ε increases. This is as expected: because the dispersion

due to the earth’s sphericity decreases rapidly with ε (as known from Longuet-Higgins’

large ε asymptotic expansion of the linear phase speed), it is plausible that nonlin-

earity will overwhelm dispersion, giving breaking instead of traveling waves, at lower

and lower values of the wave amplitude φ00 as ε → ∞.
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ε 0.01 0.1 0.5 1 3 5 15 30

Phase speed 1.2349 1.2169 1.1883 1.1698 1.1327 1.1135 1.0739 1.0537

φ00 1.75 0.5 0.192 0.12 0.053 0.036 0.0129 0.0067

(c2 − 1)/(3
√

ε) 1.7499 0.5069 0.1942 0.1228 0.0545 0.0358 0.0132 0.0067

h00 ≡ φ00

√
ε 0.1750 0.1581 0.1358 0.1200 0.0918 0.0805 0.0500 0.0367

Table 3.3: Parameters in the corner wave limit for s=2 case
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Figure 3.7: h00 of the corner waves of different ε for s = 1 [upper thick curve with
diamonds] and s = 2 [lower thick curve with circles]. The dashed line
on this log-log plot shows that h00 decays asymptotically proportional to
1/
√

ε as ε → ∞.

The tables also list the quantity

h00 ≡
√

ε φ00 (3.45)

This gives the maximum perturbative height of the Kelvin corner wave relative to

the mean depth H, that is, the maximum perturbative height is h00 H in meters. We

have listed this quantity because it decreases more slowly with increasing ε than does

φ00 itself.

Fig. 7 compares the equatorial height of the corner wave versus ε for both s = 1
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and s = 2. The results are very similar for the two wavenumbers. As ε increases,

the dispersion due to the sphericity of the earth decays very rapidly. Consequently,

the height h00 of the corner wave diminishes very rapidly, too. On a log-log plot,

a power law asymptotes to a straight line; the dashed guideline here suggests that

h00 ≈ 0.2/
√

ε for both wavenumbers one and two. The graph suggests that the

corner wave maximum height is independent of zonal wavenumber s in the equatorial

beta-plane limit that ε → ∞.

The tables also show an interesting empirical relationship between the phase speed

and maximum height of the corner wave:

φ00 ≈
c2 − 1

3
√

ε
(3.46)

By matching discontinuities in the x-derivatives of u and φ, we can derive the

diagnostic relationship (c − u00

√
ε)2 = 1 + h00 at the crest of the corner wave. (We

thank a reviewer for suggesting this.) Unfortunately, it is not possible to extend this

further: the rest of our study is based on perturbation series and computations.

3.5 Limitations of Theory

This chapter is a comprehensive study of the full parameter space for flow without

mean currents, clouds or vertical propagation, aimed at illuminating the reality that

Kelvin waves sometimes break and sometimes don’t and have something-or-other as

a boundary between these two regimes as seen in numerical models that do include

mean flow. We have resisted making comparisons between our results and observa-

tions because of the limitations of our theory. Equatorially-trapped Kelvin waves are

strongly affected by the strong mean currents in the tropical ocean: the alternating

jets known as the South Equatorial Current, North Equatorial Current, North Equa-

torial Counter-Current, and the Equatorial Undercurrent. We have shown here that
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the dispersion created by the earth’s sphericity weakens and weakens as ε increases.

For the large values of ε relevant to the tropical ocean, as catalogued in Table 1.1,

spherical effects will be overwhelmed by the much stronger dispersion induced by

these alternating jets.

This is hard within the shallow water model because of critical latitude effects

Boyd and Christidis (1982); Natarov and Boyd (2001), which are known to weakly

destabilize the Kelvin waves. The Equatorial Undercurrent, which has strong vertical

shear and (as its name implies) does not extend to the surface, can only be incorpo-

rated into a three space-dimensional model, a task orders-of-magnitude more difficult

than the two-dimensional travelling wave models considered here.

Mean flow, though not negligible in the troposphere, is relatively less important

to atmospheric Kelvin waves than oceanic because the rather small values of ε rele-

vant to the atmosphere imply much stronger dispersion due to the earth’s sphericity.

However, tropospheric Kelvin waves are both excited by cumulus convection and

simultaneously organize and transport this convection. Parameterizing cumulus con-

vection in general circulation models is still a major research frontier.

Another difficulty in atmospheric theory is that the air is not a vertically-confined

layer like the sea, but rather a semi-infinite layer with free vertical propagation.

This is a serious technical complication because as the atmospheric density decreases

with height, the amplitude of vertically-propagating waves must increase. Eventually,

all inviscid, vertically-propagating waves must break. The breaking of tropospheric

gravity waves is a major source of damping for larger scale motions in the middle at-

mosphere. Kelvin waves are also dissipated by rather strong radiative damping in the

mesosphere. Thus, there is competition between growth (due to decreasing density)

and decay (due to damping). Water waves experience a similar energy growth when

propagating into water of decreasing depth. (Similarly, ocean equatorial Kelvin waves

propagate through variable depth because of the deepening of the main thermocline

46



to the west in the Pacific Ocean Long and Chang (1990).) Grimshaw (1970, 1971,

1979) showed that the soliton slowly adjusts to the changing depth while shedding a

shelf to conserve total mass and energy. Thirty-seven years later, he and his collabo-

rators have progressed to a model with both a gradual slope and dissipation (El Ga,

Grimshaw and Kamchatnov (2007)); however, a two-dimensional model without Cori-

olis force is much simpler than the shallow water equations on a rotating sphere, and

parameterized gravity wave breaking and radiative dissipation are more complicated

than the Chezy bottom friction of their article.

Mean currents strongly modulate the propagation of Kelvin waves. Indeed, this

is the heart of the Lindzen-Holton theory of the Quasi-Biennial Oscillation (QBO)

in the tropical lower stratosphere (Andrews et al., 1987): Kelvin and Yanai waves

in turn force the mean flow to reverse sign, but the QBO strongly modulates the

upward penetration of both wave species so that they switch roles with each QBO

cycle. Existing theories use parameterizations of wave-breaking and other drastic

simplifications; the length scales are so short that it is only recently that General Cir-

culation Models (GCMs), metaphorically the supercomputer-hogging aircraft carriers

of climate research, have been able to even crudely capture the QBO. Kelvin waves

also are a major driving force in the Semiannual Wind Oscillation in the tropical up-

per stratosphere and are in turn controlled by the ever-changing mean current Boyd

(1978b,c). There is thus a large gap between the idealizations of our computations

and the real ocean and atmosphere, but this is not uncommon in geophysical fluid

dynamics (e. g., Lorenz and Krishnamurthy, 1987, Boyd 1994, 1995).

3.6 Summary and Conclusions

The computations confirm the results of simplified models and equatorial beta-

plane computations: the traveling waves of the Kelvin mode terminate in a corner

wave of finite height. The amplitude of the corner wave diminishes very rapidly with
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ε when the mean flow is neglected. In the real ocean or atmosphere, our results for

large ε are quantitatively suspect because the very weak dispersion due to spherical

geometry would likely be overwhelmed by the stronger dispersion due to the mean

zonal currents.

As ε increases, the longitudinal profile of the corner wave becomes very narrow

whereas the corner waves for small ε span the whole equator.

In two space dimensions, slope discontinuities may take the form of a cone (with

discontinuities in both x and y derivatives at the peak), a crease with a curve or line

of discontinuous slope extending away from the equator into both hemispheres, or a

point singularity in which only one derivative is discontinuous, and that only at a

single point. All previous studies of corner waves have been limited to one horizontal

dimension and therefore furnish no guidance. Although it is impossible to prove

theorems through inexact numerical computations, our graphs strongly suggest that

the third possibility is true of the Kelvin corner wave: the height and velocity fields

are singular only at the peak, and only through a discontinuity in the direction of

propagation, longitude.

Although we performed detailed computations only for zonal wavenumbers s =

1 and s = 2, there was so little qualitative difference that it appears that these

conclusions are independent of zonal wavenumber s at least for small s. As illustrated

in Boyd and Zhou (2008b), Kelvin waves of moderate and large s are equatorially-

trapped. Therefore, short Kelvin waves are well-described by the equatorial beta-plane

theory and computations in Boyd (1998, 2006).

Our computations cannot exclude the possibility that there may be nonlinear

Kelvin branches which are not continguous with small-amplitude, linear Kelvin waves.

This is not a difficulty peculiar to Kelvin waves, but rather is a generic worry when

computing the roots of any system of nonlinear algebraic or transcendental equations,

whether resulting from the discretization of traveling waves or not; the peril of the
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“missed solution branch” is ubiquitous. However, no such additional branches have

been detected in numerous initial-value experiments: all Kelvin modes bigger than

the corresponding corner wave break.
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CHAPTER IV

Kelvin Waves in the Presence of a Jet on the

Equatorial β-plane

In this chapter, we extend our calculation of nonlinear traveling Kelvin waves to

the equatorial beta-plane in the presence of a jet. As mentioned in the first chapter,

such nonlinear traveling wave solutions do not exist on the equatorial beta-plane due

to the lack of dispersive mean flow terms. By adding a background jet, we introduce

the necessary dispersion terms.

4.1 Model

4.1.1 The equatorial beta-plane approximation

Near the equator, the approximations

sinϕ ≈ ϕ, cosϕ ≈ 1 (4.1)

can be used where ϕ is latitude. This is called “the equatorial beta-plane approxima-

tion”. Half of the earth lies at latitude less than 30◦ and the maximum percentage

error of this approximation within [30◦S, 30◦N ] is only 14% (Gill , 1982). In this

approximation, the Coriolis parameter f is given by

f = βy (4.2)
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where y is the distance northward from the equator. And β is given by

β = 2Ω/r = 2.3 × 10−11m−1s−1 (4.3)

4.1.2 Nonlinear Shallow Water Equations on the Equatorial β-Plane

Applying the equatorial beta-plane approximation, the nonlinear dimensional

shallow-water equations over a flat bottom can be written as

ut + uux + vuy − yβv + ghx = 0 (4.4)

vt + uvx + vvy + yβu + ghy = 0 (4.5)

ht + uhx + vhy + h(ux + vy) = 0 (4.6)

where u and v are the eastward and northward velocities, h is the total depth, g

is the gravitational constant, and β is Rossby parameter at the equator. This is

also called the ‘one-and-a-half-layer’ model because it describes a two-layer fluid in

the hydrostatic approximation when the lower layer is infinitely deep. This model is

also widely used to describe the baroclinic modes in both atmospheric and oceanic

dynamics when h is the equivalent depth of these modes.

It is convenient to nondimensionalize using

L =

√
c

β
(Horizontal length scale) (4.7)

T =

√
1

cβ
(Time scale) (4.8)

H = H0 (Vertical length scale) (4.9)

where c =
√

gH0.

51



Then the dimensionless variables are

u′ =
1

L/T
u, v′ =

1

L/T
v, h′ =

1

H
h, x′ =

1

L
x, y′ =

1

L
y, t′ =

1

T
t (4.10)

The same length and time scales are commonly employed in equatorial oceanography.

By writing h′ as h′ = 1 + φ and omitting the tildes of dimensionless variables, we

get the nondimensionalized equations,

ut + uux + vuy − yv + φx = 0 (4.11)

vt + uvx + vvy + yu + φy = 0 (4.12)

φt + uφx + vφy + (1 + φ)(ux + vy) = 0 (4.13)

We then shift the zonal coordinate so that it moves with the wave we are interested

in. The wave will appear stationary in the new coordinate system. Suppose the wave

has a wave speed of c in the original coordinate system of x, y and t. Now we introduce

new coordinate system of x̃, ỹ and t̃, where x̃ = x − ct, ỹ = y and t̃ = t. Then the

derivative operators in the original coordinate become

∂

∂t
)x,y,t → ∂

∂t̃
)x̃,ỹ,t̃ − c

∂

∂x̃
)x̃,ỹ,t̃ (4.14)

∂

∂x
)x,y,t → ∂

∂x̃
)x̃,ỹ,t̃ (4.15)

∂

∂y
)x,y,t → ∂

∂ỹ
)x̃,ỹ,t̃ (4.16)

in the new coordinate system. The subscripts denote which coordinate system is used.

Since the wave with a phase speed of c in the original coordinate appears stationary

in the new coordinate system, we can simply drop the derivatives with respect to t̃.

52



So

∂

∂t
)x,y,t → −c

∂

∂x̃
)x̃,ỹ,t̃ (4.17)

(4.18)

Further, we write u and φ as u = Ū +ua, φ = Φ̄+φa where Φ̄ is the zonal mean of

φ, Φ̄ and Ū satisfy the geostrophic balance, Ū=− 1
y
Φ̄y. φa and ua are the ageostrophic

parts. By omitting the accents of x̃, ỹ and t̃ and the subscripts of φa and ua, equations

4.11 to 4.13 become

(Ū − c)ux + vŪy − yv + φx + δ(uux + vuy) = 0 (4.19)

(Ū − c)vx + yu + φy + δ(uvx + vvy) = 0 (4.20)

(Ū − c)φx + vΦ̄y + (1 + Φ̄)(ux + vy) + δ{uφx + vφy + φ(ux + vy)} = 0 (4.21)

δ is a flag parameter, which is equal to either 0 or 1. When δ = 0, the equations are

linearized. All possible modes existing with the background mean can be obtained

by solving this set of linearized equations as a linearized eigenvalue problem with

c as the eigenvalue. The details about how to solve the linearized eigenvalue value

problem are given in Appendix A (the eigenvalue in Appendix A is phase speed ω or

kc instead of c; k is the wavenumber).

When δ = 1, the equations are fully nonlinear. Nonlinear traveling wave solu-

tion can be obtained through a combination of mapping/Galerkin method/Newton

continuation method.
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4.1.3 The background jet

The zonal mean Φ̄ has the form of U0

6
e−3y2

, and Ū=U0e
−3y2

. So the jet is symmetric

with respect to the equator. A similar jet profile has been used by by McPhaden

and Knox (1979) and Philander (1979) in their linear Kelvin wave analyses. In the

equatorial ocean, the vertical displacement associated with waves tends to be greatest

near the thermocline. So of the system of currents in the equatorial region, the

Equatorial Undercurrent(EUC) should affect Kelvin wave because its strongest flow

is located near the thermocline. So an eastward jet profile used here crudely mimics

the profile of the EUC. And in the atmosphere, a westward jet crudely mimics the

profile of the easterly jet. The accurate profile is not necessary since our study is

highly conceptual and the gross characteristics of the results of this study are not

sensitive to the detailed profiles.

In the equatorial ocean, unit dimensionless U0 equals about 2.0 m/s in dimen-

sional unit for the 1st baroclinic mode with an equivalent depth H0 ∼ 0.4 m; in the

atmosphere, unit dimensionless U0 equals to about 20 m/s in dimensional unit for

the 1st baroclinic mode with an equivalent depth H0 ∼ 40 m.

One thing to note is that for nonlinear traveling waves, the zonal mean of the

ageostrophic part of zonal velocity is not necessarily 0. In equation 4.19, nonlinear

terms, uvx and vvy will produce nonzero zonal means which must be balanced by

either yu or φy. Since we prescribe the zonal mean Φ̄, the zonal mean of φ as well

as φy must be zero. So the zonal mean of u has to be nonzero. However, the zonal

mean of u is relatively small comparing with Ū . For example, for the corner Kelvin

wave with U0 = −0.5 and k = 1, the amplitude of the zonal mean of u is only ∼1%

of that of Ū . Thus the final total zonal mean of (Ū + ua) differs slightly from Ū .
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4.1.4 Mapping in longitude and latitude

4.1.4.1 Mapping in latitude

On the equatorial β-plane, y ∈ (−∞, ∞) for mathematical convenience even

though the β-plane approximation is only valid when y is not too far from the equa-

tor1. Numerically speaking, evenly spaced grids in y would be a poor choice since

most wave activity is concentrated near the equator due to the equatorial wave guide

effect. To improve the resolution in y direction we change the coordinate from y to ζ

via ζ = tanh(y/L) where L is a user-choosable parameter. When L is smaller, more

discretization points will be concentrated near y = 0. A value of 1.5 will be used for

L in the following sections if not otherwise specified. The range of the new coordinate

ζ is from [-1,1].

4.1.4.2 Kepler mapping in longitude

Mapping in longtitude is not necessary when the wave amplitude is small. How-

ever, when the wave amplitude is close to the corner wave limit, the change of co-

ordinate with Kepler mapping becomes crucial. By transforming the longitudinal

coordinate from x to a new stretched coordinate z, we can improve the Fourier rate

of convergence from second order to fourth order in the degree of the coefficients.

The “Kepler mapping”, so named because inverting the transformation requires solv-

ing the Kepler equation of celestial mechanics, concentrates high resolution near the

discontinuous corner at x = 0 while preserving the periodic behavior in longitude

(Boyd, 2006). We apply the numerical method to waves of different longitudinal peri-

ods 2π/k where k is the zonal wavenumber of the lowest nonzero longitudinal Fourier

1In the absence of mean currents, the linearized wave equations have eigenmodes whose latitudinal
factors are parabolic cylinder functions. When y ∈ (−∞,∞), the parabolic cylinder functions
simplify to Hermite functions. Because Hermite functions are the product of exp(−y2/2) with a
polynomial, they are much more treatable than parabolic cylinder functions.
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component. The form of Kepler mapping has a slightly different form for different k:

x = z − sin(kz)

k
(4.22)

∂

∂x
→ 1

1 − cos(kz)

∂

∂z
(4.23)

The mapping preserves spatial periodicity and x = z at z = nπ/k, n = 0,±1,±2, ...

4.1.5 Galerkin method

The Galerkin method for discretizing a differential equation demands that when

the truncated Fourier series for each unknown is substituted into the shallow water

equations to obtain the so-called “residual” function, the leading terms of the Fourier

series of the residual are zero. These constraints are obtained by evaluating the

integral inner product of the basis functions with the residual function and demanding

that this integral should be zero or equivalently, that each basis function is orthogonal

to the residual function. The number of orthogonality conditions is equal to the

number of undetermined coefficients in the Fourier series for the unknowns, thus

deriving a consistent set of nonlinear algebraic equations for the Fourier coefficients

of u, v and φ. A full discussion is given in Boyd (2001).

To reduce the number of unknowns by a factor of four, we assume that u and φ are

symmetric about the equator and x = 0, and v is antisymmetric about the equator

x = 0. (Our success in computing solutions with the assumed symmetries is an a

posteriori justification for these assumptions.) The domain of waves of wavenumber

k within one wavelength is [−π/k, π/k] in longitude and [−1, 1] in latitude . But by

employing the periodicity and parities of the Kelvin wave, we can halve the domain

in both longitude and latitude. So we only need to calculate the unknowns in the

region of [0, π/k] in x or z and [0, 1] in ζ.

Also by employing the parities of the unknowns, we can halve the number of basis
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functions used in both directions. In z,the basis functions of u and φ are

ψ
(z)
sym,0 = 1

ψ
(z)
sym,1 = cos(kz) +

1

2
(4.24)

ψ(z)
sym,m = cos(kmz), m = 2, 3, . . .M (4.25)

where the constant ψ
(z)
sym,0 is used only for u and the basis functions of v are

ψ(z)
asym,m = sin(kmz), m = 1, 2, . . .M (4.26)

The additive factor of (1/2) in ψ
(z)
sym,1 ensures that all basis functions with m > 0

individually have a zero longitudinal mean, despite the change of coordinate from

longitude to the Kepler coordinate z; note that
∫ π

0
cos(kz(x))dx = −π/2, (Boyd,

2006).

In latitude, we use the Chebyshev polynomials as the basis. Tn(ζ) is a polynomial

of degree n. It may be calculated directly via the three-term recurrence relation, but

a more efficient definition is

Tn(ζ) = cos(nt) (4.27)

t = arccos(ζ) ↔ ζ = cos(t) (4.28)

This further changes the coordinate from ζ to t. The range of t for the full domain

is [−π, π]. As the wave activities vanish far away from the equator, we can define

the spectral basis functions to be linear combinations of the Chebyshev polynomials

which each vanish at t = ±π. The basis functions of u and φ are

ψ(t)
sym,n = cos(2nt) − 1, n = 1, 2, . . . N (4.29)
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and the basis functions of v are

ψ(t)
asym,n = cos((2n + 1)t) − cos(t), n = 1, 2, . . . N (4.30)

These basis functions match the latitudinal parities of u, v and φ. Finally, we

expand u, φ and v as

u =
M∑

m=0

N∑
n=1

au
mnψ

(z)
sym,m ψ(θ)

sym,n (4.31)

φ =
M∑

m=1

N∑
n=1

aφ
mnψ

(z)
sym,mψ(θ)

sym,n (4.32)

v =
M∑

m=1

N∑
n=1

av
mnψ

(z)
asym,mψ(θ)

asym,n (4.33)

where au
mn, aφ

mn and aφ
mn are the coefficients u, φ and v, whose sizes are M × (N + 1)

M × N ,and M × N .

The number of points used in z should be no fewer than the number of basis

function used in z. So it requires Mpts > M . Similarly, Npts > N .

To apply the Galerkin method, first substitute the (truncated) Fourier series into

the nonlinear shallow water equations. The resulting “residual functions” are just

the Left-Hand Sides (L. H. S.) of (4.19) to (4.21). The residual functions depend

on the spectral coefficients {au
mn, a

v
mn, a

φ
mn} and the phase speed c. We then demand

that the residual should be orthogonal to a set of test functions when integrated over

the domain. In “mean weighted residual” methods, the test functions can be very

general; Galerkin’s method is the special case in which the test functions are the basis

functions. Thus, for Eq. (4.19) and (4.21), the test functions are ψ
(z)
asym in z and ψ

(t)
sym

in t. For Eq. (4.20) the test functions are ψ
(z)
sym in z, ψ

(t)
asym in t;
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The Galerkin residual is

r1,mn =

∫ ∫
LHS(4.19) × ψ(z)

sym,m(θ) × ψ(z)
asym,n(z) dzdθ (4.34)

r2,mn =

∫ ∫
LHS(4.20) × ψ(θ)

asym,m(θ) × ψ(z)
sym,n(z) dzdθ (4.35)

r3,mn =

∫ ∫
LHS(4.21) × ψ(θ)

sym,m(θ) × ψ(z)
asym,n(z) dzdθ (4.36)

where n = 1 . . . N for all three equations, m = 1 . . .M for 4.34 and 4.36, and m =

0 . . .M for 4.35. The sizes of ~~r1, ~~r2 and ~~r3 are M × N , M × (N + 1) and M × N , so

there are in total 3MN + M residual elements.

The integrals are numerically approximated using Mpts quadrature points in z,

z =
(2 i − 1)

2Mpts

π

k
, i = 1, 2, . . . ,Mpts (4.37)

so z ∈ (0, π
k
), which is also the range of the unmapped coordinate x. We use Npts

points in colatitude,

t =
(2j − 1)

4 Npts

π, j = 1, 2 . . . Npts (4.38)

Because the integrands are periodic in both z and t, the trapezoidal rule converges

exponentially fast in Mpts and Npts except for the corner wave. Because of parity

symmetry, the range of the quadrature points may be halved, just like the number

of basis functions, in each coordinate. As required by Galerkin method, Mpts > M ,

Npts > N , we use M = N = 50 and Mpts = Npts = 150.

4.1.6 Newton continuation method

The 3MN + M + 1 unknowns are the scalar c plus three vectors of lengths MN ,

M(N + 1) and MN : au, aφ and av. However, there are only 3MN + M values of ~~r1,

~~r2 and ~~r3. So in addition, we require that value of φ at x = 0, latitude = 0, or φ00 for
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short, is fixed during the iteration. This gives us an additional residual r4.

We can reshape the coefficient matrices au,aφ and av to three vectors. Stacking

these and c together to form a (3MN + M + 1) × 1 vector ~a(3MN+M+1)×1. Similarly,

we can form a vector ~r(3MN+M+1)×1 from ~~r1, ~~r2 and ~~r3 and r4.

The algebraic system ~r (~a) = ~0 is solved by a Newton/continuation method. The

Newton iteration is to iterate the following until the difference between successive

iterates is below a (tiny) user-chosen error tolerance:

~a(n+1) = ~a(n) − ~J−1(r(n)) (4.39)

where
~~J is the Jacobian matrix

Jij =
∂ri

∂aj

, i = 1 . . . 3MN + M + 1, j = 1 . . . 3MN + M + 1. (4.40)

and n is the iterative number. Unfortunately, all iterative methods require a “first

guess” or “initialization”.

Parameter continuation provides the required first guess. To trace a complete

branch of solutions, we march from small amplitude (where the initialization is pro-

vided by linearized Kelvin waves as in Appendix A) to large amplitude while keeping

all other parameters fixed. We chose φ00, which is the equatorial height at the crest

of the wave, φ(x = 0, t = π/2), as the amplitude parameter (though other choices are

possible). The continuation strategy is to march in small steps of the amplitude pa-

rameter. The computed solution for the k-th value of φ00 is used as the initialization

for Newton’s iteration to compute the Fourier coefficients ~a for the (k + 1)-st value

of φ00.

For a westward jet, as the amplitude of Kelvin wave increases, it evolves to the

corner wave, so-called because it has a slope discontinuity at the crest (Boyd , 2005b;

Boyd and Zhou, 2008a). The branch of traveling waves ends abruptly at the corner
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wave: there are no solutions for larger amplitude. (Instead, all waves larger than

the corner wave break.) The corner wave is a sort of anti-bifurcation point in the

sense that no additional branches are born at the corner wave, but rather the branch

simply dies. So when the amplitude is a little greater than that of the corner wave,

Newton’s iteration will fail.

For an eastward jet, when the amplitude of Kelvin wave increases, the branch

resonates with waves of some higher wavenumbers and it loses its identity as the

Kelvin wave of wavenumber k. The resonance with waves of higher wavenumbers

makes the Galerkin method fail as the required number of basis function increases

rapidly with amplitude and make the numerical calculation formidable.
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4.2 Modified linear Kelvin waves in the presence of a jet

4.2.1 Wave structure

The infinitesimal Kelvin wave with a resting background has the simple solution:

u = φ = e−y2/2cos(kx), v = 0, c = 1 for all different wavenumber k. However, in the

presence of a jet, both the structures and phase speeds of the modified linear Kelvin

waves differ significantly from this simple solution for different U0 and wavenumber

k. Details about how to obtain the normal modes in the presence of a jet are given

in Appendix A.

Figure 4.1 shows the modified Kelvin waves of wavenumber k = 1, 4 with a west-

ward jet (U0 = −0.25) and an eastward jet (U0 = 0.25). The gross characteristics

of these modified Kelvin waves, except for the one with k = 4 and U0 = 0.25, still

resemble the Kelvin waves with a resting background. The most obvious difference

is that v is no longer zero and has opposite directions when the direction of the jet is

opposite. For the case of k = 4 and U0 = 0.25, φ has two maximums off the equator

instead of one at the equator which makes it visually different from the Kevin wave

linearized about state of rest. More quantitative details are given in Figure 4.2 and

4.3.

These modified Kelvin waves have the solutions in the form of φ = φ̃(y)cos(kx+θ),

u = ũ(y)cos(kx + θ), and v = ṽ(y)sin(kx + θ) where θ is an arbitrary constant phase.

φ̃(y) and ũ(y) are symmetric with respect to the equator and ṽ(y) is antisymmetric

with respect to the equator. Results of φ̃(y), ũ(y) and ṽ(y) on the north hemisphere

for various U0 and wavenumber k are given in Figure 4.2 and 4.3. φ̃(y), ũ(y) and ṽ(y)

have been divided by the maximum value of ũ(y). The simple solution of φ̃(y) and

ũ(y) when the background is at rest, e−y2/2, and the profile of the jet are also shown

in the graphs.

The modified Kelvin waves have very different responses to the direction of the
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jet. For the westward jet shown in Figure 4.2, 1) φ̃(y) always has only one maximum

at the equator while ũ(y) tends to develop two maxima off the equator as the strength

of the jet increases or k decreases; 2) the wave narrows as the wavelength shortens

and resides inside the jet for large k (e.g,4). However, for the eastward jet shown

in Figure 4.3, 1) both φ̃(y) and ũ(y) could develop two maxima off the equator as

the strength of the jet increases or the wavenumber increases; 2) the wave gradually

moves away from the equator as the wavelength shortens and almost resides outside

the jet for large k (e.g,4). The appearance of two φ centers off the equator for large k

makes them substantially different from the traditional Kelvin wave concept and look

more like inertial gravity waves. We still call them modified Kelvin waves since they

are the continuation of the Kelvin mode as we increase k gradually. One common

phenomenon for either westward or eastward jets is that ṽ(y) increases when either

the strength of the jet or k increases.
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Figure 4.1: Surface height φ (contours) and u − v velocity fields (vectors) of the
modified linear Kelvin waves with k = 1, 4 and U0 = ±0.25. Values of
φ, u, v have been normalized by φ(x = 0, y = 0). Solid contour lines are
positive φ with a contour interval of 0.2 units. Dotted lines are negative
φ and the zero contour is omitted. The maximum velocity vectors in each
panel are specified in the bottom right corner. The x axis is the product
of the nondimensionalized longitude and the wavenumber k.
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Figure 4.2: Eigenfunctions corresponding to the modified Kelvin waves in the pres-
ence of a westward jet for U0 = −0.25(top panel), U0 = −0.5(middle
panel) and U0 = −1.0(bottom panel),k = 0.25(left column), and for
k = 1(middle column),k = 4(right column).
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Figure 4.3: Eigenfunctions corresponding to the modified Kelvin waves in the pres-
ence of a eastward jet for U0 = 0.25(top panel), U0 = 0.5(middle panel)
and U0 = 1.0(bottom panel),k = 0.1(left column), and for k = 1(middle
column),k = 4(right column).
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4.2.2 Phase speed

Figure 4.4 shows how the phase speeds vary as the U0 and k changes. Despite the

opposite responses of the wave structures to the direction of the jet when k increases,

the phase speeds share the same trend that for both eastward and westward jets; short

Kelvin waves always travel slower to the east than long ones for the same U0. The

reason is that for the eastward jet, short Kelvin waves shift their centers outside of

the jet, thus the background advection to the east is reduced; while for the westward

jet, short Kelvin waves are more concentrated inside the jet, thus the background

advection to the west is enhanced.
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Figure 4.4: Phase speeds of free Kelvin modes for various wavenumber k and U0
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4.3 Nonlinear Traveling Kelvin waves

We use 50 basis functions in both latitude and longitude. For each U0, Newtonian

iteration/continuation starts from small value of φ00 (the value of φ at x=0, y=0)

using the modified linear Kelvin waves described in previous section as the initial guess

and gradually marches to larger φ00 until the Newtonian iteration fails to converge

either due to the singularity of the corner waves or resonance with waves with higher

wavenumber k.

4.3.1 Results of westward jets

4.3.1.1 Spatial structure
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Figure 4.5: Surface height φ (contours) and u − v velocity fields (vectors) of the
nonlinear traveling Kelvin waves with amplitude φ00=0.02 (left) and 0.113
(right) for k = 1 and U0 = −0.25. When φ00=0.113, it is the corner wave.
Solid contour lines are positive φ. Dotted lines are negative φ and the
zero contour is omitted. Contour intervals are 0.002 for left graph and
0.01 for the right graph. The maximum velocity vectors in each panel are
specified in the bottom right corner.

Figure 4.5 gives the nonlinear traveling Kelvin waves of two different amplitudes,

φ00=0.02 and 0.113 where φ00 is the value of the surface height φ at x = 0, y = 0.
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Comparing with the linear Kelvin wave with the same U0 and k in Figure 4.1, the

change in longitude is obvious. Unlike sinusoidal waves, they have smaller area of

positive φ and larger area of negative φ which makes them more isolated, even spike-

like for large amplitudes.

Figure 4.6 shows how the equatorial sections of φ, u and v along y = 1 evolve

as the wave amplitude increases. When φ00 is small, φ(x, y = 0) and u(x, y = 0)

look like sinusoidal waves. As φ00 increases, they steepen and become more isolated

pulse-like oscillations, and eventually evolve to sharp corner shapes when φ00 = 0.113.

The corner wave limit is easily determined in a zoom in plot of either φ(x, y = 0)

or u(x, y = 0). At the the corner wave limit with φ00 = 0.113, φ(x, y = 0) shows a

clear corner even though the range of the x axis is only about 0.25% of the total one

wavelength. φ(x, y = 0) becomes smooth rapidly as φ00 drops below the corner wave

limit. Above the corner wave limit, a spurious unphysical solution is obtained. We

would be happy if the solution of the discretized partial differential system terminated

at the corner wave. However, the algebraic system has a solution even ‘beyond’ the

corner wave limit because the branching of the solution in a ‘finite’ dimensional system

of polynomial equations cannot simply stop. Instead, when φ00 is beyond the corner

wave limit, the Fourier coefficients cease to converge to a solution of the differential

equation, so that the finite-dimensional Galerkin-discretized polynomial system no

longer yields a good approximation of the solution of the differential equation (Boyd

(2006)). Longitudinal sections of v also steepen as φ00 increases. However, these are

everywhere smooth at the corner limit.

Another interesting question is how far the slope discontinuity of the φ or u in x

direction extends from the equator. To answer this question, we show longitudinal

sections of both φ and its first derivatives in longitude along different latitudes in

Figure 4.7. While φ(x, y = 0) clearly shows a corner like shape at x = 0, φ(x, y =

0.006) has already become very smooth. One may argue that the tip of φ(x, y = 0) is
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also smooth, not discontinuous. This is because a finite spectral series must always

impose a truncation-dependent smoothing on a discontinuity. From φx, we see a shock

like jump at the equator. A little farther away from the equator, the slope rapidly

diminishes. It seems likely that the Kelvin wave is discontinuous only at the equator.

In latitude, the Kelvin waves also steepen as the amplitude increase. Figure 4.8

shows how the normalized latitudinal sections of φ along x = 0 steepen from the linear

case to the corner wave case. But φ(x = 0, y) does not show any slope discontinuity

in latitude at the corner wave limit.
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Figure 4.6: Traveling Kelvin wave solutions with U0 = −0.25 and k=1. (Upper left)
Equatorial section of φ for φ00=0.01, 0.03, 0.05, and 0.113, respectively;
φ(x, y = 0) steepens with the increasing φ00. When φ00=0.113, φ(x, y = 0)
is the corner wave, discontinuous in its first derivative at the crest. (Up-
per right) A zoom in plot of φ(x, y = 0) with φ00=0.106, 0.108, 0.11,
0.111, 0.112, 0.113, 0.114. The heavy curve is for φ00=0.113. Note that
this graph includes one dotted curve with the value of φ00(0.114) larger
than that of the corner wave; this is unphysical as indicated by its un-
physical oscillations near x=0. The interval in longitude is from 0 to
0.016, which is about 0.25% of the total one wavelength. (Note that the
plot is in the physical longitudinal coordinate x; the circles on each curve
show the points of the grid, which is evenly spaced in z but very heavily
concentrated in x near x=0.) This graph shows that the corner wave
is easily distinguished by the eye from near-corner waves in a zoom in
plot. (Lower left) Equatorial section of u for φ00=0.01, 0.03, 0.05, and
0.113, respectively. u(x, y = 0) exhibits the same behavior as φ(x, y = 0)
and is also discontinuous for φ00=0.113. (Lower right) v along y = 1 for
φ00=0.01, 0.03, 0.05, and 0.113, respectively. v(x, y = 1) is continuous for
all φ00.
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Figure 4.7: Longitudinal sections of φ(left) and φx(right) along different latitudes at
the corner wave limit for U0 = −0.25 and k = 1.
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Figure 4.9: (left) Longitudinal sections of φ, φ(x, y = 0), at the corner wave limit
along the equator with U0=-0.25 and k=0.25, 1 and 4. The x axis is
the product of longitude and the wavenumber k. φ(x, y = 0) has been
normalized in a way such that the base is 0 and tip is 1. The dashed line
is the normalized cos(x). (right)Latitudinal sections of φ, φ(x = 0, y), at
the corner wave limit along x = 0 with U0=-0.25 and k=0.25, 1 and 4.
φ(x = 0, y) has been normalized by φ00.

Figure 4.9 gives the normalized φ(x, y = 0) and φ(x = 0, y) of the corner waves

with U0 = −0.25 and k =0.25, 1 and 4. The x axis of the left graph is the product

of the longitude and wavenumber k. So the range of one wavelength is [−π, π] for

all different k. The amplitudes, φ00, of the corner waves are 0.118, 0.113 and 0.080

for k =0.25, 1 and 4. Initially, the normalized φ(x, y = 0) of the linear Kelvin waves

with different k all have the same shape as the dashed line. But when they reach

their corner wave limits, they differ substantially. The change of the shape of φ in

longitude due to the nonlinearity is much larger for the long wave than for the short

wave. For k = 0.25, the normalized φ(x, y = 0) narrows from the dashed line of the

linear wave to the red line of the corner wave. The corner wave in this case is much

more isolated in longitude and becomes more like a soliton. While for k = 4, the

normalized φ(x, y = 0) only narrows from the dashed line to blue line. In latitude,

φ(x = 0, y) of all different k are all narrower than their linear cases. The changes for

different k are roughly equal.
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Figure 4.10: Latitudinal sections of u along x=0 divided by u(x = 0, y = 0) for
U0 = −0.5(left) and U0 = −1.0(right) and k=1. The curves correspond
to normalized u(x = 0, y) of the modified linear Kelvin wave(thin solid
line) to the corner Kelvin wave(thick solid line) from right to left.

As we increase the strength of the westward jet from U0 = −0.25 to U0 = −1.0,

the behavior of φ and u in longitude when the wave amplitude φ00 increases does

not change. They just steepen until corners form. In latitude, φ also narrows and

is still continuous. The extra complication comes from u. From the linear analysis

we see that φ just narrows in latitude as the strength of the jet increases. However,

u gradually develops two maxima off the equator. Figure 4.10 shows the normalized

latitudinal sections of u along x = 0. For U0 = −0.5, u(x = 0, y) narrows as the

φ00 increases. As u increases faster on the equator than at the areas off the equa-

tor, eventually the two maxima are reduced to only one maximum on the equator.

However, for U0 = −1.0, even though u(x = 0, y) also narrows as the φ00 increases,

two maxima remain off the equator since the initial maxima off the equator are much

larger than u on the equator.

74



4.3.1.2 Amplitude and phase speed

Linear wave speed Corner wave speed Corner wave amplitude φ00

U0 = −0.25; k = 0.25 0.875 0.900 0.118
U0 = −0.25; k = 1 0.872 0.890 0.113
U0 = −0.25; k = 4 0.837 0.846 0.080
U0 = −0.50; k = 1 0.759 0.795 0.248
U0 = −1.00; k = 1 0.565 0.645 0.520

Table 4.1: Phase speeds of modified linear Kelvin waves, phase speeds and φ00 of nonlin-
ear traveling Kelvin waves at corner wave limits for various U0 and wavenum-
ber k.

Table 4.1 summarizes the phase speeds and amplitudes of linear and corner waves

for various U0 and k. The corner wave amplitude, φ00, is largely determined by the

amplitude of U0. This makes sense since these steadily traveling corner waves are the

results of balance between the dispersion and nonlinearity. For example, the dispersive

terms in equation 4.13 have the same order as Ūφx and the nonlinear terms have the

same order as uφx or φux. We could expect the φ of the corner wave is proportional

to the amplitude of Ū . For the same U0, short corner waves have smaller amplitudes

and this is consistent with the results of corner Kelvin waves found on the sphere

by Boyd and Zhou (2008a). The corner wave speeds are larger than the linear phase

speed. However, the absolute increase are not substantial (all less than 0.1) and they

are also highly related to U0 or φ00. For U0 = −0.25 and k = 1, the increase is only

0.018, about 2% of 0.872. And for U0 = −1.0, the increase is 0.08, about 14% of

0.565. Another factor to consider is, for these westward jets the corner waves are

narrower in latitude than their linear waves; thus the advection to the west is larger

for the corner waves. So the increase of the phase speed due to nonlinearity alone

should be a little bit larger than the present increase.

75



4.3.2 Results of eastward jets
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Figure 4.11: Surface height φ (contours) and u − v velocity fields (vectors) of the
nonlinear traveling Kelvin waves with amplitude φ00=0.02(left) and 0.04
(right) for k = 1 and U0 = 0.25. Solid contour lines are positive φ. Dot-
ted lines are negative φ and the zero contour is omitted. Contour interval
is 0.002. The maximum velocity vectors in each panel are specified in
the bottom right corner.

Figure 4.11 gives the nonlinear traveling Kelvin waves of two different amplitudes,

φ00=0.02 and 0.04 for an eastward jet U0 = 0.25. Compared to the linear Kelvin wave

with the same U0 and k in Figure 4.1, just like the nonlinear traveling Kelvin waves

with a westward jet, they also steepen in longitude as the wave amplitude increases.

But in latitude, they expand as the wave amplitude increases. Figure 4.12 shows

how φ(x = 0, y) expands in latitude with the increasing φ00. The phase speed is also

increased from 1.147 of the linear case to 1.153 of the nonlinear traveling wave with

φ00=0.04.

Our calculation of the traveling wave stops at φ00=0.04. One can easily notice the

high wavenumber oscillations in the φ field (also in u and v) in Figure 4.11 (right)

as the wave amplitude φ00 increases from 0.02 to 0.04. As explained in Boyd (2007),

calculation of nonlinear traveling waves by discretizing the appropriate partial differ-
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Figure 4.12: Latitudinal sections of φ along x=0 divided by φ00 of the modified linear
Kelvin wave and nonlinear traveling Kelvin waves for φ00=0.01, 0.02,
0.03, and 0.04 with U0 = 0.25 and k = 1. Unlike the westward jets’
cases, φ(x = 0, y) expands in latitude with the increasing φ00.

ential equations and then employing Newtonian iteration/continuation can encounter

a bunch of difficulties. The most relevant one here is resonance and mode-switching

bifurcation. Because of the coincidence of phase speeds resonance, a solution could

evolve from one mode to another mode as the amplitude increases. The traveling

wave with φ00=0.02 does not show any high wavenumber oscillation in any field of φ,

u and v. But at φ00=0.04, high wavenumber oscillations show up. We tested different

resolutions, basis functions and mapping techniques and the solution of φ00=0.04 does

not change. This suggests that until φ00=0.04, the calculation is stable and a solution

does evolve gradually. But beyond φ00=0.04, the calculation fails to converge as even

higher wavenumber oscillations appear. Figure 4.13 shows the phase speeds of the

modified linear Kelvin waves and first 3 odd n symmetric eastward inertial gravity

waves (EIGW) for U0=-0.25(left) and U0=0.25 (right). We do not have to worry

about the odd n antisymmetric EIGW modes since we already applied the symmetry

when choosing the basis functions for u,v and φ. For the westward jet U0=-0.25,

there is no coincidence of phase speed between the Kelvin waves and the EIGW and

we successfully track a solution until the corner wave limit. For the eastward jet

U0=0.25, such coincidence “resonance” exists. The Kelvin wave can resonate with
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other high wavenumber EIGW modes (including n > 3 EIGW modes) which cause

the calculation to fail.

78



4.4 Conclusion and Discussion

We show that the Kelvin waves linearized about jets, have much more complicated

structures than the Kelvin wave with a resting background. For westward jets, the

wave narrows in latitude as the wavenumber k increases; for eastward jets, they tend

to shift away from the equator as k increases. As a result, phase speeds decreases as

wavenumber increases regardless of whether the jet is eastward or westward.

For sufficiently small amplitude, there are nonlinear Kelvin traveling waves (cnoidal

waves). As the amplitude increases, the waves narrow in longitude just like the trav-

eling Kelvin wave on sphere Boyd and Zhou (2008a). Even though we were not able

to deduce a KdV equation from the shallow-water equation because of the complexity

in the presence of a jet, these steadily translating Kelvin waves exhibit the property

of solitary waves of the KdV equation. For the westward jets, the traveling waves

terminates in a so-called corner wave with a discontinuous first derivative. All waves

larger than the corner wave evolve to fronts and break. The singularity is a point

singularity in which only the longitudinal derivative is discontinuous, which is the

same as the singularity of corner Kelvin waves on the sphere without mean currents.

For an eastward jet, calculation of nonlinear Kelvin waves with large amplitude is

numerically impossible due to the resonance with waves of higher wavenumbers.

In latitude, the waves narrow for a westward jet but widen for an eastward jet as

φ00 increases. A similar phenomenon has been reported by Choi (2003) in long solitary

surface gravity waves of finite amplitude in uniform shear flow. The solitary wave in

uniform shear flow is wider when propagating upstream (opposite to the direction of

surface drift), while it is narrower when propagating downstream. In our case, this

opposite reaction in latitude could largely be explained through the linear dynamics.

In the linear analysis, we show that for the westward jets, the waves narrow in latitude

as the wavenumber k increases while for the eastward jets, the waves shift away from

the equator as k increases. So, for example, if we decompose the k = 1 nonlinear
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Kelvin waves into the set of the linearized eigenmodes, the dominant eigenmode will

be the k = 1 modified linear Kelvin wave. The rest will project onto the higher k

Kelvin modes plus other possible Rossby and inertial gravity modes. However, the

higher k Kelvin mode should dominate.

Phase speeds also increase to the east as the amplitude increases. However, the

phase speeds are largely determined by the linear Kelvin wave dynamics, the incre-

ment is relatively small. In Boyd and Zhou (2008a), we derived the first correction

to the phase speed due to the amplitude of nonlinear Kelvin waves on sphere is sec-

ond order in amplitude. We did not derive the equivalent expression here due to

the mathematical difficulty when a jet is involved, but we would expect similar re-

sults. As the amplitude of the nonlinear Kelvin waves are generally less than 1 in

nondimensionalized units, the correction is relatively small.
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CHAPTER V

Nonlinear Shallow Water Tropical Instability

Waves on the Equatorial β-plane: Genesis of Two

Distinct Types of Waves

In this chapter, we will focus on the TIWs arising from the barotropic instability

and investigate how the nonlinearity changes their strength, periods, etc. Especially,

we explain how the two distinct types of waves with different propagating speeds

arise. We then evaluate the effect of external forcings on these two types of waves.

5.1 Model

The nonlinear shallow-water equations over a flat bottom on equatorial beta plane

are

ut + uux + vuy − yβv + ghx = 0 (5.1)

vt + uvx + vvy + yβu + ghy = 0 (5.2)

ht + uhx + vhy + h(ux + vy) = 0 (5.3)

where u and v are the eastward and northward velocities, h is the total depth, g is the

gravitational constant, and β is Rossby parameter at the equator. This is also called

the ‘one-and-a-half-layer’ model because it describes two-layer fluid in the hydrostatic

approximation when the lower layer is infinitely deep. In this study results are not
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sensitive to a realistic range of h in the equatorial ocean from 0.2 m to 0.8 m. A

value of 0.5 m, approximately equal to the equivalent depth of the 1st baroclinic

mode, is used. Numerical schemes follow Boyd (1998). The spatial derivatives in

both latitude and longitude are approximated by centered eighth-order differences.

For the temporal derivatives, we use the 4th order Runge-Kutta for the first two steps

since it is self starting and the 3rd order Adams-Bashforth after. 6th order dissipation

is used with a hyperviscosity coefficient chosen in a way such that the e-folding time

of the shortest 2∆x wave is 0.1 day. The domain size is [20◦S, 20◦N ] in latitude, and

300◦ in longitude. In latitude, due to the equatorial wave guide effect, there is no

substantial wave activity on north and south boundaries. So we simply keep using the

initial values on these boundaries during the integration. In longitude, we first used

heavy damping near the boundaries, so-called “sponge layers” by simply multiplying

the deviation of u,v and h from the initial zonal mean with an coefficient which is

zero at the boundary but exponentially growing to one only 3◦ inside the boundary.

Since the domain in longitude is large and the initial disturbance is very small, the

late developed wave additivity is highly periodic in the central region of the domain

except at the two ends in longitude. So we also tried a smaller domain in longitude

and periodic condition in longitude. The findings of this chapter remain unchanged.

The spatial resolution is 5 km and the time step is 4 minutes.

5.2 Nonlinear Evolution

5.2.1 Free nonlinear evolution

The nonlinear evolution of TIWs is initialized with a small random perturbation

to the initial mean state shown in Figure 5.1. This mean state is based on Figure 4

in Hansen and Paul (1984) which was based on measurements made by 20 satellite-

tracked surface drifters in the region 10◦S − 10◦N , 130 − 140◦W , from June 6 to
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October 27 in 1979. The evolution of the waves originating near the center of the

300◦ longitude band is analyzed.

Before day 175, in the latitudinal range from 6◦S to 8◦N , TIWs with a wavelength

of 995 km, a period of 29 days, growing exponentially with an e-folding time of 11.4

days, and similar wave pattern as that on day 175 in Figure 5.1 dominate the whole

domain. These results are consistent with the stability analysis following Philander

(1978). Details about how to obtain the unstable modes are given in Appendix A. As

shown in Figure 5.1, after day 175, the TIWs rapidly grow into fully nonlinear vortices

and further growth stops around day 200. Three related things happen during this

period. First, the vortex shown in the total h field begins to rotate, changing its

oval shape on day 175 to disk shape on day 200. Second, the rotation decouples

the components of TIWs at different latitudes. The wave near the equator detaches

from the wave near 5◦N and propagates faster to the west. Third, the rotation also

stabilizes the zonal mean substantially. Wavelengths of these waves do not change

during the process. On day 225, the vortex rotates back to an oval shape and the

zonal mean is restored partially. However, this process is irreversible. The wave near

the equator keeps moving faster to the west. And the wave near 5◦N continue to

surrender its energy to the fast wave near the equator after day 225 and reaches

some quasi-equilibrium after day 350. On day 450 the fast wave near the equator

has relative stronger amplitude than the wave near 5◦N . Figure 5.2 shows how v

along the equator and 5◦N in a selected region near the center in longitude varies

with time. Before day 175, the period is 29 days and the phase speed is 0.4 ms−1 at

both latitudes; after day 200, the period is 20 days and phase speed is 0.58 ms−1 at

the equator, and the period is about 36 days and the phase speed is 0.31 ms−1 at

5◦N . Close look indicates that the 20-day wave dominates [4◦S, 2◦N ] and the 36-day

wave dominates [3◦N , 8◦N ]. Figure 5.2 (right) also shows that the 36-day wave keeps

losing its energy to the 20-day wave till day 350.
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Figure 5.1: Zonal mean velocity (left column), zonal deviation h′ and u′ − v′ (middle
column), and h and u−v (right column) on a moving coordinate following
a positive h′ center near 5◦N on day 175 (top panel), 200 (2nd panel),
225 (3rd panel) and 450 (bottom panel).

84



Relative Longitude (degree)

T
im

e
 (

d
a

y
)

 

 

0 5 10 15

50

100

150

200

250

300

350

400

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Relative Longitude (degree)

T
im

e
 (

d
a

y
)

 

 

0 5 10 15

50

100

150

200

250

300

350

400

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Equator  5N

Figure 5.2: Time-longitude plots of v along the equator and 5◦N . Before the most
unstable wave reaches to its fully nonlinear stage around day 200, the
periods are 29 days at both the equator and 5◦N . After day 250, the
periods are 20 days at the equator and about 36 days at 5◦N .

0 20 40 60 80 100
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Percentage of the zonal mean u on day 450

P
h

a
se

 s
p

e
e

d
 (

m
/s

)

n=0 Yanai wave

0 2 4 6 8
−6

−4

−2

0

2

4

6

8

Relative longitude (degree)

L
a

ti
ti

tu
d

e
 (

d
e

g
re

e
) 

(b)       

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

19

23

29

38

57

115

P
e

rio
d

 (d
a

y
)

(a)  

n=1 Rossby Wave

n=2 Rossby Wave

n=3 

n=4 

Figure 5.3: (a) Phase speed and periods of the free modes with a wavelength of 995
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The genesis of these two types of waves with distinct phase speeds could be ex-

plained through the linear dynamics. Recall that zonal wavenumber k=1 is a di-

mensional wavelength of 995 km while its second harmonic (k=2) is a wavelength of

498 km. Even though the TIWs around day 200 are fully nonlinear, Fourier analysis

indicates the k=1 waves are still dominant, about 10 times larger than the second

harmonics on day 200 at 2◦S (center of the fast 20-day wave) and 5◦N (center of the

36-day wave). The stabilized zonal mean on day 200 does not support the original 29-

day unstable mode anymore. The whole large perturbation field must be decomposed

to a new set of free modes existing with the new stabilized zonal mean. Since the

zonal mean on day 200 closely resembles the zonal mean on day 450, we use the latter

as an example. As shown in Figure 5.3(a), the only discrete neutral Rossby-like waves

now is a 20-day Yanai wave and all other neutral Rossby-like waves are continuous. It

also has a 41-day discrete unstable growing mode centered 5◦N with an e-folding time

of 36 days and several other slower growing discrete modes. As the zonal deviation of

the fast wave from 4◦S to 2◦N on day 450 and the Yanai mode in Figure 5.3(b) have

the same wavelength, period and similar wave pattern, we identify this fast 20-day

wave as the neutral Yanai wave. While the near 36-day waves centered 5◦N vary with

time and involve both continuous neutral modes and discrete unstable modes which

makes it impossible to identify them with any particular mode.

5.2.2 Sensitivity of the late emerging Yanai wave to the zonal mean

Although the initial zonal mean used in the previous subsection is representative

of a very large collection of data in one year, substantial variations of strength and

structure are known to occur from year to year. Here we just simply rescale the

magnitude of the zonal mean to a wider range to represent such interannual variations.

The magnitude Umax of our “typical” zonal mean is 0.7 ms−1. If we rescale Umax

up to 1.0 ms−1 (decreasing the e-folding time of the most unstable mode from 11.4
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Figure 5.4: (left)Zonal mean velocity without nudging terms(τ = ∞) and with forcing
terms(τ=60 days) for Umax = 1.0 ms−1; (middle)Zonal deviation h′ and
u′ − v′ on day 450 without nudging terms; (right)Zonal deviation h′ and
u′ − v′ on day 450 with nudging terms(τ=60 days).

days to 7.3 days), then the late emerging 15-day Yanai wave will dominate from 6◦S

to 6◦N as shown in Figure 5.4 (middle). The initial 25-day TIW near 5◦N do not have

any remnant near 5◦N . Figure 5.4 (left) also shows that the structure of the zonal

mean on day 450 without forcing terms differs from the initial structure significantly.

However, if we rescale Umax down to 0.5 ms−1 (increasing the e-folding time of the

most unstable mode from 11.4 days to 18.3 days), then the late emerging Yanai wave

with a period of 22 days will have such weak strength that the period can only be

obtained from the Fourier analysis (figures are not shown here). The initial 32-day

wave with modified wave structure near the equator still dominates from 6◦S to 8◦N .

5.2.3 Forced nonlinear evolution

The sensitivity of the strength of the late emerging Yanai wave is largely due to

the lack of external forcing terms in our nonlinear shallow-water model. Here we use

Newtonian relaxation to represent the external forces, like wind stresses, by adding

nudging terms (ū − u)/τ , (v̄ − v)/τ and (h̄ − h)/τ to the the right hand sides of

equation 4.4, 4.5 and 4.6 respectively. They act to nudge the flow back towards the
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Relaxation time τ 5◦N Yanai
w/o nudging 36 20
90 days 34 21.5
60 days 33 22
30 days 32 suppressed

Table 5.1: Periods of TIWs centered about 5◦N and late emerging Yanai waves near
the equator for Umax = 0.7 ms−1 after the nonlinear adjustment with
various relaxation times. The period of TIWs during the linear stage is 29
days over the domain.

initial mean state ū, v̄(=0) and h̄ with a relaxation time of τ .

Figure 5.4 (right) shows the zonal deviation h′, u′−v′ on day 450 with a relaxation

time of 60 days for an increased Umax of 1.0 ms−1. Comparing with the result without

nudging terms on day 450 shown in Figure 5.4 (middle), the wave near 5◦N now has

large amplitude and dominates from 3◦N to 8◦N . The Yanai wave is restricted to

4◦S to 2◦N . The stabilized zonal mean is also nudged close to the initial mean as

shown in Figure 5.4 (left).

Table 5.1 gives the periods of TIWs centered about 5◦N and late emerging Yanai

waves near the equator for Umax=0.7 ms−1 with various relaxation times, measured

after the nonlinear adjustment. Nudging terms tend to bring the periods of the waves

near 5◦N towards the initial period in the linear stage. For a relaxation time less than

30 days, the Yanai wave is suppressed. If we increase Umax, then we need to decrease

τ to suppress the late emerging Yanai waves.

5.3 Summary and Discussion

In this chapter, we investigated how the nonlinearity could change the behavior

of the TIWs and provide a new mechanism to explain the coexistence of two different

types of two different types of TIWs. The neutral Yanai waves are shown to emerge

as the initial TIWs grow into full nonlinear vortices and stabilize the zonal mean
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significantly. The strength and structure of these Yanai waves are highly dependent

on the instability of the initial mean states if no forcing terms are present. Such

sensitivity could largely be eliminated by adding climatological nudging terms to the

equations.
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CHAPTER VI

Conclusion and Discussion

6.1 Linear Kelvin waves

We have derived a new asymptotic approximation for the Kelvin wave that fills the

gap between the equatorial beta-plane (fixed zonal wavenumber s, Lamb’s parameter

ε → ∞) and the small ε, velocity-potential-is-P n
n (µ) exp(isλ) approximation. The

new approximation was derived under the assumption that at least one of (s, ε) is

large, but it turns to be surprisingly accurate outside its formal range of validity in

the region where both s and ε are small. The approximation shows that the degree

of equatorial confinement is not controlled by ε alone, but rather by the parameter

εeff = s2 + ε (6.1)

Boyd (1985) showed that the same is true for Rossby waves. A Kelvin wave of

moderate zonal wavenumber s will be confined to the tropics even for ε = 0, a

barotropic wave, as illustrated in Fig. 2.2.

We also solved the Kelvin waves linearized about various jets. The waves have

much more complicated structures than the Kelvin wave with a resting background.

These results are consistent with previous studies (McPhaden and Knox , 1979; Phi-

lander , 1979). For westward jets, the wave narrows in latitude as the wavenumber k

increases; for eastward jets, they tend to shift away from the equator as k increases.
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As a result, phase speeds decreases as wavenumber increase regardless of whether the

jet is eastward or westward.

6.2 Nonlinear Kelvin waves

We first derived the analytic solution for the nonlinear Kelvin wave on sphere

when the amplitude and ε are small by peturbative method. When the amplitude or ε

increase, we computed the nonlinear traveling Kelvin waves by numerical calculations.

On the equatorial beta-plane in the presence of a jet, we also computed the nonlinear

traveling Kelvin waves by numerical calculations.

For sufficiently small amplitude, there are nonlinear Kelvin traveling waves (cnoidal

waves). As the amplitude increases, the waves narrow in longitude and terminates in

a so-called corner wave with a discontinuous first derivative. All waves larger than

the corner wave evolve to fronts and break. The singularity is a point singularity in

which only the longitudinal derivative is discontinuous.

In latitude, the waves narrow for the Kelvin waves on the sphere with a resting

background or the Kelvin waves on the equatorial beta-plane in the presence of a

westward jet as the wave amplitude increases. However the waves widen for the Kelvin

waves on the equatorial beta-plane in the presence of an eastward jet. This opposite

reaction to the direction of the jet can be explained by projecting the nonlinear

solution to the set of the linearized eigenmodes.

Phase speeds also increase to the east as the amplitude increases. However, the

phase speeds are largely determined by the linear Kelvin wave dynamics, the incre-

ment is relatively small, about several to ten percentage. In Boyd and Zhou (2008a),

we derived the first correction to the phase speed due to the amplitude of nonlinear

Kelvin waves on sphere is second order in amplitude. As the amplitude of the nonlin-

ear Kelvin waves are generally less than 1 in nondimensionalized units, the correction

is relatively small. However, Fedorov and Melville (2000) suggest that nonlinear ef-
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fects can increase phase speeds by 10%∼30% in regions where the thermocline is

shallow or shoaling. In our study the phase speed is the phase speed of the steadily

traveling wave while in their study it is the phase speed of the Kelvin waves which

have evolved to a front. Plus they also included shoaling effect. This may explain

why the nonlinearity has a stronger effect than ours.

6.3 Nonlinear tropical instability waves

In this study, we investigated how the nonlinearity could change the behavior of

the TIWs and provide a new mechanism to explain the coexistence of two different

types of TIWs. The neutral Yanai waves are shown to emerge as the initial TIWs grow

into full nonlinear vortices and stabilize the zonal mean significantly. The strength

and structure of these Yanai waves are highly dependent on the instability of the

initial mean states if no forcing terms are present. Such sensitivity could largely be

eliminated by adding climatological nudging terms to the equations.

One limitation of this study is the shallow-water model is only suitable for TIWs

arising mainly from barotropic instability. For TIWs arising mainly from baroclinic

or frontal instability, multiple-layer models are needed to examine their nonlinear

adjustment processes. However, we expect it is still possible for neutral Yanai modes

to emerge if the nonlinear TIWs could stabilize the zonal mean significantly, regardless

of whether the TIWs arise from barotropic or baroclinic instability. It would be

desirable to test this theory with a 3D ocean model in the future work.
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APPENDIX A

Eigenvalue Problem of Normal Modes on the

Equatorial β-plane

On the equatorial β-plane, the linearized shallow-water equations about a zonally

averaged mean state Ū(y) and Φ̄(y) which satisfy the geostrophic balance Ū(y) =

−Φ̄(y)/y are

ut + Ūux + vŪy − yv + φx = 0 (A.1)

vt + Ūvx + yu + φy = 0 (A.2)

φt + Ūφx + vΦ̄y + (1 + Φ̄)(ux + vy) = 0 (A.3)

Expand u, v, φ as u = u0(y)ei(kx−ωt), v = −iv0(y)ei(kx−ωt), φ = φ0(y)ei(kx−ωt), then

we get

kŪu0 − (Ūy + y)v0 + kφ0 = ωu0 (A.4)

kŪv0 + yu0 + φ0y = ωv0 (A.5)

kŪφ0 − Φ̄yv0 + (1 + Φ̄)(kŪ − v0y) = ωφ0 (A.6)

Ū ,Ūy , Φ̄ and Φ̄y are known functions of y; while u0, v0 ,φ0, v0y, φ0y are unknown

functions which vanish at infinity. ω is the unknown eigenvalue to be determined.
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We can solve this eigenvalue problem by pseudospectral discretization method.

The first step is to change the coordinate from y to ζ via ζ = tanh(y/L) where L

is a user-choosable parameter. When L is smaller, more discretization points will be

concentrated near y = 0. Now the range of the new coordinate ζ is [−1, 1]. The new

boundary condition becomes

u0(−1) = u0(1) = 0, v0(−1) = v0(1) = 0, φ0(−1) = φ0(1) = 0 (A.7)

We use the Chebyshev polynomials as the basis. Tn(ζ) is a polynomial of degree

n. It may be calculated directly via the three-term recurrence relation, but a more

efficient definition is

Tn(ζ) = cos(nt) (A.8)

t = arccos(ζ) ↔ ζ = cos(t) (A.9)

To impose the boundary condition, we can define the spectral basis functions ψj(ζ)

to be linear combinations of the Chebyshev polynomials which each vanish at ζ = ±1

such as

ψ2n(ζ) = T2n(ζ) − 1, ψ2n+1(ζ) = T2n+1(ζ) − ζ, n = 1, 2, 3, ... (A.10)

The fact that ψj(±1) = 0 for each j follows from the trigonometric definition of the

Chebyshev polynomials, which implies Tn(±1) = (±1)n.

Let N denote the number of basis functions used for each of the three unknowns.

Discretize collocation points evenly space in t, t = 2i−1
2N

π where i=1, 2, 3..N. Demand-

ing that three shallow water equations be satisfied for this discrete set of N collocation

points then converts the set of three differential equations into a generalized matrix

eigenvalue problem.
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So expand u0, v0,φ0 as

u0(ζ(y)) =
N+1∑
j=2

aj × ψj(ζ(y)) (A.11)

v0(ζ(y)) =
N+1∑
j=2

a(j+N) × ψj(ζ(y)) (A.12)

φ0(ζ(y)) =
N+1∑
j=2

a(j+2N) × ψj(ζ(y)) (A.13)

where ψj(ζ) = cos(jt) − 1 for even j and ψj(ζ) = cos(jt) − cos(t) for odd j.

With the using following relationship

∂

∂y
↔ −sin(t)

L

∂

∂t
(A.14)

we can easily get the summation forms for v0y and φ0y as

u0y(ζ(y)) =
N+1∑
j=2

aj × ψj
y(ζ(y)) (A.15)

v0y(ζ(y)) =
N+1∑
j=2

a(j+N) × ψj
y(ζ(y)) (A.16)

φ0y(ζ(y)) =
N+1∑
j=2

a(j+2N) × ψj
y(ζ(y)) (A.17)

where ψj
y(ζ) = − sin(t)

L
(−j sin(jt)) for even j and ψj

y(ζ) = − sin(t)
L

(−j sin(jt) + sin(t))

for odd j.

Collect the coefficients of ~a of the three equations we can get the following matrix

form eigenvalue problem

~~A3N×3N~a3N×1 = ω
~~B3N×1 (A.18)
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The first N rows of
~~Ai,j and

~~Bi are obtained from the x momentum equation.

~~Ai,j = kŪ(yi)ψ
j+1(yi) (A.19)

~~Ai,j+N = (−Ūy(yi) + yi)ψ
j+1(yi) (A.20)

~~Ai,j+2N = kψj+1(yi) (A.21)

~~Bi = ψj+1(yi) (A.22)

where i is the collocation points index, from 1 to N ; j is the index of the basis

functions, also from 1 to N .

The second N rows of
~~Ai,j and

~~Bi are obtained from the y momentum equation.

~~Ai+N,j = yiψ
j+1(yi) (A.23)

~~Ai+N,j+N = kŪ(yi)ψ
j+1(yi) (A.24)

~~Ai+N,j+2N = ψj+1(yi) (A.25)

~~Bi+N = ψj+1(yi) (A.26)

The third N rows of
~~Ai,j and

~~Bi are obtained from the continuation equation.

~~Ai+2N,j = k(1 + Φ̄(yi))ψ
j+1(yi) (A.27)

~~Ai+2N,j+N = −(1 + Φ̄(yi))ψ
j+1
y (yi) − Φ̄y(yi)ψ

j+1(yi) (A.28)

~~Ai+2N,j+2N = kŪ(yi)ψ
j+1(yi) (A.29)

~~Bi+2N = ψj+1(yi) (A.30)

With the definition of
~~A and

~~B, the eigenvalues of ω and eigenvectors of ~a are

readily solved by many scientific softwares, like Matlab. Attention should be paid

when identifying these eigenmodes when the background mean is not zero. One useful

technique is increasing the background mean gradually from zero to full strength and
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track the change of ω.
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