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ABSTRACT

A search for the Standard Model Higgs boson in proton-antiproton collisions with

center-of-mass energy 1.96 TeV at the Tevatron is presented in this dissertation.

The process of interest is the associated production of W boson and Higgs boson,

with the W boson decaying leptonically and the Higgs boson decaying into a pair of

bottom quarks. The dataset in the analysis is accumulated by the DØ detector from

April 2002 to April 2008 and corresponding to an integrated luminosity of 2.7 fb−1.

The events are reconstructed and selected following the criteria of an isolated lepton,

missing transverse energy and two jets. The DØ Neural Network b-jet identification

algorithm is further used to discriminate b jets from light jets. A multivariate analysis

combining Matrix Element and Neural Network methods is explored to improve the

Higgs boson signal significance. No evidence of the Higgs boson is observed in this

analysis. In consequence, an observed (expected) limit on the ratio of σ (pp→ WH)

× Br (H → bb) to the Standard Model prediction is set to be 6.7 (6.4) at 95% C.L.

for the Higgs boson with a mass of 115 GeV.

xvii



CHAPTER I

Introduction

The Standard Model, as a quantum field theory in particle physics, is developed to

describe the elementary particles as well as their interactions. It is well established as

a unified framework to explore and understand the matter and forces in our universe.

The theory defines a group of fundamental particles which are not able to be further

divided into smaller ones. A subset of these particles, known as fermions with spin

equal to 1/2, is considered to make up the matter in the world. The other subset

of the particles, known as bosons with spin equal to 1, is responsible for mediating

forces among these particles.

The model turned out to be a great success both theoretically and experimen-

tally over the past century. It is a gauge theory with symmetry group SUC(3) ×

SUL(2) × UY (1), which incorporates three of the known fundamental interactions:

strong force, weak force and electromagnetic force. The theory precisely interprets

that the fermions such as leptons and quarks interact with each other by exchanging

the gauge bosons. Nearly all the particles in the Standard Model have been observed

in various particle physics experiments. Over half of these particles are actually first

predicted by the model and then discovered experimentally. The characteristics of

the particles and their interactions are consistent with the theoretical predictions.

1
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However, there is a mysterious particle, called the Higgs boson, remaining to be

discovered in the Standard Model. As a massive boson without intrinsic spin, it is

introduced in theory to explain the mass origins of all other particles. The way in

which all massive particles acquire their masses is called the Higgs mechanism. In

this mechanism, an extra field, called the Higgs field, is introduced to simultaneously

break the symmetry of the gauge fields. The Higgs field interacts with these gauge

fields and generates the masses of the vector bosons, while it can give the fermion

masses through the Yukawa interaction with fermionic fields. The Higgs field also

interacts with itself and predicts a massive scalar boson named as Higgs boson.

Search for the Higgs boson has become the center of interest in the recent ex-

periments, particularly at the Tevatron proton-antiproton collider at Fermilab. The

mass of the Higgs boson itself is not yet predicted, although the interactions of fields

give masses to other particles. It requires very high energy to produce and is unstable

with short lifetime. In the past decades, there have been indirect and direct searches

for the Higgs boson in several high energy physics experiments. The direct search

of LEP experiments at CERN excludes the existence of Higgs boson with mass less

than 114 GeV at 95% C.L. [3]. For the time being, the Tevatron experiments are

the only ones in the world capable of directly searching for the Higgs boson.

The dominant process for producing the Higgs boson at the Tevatron is the gluon-

gluon fusion mechanism. For mass below 135 GeV, the Higgs boson tends to decay

to a pair of bottom quarks with large branching ratios [21]. The final states are

overwhelmed by the multi-jet background processes in hadron collisions. This makes

it difficult to search for the low mass Higgs boson prouduction via gluon-gluon fusion.

Since the Higgs boson prefers to couple to a heavy particle, it could be produced in

association with a vector boson. The vector boson is relatively easy to be identified
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through its leptonic decay and distinguished from the large background in hadron

collisions. This signature makes the assoicated productions of the Higgs boson with

vector bosons the most promising channels to search for the Higgs boson with a mass

less than 135 GeV at the Tevatron.

This thesis is focused on searching for Higgs boson production associated with a

W boson at the DØ experiment of the Tevatron. The W boson is identified through

its leptonic decay into a lepton and a neutrino, while the Higgs boson is reconstructed

from a pair of bottom quarks. An overview on the Higgs mechanism in the Stan-

dard Model together with Higgs production and decay at hadron colliders is given

in Chapter II. In Chapter III, I describe the Tevatron accelerator as well as the

DØ detector in more details. Chapter IV includes the various algorithms of event

reconstruction, correction and b-jet identification. The event samples and the event

selection criteria are described in detail in Chapter V. In Chapter VI, multivariate

techniques are implemented to further discriminate the Higgs signal from the back-

ground events. Finally, the conclusions and discussions on Higgs production at the

Tevatron are given in Chapter VII.



CHAPTER II

The Standard Model Higgs Production and Decay in

Hadron Collisions

A brief overview of the Standard Model Higgs boson together with its predicted

experimental signatures is given in this chapter. First of all, an introduction to the

theoretical aspects of the Standard Model and Higgs boson is made through Section

2.1. The contraints on the Higgs boson mass from both theorectical calculations and

experimental results are summarized in Section 2.2. The results on the Tevatron

sensitivity to the Higgs boson production are also given in that section. In Section

2.3 the various mechanisms of the Higgs boson production and decay in hadron

collisions are explained. The channel to search for the Higgs boson in this thesis is

briefly discussed as well.

2.1 The Standard Model, Higgs Mechanism and Higgs Boson

2.1.1 The Standard Model Theory

The Standard Model theory in particle physics provides a quite elegant framework

to describe the elementary particles and the interactions among these particles. It is

a gauge theory built on the symmetry group SUC(3)×SUL(2)×UY (1), which unifies

the strong, weak and electromagnetic interactions in the nature.

A group of particles, called leptons and quarks, are known to make up the matter

4
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Generation Electric Charge Spin
1st 2nd 3rd

Leptons
νe νµ ντ 0 1/2
e µ τ −1 1/2

Quarks
u c t 2/3 1/2
d s b −1/3 1/2

Table 2.1: List of leptons and quarks in the Standard Model

Gauge Bosons Interactions Fields Symmetry Group Charge Spin
γ Electromagnetic Aµ UY (1) 0 1
Z, W± Weak Zµ, W±

µ SUL(2) 0,±1 1

Gluons Strong ga
µ SUC(3) 0 1

Table 2.2: List of gauge bosons in the Standard Model

in the world. One distinct feature is that the spins of these particles are 1/2, for

which they are called fermions. These matter particles are further organized into

three generations, which are summarized in Tab. 2.1. Each particle in the table has

its counterpart known as antiparticle with opposite electric charge. The particles and

their corresponding antiparticles are depicted using fields in the theory. The elec-

tron, muon, tau and quarks have both left-hand and right-hand chiral components,

while the neutrinos are considered to be only left-handed. The quarks are color

triplets in the SUC(3) group while leptons are color singlets. The fields preserve the

renormalizability of electroweak theory [22].

The interactions among the fermions are mediated by another group of particles,

called gauge bosons, of which the spin is 1. The gauge bosons and corresponding

interactions are summarized in Tab. 2.2. The photon γ, Z,W±
µ bosons and gluons

mediate the electromagnetic, weak and strong forces respectively.

The Standard Model theory unifies the strong, weak and electromagnetic interac-

tions through symmetry group SUC(3)×SUL(2)×UY (1). The Lagrangian is generally

used to describe the dynamics of the entire physical system. The Lagrangian density
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for the interactions in the Standard Model theory is given by

LSM = − 1

4
Ga

µνG
µν
a − 1

4
W a

µνW
µν
a − 1

4
BµνB

µν

+ L̄iiDµγ
µLi + ēRi

iDµγ
µeRi

+ Q̄iiDµγ
µQi + ūRi

iDµγ
µuRi

+ d̄Ri
iDµγ

µdRi

(2.1)

where γµ are 4 × 4 γ matrices, Dµ is the covariant derivative, Li and Qi(i = 1, 2, 3)

represent left-handed leptons and quarks in weak isodoubletes, eRi
, uRi

and dRi
rep-

resent right-handed fermions in weak isosinglets. The field strengths of the different

gauge fields in the UY (1), SUL(2) and SUC(3) groups are given by

Bµν = ∂µBν − ∂νBµ

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ε

abcW b
µW

c
ν

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν

(2.2)

where εabc and f abc are the antisymmetric tensors, g2 and gs are the coupling constants

of SUL(2) and SUC(3) groups [1].

This Lagrangian is invariant under local gauge transformations for fermion and

gauge fields. It successfully incorporates the three known fundamental forces into a

unified theoretical framework. However, it is not yet able to explain the mass origins

of the fermions and some gauge bosons, which have been experimentally observed

to be massive. If the mass terms of fermions and gauge bosons, −mf ψ̄fψf and

1
2
M2

VWµW
µ, were explicitly added into the Lagrangian, the local gauge invariance of

SUL(2) × UY (1) would be broken. As an alternative solution, the Higgs mechanism

of spontaneous symmetry breaking [23] [24] [25] [26] was proposed to give masses to

particles. The mechanism is briefly reviewed in the following subsection.
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2.1.2 Spontaneous Symmetry Breaking and the Higgs Mechanism

The concept of spontaneous symmetry breaking is the basis on which the Higgs

mechanism is introduced to the Standard Model theory. A physical system, which

is initially symmetric regarding to certain symmetry group, may naturally go into

a non-symmetric vacuum state and thus break the symmetry. The process can be

illustrated using a scalar real field φ, of which the Lagrangian is

(2.3) L =
1

2
∂µφ∂

µφ− V (φ), where V (φ) =
1

2
µ2φ2 +

1

4
λφ4

The Lagrangian is invariant under the reflection symmetry φ ↔ −φ. Assuming

µ2 < 0, the potential V (φ) has the minimum when φ = ±
√

−µ2

λ
≡ v, where v is

called the vacuum expectation value of φ. In this case we have to make a perturbative

expansion around the minimum v by defining the field φ′ = φ−v. The Lagrangian in

terms of the new field now contains a cubic term, for which the reflection symmetry is

spontaneously broken. This study can be generalized to continuous symmetry as well.

According to the Goldstone theorem [27], there would be massless scalar particles,

called Goldstone bosons, when continuous symmetry is spontaneously broken.

The Higgs mechanism is then introduced to generate masses for gauge bosons

W± and Z in the Standard Model gauge theory. The simplest choice is to add the

invariant term

(2.4) LH = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2

where Φ is SUL(2) doublet of complex scalar fields Φ =







φ†

φ0






= 1√

2







φ1 + iφ2

φ3 + iφ4






.

In this case, Φ has the vacuum expectation value by preserving UY (1) symmetry

< Φ >0=
1√
2







0

v






with v =

√

−µ2

λ
. When making a gauge transformation on
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the field Φ to move to the unitary gauge, Φ can then be modified with Φ(x) =

1√
2







0

v +H(x)






. Rewriting the Lagrangian LH gives the new fields W±

µ and Zµ,

which are corresponding to W± and Z bosons with masses MW = 1
2
vg2 and MZ =

1
2
v
√

g2
1 + g2

2, where g1 is the electromagnetic coupling constant.

The same exercise can be done for generating the fermion masses by introducing

the SUL(2) × UY (1) Yukawa Lagrangian with the same field Φ

(2.5) LY ukawa = −λeL̄ΦeR − λdQ̄ΦdR − λuQ̄Φ̃uR + h.c.

where h.c. represents the Hermitian conjugate of the terms in the Lagrangian. The

masses of the fermions are given by me = λev√
2
, mu = λuv√

2
and md = λdv√

2
.

In both cases, the same doublet complex field Φ is introduced to spontaneously

break the SUL(2) × UY (1) symmetry, while preserving the electromagnetic UY (1)

symmetry and SUC(3) color symmetry. As a result, the weak vector bosons W±,

Z and the fermions acquire their masses respectively, while the photon and gluons

remain as massless bosons. Another important feature of the mechanism is the

appearance of a massive scalar field, called the Higgs field. The Higgs field predicts

a scalar particle, the Higgs boson, which is discussed in the next subsection.

2.1.3 The Higgs Boson

The Higgs boson is a massive scalar particle predicted by the Higgs mechanism,

which is developed to give masses to the vector bosons. If the Higgs field related

terms are picked from Eq. 2.4, a special Higgs Lagrangian is built as

(2.6) LHiggs =
1

2
(∂µH)2 − λv2H2 − λvH3 − 1

4
λH4

The Higgs boson mass is given by

(2.7) mH =
√

2λv2 =
√

−2µ2
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The vacuum expectation value v is determined from the mass of the W boson and

the Fermi constant GF

(2.8) v =
2mW

g2
=

√ √
2g2

4GFg2
2

' 246GeV ,

where GF is measured from muon decay. However, the value of λ is not known yet,

which makes the mass of the Higgs boson a mystery in theory.

The Higgs boson interacts with gauge bosons, fermions and itself with different

coupling strengths. The possible ways of the Higgs couplings are given by the interac-

tion terms in the Lagrangians of Eq. 2.4 and 2.5. These interactions are summarized

in terms of vertices with Feynman diagrams in Fig. 2.1. The diagrams show that

(a) gHV V =
2m2

V
v

× (−igµν) (b) gHHV V =
2m2

V

v2
× (−igµν) (c) gHff =

mf

v
× (i)

(d) gHHH =
3m2

H
v

× (i) (e) gHHHH =
3m2

H

v2
× (i)

Figure 2.1: The Higgs boson couplings to gauge bosons, fermions and itself in the Standard Model.
The coupling parameters are respectively gHV V , gHHV V , gHff , gHHH and gHHHH . [1]

the Higgs boson couples to particles in several ways in the Standard Model theory.

The coupling strength of the Higgs boson to vector boson is proportional to the mass

square of vector boson, while in the case of fermion it is proportional to the fermion
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mass. The self-coupling strengths of the Higgs boson are proportional to the mass

square of Higgs boson itself. The coupling information is very useful in the follow-

ing discussion on the potential production and decay of the Higgs boson in hadron

collisions.

2.2 A Review on the Searches for the Higgs Boson

2.2.1 Constraints on the Higgs Boson Mass

In order to discover the Higgs boson, it would be useful to have some prior knowl-

edge about its mass. The constraints on the Higgs boson mass so far have been

achieved with different methods both theoretically and experimentally.

Most of the theoretical constraints are calculated based on the assumption that

the Standard Model theory is valid up to certain energy scale, above which new

physics beyond the Standard Model theory would come into being. The tree-level

unitarity from scattering amplitudes of longitudinal vector bosons gives certain upper

limits of O(700 GeV) [28]. Perturbativity studies from Higgs decay processes also

suggest similar upper limits on the Higgs boson mass [29]. More stringent constraints

are derived from the theory triviality and vacuum stability [2], which are based on

high order calculations of Higgs boson quartic couplings with contributions from top

quark and vector bosons. As is shown in Fig. 2.2, the constraints on Higgs boson

mass varies with the new physics energy scale Λ. If the energy scale is at ∼ 1 TeV, the

Higgs boson mass is allowed to be 50GeV . mH . 800 GeV . If the Standard Model

theory is valid up to the GUT scale 1016 GeV, the Higgs boson mass is going to be

130 GeV . mH . 180 GeV . In addition, when Λ > 1 TeV, the fine-tuning problem

with the Higgs boson mass and its radiative corrections could further provide useful

information about the Higgs boson mass [30].

There have been direct limits on the Higgs boson mass from high energy experi-
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Figure 2.2: Constraints on the Higgs boson mass as a function of energy cutoff scale Λ [2]. The upper
bound is derived from triviality, while the lower bound is from the vacuum stability. The
top quark mass and strong coupling constant in the calculation are mt = 175 ± 6GeV
and αs(MZ) = 0.118± 0.002 respectively.

ments. Direct searches for the Higgs boson have been performed by analyzing a total

of 2461 pb−1 data at the Large Electron-Positron Collider (LEP) experiment with

√
s ranging from 189 to 209 GeV. No signal of Higgs boson was observed but a lower

bound on Higgs boson mass is established to be 114.4 GeV at 95% C.L. [31]. The

most recent results at the Tevatron of
√
s = 1.96 TeV exclude the existence of the

Standard Model Higgs boson with 160 GeV < mH < 170 GeV at 95% C.L. [20].

Rather strong constraints on the Higgs boson mass are indirectly obtained from

high precision measurements of electroweak parameters. The idea is based on the

fact that most of the electroweak parameters, such as the W boson mass, are very

sensitive to Higgs boson mass through high order loop corrections. A set of elec-

troweak observables, combined from high-Q2 electroweak precision measurements at

LEP, SLC and the Tevatron, are fed into a global fit of ∆χ2 = χ2−χ2
min as a function
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of Higgs boson mass. As shown in Fig. 2.3, the preferred Higgs boson mass corre-

sponds to the minimum of the fitted curve. The shaded band represents theoretical

uncertainties from unknown higher order corrections. The recent results suggest a

Higgs boson mass of mH = 87+35
−26 GeV, where the uncertainties are derived only from

∆χ2 = 1 corresponding to 68% C.L.. An upper limit of 186 GeV is also derived from

∆χ2 = 2.7 including both the experimental and theoretical uncertainties at 95%

C.L.. These constraints on the Higgs boson mass provide useful guidance to further

searches for the Standard Model Higgs boson.

0

1

2

3

4

5

6

10030 300
mH [GeV]

∆χ
2

Excluded Preliminary

∆αhad =∆α(5)

0.02758±0.00035
0.02749±0.00012
incl. low Q2 data

Theory uncertainty
August 2009 mLimit = 157 GeV

Figure 2.3: The ∆χ2 = χ2 − χ2
min of the fit to electroweak precision data as a function of Higgs

boson mass mH . The solid line is the fitted value including all high-Q2 data. The
shaded band represents theoretical uncertainty from unknown higher order corrections.
The vertical bands are the exclusion areas resulted from direct searches for Higgs boson
at LEP and the Tevatron. Also shown in the plot are uses of different ∆αhad values
and inclusion of low-Q2 data. [3]
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2.2.2 Search for the Higgs Boson at the Tevatron

The constraints on the Higgs boson mass prefer a light Higgs boson with mass

range below 200 GeV, which gives the Tevatron great potential to observe this par-

ticle. At present the Tevatron is the only running accelerator in the world capable

of direct Higgs boson search before the LHC turning into practical operation. The

results of studies on the Higgs sensitivity at the Tevatron are summarized in Fig. 2.4

[4], while the thicker curves are the results of SHWG study in 1999 [32]. In the mass

range 110 − 130 GeV, the Tevatron could be able to exclude the existence of the

Higgs boson at 95% C.L. with 4 fb−1 data, while a 3σ evidence could be achieved

with 8 fb−1 data per experiment.

Figure 2.4: The sensitivity of the Higgs boson at the Tevatron. The corresponding integrated
luminosities as a function of Higgs boson mass are expected to have exclusion at 95%
C.L., 3σ evidence and 5σ discovery. The narrow curves are the updated studies in 2003,
while the thicker curves are the results of SHWG study in 1999. [4]



14

2.3 The Higgs Boson Production and Decay at Hadron Colliders

2.3.1 Production of the Standard Model Higgs Boson

The Higgs boson production in hadron collisions is dominated by those processes

in which the Higgs bosons are coupling to heavy particles. This is based on the fact

that the coupling strengths of the Higgs bosons to vector bosons and fermions increase

with the masses of those particles. Particularly, in the modern proton colliders with

energies ∼ TeV scale, the Higgs boson tends to couple with vector bosons W ±,Z and

heavy fermions such as top and bottom quarks. The major production mechanisms

for a Higgs boson at the present hadron colliders are gluon-gluon fusion, vector boson

fusion, the associated production with W±/Z bosons and the associated production

with heavy quarks [1].

The gluon-gluon fusion mechanism contributes to the largest part of Higgs pro-

duction in hadron-hadron collisions. It is a process mediated by the triangular loops

of heavy quarks. As is seen in Fig. 2.5(a), gluons from the colliding beams couple

to a heavy quark loop which emits a Higgs boson. The loop is most likely made up

of top quarks while it could be contributed by bottom quarks with a smaller chance.

The Higgs boson coupling linearly grows with the quark mass whereas the heavy loop

mass decreases the form factor of Hgg. The Higgs boson production cross section

via this process is significantly larger than those of other processes.

Vector boson fusion refers to the process whereby the quarks in the colliding

beams emit virtual vector bosons, which in turn annihilate and produce a Higgs

boson. As is shown in 2.5(b), V ∗V ∗ could be a pair of W bosons or Z bosons.

This process is largely contributed by longitudinal gauge bosons and hence gives

higher production rates with higher colliding energies. The WW fusion channel has

a larger production cross section than the ZZ channel because W bosons have larger
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couplings to fermions than Z bosons.

The Higgs boson can also be produced in association with a vector boson in

hadron collisions. The process is illustrated in Fig. 2.5(c). It can be simply viewed

as a Drell-Yan process. A quark and antiquark annihilate to create a virtual vector

boson, which is then realized as a pair of Higgs boson and vector boson through its

bremsstrahlung process. The center-of-mass energy must be well above the threshold

of the vector boson. The production cross section of HW is roughly two times of

HZ.

There are several processes in which the Higgs boson is associated with heavy

quarks at hadron colliders. The common feature is that the heavy quark emits a

Higgs boson. An example with internal quark line is shown in Fig. 2.5(d). At tree

level, the incoming gluons in the colliding beams annihilate into heavy quarks from

which a Higgs boson is produced. When the energy is higher and the gluon becomes

important, it can happen through gluon fusion with the Higgs boson emitted from

both the internal and external quark lines. The heavy quarks here mainly refer to top

quarks and bottom quarks. The cross sections of bb̄H are comparable to and even

larger than those of tt̄H at a certain level of colliding energy, thanks to the available

phase space. The production of Higgs boson with single top quark is considerable

regarding to the association production with top pair.

The Higgs boson production cross sections via these processes at hadron colliders

have been calculated up to NNLO level [33]. Fig. 2.6 is the cross section as a function

of Higgs boson mass at the Tevatron collider of
√
s = 1.96 TeV. The Higgs boson

mass of the interest ranges from 100 GeV to 200 GeV. As indicated in the plot, the

dominant production is gluon fusion gg → H, of which the cross section ranges from

above 1 pb to around 0.2 pb. The overall theoretical uncertainty is estimated to be
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(a) gg −→ H (b) qq −→ V ∗V ∗ −→ H

(c) qq̄ −→ V + H (d) gg, qq̄ −→ QQ̄ + H

Figure 2.5: The major production processes of the Standard Model Higgs boson at hadron colliders.
[1] (a) gluon-gluon fusion. (b) vector boson fusion. (c) associated production with W ±

and Z bosons. (d) associated production with heavy quarks.

around 10%. The most relevant production of a low mass Higgs boson is associated

with a vector boson qq → WH and qq → ZH, as explained in the next sections.

The cross section is calculated at NNLO in the QCD expansion and NLO in the

electroweak correction. In the Higgs boson mass range from 100 GeV to 200 GeV,

the cross section decreases with Higgs boson mass from 0.3 pb to 0.01 pb. The overall

theoretical uncertainty of this process is less than 5%.

2.3.2 Decay of the Standard Model Higgs Boson

In the Standard Model theory, once the mass of Higgs boson is specified, the

possible decay modes and the corresponding decay widths of Higgs boson can be

predicted. Generally the Higgs boson could decay to quarks, leptons, real or virtual

vector bosons and even photons or gluons with a loop involved [1], as can be classified

in the following: (1) H → f f̄ . Higgs boson decays to a pair of fermions such as bb̄,
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Figure 2.6: The cross sections of the Standard Model Higgs boson production as a function of the
Higgs boson mass. Results are for the main production mechanisms at the Tevatron of√

s = 1.96 TeV. The calculation is valid at NNLO in the QCD expansion for gg → H ,
qq̄ → V H and bb̄ → H , while it’s accurate at NLO for qq → qqH and gg, qq → tt̄H .

τ+τ−, cc̄, ss̄,µ+µ− and tt̄. (2) Higgs boson decays to massive vector bosons. H → V V

when it is above kinematic thresholds of WW or ZZ. H → V V ∗ → V ff̄ with one

off-shell boson, while H → V ∗V ∗ → f1f̄2f3f̄4 with both of the bosons off-shell. (3)

Although the Higgs boson has no direct couplings to gluons or photons at tree level,

it could decay to these particles via loops. H → gg is mediated by heavy quark

loops. H → γγ and H → γZ are enabled with W boson or charged fermion loops.

As discussed in 2.1.3, the strengths of Higgs boson couplings to fermions and

gauge bosons increase with the masses of these particles. Hence the Higgs boson

preferentially decays to heavy particles as allowed by phase space. The decay widths

and branching ratios are strongly dependent on the mass of the Higgs boson.

The total decay width of the Standard Model Higgs boson can be calculated using

program HDECAY [5]. As is shown in Fig. 2.7, when the mass of Higgs boson is
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Figure 2.7: The decay width Γ(H) as a function of Higgs boson mass in the Standard Model [1]. The
data for Standard Model Higgs boson decay is obtained using the program HDECAY
[5].

smaller than ∼ 130 GeV, it has a very narrow width Γ(H) < 10 MeV. But the width

quickly becomes wider up to ∼ 1 GeV as the Higgs boson mass is increased to the

threshold of ZZ. With larger Higgs boson masses, the decay width is comparable

to the Higgs boson mass itself because of the longitudinal contributions from vector

bosons.

The branching ratios of Higgs boson decays are summarized in Fig. 2.8. When

the mass of Higgs boson is below 135 GeV, the process H → bb̄ is the dominant decay

mode with branching ratio up to 80%. The contributions from τ+τ−, gg and cc̄ are

at several percent level. The branching ratios of WW and ZZ increase dramatically

with the Higgs boson mass. When the Higgs boson mass is larger than 135 GeV,

WW ∗ becomes the main branch of Higgs boson decay. Note that the drop of ZZ∗

branching ratio when Higgs boson mass is between 160 GeV and 180 GeV, is due

to the fact that one Z boson remains off-shell while the threshold of WW has been
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Figure 2.8: The branching ratios BR(H) as a function of Higgs boson mass in the Standard Model
[1], as calculated using the program HDECAY [5].

reached. When the Higgs boson mass is larger than 180 GeV, WW and ZZ dominate

the Higgs boson decay. There is around a 10% contribution from top quark pairs

when the mass reaches the kinematic threshold of tt̄. These signatures together with

the Higgs boson production features provide guidance to Higgs boson searches, which

are briefly discussed in the next section.

2.3.3 Search for pp̄ → W±H → lνbb̄ at the Tevatron

As discussed in Sec.2.3.1 and 2.3.2, the gluon fusion process is the dominant

production mechanism of Higgs boson at the Tevatron. If the mass of Higgs boson

is larger than 135 GeV, it will mainly decay to a pair of vector bosons, which can

be reconstructed to look for a Higgs boson. However, when it comes to the lower

mass region mH < 135 GeV, the Higgs boson dominantly decays to bb̄. The process is

overwhelmed by huge multijet processes in hadron-hadron collisions and thus difficult

to identify the existence of a Higgs boson. The associated production of the Higgs
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boson with vector bosons naturally becomes the ideal channel for Higgs searches. As

is shown in Fig. 2.9 [6], the production cross sections times branching ratios of V H

processes are considerable in the lower mass region of the interest.

 [GeV]Hm
100 120 140 160 180 200

 B
r [

pb
]

× σ

-510

-410

-310

-210

NNLO, one lepton flavour
bbν  l→ WH →qq 

  llbb→ ZH →qq 
bbνν  → ZH →qq 

νlν l→ WW → H →gg 

Figure 2.9: The Higgs production cross section times the branching ratios of main decay modes at
the Tevatron as a function of Higgs boson mass. The NNLO cross sections of Higgs
boson production are used in the calculation. The branching ratios of Higgs boson
decay and W/Z boson decay with single lepton flavor have been taken into account. [6]

The analysis presented in this thesis is based on the process pp̄ → W±H →

lνbb̄ with the Higgs boson mass range from 100 GeV to 150 GeV. In this case,

the Higgs boson is produced in association with a W boson in proton-antiproton

collisions. The Higgs boson decays to a pair of b quarks, while the W boson could

leptonically decay to a lepton and a neutrino. Although the signal has a relatively

clean signature, the expected large background makes this analysis challenging. The

main background processes come from W plus multiple jets, of which particularly

W plus two b jets is irreducible. Some other physical processes, such as top quark

and diboson productions, contribute signigicantly to background processes. The

strategies and techniques used in this analysis to discriminate the signal from the
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background are discussed in the following chapters.



CHAPTER III

The Tevatron and the DØ Detector

The Tevatron accelerator has been the energy frontier of hadron collisions for

experimental particle physics research since it was established in 1983. It is now the

only running particle accelerator capable of directly searching for the Higgs boson

until the LHC begins running at CERN. In section 3.1, an overview of the chain of

the accelerators at the Tevatron is presented. Since the data used in this analysis

were collected at the DØ detector, an introduction to the DØ detector system is

given in section 3.2.

3.1 The Tevatron Accelerator

3.1.1 An Overview of the Accelerators at the Tevatron

The Tevatron accelerator at Fermilab delivers proton-antiproton collisions at center-

of-mass energy of 1.96 TeV, which is the highest energy so far achieved by particle

accelerators. A broad range of particle physics research has been carried out at the

Tevatron, including the discovery of top quark. The search for the Higgs boson is

one of the major physics goals at its two colliding detectors, CDF and DØ.

The protons and antiprotons are created and accelerated through a complex chain

of accelerators, of which an overview is presented in Fig. 3.1 [7]. The proton sources

are produced in the Booster by stripping the electrons off negative hydrogen ions

22
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from the Linac. The antiprotons are accumulated from a target station where a

target is bombarded by proton beams from the Main Injector. Both the beams are

then accelerated and finally injected to the Tevatron ring, in which protons and

antiprotons are accelerated up to 980 GeV respectively and collided at the CDF and

DØ detectors. The protons from the Booster and Main Injector are also delivered to

fixed target experiments such as MINOS and MiniBooNE. Below are brief summaries

of the accelerators in the chain. The technical details are available in reference [10].

Figure 3.1: An overview of the accelerators at Fermilab. [7]

The particle beams originate from negative hydrogen ions accelerated by the

Cockcroft-Walton accelerator. The hydrogen ions H− are produced using magnetron

surface plasma source [8], as described in Fig. 3.2. Generated from the cathode
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coated with cesium vapor, the H− ions are extracted through the anode aperture

and then accelerated to 18 KeV through the extractor plate. These ion sources enter

the Cockcroft-Walton accelerator, which utilizes static electric fields to accelerate

charged particles. As shown in Fig. 3.3, the high voltage is generated by charging

capacitors in parallel and discharging them in series with an AC power source. The

Fermilab Cockcroft-Walton accelerator has five stages in total which result 750 KV

high voltage output. Thus the H− ions are accelerated up to 750 KeV through the

Cockcroft-Walton accelerator and passed to the Linac accelerator.

Figure 3.2: The basic configuration of the magnetron surface plasma source. [8]

The next level accelerator, the Linac, takes theH− ions of 750 KeV and accelerates

them to an energy of 400 MeV. The Linac accelerator consists of two sections, the

drift tube Linac and the side coupled cavity Linac. The drift tube Linac is a line of

drift tubes radially centered in five cylindrical RF tanks, as is shown in Fig. 3.4. The

RF tanks resonate at 201.24 MHz and in total are able to accelerate the ion beams

to an energy of 116 MeV. The side coupled cavity Linac has seven RF tanks similar

to those in the drift tube Linac, but its drift tubes are designed to be more efficient.
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Figure 3.3: Schematic diagram of a simple two-stage diode voltage multiplier. Each stage of the
chain yields 2V0 output. The dotted lines represent special addition in the five-stage
Fermilab Cockcroft-Walton accelerator. The purpose of this addition is to reduce the
ripple while yielding the same output. [9]

Its RF tanks resonate at 805 MHz and thus accelerate the beams every fourth RF

cycle. Note that the beams in the Linac are present in the forms of bunches and are

focused or defocused using quadrupole magnets. The ion beams are accelerated to

an energy of 400 MeV at this stage and transferred to the Booster.

Figure 3.4: A simplified top view of Alvarez drift tube linac. A RF tank contains n + 1 resonant
cells. Each cell is filled with a bunch of particles. The particles are alternatively focused
and defocused using quadrupole magnets embedded within the drift tubes. The bunches
of particles are always accelerated in the gap between drift tubes while they are shielded
in the drift tubes from the field of RF tank. [9]

The Booster is a circular synchrotron with a radius of 75m, where the H− ion
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beams are stripped of their electrons and then accelerated to 8 GeV. The operation

of the Booster can be divided into three stages. The first stage is the accumulation of

protons. The incoming H− ion beams pass through a RF debuncher which reduces

the momentum spread of the bunches. The beams are then deflected and merged into

a single beam with the already accumulated H+ beam using opposite dipole magnets.

The new beam is then passed through a thin carbon foil to strip the electrons away

from the H− ions. Typically there will be 3× 1012 protons accumulated in six turns.

The second stage is the acceleration of the protons. The protons are accelerated to 8

GeV in a closed orbit with increasing resonant frequencies of RF stations. The beam

is kept in its orbit using alternating gradient magnets which focus and defocus a beam

using combined function dipole-quadrupole magnets. The Booster can accelerate

beam at a frequency of 15 Hz. The last stage is the dump of protons. Once the

proton beam is accelerated to 8 GeV, it is then directed to the transfer line to the

Main Injector.

The Main Injector is a larger synchrotron with a radius of around 525 m. It

performs multiple tasks by accelerating both protons and antiprotons. When the 8

GeV proton beams are transferred from the Booster, the Main Injector can accelerate

the proton beams to either 120 GeV or 150 GeV. The 120 GeV proton beams are

delivered to fixed target experiments and antiproton source target, while 150 GeV

proton beams are injected to the Tevatron ring. The Main Injector also accepts

the 8 GeV antiproton beams from the Recycler or the Accumulator and accelerates

them to 150 GeV to be delivered to the Tevatron ring. Note that the Main Injector

coalesces several Booster proton bunches into a superbunch before the beams are

injected to the Tevatron.

The antiprotons are produced and stored with a series of apparatus including
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the fixed target, the Debuncher, the Accumulator and the Recycler. The 120 GeV

proton beam from the Main Injector is directed and focused to strike the nickel alloy

target, from which all sorts of secondary particles are produced. A lithium lens is

used to collect the 8 GeV antiprotons from the spray, as shown in Fig. 3.5. A

dipole magnet is added to select the momentum of the particles. The efficiency of

antiproton production is very low with typically 15 antiprotons produced for every

one million protons striking the target.

Figure 3.5: The lithium lens used to collect antiprotons from the secondary particles originated
from the target. [10]

These extracted antiprotons are then diverted to the Debuncher, which is a tri-

angular synchrotron used to reduce the high momentum spread of the antiprotons

off the target. The process is realized through a method called stochastic cooling. A

signal from circulating antiprotons on one side of the ring is picked indicating its de-

viation from the ideal orbit, while the resulted correction is applied to the antiproton

beams on the other side of the ring to push it backward the ideal orbit. The same

numbers of protons are compressed to smaller space size and energy spread through

this method. The Accumulator is the second synchrotron housed in the same tunnel

as the Debuncher. It is used as the storage ring of the antiprotons and also coincides

the bunch structure with the Main Injector. Once the accumulation is completed,
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which usually takes more than twelve hours, the antiproton beams are directed to

the Main Injector. The Recycler is housed right below the Main Injector ring and

designed as a storage ring of antiprotons to allow higher stacking efficiency of the

Accumulator. It uses both stochastic cooling and electron cooling systems. Electron

cooling is based on the momentum transfer between the cool electron beams and

antiproton beams. It is effective especially in high intensities. The accumulated

antiproton beams are transfered to the Main Injector and then the Tevatron ring.

3.1.2 The Tevatron, Cross Section and Luminosity

The Tevatron ring is the main synchrotron accelerator where protons and antipro-

tons are accelerated to 980 GeV respectively and collide at its two detectors. It has

a circumference of approximately 4 miles. Its magnetic fields are up to ∼ 4 T pro-

vided by superconducting magnets which are cryogenically cooled by liquid helium

to ∼ 4 K.

The proton beams consisting of 36 bunches from the Main Injector are first in-

jected to the Tevatron at 150 GeV one bunch at a time. The antiproton beams with

the same number of bunches and energy follow the same orbital paths but travel

in the opposite direction. One bunch is separated from another typically by 396 ns

orbiting in a series of FODO cells and correction magnets. The protons and antipro-

ton are accelerated from 150 GeV to 980 GeV. The two beams are then squeezed

and collimated to collide by crossing each other in the center of the CDF and DØ

detectors.

The colliding performance of the two beams is often characterized by the produc-

tion rates of particular physical processes, defined as

(3.1) R = σL
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where σ is the cross section and L is the luminosity.

Cross section in particle physics experiments is an expression of the likelihood

for effective interactions between particles. It is derived from classical picture of

collisions and hence in unit of geometrical area. In particle collisions, cross sec-

tion represents the occurrence probability of certain physical process per unit flux.

For instance, the NLO calculations give the cross section of WH(mH = 115GeV )

production at the Tevatron, σ(pp̄→WH) = 0.1855 pb [34].

The luminosity at the Tevatron describes the interactions of two beams in terms

of particle numbers per unit area per unit time. It is defined as

(3.2) L =
fnNpNp̄

2π(σ2
p + σ2

p̄)
F (

σl

β∗ )

where Np and Np̄ are the number of particles in each bunch, f is the revolution

frequency, n is the number of bunches in either beam. The denominator 2π(σ2
p +σ2

p̄)

stands for the cross sectional area of the two beams, where σp and σp̄ are the widths

of the beams which are in Gaussian shapes. The form factor F ( σl

β∗
) depends on the

bunch length σl and the beta function β∗ [10]. The peak luminosity of RunII at the

Tevatron currently is 3 × 1032 cm−2s−1[35].

The instantaneous luminosity is changing over time but we are interested in

the number of occurrences for a particular physical process during a period. Thus

the integrated luminosity is introduced as the integral of the luminosity over time

Lint =
∫ t0+∆t

t0
Ldt. i.e. Given 1000 pb−1 integrated luminosity, the total number of

occurrences for WH(mH = 115GeV ) production at the Tevatron during this period

is expected to be around 0.1855 × 1000 = 185.5.
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3.2 The Upgraded DØ Detector

3.2.1 Overview of the DØ Detector

The DØ detector is a general purpose particle detector capable of studies on

various aspects of the high energy physics of pp̄ collisions at the Tevatron. A broad

range of topics in particle physics are covered at the DØ experiment such as search for

the Higgs boson, top quark physics, bottom quark physics, precision measurements of

electroweak parameters, jet production studies and new physics beyond the Standard

Model.

The DØ detector is integrated with various of sub-detector systems for identify-

ing the secondary particles from pp̄ collisions. The detector mainly consists of the

central tracking system, calorimeter system, muon detector and luminosity monitor

as well as forward proton detector and those complex electronics readout systems

[11]. As shown in Fig. 3.6, the innermost part is the central tracking system which

tracks the charged particles traveling through its 2 Tesla solenoidal magnetic field.

The calorimeter system surrounding the central tracking system is made of depleted

uranium, copper and stainless steel filled with liquid argon. It measures the energies

of the electromagnetic particles and hadronic jets. The outermost is the muon de-

tector made of scintillator counters, drift tubes and toroid magnets. It identifies the

muons, which easily penetrate through all the inner detectors without losing much

of their energies. All the sub-detector systems are coordinated and read out through

complex electronic systems.

As shown in Fig. 3.6, the DØ detector uses a right-handed Cartesian coordinate

system with the origin centered in the detector. The z axis is along the direction of

the proton beam which circulates clockwise in the Tevatron ring. The y axis points

upward from the Tevatron ring while the x axis points outside of the ring. Thus the
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Figure 3.6: Overview of the upgraded D0 detector from inside the Tevatron ring. The forward
proton detector is not shown. The details of the central region are shown in Fig. [11]

transverse and longitudinal planes are defined by x− y axis and z axis respectively.

Since the DØ detector has a somewhat cylindrical shape but the particle collisions

are roughly spherically symmetric around the interaction point, the DØ detector

more often employs a combination of cylindrical and spherical coordinate systems,

denoted as (z, r, θ, φ).

The polar angle θ is often replaced by the pseudorapidity η, which approximates

rapidity y in relativity theory. The rapidity of a particle is defined as

(3.3) y =
1

2
ln(

E + pz

E − pz
)

where E and pz are the energy and longitudinal momentum of the particle. The

number of particles produced in given range of rapidity is invariant under Lorentz

boost along the z direction. As the energy of the particle is sufficiently large to travel

close to the speed of light, the energy is approximately equal to the momentum E ≈ p.

(3.4) y ≈ 1

2
ln(

p + pcosθ

p− pcosθ
) = −ln(tan

θ

2
) ≡ η
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In the high energy case, the pseudorapidity η is a good approximation of rapidity.

The solid angle region at the DØ detector is often defined as ∆R ≡
√

∆η2 + ∆φ2,

which is also approximately invariant under Lorentz boosts along the z direction.

These coordinates are frequently used in describing the geometric and kinematic

variables in this thesis.

3.2.2 Tracking System

The DØ central tracking system is necessary for almost all of the physics studies

involved with charged particles in the final states, including the searches for the

Higgs boson. It measures the trajectories, charge signs and momenta of the particles

passing through different components of its detectors. The working principle is that

the charge sign and momentum of a charged particle can be precisely determined

from its movement in a known magnetic field. The charge sign is determined from

the direction in which the particle is deflected. The momentum is calculated through

the curvature of the particle path, k = qB
p

, where B is the magnetic field strength, q

and p are the charge and momentum of the particle respectively.

As shown in Fig. 3.7, the central tracking system chief components are the Silicon

Microstrip Tracker (SMT), the Central Fiber Tracker (CFT) and the Solenoid. The

SMT detector surrounds the DØ beryllium beam pipe and is made of silicon sensors.

It provides a high precision measurement of the tracks and interaction vertices of

the particles. The CFT is outside of the silicon tracker and made of scintillating

fibers. The position and momentum of the charged particles in the central detector

region can be determined by CFT. The solenoidal magnets, between the CFT and

the preshower detectors, provides a 2 Tesla uniform magnetic field for the entire

tracking system. The entire tracking system is able to locate the interaction vertex

with a resolution of 35µm along the beamline, and better than 15µm in the r − φ
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plane when the transverse momentum of the particle is larger than 10 GeV at η = 0.

The momentum resolution that can be achieved is (2 + 0.15pT )%, where pT is the

transverse momentum of the particle and in unit of GeV.

Figure 3.7: A side view of the D0 central tracking detectors in the x − z plane. The central
tracking detectors include the SMT, CFT and Solenoid outside the beam pipe. The
luminosity monitor, preshower detectors and parts of the calorimeters are also shown
in the diagram. [11]

Silicon Microstrip Tracker

The SMT detector is designed to find tracks and identify their vertices around

the colliding region. Its high precision comes from employing silicon detectors, of

which the functional units are the p − n junction diodes. The diodes are made

of silicon strips with one side n-doped and the other side p-doped. As a charged

particle passes through the strips, ionization effects create electron hole pairs and

cause a current pulse, which can be recorded by the electronic readout system. When

numerous strips are arranged around the nominal interaction points, the trajectories
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of the particles can be precisely determined. The SMT is able to achieve a spatial

resolution of 10µm in r − φ plane and 35µm in z direction.

The 3D tracking ability of the SMT is reached through its design of combining

barrel and disk modules. As shown in Fig. 3.8, there are in total 6 barrels with strips

parallel to the beam direction and 16 disks with strips perpendicular to the beam

direction. On each side of the origin are 3 barrels, of which each one consists of 4

concentric layers of silicon wafers. The barrels are able to provide better φ informa-

tion and cover detector region |η| < 2.4. There are 6 of the F-disks, perpendicular to

the beamline, positioned between the barrels. Together with the other 6 F-disks and

4 H-disks, the disk modules provide better measurements on the z direction. During

the upgrade of DØ detector in 2006, a new layer, called Layer 0, was added inside

the 4 existing layers of silicon wafers, while the forward H-disk was removed.

Figure 3.8: The layout of the D0 Silicon Microstrip Tracker with its disk and barrel design. [11]

Note that the geometric scale of the SMT is in large part ruled by the beam

collision region, of which σ in z direction is around 25 cm. The most distant F-disk

is positioned at |z| = 121.0 cm with radius r = 26 cm. In general the SMT is

designed to cover detector region |η| < 3.0, which is nearly full η coverage of the

calorimeter and muon systems. It has up to 792, 576 readout channels and requires

complicated electronics and high voltage supplies.
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Central Fiber Tracker

The Central Fiber Tracker [36] tracks charged particles using scintillating fibers.

The base core material of the scintillating fibers is polystyrene doped with organic

fluorescent dyes. When ionizing particles deposit parts of their energies in the doped

polystyrene, molecular excitations and rapid fluorescence decays will occur, emitting

∼ 540nm light. The light is then extracted through clear fiber waveguides and di-

rected to visible light photon counters (VLPCs), which are avalanche photodetectors

and convert the light to electric signal quickly and efficiently.

The CFT is designed to cover the detector region |η| < 2.0 as shown in Fig. 3.9.

It consists of 8 layers of concentric cylinders with radius ranging from 19.5 cm to

51.5 cm. Each layer is actually composed of two sub-layers, one with fibers oriented

parallel to the beam direction (called axial layer) and the other with a stereo angle

of +3o or −3o (called stereo layer u or v). From the innermost to the outermost,

the scintillating fiber layers are laid out as zu − zv − zu− zv − zu− zv − zu − zv.

The fiber has a diameter of 835µm and thus determines the inherent resolution of

doublet layer to be around 100µm. The CFT in total has ∼ 76, 800 readout channels

and is finally combined with the SMT to provide tracking information of charged

particles. Note that the signals from the axial doublet layers also serve as the fast

trigger decisions, based on the number of tracks above certain transverse momentum

thresholds such as 1.5 GeV.

The Solenoid

The Solenoid is designed for momentum measurement and track recognition by

bending the paths of charged particles. It provides the SMT and CFT with a uniform

magnetic field of ∼ 2 Tesla with either polarity along the direction of beamline, as
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Figure 3.9: Schematic view of the D0 Central Fiber Tracker. a) A side view of the CFT in r − z
plane. It is located between the SMT and the Solenoid. There are 8 layers of concentric
barrels labeled as #1 to #8 from the innermost the outermost. b) A magnified end
view of the barrels in x−y plane. Each barrel contains an axial doublet layer along the
beam direction and another steoreo doublet layer at a stereo angle of +3o or −3o.

shown in Fig. 3.10. Its superconducting coils carry up to 4749A current and are

cooled to 4.6 K using liquid helium. The physical size is limited by the space within

the calorimeters to be 2.73 m in length and 1.42 m in diameter.

The Preshower Detectors

The existence of the Solenoid could degrade the energy resolution of the calorime-

ters, since the solenoidal materials interact with particles which would shower before

reaching the calorimeters. The Preshower detectors are introduced to improve the

energy measurement particularly for electrons and photons, as well as enhance the

sensitivity of the tracking system. The Preshower detectors also use scintillating

fibers while absorber materials are attached to initiate the electromagnet showers.

As can be seen in Fig. 3.7, there are Central Preshower Detector (CPS) and For-

ward Preshower Detector (FPS), which cover the detector region |η| < 1.3 and

1.5 < |η| < 2.5 respectively. The CPS is sandwiched in a ∼ 5 cm space between

the Solenoid and the Calorimeter. It is made of 3 layers of axial and stereo fiber

strips with approximately 1 radiation length lead radiator, which together with the

solenoidal materials make ∼ 2 radiation lengths. The FPS functions similarly al-
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Figure 3.10: The magnetic field lines in y−z plane of the DØ magnetic system. The field strengths
of both solenoidal and toroidal magnets are in unit of kiloGauss (1 kiloGauss = 0.1
Tesla), at full current 4749A and 1500A respectively. The field in the central toroid is
∼ 1.8T , while it is ∼ 1.9T in the end toroid. [11]

though its design is different. Note that the preshower information is also included

in the Level 1 trigger because these detectors provide fast energy and position mea-

surements.

3.2.3 Calorimeter System

The DØ Calorimeter system measures energy depositions and shower shapes of

electrons, photons and jets through their electromagnetic and hadronic showers in the

absorber materials. Electromagnetic shower refers to the process that when electrons

or photons enter the absorber materials, they develop a cascade of secondary particles

via electron pair production (γ → e+e−) and bremsstrahlung (e→ eγ). Deeper into

the materials, the number of secondary particles increases while the energies of the

original incident particles decrease exponentially as E = E0e
−x/X0 , where x is the
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depth of the particle traveling into the material and the X0 is the radiation length.

Hadronic shower is similar but occurs via strong nuclear interaction processes. The

secondary particles are mainly pions π0 and π±. The π0 converts to a photon pair

(π0 → γγ) and π± successively interact with the material via strong forces. The

corresponding strong interaction length λ0 is typically much larger than radiation

length X0.

The DØ calorimeter system is designed to be sampling calorimeters consisting

of calorimeter readout cells. A typical cell contains an absorber plate and a signal

board with gaps filled with liquid argon. As shown in Fig. 3.11, the absorber plate is

made of depleted uranium and electrically grounded, while the copper signal board

is highly insulated and applied a high voltage of ∼ 2.0kV . As the particles shower in

the absorber plate, they produce secondary particles which ionize the argon atoms.

The resulting electrons drift across the gap in the electric field and are collected by

the signal board. The cells are aligned to form different layers, which in turn are

radially grouped to form readout towers with ∆η × ∆φ of 0.1 × 0.1.

Note that the drift time of electrons in the calorimeter cell gap is 450ns, as

shown in Fig. 3.11. It would not allow a complete signal charge integration, since

there are beam crossings every 396ns in the RunII of Tevatron. The deficiencies

are remedied by the electronics readout system with a combination of preamplifiers,

signal shaping and sampling. The calorimeter signals are also included in the Level

1 trigger decisions.

The DØ calorimeter system is built into Electromagnetic Calorimeters, and Hadronic

Calorimeters which are further divided to Fine Hadronic and Coarse Hadronic ones.

As shown in Fig. 3.12, the inner Electromagnetic Calorimeters are designed to be

4 thinner layers with absorbers ∼ 20X0 in total, so as to absorb the electrons and
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photons but let hadronic jets pass through. The Hadronic Calorimeters consist of

much larger modules with absorber materials ranging more than 6λ0.

The geometric size of the DØ Calorimeter is able to cover the detector region

of |η| < 4.0. A detailed view is shown in Fig. 3.13, the Central Calorimeter (CC)

covers detector region up to |η| = 1.1 while the End Calorimeter (EC) covers the

region of 1.5 < |η| < 4.0. The gap of range 1.1 < |η| < 1.4 is the region between

the central and end cryostat systems called the inter-cryostat region (ICR). In order

to sample the energies of the particles in the ICR region, a pair of InterCryostat

Detectors (ICD) made of scintillating materials are attached to the surfaces of the

end cryostats.

Figure 3.11: Schematic view of unit cell for the calorimeter. A unit cell includes the absorber plate
and signal board with gaps filled with liquid argon. The absorber plate is made of
depleted uranium, while the signal board is copper pad insulated with G10 insulator
and coated with highly resistive epoxy. A high voltage of typically 2 kV is applied
between the signal board and the absorber plate. The liquid argon gap is 2.3 mm and
takes the electrons about 450 ns to drift across to the signal board. [11]

3.2.4 The Muon System

The muon system [37] of the DØ detector is designed to efficiently identify muons

and measure their momenta. Compared to electron, muon is ∼ 200 times heavier
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Figure 3.12: Isometric view of the central and two end calorimeters. Electromagnetic modules have
4 layers with absorber materials of approximately 1.4,2.0,6.8, 9.8 X0 in the central
and 1.6,2.6,7.9,9.3 X0 in the end. In the central region, the hadronic modules have
1.3,1.0,0.76 λ0 for the fine ones and 3.2 λ0 for the coarse part. In the two end regions,
the absorb depths are 4 × 1.1 + 4.1 λ0 for the inner hadronic, 4 × 0.9 + 4.4 λ0 for the
middle hadronic and 6.0λ0 for the outer hadronic. [11]

and has less ionizing and bremsstrahlung effects. Muon is able to easily penetrate

through the inner tracking and calorimeter systems without losing much of its energy.

As shown in Fig. 3.6, the DØ muon system is built right outside of the calorimeter

system. The central muon detector is capable of detecting muon in the detector

region of |η| < 1 while the forward muon detector covers 1 < |η| < 2. The entire

system is a combination of drift tubes, scintillation counters and toroidal magnets.

The tracking ability of the muon system is provided by the proportional drift

tubes (PMT) and mini drift tubes (MDT). There are 94 PDT chambers grouped

to A,B and C layers in the central detector region. The inner A-layer is attached

on the inside surfaces of the central toroidal magnet while B-layer and C-layer are

outside of the toroidal magnets. The PDT chambers are filled with mixture of gases

(84% argon, 8% CF4 and 8% CH4) with maximum electron drift time of 450 ns. The

MDTs are also grouped into A, B and C layers in the forward detector region. The

smaller MDT is filled with gas mixture of (90% CF4 and 10% CH4) and has electron
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Figure 3.13: Schematic view of a portion of the DØ calorimeters in r − z plane. The CC covers up
to |η| = 1.1 detector region, while the EC covers the region of 1.5 < |η| < 4.0. The
ICR region of 1.1 < |eta| < 1.4 is covered by ICD. [11]

drift time less than 132 ns. The cordinate resolution is ∼ 1 mm.

The scintillation counters are added to trigger on muon with good time resolu-

tion. In the central detector region, there are 2 layers of scintillation counters, Aφ

counters inside the toroidal magnets and outer counters in the most outside. In the

forward region, the 3 layers of scintillation counters are mounted close to each layer

of MDT chambers. These counters are associated with proton-antiproton collision

with precise time information. Thus it is used to trigger on muons from pp̄ collisions

as well as reject cosmic ray muons. The time resolution is ∼ 2 ns.

The iron toroidal magnets are built to provide a local muon momentum mea-

surement. There is one central toroidal magnet as well as two end toroidal magnets

with square annulus of 109 cm thickness. The magnetic field is 1.8T with a cur-

rent of 1500A in the coils. The momentum resolution of muon is dominated by the

central tracking system up to 100 GeV. The forward muon system improves the res-

olution of muon with higher momentum, especially for tracks in the detector region
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1.6 < |η| < 2.0.

3.2.5 Luminosity Monitor, Trigger System and Data Acquisition System

Luminosity Monitor

The luminosity at the Tevatron is discussed in Section 3.1.2. The DØ luminosity

monitor is used to measure the luminosity of pp̄ collisions as well as the z position of

the interaction vertex. As shown in Fig. 3.14, the luminosity detector is composed of

two discs mounted at z = ±140 cm along the beamline and inside the end calorime-

ters. Each disc is made of 24 plastic scintillation counters with PMT attached to read

out the signal. The time-of-flight resolution of the counters is about 0.3ns. The gain

of fine mesh PMTs (Hamamatsu R5505Q) is reduced by a factor of 30 because they

are exposed to ∼ 1T solenoidal magnetic field. The luminosity monitor is capable of

covering the detector region of 2.7 < |η| < 4.4. [12]

The instantaneous luminosity is determined by measuring the rate of inelastic pp̄

collisions, as given by

(3.5) L =
1

σpp̄,eff

dNpp̄

dt

where σpp̄,eff is effective cross section of inelastic pp̄ collision by taking into account

of acceptance and recording efficiency. The z position of interaction vertex can

be reconstructed by luminosity detectors based on the information of time-of-flight

difference,

(3.6) zv =
c

2
(t− − t+)

where t− and t+ are the time of flight for the particles from the interaction point to

the two detectors at z = ∓140 cm. The Gaussian width σz of the pp̄ beam collisions

is approximately 30 cm. Thus a requirement of |zv| < 100 cm is applied to select

the inelastic beam collisions and reject the beam halo backgrounds. Fig. 3.15 is an
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(a) r − φ view

(b) r − z view

Figure 3.14: Diagrams of the DØ Run II Luminosity Monitor. a) r − φ view of the monitors.
The wedge shaped are the the scintillation tiles, on which the small circles are the
corresponding photomultiplier tubes. b) r−z view of the monitors. The two monitors
are positioned at z = ±140 cm along the beamline. [12]

illustration of the integrated luminosity for the data accumulated by the DØ detector

as a function of time. So far the DØ detector has recorded an integrated luminosity

of 6.1 fb−1 out of total 6.9 fb−1 delivered by the Tevatron.

Trigger System

The DØ trigger system is an online decision system designed to select and store

the physics events of interest from hadron collisions. With the beam bunch crossing

time of 396ns and peak instantaneous luminosity ∼ 3×1032cm−2s−1, the proton and
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Figure 3.15: The total integrated luminosity. The lower curve is the luminosity recorded by the
DØ detector, while the upper curve is the luminosity delivered by the Tevatron.

antiproton beams at the Tevatron are able to collide at ∼ 2.5MHz. However, most

of the events are background not the desired physics processes with high transverse

momentum which occur at small probabilities. In order to reject the overwhelming

background and cut the cost of data storage and bandwidths, the DØ trigger system

is built based on the readout from subdetectors and grouped into three levels. As

shown in Fig. 3.16, the lower level decisions are fed into the higher lever decisions

with more complexity. Given the original data of the detector is at 1.7MHz, the

Level 1 (L1) trigger typically reduces the rate to ∼ 2kHz. The output of the L1

trigger is fed as input to the Level 2 (L2) trigger with an output of 500 ∼ 1000 Hz,

which in turn is further processed by Level 3 (L3) at ∼ 50kHz. The events that pass

the L3 trigger decisions are finally recorded to tape for offline reconstruction.

The Level 1 trigger is hardware based with its simple algorithms implemented

using field programmable gate arrays (FPGAs). It examines every pp̄ collision event

and determine if it is worth feeding into the Level 2 trigger decisions. The response



45

Figure 3.16: An overview of the data flow in the DØ trigger and data acquisition systems. [11]

time of L1 trigger is 3.5µs or less and the rate is limited by the readout deadtime.

These quick decisions are reached by using part of the raw detector information

from the luminosity monitor, the central fiber tracker, the calorimeter and the muon

system, as shown in Fig. 3.17. The L1CAL decision is based on the number of

calorimeter towers (∆η × ∆φ = 0.2 × 0.2) with transverse energy deposition above

certain energy thresholds. The L1CTT reconstructs the tracks of charged particles

by combining the information from the central fiber tracker and preshower detector.

It requires tracks have certain transverse momenta passing the thresholds such as 1.5

GeV and 5 GeV. The L1MUO recognizes muon candidates by using hits from muon

scintillation counters and muon wire chambers as well as tracks from L1CTT. It

decides on the number of muons with qualified transverse momentum, track quality

and detector region.

The Level 2 trigger is partly hardware based and also utilizes software to quickly

reconstruct basic physics objects. It uses the output of the L1 trigger as well as

the SMT detector information. processor making trigger decisions. As shown in

Fig. 3.17, L2CAL, L2PS, L2CTT, L2STT and L2MUO are the L2 preprocessors

and L2Global is trigger decision processor. The preprocessors process the informa-

tion from the subdetector systems. The basic physics objects such as jets, electron,

photon, muon, Missing ET and specific tracks are reconstructed and correlated. The
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Figure 3.17: Information flow of the DØ Level 1 and Level 2 trigger systems. [11]

L2Global makes the trigger decision based on the physics signatures in the correla-

tions of these physics objects. The L2 trigger is able to handle up to 10 kHz input

rates with maximum accepting rate of 1 kHz.

The Level 3 trigger is completely software based by running fast reconstruction

algorithms on a farm of Linux PCs. Its trigger decision is based on the physics

objects or the relations between these objects such as the azimuthal angle between

electron and Missing ET . The specific software algorithms called filter tools are used

to generate these objects and their relations. All the filter tools are controlled by the

ScriptRunner, which acts as the interface to the L3 framework. The ScriptRunner

calls the filter tools in the order specified by the trigger list until an event passes or

fails the criteria. The L3 accepted events are sent to the online host to be recorded.

Data Acquisition System (DAQ)

The DØ data acquisition system is designed for data handling and overall running

control. As shown in Fig. 3.18, the detector component data is fully digitized by

Single Board Computers (SBCs) on the VME crates. When the SBCs receive the

instruction information including an unique event identifier from the Routing Master,
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the event fragments are then transported to the L3 farm nodes to be built into a

complete event. Once the event passes the L3 trigger filter, it is sent to the online

host for data monitoring and storage. The overall running control and detector

Figure 3.18: Schematic view of the data flow in the DØ L3DAQ system. [11]

configuration is coordinated by the program COOR, which is running on the online

host systems. The COOR system receives requests from users and sends commands

to the L1, L2, L3 and data logging subsystems. The typical size of a raw data event

is ∼ 300 KB. Therefore with a L3 trigger rate of ∼ 50 Hz, the L3DAQ is transferring

the raw data to tape storage at a rate of ∼ 15 MB/s.



CHAPTER IV

Event Reconstruction

The raw data chunks of both real data events and simulated events are processed

using the DØ Offline Reconstruction Program (RECO) [38] to reconstruct the physi-

cal objects. The offline reconstruction algorithms used to identify the physical objects

are described in Section 4.1. In order to obtain the true kinematic information of

these objects, corrections are applied to data and simulated events, as summarized in

Section 4.2. The b jets are identified through the DØ Neural Network b-jet Tagger.

The tagging algorithms as well as the corrections in this analysis are introduced in

Section 4.3.

4.1 Offline Event Reconstruction

The program RECO is a collection of software algorithms and associates the re-

constructed objects with data chunks based on the DØ Event Data Model [39]. It is

structured in hierachical steps for event reconstruction. First, the raw data chunks

are unpacked to decode the raw information, associate electronics readout with de-

tector components and apply specific detector calibration constants. Secondly, the

global tracks are reconstructed and put into track chunks using the information of hits

within SMT and CFT detectors. Using tracking information, the primary vertices

and displaced secondary vertices are searched for and associated to tracks. Finally

48



49

the track information is combined with the energy depositions in the calorimeter and

the preshower detectors as well as the hits in the muon chambers, to identify physical

objects such as electron, photon, muon, neutrino and jet candidates.

4.1.1 Track and Primary Vertex Reconstruction

Track Reconstruction

Charged particles travel in helical paths in the solenodial magnetic fields. The

signals originated from the adjacent silicon strips or scintillating fibers are grouped

into hit clusters, which are used to find tracks. At the moment there are two patttern

recognition algorithms, called the Histogramming Track Finder (HTF) [40] and the

Alternative Algorithm (AA) [41], being used to find tracks at DØ.

The HTF algorithm is based on the feature extraction technique known as Hough

transform [42]. The trajectory of a charged particle projected onto the transverse

plane is circular and charactarized with parameters ρ, d0 and φ, where ρ is the

curvature qB/pT , d0 is the distance of closest approch to the beam spot, and φ is

the direction of the track at d0. Each hit in the transverse plane with position (x, y)

is transformed to a line in the parameter space (ρ, φ). All the lines intersect at

one point corresponding to the parameters of the trajectory. Each hit increases the

histograms by looping over the ρ divisions, where (ρ, φ) place is divided into cells.

The total number of operations is ∼ Nh ×Nρ, where Nh is number of hits and Nρ is

number of the division. In practice, the first hits are taken from either SMT or CFT

independently and duplicate tracks are finally removed.

The AA algorithm is based on the hypothesis that the tracks would first leave hits

in the SMT detector. A hypothetical track is built upon three hits in the SMT. The

first hit could be any hit in the SMT barrels or F-disks. The second hit has to be

within the azimutal window of ∆φ = 0.08 viewed from the beam spot and the first
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hit. The third hit must have a radius of curvature large than 30 cm (corresponding

to pT > 180MeV ) and an axial impact distance less than 2.5 cm. Then the track

hypothesis is extrapolated to the next layers of the tracking system by adding more

hits until it violates one of the following requirements: χ2 < 16, less than three

consectively missing and within the detector. All the possible track hypothesises are

stored with each track allowed to share at most 2/3 of its hits.

The track candidates from both algorithms are combined by removing duplicated

ones and ordering all the candidates. The DØ Kalman track fit [43], is then used

for fitting and finding tracks. Thought of as an improved form of multidimensional

chisquare minimization, it starts from an initial guess or partially reconstructed track

and propagates through the detector by taking into account of magnetic curvature,

multiple scattering and energy loss. The Kalman fit algorithm works best when

several measurements are added and track parameters are well determined.

Primary Vertex Reconstruction

The primary interaction vertices of pp̄ collisions are reconstructed by extrapolating

tracks to their common origins using the adaptive primary vertex algorithm [44].

The reconstruction process mainly involves track selection, vertex fitting and vertex

selection.

The tracks are first selected by requiring pT > 0.5 GeV and at least 2 hits in

the SMT detector. A z-clustering algorithm is applied to cluster the tracks within

∆z = 2 cm for each interaction vertex. The common vertex for each z-cluster is de-

termined using the Kalman filter vertex fitting algorithm. In this process, the fitting

is performed iteratively by removing the tracks with the highest χ2 contribution,

until the total χ2/dof is less than 10. The tracks belonging to each common vertex

are then further selected with the criterion dca/σdca < 5, where dca is the distance
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of closest approach to the beam spot.

The adaptive fitting algorithm is then applied to reduce the contribution of dis-

tant tracks to the vertex by assigning weights to the tracks. The track errors are

reweighted as a function of their contribution to the χ2 of the vertex fitting, as the

following

(4.1) wi =
1

1 + e(χ2
i −χ2

cutoff)/2T

where χ2
i is the χ2 contribution of the track i, χ2

cutoff is the cutoff value when wi

drops to 0.5 and T is control parameter for the sharpness of the function. Starting

with the initial values set to 1.0, the weights are calculated iteratively according to

formula 4.1 with each iteration derived from the previous one. If wi < 1.0× 10−6, wi

is then set to zero. The calculations are repeated until it satisfies the convergence

criteria, which require both max|wi − wi−1| < 1.0 × 10−4 and iteration number less

than 100.

The probabilistic primary vertex selection algorithm [45] is finally used to identify

the primary vertex. The discrimination criteria are based on the fact that the tracks

originated from the hard scattering primary vertex tend to have higher pT than those

from the minimum bias event vertices, as shown in Fig. 4.1(a). Each track is assigned

a probability that it is coming from a minimum bias vertex. The likelihood of each

vertex to be a minimum bias vertex can be built from these individual probabilities,

illustrated in Fig. 4.1(b). The studies in [46] indicates that the reconstruction

efficiency of the primary vertex is nearly ∼ 100% for both data and simulated events.
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(a) pT spectrum of tracks (b) vertex probability

Figure 4.1: a) pT spectrum of tracks from the hard scattering physics data events and the simulated
minimum bias events. b) Vertex probability from the hard scattering physics data events
and the simulated minimum bias events. [13]

4.1.2 Electromagnetic Object Reconstruction

The EM object reconstruction algorithm [47] is based on the fact that the EM

objects have narrow shower shapes and deposit most of their energies in the EM

calorimeter. The tracks in the central tracking system are matched to the energies

deposited in the calorimeter to further discriminate electrons from photons. One of

the main challenges for electron reconstruction comes from the events where one or

more jets are misidentified as electrons.

The algorithm begins with initializing the EM clusters in the calorimeter through

Simple Cone algorithm and CellNN algorithm [48]. The Simple Cone algorithm

builds EM clusters from calorimeter towers within a cone of ∆R =
√

∆η2 + ∆φ2 =

0.4. The EM towers with the highest ET are chosen as the seeds and all the adjacent

towers above the threshold ET = 0.5 GeV in the cone are added to the cluster. The

CellNN algorithm chooses the calorimeter cell with the highest energy deposition

as the seed, then adds neighbor cells to build the cluster. This is done at each

calorimeter layer called floor clustering. The floor cluster from the third EM layer is
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chosen as the global cluster, to which the other floor clusters are matched with an

angular requirement.

A set of criteria based on energy deposition, shower shape and track match are

developed to identify electrons. The first is the electromagnetic fraction (EMF)

fEM = EEM (0.2)
Etotal(0.4)

> 0.9, where EEM(0.2) is the energy deposited within a cone of

radius 0.2 in the EM calorimeter alone, while Etotal(0.4) is the energy deposited

within a cone of radius 0.4 in both the EM calorimeter and hadronic calorimeter.

The isolation fraction fiso = Etotal(0.4)−EEM (0.2)
EEM(0.2)

is used to reject fake electrons with

broader shower profiles by requiring fiso < 0.15.

Tracks in the central tracking system are searched and matched to the candidate

electrons. A track match χ2 is defined as χ2 = ( ∆φ
σ∆φ

)2 + ( ∆z
σ∆z

)2 + (ET /pT−1
σET /pT

)2, where

∆φ and ∆z are the differences on the azimuthal angle φ and z position between the

track and EM object projection at the 3rd layer of EM calorimeter. The term ET/pT ,

the ratio of transverse calorimeter energy to the transverse momentum of the track,

is approximately 1 in the case of electron. The track with the largest χ2 probability

P (χ2) is considered as the match to the electron candidate. The associated track

and electron candidate should be within a cone of ∆η × ∆φ = 0.05 × 0.05.

More sophisticated variables, χ2
HMx7 [49] and electron likelihood [50], are built

to further select electrons. χ2
HMx7 is a χ2 test on the longitudinal and transverse

electron shower shapes using both data and simulated electrons, as χ2 =
7

∑

i,j=1

(xk
i − <

xi >)Hij(x
k
j− < xj >), where Hij is the element of H-matrix. The H-matrix is the

inverse of covariance matrix M = 1
N

N
∑

n=1

(xn
i − < xi >)(xn

j − < xj >). The number k

and n are the electron indices for data and simulated events. xi and xj are any of

the seven shower shape variables including individual energy fractions in the 4 EM

layers, log10(Etotal), primary vertex position zpv/σzpv and shower width in r−φ plane
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of the 3rd EM layer. An example of the χ2 distribution for real electrons and fake

electrons is shown in Fig. 4.2(a) [14].

(a) χ2 test of HMx7 (b) electron likelihood

Figure 4.2: a) χ2 test on H-matrix with seven shower shape variables. b) Electron likelihood dis-
criminant distribution. The real electron and fake electron events are both shown in
the plots. [14]

The electron likelihood correlates the different parameters described above to ef-

fectively identify real electrons. The discriminant is defined as Ln(x) = Psig(x)/(Psig(x)+

Pbkg(x)) with Psig(x) =
7

∏

i=1

Psig,i(xi) and Pbkg(x) =
7

∏

i=1

Pbkg,i(xi), where xi refer to

the seven parameters: track match probability P (χ2
spatial), ET/pT ,

∑

pT of all tracks

in cone 0.4, Ntracks in cone 0.05 around the cluster, fEM , dca to the matched track

to the primary vertex and χ2
HMx7. The likelihood allows the variables to be weighted

by their effectively in discriminating real electron from fake ones. The discriminant

is shown in Fig. 4.2(b). The real electrons peaks around one while the fake events

peaks at zero. A cut of likelihood > 0.85 is often used to effectively reject the

background especially due to the existence of neutral pions.

4.1.3 Jet Reconstruction and Identification

A jet is a narrow cone of energetic particles produced from the hadronization

of partons or particle decays in hadron collisions. It leaves tracks in the central
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tracking system and deposits energy through hadronic shower in both the EM and

hadronic calorimeters. Jets are reconstructed at DØ using two algorithms, the DØ

RunII Cone algorithm and kT algorithm [15] [51], of which the former is used in this

analysis with a cone size ∆R < 0.5. The algorithm in general is performed in three

successive steps including clustering, addition of midpoints and merging/splitting.

It starts with clustering calorimeter cells into calorimeter towers which in turn are

grouped to preclusters. Each calorimeter cell is considered massless object with a 4-

momentum vector pµ
cell = (Ecell, ~pcell), where the momentum direction is determined

by the primary vertex and the center of the cell. The noisy cells are discarded through

NADA algorithm [52] [53] and the T42 algorithm [54] [55] [56]. The calorimeter

cells in geometric range ∆η × ∆φ = 0.1 × 0.1 are built into calorimeter towers

with corresponding 4-momentum vector pµ
tower = (Etower, ~ptower) =

N of cells
∑

ith cell

(Ei, ~pi).

The towers are ordered in descending pT and only those with pT > 0.5 GeV are

considered as seeds for preclustering. If the most energetic cell in a tower is in CH

layer or EC layers, this tower has to pass requirement ptower
T − pthe highest pT cell

T > 0.5

GeV. Starting with the highest pT tower as the seed, the towers within the cone size

of 0.3 are moved into the precluster with its position weighted by tower energies.

This procedure is repeated to form more preclusters in the rest towers exhaustively.

All of the preclusters are again sorted in descending pT order and those with

pT < 1 GeV are discarded. The first precluster is used as the seed to build a proto-

jet by adding up all the cells in cone ∆R =
√

∆y2 + ∆φ2 = 0.5. The rest preclusters

are used to build proto-jets in the same way with proto-jet center axes separated by

∆R = 0.25 from each other. The proto-jet construction keeps going until pproto−jet
T <

4 GeV, or the axis of a proto-jet and its precluster differ by ∆R = 0.001, or 50

iterations.
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The seed-based clustering method is biased by the soft radiation of the jets. As

illustrated in Fig. 4.3, if any of the two independent jets radiates a soft gluon, they

might be reconstructed as a single jet through seed-based clustering. An additional

list of proto-jets from clustering the midpoints of the previously formed proto-jet

pairs is introduced to compensate this effect. The midpoint is considered if the

pair of proto-jets satisfying Rcone < ∆R < 2Rcone. Using these midpoints instead

of preclusters, the similar clustering procedures are performed to build proto-jets

without checking duplicates.

Figure 4.3: An illustration of the sensitivity in the seed-based cone jet clustering. In case there is
soft gluon radiated by either of the two independent jets, the two jets could be treated
as single jet in the seed-based cone jet clustering. [15]

The two lists of proto-jets are merged together by sorting pT in descending order.

These proto-jets are merged and split into the final jets. If two proto-jets share

calorimeter towers with energy larger than 50% energy of the lower pT proto-jet,

the two proto-jets are merged into one. Otherwise they are split with the shared

towers assigned to the closest proto-jet. The surviving proto-jets are computed and

reconstructed into final jets.

These final jets are further selected with the following criteria to be used in the

analysis: (1) To reject noise and EM objects, the EM fraction is required to be 5% <

EMF < 95%. (2) Because of the high noise in the Coarse Hadronic calorimeters, the

fraction of energy deposited in these calorimeters has to satisfy CHF < 0.4. (3) To

remove fake jets from hot cells caused by electronics readout, the ratio of energy in
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the highest pT cell to that of the next highest pT cell in a jet, defined as HOTF, must

be less than 10. (4) Similarly, n90 is defined as the minimum number of calorimeter

towers that together contain 90% energy of a jet. It is required that n90 > 1. (5) The

L1 trigger system is further used to confirm the jets. The confirmation is quantified

as L1Conf = (
∑

trigger tower i

Ei
T )/(Ejet

T (1 − CHF )), where L1Conf is required to be

larger than 0.4 in the central and end calorimeters, and 0.2 in the intercryostat

detector.

4.1.4 Missing Transverse Energy

Missing transverse energy (E/T ) is considered as the experimental signature of

neutrinos and other particles with negligible interactions when passing through the

detector materials. The total transverse momentum in pp̄ collisions is conserved to

be zero in both initial and final states of the hard parton scattering. The calculation

of E/T [57] [58] at DØ combines the energy deposition in the calorimeters, primary

vertex in the central tracking system and energy correction in the muon detector. It

is first determined as the negative vector sum of visible transverse energies of cells

above 0.1 GeV over all the calorimeters, as

(4.2) ~E/T = −
∑

i

~ET

i
, with E/T =

√

| ~E/T x|2 + | ~E/T y|2

Note that another useful variable called scalar ET is defined as the scalar sum of the

transverse energies in all the calorimeter cells. The E/T is often corrected by muon

momentum when a muon is present in an event and passes through the calorimeter

losing a small fraction of its energy, typically ∼ 2 GeV. To be used in the analysis,

the E/T must also be corrected by those corrections made to any physics objects like

jets and electrons.
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4.1.5 Muon Reconstruction and Identification

Muons are reconstructed [59] [60] using hit information in the drift chambers and

scintillators of the muon system, as well as tracks in the central tracking system.

The hits in the A, B and C layers of the PDTs, MDTs and MSCs are first processed

with position and time information. Using the default DØ linked list algorithm [61],

these hits are linked and fit to local track segments, which in turn are filtered and

transformed back to global track segments. The segments are paired in A layer

and BC layers respectively and fit into local muon tracks with a fit algorithm. The

momenta of the local tracks are determined by the curvature of the paths due to

the toroidal magnetic field. The local muon tracks are finally matched to the global

tracks in the central tracking system to improve the momentum resolution.

Muons from cosmic rays are rejected using the hit time information of scintillators

and central track matching quality. As the muon candidate is associated with the

bunch crossing, it is typically required to hit each layer within 10ns. The dca in

transverse plane of the matched central track with respect to primary vertex in an

event is required to be |dcaT | < 0.2 cm without a SMT hit and |dcaT | < 0.02 cm

with SMT hits.

The reconstructed muon candidates are classified using the parameters of muon

type and quality [17] [62]. The type of muon is described by nseg, of which |nseg| = 1,

2, or 3 means the muon has hits in only the A layer, only the B or C layer or all

A, B and C layers, respectively. A positive value of nseg indicates that the muon

candidate is matched to a central track, while a negative one indicates the muon can

not be matched to a central track. The quality of a muon can be loose, medium or

tight depending on number of hits in muon chambers and scintillators and the local

muon fit. The combinations of type and quality are summarized in Tab. 4.1. In this



59

analysis muons are selected to have nseg = +3 medium, which requires hits in both

A and BC layers and a central track match.

muon type and
quality

hits in A and BC layers tracks

|nseg| = 3 tight at least two A layer wire hits
at least one A layer scintillator hit
at least three BC layer wire hits
at least one BC layer scintillator hit

a converged local fit
χ2

local > 0

|nseg| = 3
medium/loose

medium:
at least two A layer wire hits
at least one A layer scintillator hit
at least two BC layer wire hits
at least one BC scintillator hit (except for central muons
with less than four BC wire hits)
loose:
allow one of the above tests to fail, with the A wire and
scintillator requirement treated as one test and requiring
always at least one scintillator.

A and a BC seg-
ments matched or
not with a central
track.

nseg = +2
loose/medium

loose:
at least one BC scintillator hit
at least two BC layer wire hits
medium:
fulfills the above requirements and if it is located in the
bottom part of the detector (octant 5 and 6 with |ηD | < 1.6)

BC segments
matched with a
central track.

nseg = +1
loose/medium

loose:
at least one A layer scintillator hit
at least two A layer wire hits
medium:
fulfills the above requirements and if it is located in the
bottom part of the detector (octant 5 and 6 with |ηD | < 1.6)
Low momentum nseg=1 muons are also defined as medium.
A nseg=1 muon is qualified as a low momentum muon if its
probability to reach the BC layer is less than a parameter
0.7 set by RCP.

A segment matched
with a central track

Table 4.1: Overview of the definitions of muon type and quality. [17]

In order to further control the muon purity, the matched central track is certified

with 3 quality levels, loose, medium and tight, using SMT hits, track fit χ2 and dca

to primary vertex. A track is defined as loose if |dcaT | < 0.2 cm if there is no SMT

hit and tightens to 0.02 cm in case it has SMT hits. A track is medium if it passes

the loose requirement and the track fit satisfies χ2/d.o.f < 4. A tight track fulfills

the medium requirement and has SMT hits. The medium quality track is used in
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the analysis.

The calorimeter information is also used to discriminate the muons in leptonic

decay from those muons in heavy flavor hadron decay. Muons originating from a

leptonic decay of W boson (W → µν) tend to have a relatively large transverse

momentum and be isolated from reconstructed jets, while muons from semileptonic

decay of heavy flavor hadrons (B → µνX) appear to be less energetic and inside a

jet. Thus a muon is often required to be separated from the nearest reconstructed

jet having pT > 6 GeV by ∆R(µ, jet) > 0.5. In addition, two variables based on the

energy clustered in the cones around muons are used to determine the isolation of

muons, as

ScaledCalorimeterHalo =

∑

cell iE
i
T

pTmuon

, 0.1 < ∆R(calo cells,muon) < 0.4

ScaledTrackHalo =

∑

track k p
k
T

pTmuon

, ∆R(tracks,muon) < 0.5

(4.3)

where the calorimeter cell energies are summed in a hallow cone between 0.1 and 0.4

and the momenta of tracks are summed in cone 0.5 with muon momentum subtracted.

In this analysis, the isolation variables are required to satisfy ScaledCalorimeterHalo <

0.08 and ScaledTrackHalo < 0.06.

4.2 Corrections to Physics Objects

4.2.1 Jet Energy Scale, JetSSR and Jet ID Efficiency Corrections

Jet Energy Scale

The Jet Energy Scale (JES) correction is used to correct the measured jet energy

in the detector back to the total energy of all the final state particles inside a jet

cone [63] [64]. The correction is in general expressed as

(4.4) Ecorr
jet =

Emeas
jet − Eoffset

kRR× S
koffset
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where Ecorr
jet is the corrected jet energy, Emeas

jet is the measured jet energy, Eoffset is

the offset energy, R is the calorimeter response, S is showering correction, kR and

koffset are correction factors for the JES determination process itself.

The offset energy Eoffset is the excessive energy inside a jet cone due to the noise

from electronics and the uranium absorber’s radioactive decay, additional pp̄ inter-

actions and previous bunch crossing energy pileup. The average offset energy is

estimated from the energy deposition in minimum bias and zero bias data events.

Because of the overestimation, it is corrected again using γ+jet simulated events. As

shown in Fig. 4.4, the offset energy is typically a few GeV and increases with jet de-

tector peseudorapidity, the number of primary vertices, and instantaneou luminosity.

(a) Eoffset Run IIa (b) Eoffset Run IIb

Figure 4.4: Offset energy as a function of jet detector eta ηdet. a) Energy offset determined in
Run IIa datasets. b) Energy offset determined in Run IIb dataset. Its dependence on
number of primary vertices is also shown in the plots.

R is the detector response of the calorimeter to particle jets. It is usually less

than 1 because of dead materials, poorly instrumented regions, lower response of

hadrons compared to EM objects, and the inhomogeneous detector layout. The

average response is measured using X + jet samples, where X could be γ, Z or jet.

A so-called Missing ET Projection Fraction (MPF) method is developed to measure
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the response to data events. In this method, the well measured EM energy scale

is used to compute the response to hadrons. As shown in Fig. 4.5, this correction

is dependent on the jet detector pseudorapidity and jet energies. It is the largest

relative correction (up to 30% of the jet energy).

(a) Relative MPF correction in Run IIa (b) Relative MPF correction Run IIb

Figure 4.5: Relative MPF Correction using γ +jet in data events a function of jet detector eta ηdet.
a) with 0.7 jet cone Run IIa datasets. b) With 0.5 jet cone in Run IIb datasets. Its
dependence on the energy is also shown in the plots.

The showering correction is used to compensate for the energy flow outside of the

jet cone. During the shower development, particles could escape out of the jet cone

due to interactions with the materials, bending in the magnetic fields and limited

jet cone size. Its average correction is determined using γ + jet events for both data

and simulated events by measuring the shower profiles. As shown in Fig. 4.6, it

is parametrized as a function of jet transverse energy. The showering correction is

relatively small (∼ 5% in the small |ηdet| region).

The total JES correction is parameterized as a function of jet peseudorapidity as

well as measured jet energy. Fig. 4.7 is an example for Run IIb jet with a cone size

of 0.5 determined using γ + jet events. In the central detector region, the scales are

almost flat and varies from 15% to 45% depending on the measured jet transverse

energies. Note that the heavy flavor jets which decay to muons are also corrected
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Figure 4.6: Showering correction using γ + jet events as a function of jet energy in Run IIa. a)
With 0.5 jet cone. b) With 0.7 jet cone. Its dependence on detector eta is also shown
in the plots.

by approximately twice the muon energies. The total systematic uncertainty of JES

correction is in general less than 5%, and close to 1% in the central detector region

for RunIIb datasets.

JetSSR

Due to limitations in DØ detector modeling, the reconstructed and JES corrected

jets of MC simulated events have different reconstruction efficiency, energy scale

and resolution compared to the jets in data events. A method called Jet Smearing,

Shifting and Removing (JetSSR) [65] [66] is designed to cope with these differences.

The γ+ jet events from both data and simulated event samples are selected with

the photon and jet back-to-back in φ. The difference between data and simulated

events are quantified as a function of photon transverse momentum pγ
T

(4.5) D =< ∆S >data − < ∆S >MC
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Figure 4.7: The total JES correction as a function of jet pseudorapidity using γ + jet events in Run
IIb datasets. Different curves correspond to different measured jet transverse energies.

where ∆S = (pjet
T − pγ

T )/pγ
T is calculated in each bin of the pγ

T spectrum for data

and simulated events, respectively. To extract the difference from D(pγ
T ), a Gaussian

function multiplied with an error function is used to deconvolute the information.

The jet energy scale and resolution differences between data and MC events are the

mean value and width of the Gaussian function respectively, while the jet identifi-

cation inconsistency is obtained from the turn-on curve, which is described by error

functions.

The resulting corrections are then applied on simulated events. First of all, the

transverse energy resolution correction factor, as shown in Fig. 4.8, is applied by

smearing jet pT with a Gaussian function of width σsmear =
√

σ2
∆Sdata

− σ2
∆SMC

. The

jet energies are shifted by the JES correction difference, of which an example in

central detector region is shown in Fig. 4.9. As to the jet identification efficiency

difference, as shown in Fig. 4.10, the jet pT turn-on curves of both data and simulated

events reach their plateau at pT > 15 GeV. Thus a simple cut of 15 GeV is applied

to remove the data and simulated events with pT < 15 GeV.
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Figure 4.8: The smearing factor as a function of pγ
T applied to simulated events. The curves rep-

resent different detector regions: CC (blue), ICR (red) and EC (green). The dashed
curves reflect the statistical uncertainties only.

Jet ID Efficiency Correction

The jet identification efficiency [16] [67] refers to the efficiency of jets passing the

basic selection criteria such as EMF, CHF and L1Conf described in Section 4.1.3. It

is determined using the γ+jet and dijet event samples via the tag-and-probe method.

The efficiency is extracted for each basic cut and combined into a single efficiency

for data and simulated events separately. The difference between the efficiencies of

data and simulated events are parameterized as functions of pT and ηD. As shown in

Fig. 4.11, the scale factor as a function of ηD for the jet in the identification plateau

region is close to 1 at ∼ 2% level. The scale factor is then applied to simulated event

samples by rejecting simulated events with a probability of 1 − SF in each pT and

ηD bin.

4.2.2 Lepton ID Efficiency Correction

The transverse momenta of simulated electrons and muons are smeared in ways

similar to the jet smearing to mimic the momentum resolution of data events. For

instance, the muon smearing parameter is determined by fitting the Z peak of the
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Figure 4.9: The difference in jet energy scale correction between data and simulated events, as a
function of pγ

T . Shown in the plot is for CC detector region only. The yellow band
represents the statistical errors.

µ+µ− invariant mass in the Z → µ+µ− distribution using a Gaussian function convo-

luted with the Drell-Yan spectrum. The smearing parameters as a function of muon

pT for Run IIa datasets are shown in Fig. 4.12.

The difference in the lepton identification efficiencies between data and simulated

events are also estimated with different lepton qualities. The muon identification

efficiency is determined using Z → µ+µ− event samples through the tag-and-probe

method. The scale factors for the differences between data and simulated events are

calculated for the corresponding muon qualities. In this analysis, the muon quality

used is medium nseg = 3 and the scale factor is parameterized in φ and η. As

shown in Fig. 4.13, the scale factor as a function of η for medium nseg = 3 muon

is on average ∼ 0.97± 0.007. Similarly, a tracking efficiency correction is applied for

the corresponding track quality and parameterized as functions of z and ηCFT . The

medium track is used in this analysis, as shown in Fig. 4.14. The average scale factor

is ∼ 0.93 ± 0.021, with the beam systematic already included. The muon isolation

cuts used in the analysis are ∆R(µ, jet) > 0.5 and TopP14Tight as described in

Section 4.1.5. The corresponding scale factors are parameterized as functions of
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(a) Data (b) MC

Figure 4.10: The turn-on curves of jet identification efficiencies as a function of jet pT . a) Data. b)
MC. The dashed curves represent statistical errors only.

muon pT and the number of jets with pT > 15 GeV, as shown in Fig. 4.15 and 4.16.

4.2.3 Missing ET Recalculation

As discussed in Section 4.1.4, the missing ET is the negative vector sum of all

calorimeter cell energy except for the unclustered energy in the coarse hadronic

calorimeter due to its poor resolution [68]. The transverse energy of the muons is

also subtracted. All the corrections to jets, muons and electrons are propagated

into the final calculation of missing ET . Note that in the Run IIb analysis, JetSSR

correction is excluded from the recalculation of missing ET to minimize the effects

from irrelevant energies out of the jet cones.

4.3 Identification of b Jets

4.3.1 The DØ Neural Network b-jet Tagger

The average lifetime of b hadrons is 1.564 ± 0.014ps [69], much longer compared

to those of light flavored hadrons. The b hadrons produced in pp̄ collisions typically
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Figure 4.11: The scale factor for correcting jet identification efficiency difference between data and
simulated events, as a function of |ηD | binned by 0.1. The scale factor is determined
using the jets in the reconstruction efficiency plateau region and Run IIb datasets
only.[16]

travel a measurable distance of several mm and decay to other charged particles, from

which a secondary vertex can be reconstructed [70]. Most of the decayed particles

from heavy b hadrons are inside a cone of ∆R = 0.5 around the b jet axis but

carry significant momenta in the transverse direction relative to the jet axis. The

reconstructed tracks hence are separated from the primary vertex by corresponding

impact parameters, defined as the distance of the closest approach of the track to the

primary vertex, as shown in Fig. 4.17. Based on the above characteristics of b jets,

the DØ b-tagging algorithms are developed to discriminate b jets from light jets.

SVT Tagger

The Secondary Vertex (SVT) Tagger [71] identifies a b jet by fitting the secondary

vertex associated with the jet. Other long lived particles such as Λ and K0
s are

excluded using the invariant mass information of the two-track vertex. At least two

tracks with impact parameter significance IP/σIP > 3 and at least 7 CFT hits are

used to fit a secondary vertex, of which the decay length is further required to satisfy

| ~Lxy|/σ ~|Lxy| > 5. The calorimeter jet within ∆R < 5 is matched to the secondary
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Figure 4.12: The muon smearing parameters as a function of muon pT for events where both muons
have SMT hits and |ηCFT | < 1.6. The dashed lines represent the 1σ uncertainties of
the two parameterizations. [17]

vertex and identified as b jet. The average b-tagging efficiency is 38.9% with a fake

rate of ∼ 0.47%.

CSIP Tagger

The Counting Signed Impact Parameter (CSIP) Tagger [72] combines the number

of tracks and their impact parameter significances to tag the jets. As shown in Fig.

4.17, the IP is called positive if the track intersects with the jet axis in front of the

primary vertex. Otherwise the IP is negative if the track intersects with jet axis

behind the primary vertex. Jets containing at least 2 tracks with IP/σIP > 3 or at

least 3 tracks with IP/σIP > 2 are considered to be b jets. The average b-tagging

efficiency on data is (23 ± 1)% with a fake rate of ∼ 2%.

JLIP Tagger

The Jet Lifetime Probability (JLIP) Tagger [73] uses the impact parameters of

tracks in a jet to build a probability Pjet, that all the tracks in the jet come from the
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Figure 4.13: The correction factor of medium nseg = 3 muon identification efficiency as a function
of η. Muons in the hole regions are not considered.

primary vertex, as

(4.6) Pjet = Π ·
Ntrk−1
∑

i=0

(−lnΠ)i

i!

where Ntrk is the number of tracks and Π is the product of the probabilities Ptrk for

all tracks of the jet, which represent the probability of a track to originate from the

primary vertex, as

(4.7) Ptrk =

∫ ∞
s0
R(s)ds

∫ ∞
0
R(s)ds

.

The resolution function R(s) is determined by fitting the negative impact parameter

distributions using a sum of four Gaussian functions. The values of Pjet for light jets

are uniform between 0 and 1, while those for b/c jets peak at small values close to 0.

A set of 6 working points corresponding to cutoff values ranging from 0.001 to 0.04

is used to select b jets. The b-tagging efficiency with a cutoff of 0.02 can reach up

to ∼ 60% with a fake rate around 2%.
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Figure 4.14: The correction factor of medium tracking efficiency as a function of CFT detector η.

Soft Lepton Tagger

The Soft Lepton Tagger (SLT) [74] identifies b jets by looking for energetic muons

inside the jets. B hadrons decay into muons via b→ µX and b→ c→ µX with total

branching ratio of ∼ 20%. The resulting muons have relatively large momenta prel
T

in the transverse direction with respect to the jet axis. Since the soft muon tagging

is independent of those algorithms based on b hadron lifetime, it is often used to

determine the b-tagging efficiency of the Neural Network b-jet tagger by fitting prel
T

templates.

DØ Neural Network b-jet Tagger

The DØ Neural Network (NN) b-jet tagger [18] [75] correlates the SVT, CSIP

and JLIP algorithms as well as 4 additional relevant variables to discriminate b jets

from light jets. The seven input variables are chosen for their b-jet discrimination

power, as shown in Tab. 4.3. Five of them are based on the SVT, while the other

two are based on the CSIP and JLIP algorithms. The optimized NN parameters are
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Figure 4.15: The correction factors of muon isolation efficiencies as a function of muon pT .

shown in Tab. 4.2. The seven input nodes and one output node are corresponding

to the seven input variables and one NN output. The number of hidden nodes are

optimized to be 24 after varying number of hidden nodes from 7 to 24. The training

of the neural network is performed on bb̄ and qq̄ samples with 400 epochs.

Parameter Value
NN Structure 7 : 24 : 1 : 1
Jet input selection cuts (failure
results in NN output of 0)

SV TSL DLS > 2.5 or
JLIP Prob < 0.02 or
CSIP Comb > 8

Number of training epochs 400
Number of b jets used in training
(after jet selection cuts)

389, 109 (312, 549)

Number of fake jets used in train-
ing (after jet selection cuts)

1, 672, 879 (331, 751)

Table 4.2: NN parameters. [18]

The NN output is a continuous distribution between 0 and 1, where light jets

appear to have small values around 0 and b jets peak at 1. A set of 12 operation

points are evaluated to classify the performance of the NN tagger. As shown in Tab.

4.4, each operating point corresponds to a cutoff value to identify b jets. Their b-
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Figure 4.16: The correction factors of muon isolation efficiencies as a function of number of jets
with pT > 15 GeV.

tagging efficiencies on data are measured using the System8 formalism [76], of which

the solutions to the 8 equations include the efficiencies of SLT and NN taggers. The

data performance is evaluated using Z → bb̄ and Z → qq̄ samples. As shown in Fig.

4.18, the performance is parametrized into 2D functions with fake rates ranging from

0.2% to 11%.

Rank Variable Description
1 SV TSL DLS Decay length significance of the sec-

ondary vertex
2 CSIP Comb Weighted combination of the tracks’ IP

significance
3 JLIP Prob Probability that the jet originates from

the primary vertex
4 SV TSL χ2

dof Chi square per degree of freedom of the
secondary vertex

5 SV TL NTracks Number of tracks used to reconstruct
the secondary vertex

6 SV TSL Mass Mass of the secondary vertex
7 SV TSL Num Number of secondary vertex found in

the jet

Table 4.3: The Neural Network input variables ranked in order of b-jet discrimination power. [18]



74

Figure 4.17: A schematic view of b hadron production and decay in pp̄ collisions. L is the b hadron
decay length, while d0 is the impact parameter for one of the tracks.

Name MegaTight UltraTight VeryTight Tight Medium oldLoose
NN Cut > 0.925 > 0.9 > 0.85 > 0.775 > 0.65 > 0.5
Name Loose L2 L3 L4 L5 L6

NN Cut > 0.45 > 0.325 0.25 > 0.2 > 0.15 > 0.1

Table 4.4: The operation points of the DØ NN b-jet tagger. [18]

4.3.2 Tag Rate Function and Taggability

The Tag Rate Functions (TRFs), namely TRFb, TRFc and TRFl, are introduced

to describe the probabilities that the b, c and light jets in the event are tagged

respectively. They are determined at the same time when measuring the NN tagger

performance on data using the System8 method which includes the b jet tagging

efficiencies in the equations. Because the simulated events overestimate tracking

quality compared to data samples, their b-tagging efficiencies are overestimated by

up to ∼ 20%. To take this difference into account, the scale factors are measured

using b→ µ samples and applied to all simulated samples, as

(4.8) SFb→µ =
εdata
b→µ

εMC
b→µ

and

(4.9) TRFb = εMC
b × SFb→µ .
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Figure 4.18: The b-jet tagging efficiency versus the tagging fate rate for the 12 operation points of
the DØ NN b-jet tagger. The blue dots are determined on Run IIb datasets while the
red dots are determined on Run IIa datasets. The error represents the full statistical
and systematic uncertainty with which we know the data efficiency and fake rate for
the samples on a per jet basis. [18]

In a similar way, the TRFc is calculated using a scale factor of c-tagging efficiency

over b-tagging efficiency, as

(4.10) TRFc = TRFb× εMC
c

εMC
b

The TRFs are parameterized as functions of pT and η for each operation point, as

shown in Fig. 4.19 and Fig. 4.20.

A jet identified as good in the analysis is taggable only if it is matched to a track

jet within ∆R = 0.5, where the track jet is reconstructed from a seed track with

pT > 1 GeV and must contain at least 2 tracks, each with pT > 0.5 GeV consisting

of at least 2 SMT hits and satisfying |dcaxy| < 0.2 cm and |dcaz| < 0.4 cm. The

taggability is defined as

(4.11) Taggability =
Taggable && Good

Good
.

Note that due to the higher luminosity in Run IIb data taking, more non-taggable jets

from minimum bias events make the taggability more dependent on the instantaneous
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Figure 4.19: b-tagging efficiency as a function of pT or η for the Tight operation point of the NN b-
jet tagger. It is determined on Run IIb datasets (red for MC and green for data) in the
CC, ICR and EC region respectively. The TRFb on data is obtained by multiplying
the MC b-jet tagging efficiency by the scale factor. The dotted black lines are the fit
errors dominated by the scale factor fit errors. [18]

luminosity. A new definition is thus introduced for Run IIb analysis, as

(4.12) Taggability =
Taggable && Good && Ntrk ≥ 2

Good && Ntrk ≥ 2

where Ntrk is number of tracks on the jet with pT > 0.5 GeV, |dcaxy| < 0.5cm,

dcaz < 1.0cm and |∆z| < 2.0cm.

To take into account of the difference between data and simulated events, the

taggability scale factor (TSF) [77] is derived and applied to simulated events. In this

analysis, TSF is parameterized as functions of pT and η, and determined separately

in regions: z position of the primary vertex in (−60cm, 30cm), (−30cm, 0), (0, 30cm)

and (30cm, 60cm). A closure test is performed by plotting the ratio of data taggabil-

ity to the corrected simulation taggability, as shown in Fig. 4.21. The fitted curves

are flat at value of 1, indicating that TSF are properly derived and applied on the

simulated events.

In this analysis, the NN b-jet tagger is applied directly to the jets of simulated

events. Therefore, the TSF and b-tagging efficiency scale factors are applied on
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Figure 4.20: c jet tagging efficiency as a function of pT or η for the Tight operation point of the NN
tagger. It is determined on Run IIb datasets (red for MC and green for data) in the
CC, ICR and EC region respectively. The TRFc on data is obtained by multiplying
the b-jet tagging efficiency by the c/b scale factor. The dotted black lines are the fit
errors dominated by the scale factor fit errors. [18]

simulated events to correct the difference. Note that the scale factor of tagging

efficiency is only available for b and c jets. When it is applied to the mis-tagged

light jets in event samples like Wjj, overestimation of b jets could happen. This

effect is estimated using Wjj event samples by comparing the result to the one

predicted using only TRFs. The rescaling factors are determined to be 1.46 and 1.56

±0.10(stat. only) for Tight and oldLoose operating points.
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Figure 4.21: Closure test for p20 Jet taggability scale factors for electron and muon channel (a)
Electron pT dependence, (b) Electron η dependence, (c) Muon pT dependence and (d)
Muon η dependence.



CHAPTER V

The Datasets and Event Selection

The analysis presented in this thesis is based on data collected at the upgraded

DØ detector. In Section 5.1 the data samples with the corresponding triggers and

luminosities are briefly described. The Monte Carlo simulated event samples, which

correspond to the physics processes relevant to this analysis, are summarized as well.

In order to optimize the Higgs boson signal significance, a variety of requirements

are applied to the reconstructed events. The criteria and corrections are described

in Section 5.2. The DØ b-jet tagging algorithm is used to identify the b quarks from

Higgs boson decay. The results are summarized in Section 5.3.

5.1 Data Sample and Simulated Events

5.1.1 Data Sample, Luminosities and Triggers

The data sample used in this analysis is collected at the DØ detector between

April 2002 to April 2008 and corresponds to an integrated luminosity of 2.7 fb−1

. It is divided into two subsets, called Run IIa and Run IIb, which are analyzed

separately. The reason is that the detector responses are significantly different due

to the upgrade of the DØ detector in 2006. An additional inner layer silicon detector

is added to the SMT to deliver better tracking, while the L1 calorimeter and silicon

track triggers were upgraded in order to improve detector’s performance with higher

79
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EMinclusive MUinclusive

Run IIa
CSG CAF EMinclusive PASS3 p17.09.03 CSG CAF MUinclusive PASS3 p17.09.03
CSG CAF EMinclusive PASS3 p17.09.06 CSG CAF MUinclusive PASS3 p17.09.06
CSG CAF EMinclusive PASS3 p17.09.06b CSG CAF MUinclusive PASS3 p17.09.06b

Run IIb
CSG CAF EMinclusive PASS2 p21.05.00 all fixed2007 CSG CAF MUinclusive PASS2 p21.05.00 allfixed2007
CSG CAF EMinclusive PASS4 p21.08.00 CSG CAF MUinclusive PASS4 p21.10.00 p20.12.00

CSG CAF MUinclusive PASS4 p21.10.00 p20.12.01
CSG CAF MUinclusive PASS4 p21.10.00 p20.12.02 summer2008

Table 5.1: Run IIa and Run IIb data samples used in the analysis.

luminosities.

The Run IIa dataset, collected between April 2002 and February 2006, corre-

sponds to an integrated luminosity of ∼ 1.1 fb−1 . The events in this dataset are

reconstructed using the DØ offline reconstruction software DØ reco [78] of versions

p17.xx.xx, which take into account of differences caused by hadronic calibrations and

cable swapping [79]. The Run IIb dataset corresponds to an integrated luminosity

of ∼ 1.6 fb−1 . It was collected during the periods of June 2006 - August 2007 and

October 2007 - April 2008, where the 3-month gap in 2007 is due to a shutdown

of the Tevatron. The Run IIb datasets are reconstructed using DØreco of versions

p20.xx.xx, with different versions developed to handle warm calorimeter cell and

electron track match issues [80] [81].

Because the initial reconstructed data sample is too large to efficiently analyze,

it is skimmed into smaller individual samples with different selection criteria cor-

responding to specific physics purposes [82]. In this analysis the EMinclusive and

MUinclusive skims are used. The EMinclusive skim is required to contain at least

one EM object with transverse momentum pT > 8 GeV per event, while the MUin-

clusive skim selects those events with at least one loose quality muon with transverse

momentum pT > 8 GeV determined by the central tracking system. All the skimmed

datasets in this analysis are summarized in Tab. 5.1.

The integrated luminosities corresponding to these data samples are calculated

using the lm access package [83] created by the DØ Luminosity ID group [84]. The
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List Trigger Luminosity pb−1

v8 EM15 2JT15 23.35
v9 EM15 2JT15 24.73
v10 EM15 2JT15 9.81
v11 EM15 2JT15 63.40
v12 E1 SHT15 2J20 227.35
v13a E1 SHT15 2J J25 55.22
v13b E1 SHT15 2J J30 298.21
v14 E1 SHT15 2J J25 333.57
Run IIa Sub Total 1035.64
v15.0-V15.5 JT 125 L3J125 534.5
v15.5-V15.9 JT 125 L3J125 693.8
v15.9-V16.0 JT 125 L3J125 392.3
v16.0- JT 125 L3J125 11.85
Run IIb Sub Total 1608.8

Total 2644.4

Table 5.2: Recorded integrated luminosities for the datasets in EM channel. The datasets corre-
spond to different trigger list versions, which are used in different periods of DØ data
taking. The triggers in the table are unprescaled triggers.

measurement of luminosity is in the unit of luminosity block with a unique luminos-

ity block number (LBN) [85]. Each luminosity block is a time span of 60 seconds,

during which the instantaneous luminosity is considered to be effectively constant.

Because L1 triggers have different responses to different non-uniform bunch-to-bunch

luminosity profiles, several triggers with common dead time are grouped together to

determine the luminosity [86]. The trigger terms used in this analysis for luminosity

calculation are summarized in Tab. 5.2 and Tab. 5.3. The datasets are further di-

vided into subsets according to their trigger versions, in which triggers are configured

differently in DØ data taking. The triggers used in the calculation are unprescaled,

which means all the triggered events are recorded. After removing the datasets with

bad data quality and LBNs due to hardware or operation failure, the total integrated

luminosities are 2.64 fb−1 and 2.78 fb−1 in the EM and MU skims respectively. In this

analysis these numbers are further reduced by 3% due to an inefficient calorimeter

noise rejection.

The triggers for this analysis are chosen to optimize the acceptance of the Higgs
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List Trigger Luminosity pb−1

v8-v10.3 JT 125TT 31.77
v10.3-v12 JT 125TT 74.75
v12-v13 JT 125TT 231.21
v13-v13.2 JT 125TT 38.05
v13.2-v14 JT 125TT 337.49
v14-v14.6 JT 125TT 142.23
v14.6-v15 JT 125TT 190.77
Run IIa Sub Total 1046.3
v15.0 - v15.22 JT125 L3J125 227.21
v15.22 -v15.5 JT125 L3J125 307.29
v15.5 - v15.6 JT125 L3J125 232.48
v15.6 - v15.9 JT125 L3J125 461.32
v15.9 - v16.0 JT125 L3J125 392.35
v16.0 - JT125 L3J125 109.94
Run IIb Sub Total 1730.6

Total 2776.9

Table 5.3: Recorded integrated luminosities for the datasets in MU channel. The datasets corre-
spond to different trigger list versions, which are used in different periods of DØ data
taking. The triggers in the table are unprescaled triggers.

period Trigger term
v8 - v14 EM15 2JT15 E1 SHT15 2J20 E1 SHT15 2J J25 E1 SHT15 2J J30

Table 5.4: EM+JET triggers through trigger versions v8 - v14 in the Run IIa datasets.

boson events. A series of different triggers are selected for the different datasets.

For the EM skims, the selected triggers generally require each event to have a good

EM object. For Run IIa datasets, a combination of triggers called EM+JET and

Single EM triggers are used. The EM+JET triggers are shown in Tab. 5.4, while

the Single EM triggers are shown in Tab. 5.5. For Run IIb datasets, Single EM

triggers are used, as listed in Tab. 5.6. The triggers in the tables are combined into

logical OR, which means an event will pass the entire trigger selection if it satisfies

any of the triggers. The efficiency of events passing these trigger requirements are

approximately ∼ 95% (∼ 90%) in Run IIa (IIb) datasets.

In the analysis with the MU skims, a combination of all the DØ triggers is explored

to maximize the signal acceptance. These triggers includes MU+JETS, Single MU

and multi-jet triggers and in combination have an efficiency close to 100%. To
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period Trigger term
v8-v11 EM MX EM MX SH EM MX EMFR8 EM HI EM HI SH

EM HI EMFR8 EM HI 2EM5 SH EM HI 2EM5 EM HI 2EM5 EMFR8
EM HI F0 EM HI 2EM5 F0 EM MX F0 EM HI SH TR
EM HI 2EM5 SH TR EM MX SH TR

v12 E1 SHT20 E2 SHT20 E3 SHT20 E4 SHT20 E1 L50 E1 VL70 E1 L70
E1 SH30 E2 SH30 E3 SH30 E4 SH30 E1 T13L15 E1 T25VL30
E1 SHT15 TK13 E2 T13L15 E2 T25VL30 E2 SHT15 TK13 E3 T13L15
E3 T25VL30 E3 SHT15 TK13 E4 T13L15 E4 T25VL30 E4 SHT15 TK13
E6 T13L15 E5 SHT15 TK13 E6 SHT15 TK13

v13.0-v13.1 E1 NC90 E5 SHT20 E6 SHT20 E7 SHT20 E8 SHT20 E9 SHT20 E5 SH30
E6 SH30 E7 SH30 E8 SH30 E9 SH30 E7 SHT15 TK13 E8 SHT15 TK13
E9 SHT15 TK13 E9 SHT8 ITK10 E5 T13L15 E7 T13L15 E8 T13L15
E9 T13L15 E8 IT7SHT8 E9 IT7SHT8 E8 SHT8 ITK10

v13.2-13.9 E1 SHT22 E2 SHT22 E3 SHT22 E4 SHT22 E1 T13SH15 E2 T13SH15
E3 T13SH15 E4 T13SH15 E5 T13SH15 E6 T13SH15 E7 T13SH15
E8 T13SH15 E9 T13SH15 E1 T15L20 E2 T15L20 E3 T15L20 E4 T15L20
E5 T15L20 E6 T15L20 E7 T15L20 E8 T15L20 E9 T15L20 E8 IT10SHT10
E9 IT10SHT10 E8 SHT10 ITK10 E9 SHT10 ITK10

v14 E1 SHT25 E3 SHT25 E4 SHT25 E1 SH35 E3 SH35 E4 SH35
E1 ISHT22 E3 ISHT22 E4 ISHT22 E1 ISH30 E3 ISH30 E4 ISH30
2CEM12 E15 SHT22 2CEM12 E15 SH30 2CEM6 E15 SHT22 2CEM6 E15 SH30
E13 SHT25 E17 SHT25 E18 SHT25 E19 SHT25 E20 SHT25 E21 SHT25
E13 SH30 E17 SH30 E18 SH30 E19 SH30 E20 SH30 E21 SH30 E13 ISHT22
E17 ISHT22 E18 ISHT22 E19 ISHT22 E20 ISHT22 E21 ISHT22 E1 ISHT22
E13 ISH30 E17 ISH30 E18 ISH30 E19 ISH30 E20 ISH30 E21 ISH30
E1 ISHT15 TK13 E3 ISHT15 TK13 E4 ISHT15 TK13 E13 ISHT15 TK13
E17 ISHT15 TK13 E18 ISHT15 TK13 E19 ISHT15 TK13 E20 ISHT15 TK13
E21 ISHT15 TK13 E1 T13SHT15 E3 T13SHT15 E4 T13SHT15 E13 T13SHT15
E17 T13SHT15 E18 T13SHT15 E19 T13SHT15 E20 T13SHT15 E21 T13SHT15
E1 T15SH20 E3 T15SH20 E4 T15SH20 E13 T15SH20 E17 T15SH20
E18 T15SH20 E19 T15SH20 E20 T15SH20 E21 T15SH20
E17 IT10SHT10 E20 IT10SHT10 E21 IT10SHT10 E17 SHT12 ITK10
E20 SHT12 ITK10 E21 SHT12 ITK10

Table 5.5: Single EM triggers through trigger versions v8 - v14 in the Run IIa datasets.
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period Trigger term
v15 E1 T13SHT15, E1 T15SH20, E1 ISHT15 TK13

E2 T13SHT15, E2 T15SH20, E2 ISHT15 TK13
TE1 T13SHT15, TE1 T15SH20, TE1 ISHT15 TK13, TE1 ISHT22,
TE1 SHT25, TE1 ISH30, TE1 SH35, TE1 L70
TE2 T13SHT15, TE2 T15SH20, TE2 ISHT15 TK13, TE2 ISHT22,
TE2 SHT25, TE2 ISH30, TE2 SH35, TE2 L70
TE3 T13SHT15, TE3 T15SH20, TE3 ISHT15 TK13, TE3 ISHT22,
TE3 SHT25, TE3 ISH30, TE3 SH35, TE3 L70
TE4 T13SHT15, TE4 T15SH20, TE4 ISHT15 TK13, TE4 ISHT22,
TE4 SHT25, TE4 ISH30, TE4 SH35, TE4 L70
TE5 T13SHT15, TE5 T15SH20, TE5 ISHT15 TK13, TE5 ISHT22,
TE5 SHT25, TE5 ISH30, TE5 SH35, TE5 L70

v15.50 E1 LH2ISHT17T14, E1 T14LH2SH17
E2 LH2ISHT17T14, E2 T14LH2SH17
TE1 LH2SH27, TE1 LH2L70, TE1 SHT50, TE1 SH60, TE1 LH2L70, TE1 L80
TE1 LH2ISH24, TE1 LH2ISHT17T14, TE1 T14LH2SH17
TE2 LH2SH27, TE2 LH2L70, TE2 SHT50, TE1 SH60, TE2 LH2L70, TE2 L80
TE2 LH2ISH24, TE2 LH2ISHT17T14, TE2 T14LH2SH17
TE3 LH2SH27, TE3 LH2L70, TE3 SHT50, TE1 SH60, TE3 LH2L70, TE3 L80
TE3 LH2ISH24, TE3 LH2ISHT17T14, TE3 T14LH2SH17
TE4 LH2SH27, TE4 LH2L70, TE4 SHT50, TE1 SH60, TE4 LH2L70, TE4 L80
TE4 LH2ISH24, TE4 LH2ISHT17T14, TE4 T14LH2SH17
TE5 LH2SH27, TE5 LH2L70, TE5 SHT50, TE1 SH60, TE5 LH2L70, TE5 L80
TE5 LH2ISH24, TE5 LH2ISHT17T14, TE5 T14LH2SH17

v16 E1 LH2ISHT17T14, E1 T14LH2SH17
E2 LH2ISHT17T14, E2 T14LH2SH17
TE1 LH2SH27 NOLUM, TE1 LH2L70 NOLUM, TE1 SHT50 NOLUM,
TE1 SH60 NOLUM, TE1 LH2L70 NOLUM, TE1 L80 NOLUM
TE1 LH2ISH24 NOLUM, TE1 LH2ISHT17T14 NOLUM, TE1 T14LH2SH17 NOLUM
TE2 LH2SH27, TE2 LH2L70, TE2 SHT50, TE1 SH60, TE2 LH2L70, TE2 L80
TE2 LH2ISH24, TE2 LH2ISHT17T14, TE2 T14LH2SH17
TE3 LH2SH27 NOLUM, TE3 LH2L70 NOLUM, TE3 SHT50 NOLUM,
TE1 SH60 NOLUM, TE3 LH2L70 NOLUM, TE3 L80 NOLUM
TE3 LH2ISH24 NOLUM, TE3 LH2ISHT17T14 NOLUM, TE3 T14LH2SH17 NOLUM
TE4 LH2SH27 NOLUM, TE4 LH2L70 NOLUM, TE4 SHT50 NOLUM,
TE1 SH60 NOLUM, TE4 LH2L70 NOLUM, TE4 L80 NOLUM
TE4 LH2ISH24, NOLUM TE4 LH2ISHT17T14 NOLUM, TE4 T14LH2SH17 NOLUM
TE5 LH2SH27, TE5 LH2L70, TE5 SHT50, TE1 SH60, TE5 LH2L70, TE5 L80
TE5 LH2ISH24, TE5 LH2ISHT17T14, TE5 T14LH2SH17

Table 5.6: Single EM triggers through trigger versions v15-v16 in the Run IIb datasets.
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ensure there is no bias caused by combining all these triggers, a study with Single

MU triggers is performed on both Run IIa and Run IIb datasets. For Run IIa

datasets, the event triggering ratio of Single MU triggers, shown in Tab. 5.7, to all

the triggers is ∼ 70%, consistent with efficiency determined by the tag-and-probe

method on di-muon events [87]. The uncertainty of event statistics due to this is

∼ 3%. The shapes of the relevant kinematic distributions remain unchanged when

using either Single MU triggers or all the DØ triggers. A similar study is made on

the Run IIb datasets, and finally a conservative 4% error is added to the systematic

uncertainty in this analysis.

v8-11/v12 v13 v14 v15
MUW A L2M3 TRK10 MUH1 TK12 TLM12 MUH1 TK12 TLM12 MUHI1 ITLM10
MU W L2M5 TRK10 MUH1 TK12 MUH8 TK12 TLM12 MUHI1 TK12 TLM12

MUW W L2M3 TRK10 MUH1 LM15 MUH1 ILM15 MUHI1 ILM15
MU W L2M0 TRK3 MUH1 TK10 MUH1 ITLM10 MUHI2 ITLM10
MU W L2M3 TRK10 MUH2 LM3 TK12 MUH8 ILM15 MUHI2 TK12 TLM12

MUW W L2M5 TRK10 MUH2 LM6 TK12 MUH8 ITLM10 MUHI2 ILM15
MU W L2M0 TRK10 MUH2 LM10 TK12 MUH5 LM15 MUHI3 ITLM10

MUH2 LM15 MUH6 TK12 TLM12 MUHI3 TK12 TLM12
MUH3 LM3 TK10 MUH6 LM15 MUHI3 ILM15
MUH3 LM6 TK12 MUH7 TK12
MUH3 LM10 TK12 MUH7 LM15

MUH3 LM15
MUH4 LM15
MUH4 TK10
MUH5 LM15

MUH6 TK12 TLM12
MUH6 LM15
MUH6 TK10
MUH7 TK12
MUH7 LM15
MUH7 TK10

Table 5.7: List of Single MU triggers used in the trigger study on Run IIa datasets.

5.1.2 Simulated Event Samples

Monte Carlo Event Generators

A good understanding of the relevant physical processes and detector responses

heavily relies on the simulation of these events. In high energy hadron collisions, the
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physical processes are well described by the parton model. Hadrons are considered

to be composed of seas of point-like partons, referred as quarks and leptons, which

carry different fractions of incoming longitudinal momenta. The parton distribution

function, which is a probability density for a parton to carry a momentum fraction

x at momentum transfer scale Q2, is empirically determined and parameterized in

software packages such as CTEQ [88]. In the case of proton-antiproton collisions, the

physical processes are simulated in the stages of initial state radiation, parton hard

scattering, final state radiation and parton hadronization. The initial and final state

radiations often refers to parton shower in which high momentum partons evolves

to a cascade of partons with momentum decreasing to the cutoff value. The parton

scattering is the hard interactions of the high momentum partons. The resulting

partons finally undergo fragmentation process into hadrons.

In this analysis several popular Monte Carlo (MC) event generators such as

PY THIA [89], ALPGEN [90] and CompHEP [91] are jointly used to simulate

the related physical processes. The PY THIA program is a general purpose event

generator for pp, pp̄, e+e− and µ+µ− collisions. Its initial and final state parton show-

ering algorithms are based on the pT ordered shower evolution, where parton shower

is described by the DGLAP equations [92] [93] [94]. The hadronization process is

exclusively based on the Lund string fragmentation framework [95], where quark and

antiquark are paired with a string. It can simulate numerous hard processes such as

vector boson production and the Higgs production, as well as those soft processes

like diffractive and elastic scattering. However, PY THIA is optimized for 2 → 1

and 2 → 2 processes and not suitable to handle those processes with at least three

particles in the final state.

ALPGEN is an event generator dedicated for hard multi-parton processes in
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hadron collisions. It calculates the exact matrix elements for selected parton-level

processes at leading order QCD and Electroweak interactions. It provides a good

description of the hard interactions with multiple final state partons. ALPGEN is

not available to carry out parton shower and hadronization but includes an interface

to PY THIA. Thus, ALPGEN and PY THIA are combined to generate the desired

events through a so-called MLM matching scheme [96]. The events are generated

using ALPGEN with exclusive parton multiplicity such W +3 light partons, which

in turn are input to PY THIA for showering and hadronizing into jets. The partons

and jets are matched one to one, and all the events from each light parton multiplicity

processes are summed up according to their cross sections. The SingleTop generator

[97] based on the CompHEP package is specialized to simulate the electroweak top

quark production at hadron colliders in the NLO approximation. It is also interfaced

to PY THIA for parton showering.

Simulated Event Samples

The events of Run IIa and Run IIb are separately simulated due to different

luminosities and detector responses. The simulated event samples along with the

corresponding MC event generators, number of generated events and production

cross sections are summarized in Tab. 5.8 - 5.12. As shown in Tab. 5.8, the Higgs

boson events are generated solely with PY THIA using PDFs from CTEQ6L. The

ZH events are also included in the signal taking into account their ∼ 5% contribution

to the total number of WH events passing the events selection. Diboson events,

shown in Tab. 5.9, are produced exclusively with PY THIA as well. The top quark

productions shown in Tab. 5.10 and W + jets events shown Tab. 5.11 5.12 are

produced with CompHEP or ALPGEN using PY THIA for parton shower and

hadronization.
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data Process Generator # events σ(×BR)[pb]

mH = 100 GeV 336.7k 0.0266
mH = 105 GeV 188.1k 0.0222
mH = 110 GeV 333.8k 0.0183
mH = 115 GeV 187.8k 0.0150
mH = 120 GeV 329.3k 0.0119

Run IIa HW → bb̄ + `ν mH = 125 GeV PYTHIA 187.8k 0.0093
mH = 130 GeV 334.2k 0.0069
mH = 135 GeV 186.2k 0.0050
mH = 140 GeV 328.1k 0.0034
mH = 145 GeV 175.0k 0.0022
mH = 150 GeV 329.6k 0.0013
mH = 100 GeV 330.7k 0.0046
mH = 105 GeV 187.3k 0.00387
mH = 110 GeV 333.2k 0.00323
mH = 115 GeV 187.6k 0.00266
mH = 120 GeV 328.4k 0.00213

Run IIa HZ → bb̄ + `` mH = 125 GeV PYTHIA 175.9k 0.00167
mH = 130 GeV 327.4k 0.00127
mH = 135 GeV 187.3k 0.00091
mH = 140 GeV 317.9k 0.000633
mH = 145 GeV 187.5k 0.00041
mH = 150 GeV 333.7k 0.000267

mH = 100 GeV 317.1k 0.0266
mH = 105 GeV 291.8k 0.0222
mH = 110 GeV 317.4k 0.0183
mH = 115 GeV 278.6k 0.0150
mH = 120 GeV 314.6k 0.0119

Run IIb HW → bb̄ + `ν mH = 125 GeV PYTHIA 277.3k 0.0093
mH = 130 GeV 324.1k 0.0069
mH = 135 GeV 278.1k 0.0050
mH = 140 GeV 323.9k 0.0034
mH = 145 GeV 289.2k 0.0022
mH = 150 GeV 320.4k 0.0013
mH = 100 GeV 320.7k 0.0046
mH = 105 GeV 275.2k 0.00387
mH = 110 GeV 305.7k 0.00323
mH = 115 GeV 279.4k 0.00266
mH = 120 GeV 310.2k 0.00213

Run IIb HZ → bb̄ + `` mH = 125 GeV PYTHIA 274.3k 0.00167
mH = 130 GeV 331.0k 0.00127
mH = 135 GeV 278.4k 0.00091
mH = 140 GeV 321.3k 0.000633
mH = 145 GeV 278.4k 0.00041
mH = 150 GeV 317.3k 0.000267

Table 5.8: The simulated samples of signal events pp̄ → W +H → lν+bb̄ and pp̄ → Z+H → ll+bb̄.
The MC event generators, number of generated events and cross sections are shown in the
table for Run IIa and Run IIb respectively. The branching ratios used in the calculation
is for only one lepton flavor.
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data Process Generator # events σ×BR[pb]

WW → eνjj PYTHIA 87k 12.0× 0.146
WW → µνjj PYTHIA 107k 12.0× 0.146
WZ → eνjj PYTHIA 96k 3.68× 0.075

Run IIa WZ → µνjj PYTHIA 47k 3.68× 0.075
WZ → jjee PYTHIA 92k 3.68× 0.023
WZ → jjµµ PYTHIA 96k 3.68× 0.023
ZZ inclusive PYTHIA 95k 1.43
WW inclusive PYTHIA 703.3k 12.0

Run IIb WZ inclusive PYTHIA 638.9k 3.68
ZZ inclusive PYTHIA 538.8k 1.42

Table 5.9: The simulated samples of the diboson processes WW ,WZ and ZZ. The MC event
generators, number of generated events and cross sections are shown in the table for
Run IIa and Run IIb respectively. A combination of several exclusive channels is used
for Run IIa, while the inclusive samples are used for Run IIb.

Run IIa MC Generator # events K × (σ×BR)[pb]

+ 0 light parton 224k 1.39×0.3241
tt̄ → bb̄ + `+ν`′−ν̄`′ + 1 light parton ALPGEN + PYTHIA 96k 1.39×0.1348

+ 2 light partons 50k 1.39×0.0664
+ 0 light parton 283k 1.39×1.2988

tt̄ → bb̄ + 2j + `ν + 1 light parton ALPGEN + PYTHIA 98k 1.39×0.5407
+ 2 light partons 93k 1.39×0.2659

Single-top s-channel (tb → `νbb̄) CompHEP + PYTHIA 291k 0.0978
Single-top t-channel (tqb → `νbqb) CompHEP + PYTHIA 385k 0.22

Run IIb MC Generator # events K × (σ×BR)[pb]

+ 0 light parton 274275 1.39×0.3241
tt̄ → bb̄ + `+ν`′−ν̄`′ + 1 light parton ALPGEN + PYTHIA 131978 1.39×0.1348

+ 2 light partons 66315 1.39×0.0664
+ 0 light parton 743325 1.39×1.2988

tt̄ → bb̄ + 2j + `ν + 1 light parton ALPGEN + PYTHIA 415698 1.39×0.5407
+ 2 light partons 162630 1.39×0.2659

Single-top s-channel (tb → eνbb̄) CompHEP + PYTHIA 247003 0.0978
Single-top s-channel (tb → µνbb̄) CompHEP + PYTHIA 261833 0.0978
Single-top s-channel (tb → τνbb̄) CompHEP + PYTHIA 194653 0.0978
Single-top t-channel (tqb → eνbqb) CompHEP + PYTHIA 262608 0.22
Single-top t-channel (tqb → µνbqb) CompHEP + PYTHIA 244905 0.22
Single-top t-channel (tqb → τνbqb) CompHEP + PYTHIA 260574 0.22

Table 5.10: The simulated samples of top pair and electroweak single top productions. The MC
event generators, number of generated events and cross sections are shown in the table
for Run IIa and Run IIb respectively. The K factor for tt̄ scales the tt̄ cross section to
6.8 pb. No K factor is given for single top since the cross section given is already at
NLO.
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Run IIa MC Process Generator # events σ(×BR)[pb]

+ 0 light parton 2.3M 4574.4
+ 1 light parton 2.8M 1273.9

Wjj → `ν + 2 light partons ALPGEN + PYTHIA 1.6M 298.6
+ 3 light partons 789k 70.6
+ 4 light partons 779k 15.8
+ 5 light partons 58k 5.6
+ 0 light parton 740k 19.2
+ 1 light parton 261k 7.9

Wbb̄ → `νbb̄ + 2 light partons ALPGEN + PYTHIA 171k 2.6
+ 3 light partons 164k 1.1
+ 0 light parton 482k 71.1

Wcc̄ → `νcc̄ + 1 light parton ALPGEN + PYTHIA 336k 29.9
+ 2 light partons 372k 14.1
+ 0 light parton 1.0M 139.2
+ 1 light parton 187k 41.8

Zjj → ee + 2 light partons ALPGEN + PYTHIA 93k 10.3
+ 3 light partons 93k 5.3
+ 0 light parton 839k 139.5
+ 1 light parton 209k 41.6

Zjj → µµ + 2 light partons ALPGEN + PYTHIA 104k 10.3
+ 3 light partons 104k 5.3
+ 0 light parton 795k 139.4
+ 1 light parton 209k 41.7

Zjj → ττ + 2 light partons ALPGEN + PYTHIA 97k 10.3
+ 3 light partons 104k 5.3
+ 0 light parton 604k 0.97

Zbb̄ → `+`− + bb̄ + 1 light parton ALPGEN + PYTHIA 271k 0.36
+ 2 light partons 144k 0.21
+ 0 light parton 152k 3.0

Zcc̄ → `+`− + cc̄ + 1 light parton ALPGEN + PYTHIA 143k 1.06
+ 2 light partons 172k 0.6

Table 5.11: The simulated samples of W +jets and Z+jets for Run IIa. The MC event generators,
number of generated events and cross sections are shown in the table. The samples are
generated in bins of light parton multiplicity. Each bin is considered exclusive with a
certain number of partons, except that the last bin is inclusive with more partons. The
light partons are required to have pT > 8 GeV and |η| < 5. The l is inclusive to be e,
µ and τ .
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Run IIb MC Process Generator # events σ(×BR)[pb]

+ 0 light parton 4888.698 4519
+ 1 light parton 3537.987 1279

Wjj → `ν + 2 light partons ALPGEN + PYTHIA 2326.298 302
+ 3 light partons 1091.511 71.7
+ 4 light partons 1035.228 16.3
+ 5 light partons 167.364 4.97
+ 0 light parton 1368k 9.36
+ 1 light parton 1034k 4.26

Wbb̄ → `νbb̄ + 2 light partons ALPGEN + PYTHIA 584.7k 1.54
+ 3 light partons 422.3k 0.74
+ 0 light parton 1056k 24.0

Wcc̄ → `νcc̄ + 1 light parton ALPGEN + PYTHIA 924.9k 13.4
+ 2 light partons 551.2k 5.39
+ 3 light partons 456.4k 2.50
+ 0 light parton 1222k 133.0
+ 1 light parton 614.0k 40.7

Zjj → ee + 2 light partons ALPGEN + PYTHIA 333.3 9.93
+ 3 light partons 194.6k 3.2
+ 0 light parton 1200k 133.0
+ 1 light parton 569.7k 40.7

Zjj → µµ + 2 light partons ALPGEN + PYTHIA 137630 9.93
+ 3 light partons 380.5k 3.2
+ 0 light parton 1088k 133.0
+ 1 light parton 693.8k 40.7

Zjj → ττ + 2 light partons ALPGEN + PYTHIA 342251 9.93
+ 3 light partons 238.4k 3.2
+ 0 light parton 185.3k 0.418

Zbb̄ → `+`− + bb̄ + 1 light parton ALPGEN + PYTHIA 87383 0.190
+ 2 light partons 41.3k 0.010
+ 0 light parton 182.4k 0.930

Zcc̄ → `+`− + cc̄ + 1 light parton ALPGEN + PYTHIA 84760 0.503
+ 2 light partons 44.3 0.281

Table 5.12: The simulated samples of W +jets and Z +jets for Run IIb. The MC event generators,
number of generated events and cross sections are shown in the table. The samples are
generated in bins of light parton multiplicity. Each bin is considered exclusive with a
certain number of partons, except that the last bin is inclusive with more partons. The
light partons are required to have pT > 8 GeV and |η| < 5. The l is inclusive to be e,
µ and τ .
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The cross sections used in the analysis are multiplied by the corresponding branch-

ing ratios and K factors. The NNLO cross sections are used for the Higgs signal

processes reducing the NLO cross sections by a factor of ∼ 0.96. The cross sections

of top pair production are scaled at NNLO to ∼ 6.8 pb as well. The other samples

are all scaled to the used NLO cross sections. Note that W + jets and Z + jets

are processed in the same way in this analysis. Both of these events undergo a spe-

cial process called heavy flavor skimming, where events with additional heavy flavor

partons generated in PY THIA are removed to avoid double counting of these events.

DØ Detector Simulation

The generated events are passed through full simulation of the DØ detector using

the software packages DØgstar [98] and DØSim [99]. DØgstar, namely DØ GEANT

Simulation of the Total Apparatus Response, simulates the responses of the detector

components to the generated events by depositing energies and leaving tracks. Based

on the simulation toolkit GEANT [100] at CERN, the package is capable of describing

the geometry and materials of the DØ detector systems. It simulates the passage

of particles interacting with tracking detectors, calorimeters and muon chambers as

well as the solenoidal and toridal magnetic fields.

DØSim uses the output of DØgstar as input to generate the raw data. It sim-

ulates the digitization of electronics readout, detector noises and inefficiencies, as

well as underlying events. In order to simulate the additional inelastic pp̄ events,

the generated events are overlaid with minimum bias events of real data triggered

by the luminosity detector. The output of DØSim is in the form of raw data chunks

which are later processed offline through DØ reco just like real data to reconstruct

the events.
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5.2 The Event Selection Criteria

The data samples described in Section 5.1 have first to pass the common data

quality certified by the DØ DQ group [101]. The events belonging to bad runs or

LBNs caused by detector operation failures or bad luminosity measurements are

discarded from further use in the analysis. Note that as pointed in Section 5.1.1, the

total integrated luminosity numbers in this analysis 2.64 fb−1 and 2.78 fb−1 are scaled

down by 3%, due to inefficient rejection related to calorimeter noise of data quality.

A combination of different triggers, also discussed in Section 5.1.1, are employed to

further reject un-related background events in data samples. The simulated events

are reweighted with the corresponding trigger efficiencies.

Every event must have its primary vertex reconstructed in the effective hard

scattering interaction region |z| < 60 cm. There must be at least three tracks

attached to the primary vertex. The passed events are considered for identifying

the W and Higgs bosons.

5.2.1 W Boson Identification

TheW bosons in this analysis are identified through its leptonically decay W → eν

andW → µν. The final state particles must contain exclusively one isolated energetic

electron or muon and significant missing ET .

Electron Selection

Electron candidates in an event are first required to pass the basic criteria dis-

cussed in Section 4.1.2, as the following: fEM = EEM (0.2)
Etotal(0.4)

> 0.9, fiso = Etotal(0.4)−EEM (0.2)
EEM (0.2)

<

0.15, matched to central tracks, χ2
HMx7 < 50 and electron likelihood > 0.85.

The electrons reconstructed in central calorimeter (CC) |η| < 1.1 and endcap

calorimeter (EC) 1.5 < |η| < 2.5 are used in the analysis. The transverse momenta
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of the electrons must satisfy pT > 15 GeV. To reduce the background events with two

or more electrons in the final states such as those from Z and tt̄ production, there

must be exactly one electron passing the above selection criteria. If there is any

second electron satisfying all criteria (without likelihood requirement) but failing

either pT > 15 GeV or |η| < 3.0, the event will also be rejected.

An example of the kinematic distributions of the selected electrons is shown in

Fig. 5.1. Note that events shown in the plots have passed all the kinematic event

selection criteria and properly normalized with correction factors, part of which are

discussed in the following sections.

Muon Selection

The basic selection criteria for muons are explained in Section 4.1.5, summarized

as the following: (1) medium nseg = +3 muon, which rejects ∼ 10% of high pT

muons, mainly in the detector bottom region where no full coverage of A and BC

layer is availabe. (2) medium track with the central track fit χ2/ndf < 4 to remove

bad tracks. (3) To reject cosmic muons, scintillator hitting time of A and BC layers

has to satisfy |tA| < 10ns and |tBC | < 10ns.

The muon isolation information is used to discriminate the muons of W decay

from the muons produced in jet decays. The separation of a muon from the nearest

reconstructed jets is required to be ∆R(µ, jet) > 0.5. Two additional variables in

Section 4.1.5 are used to further reject muons originated from heavy flavor jets by

requiring ScaleCalorimeterHalo < 0.08 and ScaledTrackHalo < 0.06.

The muons must be reconstructed with |η| < 2.0 and pT > 15 GeV. Events with

two or more muons satisfying the above selection without ScaleCalorimeterHalo <

0.08 and ScaledTrackHalo < 0.06 requirement are discarded. An example of the

muon kinematic distribution is shown in Fig. 5.2.
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E/T Selection and Transverse Mass of W Boson

The missing ET , approximating the neutrino transverse energy has to pass the

requirement of E/T > 20 GeV to select the W boson. The transverse mass of W

boson can be reconstructed from the measured kinematic variables of lepton and E/T ,

as mW
T =

√

E2
T − ~p2

T =
√

2plep
T E/T (1 − cos(φlep − φmet)). The distributions of E/T and

W transverse mass for the selected events are shown in Fig. 5.2.1.

5.2.2 Jet Selection

As discussed in Section 4.1.3, the jets used in this analysis are reconstructed with

the R = 0.5 cone algorithm. A set of common identification cuts, also explained in

Section 4.1.3, are employed to select well reconstructed jets: (1) 5% < EMF < 95%.

(2) CHF < 0.4. (3) HOTF < 10. (4) n90 > 1. (5) L1Conf > 0.4 in CC and EC,

L1Conf > 0.2 in ICD.

The jets reconstructed within the detector region |η| < 2.5 with pT > 20 GeV

are considered in the analysis. In addition, further kinematic cuts are explored to

optimize the results. The jet with the highest pT in an event is required to be

pT > 25 GeV. HT , sum of the pT of all jets in an event, must be larger than 60 GeV

to reduce the effects of low energy jets. The events with 2 or 3 jets satisfying the

above requirements are selected and treated separately in this analysis.

The invariant mass of the two leading pT jets as well as their angular separations

are reconstructed in the analysis. They are used as the main variables to discrim-

inate the Higgs signal events from background events, to be discussed later. The

distributions of the 2-jet selected events are shown in Fig. 5.4.
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5.2.3 Multijet Background Estimation

The multijet (QCD) background events are estimated from data samples since

full simulation of these complicated processes is not available. In the case of muons,

it is possible that muons originating from jets could pass the muon selection of

this analysis and be misidentified as W boson events. These background events

are estimated via the so-called Matrix Method [102] using samples containing loose

and tight muon events. The tight muon criteria means that muon passes all the

event selection, while the loose applies all the event selection criteria but not the

ScaleCalorimeterHalo and ScaledTrackHalo requirements. The number of events

follows the equations

Nloose = NW +NQCD

Ntight = εWNW + εQCDNQCD

(5.1)

where Nloose and Ntight represent the total numbers of events passing the loose and

tight muon selection criteria, NW and NQCD are the number of real W and multijet

events respectively. εQCD is the probability for a multijet event in loose muon sample

to pass the tight muon criteria, while εW is the probability for the real W boson event.

The equations can be inversely solved to be

NW =
Ntight − εQCDNloose

εW − εQCD

NQCD =
εWNloose −Ntight

εW − εQCD
.

(5.2)

εW in this analysis is approximated by counting the ratios of simulated loose muon

W events passing the tight muon selection. εQCD is calculated by using data events

satisfying all the event selection criteria but E/T is required to be E/T < 10 GeV.

The passing ratio of loose muon events to tight muon events, denoted as εQCD, is

parameterized as a function of muon pT . The real W events with E/T < 10 GeV
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Trigger List Fake Rate 2 jets (%) Fake Rate 3 jets (%)
CC EC CC EC

v8-11 5.4 ± 0.2 6.3 ± 0.2 6.0 ± 0.2 7.7 ± 0.2
v12 5.7 ± 0.1 8.2 ± 0.1 8.4 ± 1.0 8.3 ± 0.3
v13 6.0 ± 0.1 8.5 ± 0.1 8.2 ± 1.0 10.3 ± 1.0
v14 6.6 ± 0.1 8.8 ± 0.1 6.6 ± 1.0 8.8 ± 1.0

v15-16 6.6 ± 0.1 8.8 ± 0.1 9.6 ± 1.0 11.6 ± 1.0

Table 5.13: Fake rate for CC and EC electron channel at pT = 30 GeV for v8-v15 trigger lists.
Errors are statistical only. An additional 15% systematic errors on these parameters is
considered when estimating the total uncertainty on the QCD background.

are also taken into account by subtracting simulated W event contributions from

the data events in this calculation. The numbers of real W events and multijet

events passing all the event selection, εWNW and εQCDNQCD, are estimated using

the resulted εW and εQCD, as shown in Fig. 5.5.

In the case of electrons, a jet from the multijet background processes could be

misidentified as an electron. The estimation procedures of multijet background

are basically the same, except that εQCD has various dependences on electron pT ,

∆φ(e, E/T ), jet multiplicity and trigger requirements. The fake rates of εQCD at elec-

tron pT = 30 GeV are summarized in Tab. 5.13. More details can be found in [103].

The multijet background estimation is limited in the low E/T and mW
T regions

because of mismeasurement of E/T . These background events tend to have the same

E/T and lepton direction and low mW
T . To further reject the multijet background, a

triangular cut of mW
T > 40−0.5E/T is applied in the cases of both muon and electron.

As shown in Fig. 5.2.3, the triangular cut rejects most of the multijet events but

reasonably keeps the WH events.
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5.2.4 Normalization of Simulated Events

Scale Factors

The simulated events are normalized according to the integrated luminosity of

data events and the predicted cross sections in the Standard Model, as listed in

Section 5.1.2. Each generated event i in a physics process is weighted by

(5.3) wi =
σ × L
Ngen

where σ is predicted cross section of the physics process, L is the integrated lumi-

nosity of data events and Ngen is the total number of simulated events of the physics

process generated for the analysis.

However, due to the large uncertainties of cross sections in the W + jets and

Z+ jets calculations, the number of events in W/Z+ jets samples are further scaled

to ensure that simulated samples and data samples have the same number of events.

The scale factors is defined as

(5.4) SF =
Ndata −NQCD −NSM

NW/Z+jets

where Ndata, NQCD and NSM are the number of events in data, multijet and the

simulated processes except for W/Z + jets. NW/Z+jets is the total number of W/Z +

jets, where W + jets and Z + jets samples are simply added together. The values

of SF are summarized in Tab. 5.14. Note that they are calculated with all the event

selection criteria except for the b-jet tagging selection, which is discussed in the next

section.

For W/Z+heavy flavor jets samples, additional scale factor called Heavy Flavor

(HF) factor is applied. The values of HF factors are determined using orthogonal

samples with b-jet tagging selection, as

(5.5) HF = 1 +
N0tag

data −N0tag
expected

N0tag
Wbb+Wcc+Zbb+Zcc
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channel 2 jet 3 jet
Run IIa Electron (CC) 1.65 ± 0.01 1.62 ± 0.03

Muon 1.63 ± 0.01 1.80 ± 0.03
Run IIb Electron (CC) 1.85 ± 0.01 2.05 ± 0.03

Muon 1.52 ± 0.01 1.73 ± 0.03

Table 5.14: The scale factor SF applied to W/Z + jets samples. (errors are statistical only, the
uncorrelated systematic uncertainties between the e and µ determination is greater
than 10%).

where N0
data, N

0tag
expected and N0tag

Wbb+Wcc+Zbb+Zcc
are the total numbers of events with no

b-tagged jets in their respective data samples, the expected standard model pro-

cesses (including multijet background) and W/Z + h.f.jets samples respectively. It

is calculated iteratively with SF factor applied. The values of the HF factors are

summarized in Tab. 5.15. The V eryT ight, T ight and oldLoose are b-jet tagging

operating points which are explained in the next section.

data btag OP VeryTight Tight oldLoose
Run IIa Electron 0.99 ± 0.02 0.99 ± 0.02 0.97 ± 0.03

Muon 1.02 ± 0.02 1.02 ± 0.02 1.01 ± 0.03
Run IIb Electron 1.29 ± 0.02 1.36 ± 0.02 1.34 ± 0.03

Muon 1.45 ± 0.02 1.52 ± 0.02 1.38 ± 0.03

Table 5.15: The HF factor determined with b-jet tagging operation points V eryT ight, T ight and
oldLoose on different datasets. (errors are statistical only, the uncorrelated systematic
uncertainties between the e and µ determination is greater than 10%).

W/Z + jets Events Reweighting

The deficiency of modeling in ALPGEN for W/Z + jets is taken into account

by reweighting the angular distributions of jets in W/Z + jets events to minimize

the kinematic shape difference between data and simulated events. To extract the

reweighting function, the data events are first subtracted by other Standard Model

background processes and then divided by the W/Z + jets events. The 4 angular

distributions reweighted are η of the leading two jets, ∆η and ∆φ between the leading

two jets. The reweighting functions are shown in Fig. 5.7. The specific uncertainty
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due to jet reweighting is 5% as shown shown in Fig. 5.8.

Impacts of Event Generators on WH samples

The WH event samples in this analysis is generated using PY THIA, which cal-

culates with LO matrix elements and performs parton showering and hadronization.

The cross sections of WH used for normalization are scaled to NNLO cross sections

by multiplying K factors. Some other event generators such as MC@NLO calculates

with NLO corrections and use HERWIG for parton showering and hadronization.

The potential effects due to different event generators are studied on WH samples

by comparing the events generated by PY THIA, MC@NLO and HERWIG. No

obvious difference is observed except the transverse momenta of b quarks at parton

level. However, the effects of b quark difference are not visible in the reconstructed

jets [104]. A conservative uncertainty of 5% is thus assigned to the acceptance of

WH events.

Contributions from Wγ∗ Events

For the diboson background processes, the Wγ∗ process is not implemented, but

only WZ is available in PY THIA. To estimate the contributions of Wγ∗ events,

WZ/γ∗ events are generated using HERWIG and are compared to WZ generated

by PY THIA. No significant difference is observed after the event selections. The

number of events varies less than 1% [104]. The possible contributions from Wγ∗

events are thus ignored.

5.3 The Event Selection of b-jet Tagging

Once the events are selected and corrected as discussed in the previous sections,

the DØ NN b-jet tagger is used to identify b jets. Starting with a loose operating

point, if two jets in an event are both tagged as loose b jets, the event is selected
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into the double tagged (DT) sample. Otherwise, a tight operation point is further

used to tag the jets in this event. If one of the jets gets tagged as a b jet, this event

will be selected to the single tagged (ST) sample. If neither applies, the event is

labeled as 0tag, which is used for determining the HF factor in Section 5.2.4. The

orthogonal ST and DT event samples are combined to improve the sensitivity to the

Higgs signal.

oldLoose and T ight as described in Section 4.3.1 are chosen as the loose and tight

tagging points respectively. The corresponding b-tagging efficiencies are ∼ 60% for

oldLoose with a fake rate of ∼ 1.5%, and ∼ 50% for T ight with a fake rate of ∼ 0.5%.

The jet taggability is typically ∼ 80% in a two jet event samples with uncertainty of

3% per jet.

The kinematic distributions of data events are compared to the sum of the back-

ground events. As shown in Fig. 5.9, in the distributions of the leading jet pT ,

the second leading jet pT , the ∆R and invariant mass of the two leading jets in the

W + 2jets sample with exactly one jet b-tagged as T ight, data events are consistent

with the simulated events. The W + light jets and multijet events are still over-

whelming the background. The kinematic distributions of W + 2jets with two jet

b-tagged as oldLoose are shown in Fig. 5.10. The dijet mass distributions with single

and double b-tagged jets of W + 2/3jet events are shown in Fig. 5.11 (linear scale)

and Fig. 5.12 (logarithmic scale). The background events consist of mainly W + bb̄

events and tt̄ events. The total number of events in the data are well described by

simulated events, as summarized in Tab. 5.16.
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W + 2 jets W + 2 jets W + 2 jets W + 3 jets W + 3 jets W + 3 jets
(1 b tag) (2 b tag) (1 b tag) (2 b tag)

WH,ZH 15.8 ± 2.7 6.8 ± 1.3 3.9 ± 0.7 3.8 ± 0.6 1.6 ± 0.3 1.0 ± 0.2
WW,WZ, ZZ 1453 ± 244 87 ± 16 13.7 ± 2.6 302 ± 51 23.1 ± 4.2 3.9 ± 0.7

W/Z + bb̄ 1769 ± 353 592 ± 109 138 ± 27 471 ± 94 174 ± 32 49.2 ± 9.4
tt̄ 581 ± 98 242 ± 45 96.9 ± 19 926 ± 155 394 ± 73 211 ± 41

Single top 290 ± 49 123 ± 23 31.5 ± 6.1 91 ± 15 38.5 ± 7.0 16.9 ± 3.2
Multijet 3575 ± 629 189 ± 38 16.7 ± 4.0 1228 ± 216 92.8 ± 18 14.4 ± 3.4

W/Z+ jets 44464 ± 570 942 ± 226 44.5 ± 9.8 8357 ± 105 239 ± 57 25.7 ± 5.8

Total expectation 52148 (n.t.d.) 2182 ± 348 345 ± 51 11379 (n.t.d.) 963 ± 152 322 ± 49
Observed Events 52148 2174 336 11379 912 321

Table 5.16:
Summary table for the W+ 2,3 jet final states. Observed events in data are compared to
the expected number of W+ jet events before tagging, with exactly one tight b-tagged
jet, and with exactly 2 loose b-tagged jets. First three columns are for the W + 2 jet
channel, the last three columns for the W + 3 jet channel. Expectation originates from
the simulation of WH and ZH (with mH = 115 GeV), dibosons (WW, WZ, ZZ, labeled
WZ in the table), Wbb̄ production, top production (tt̄ and single-top), multijet back-
ground and “W+ jet” production, which contains light and c quarks. All Z processes
are fully simulated, and included in the corresponding W categories. The processes
W (Z)bb̄ and W (Z) + light and/or c jets are counted separately. “n.t.d.” stands for
“normalized to data”. The uncertainties given include statistics and systematics.
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Figure 5.1: Kinematic distributions for CC+EC electrons of the W + 2 jet event sample (Run
IIb data set): a) energy; b) transverse momentum; c) η; d) ϕ. The simulation is
normalized to the integrated luminosity of the data sample using the expected cross
sections (absolute normalization) except for the W+ jets sample which is normalized
to data on the ”pre-tag sample”, taking into account all the other backgrounds.
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Figure 5.2: Kinematic distributions for muons of the W + 2 jet event sample (Run IIb data set):
a) energy; b) transverse momentum; c) η; d) ϕ. The simulation is normalized to the
integrated luminosity of the data sample using the expected cross sections (absolute
normalization) except for the W+ jets sample which is normalized to data on the ”pre-
tag sample”, taking into account all the other backgrounds.
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Figure 5.3: Distribution in the W + 2 jets sample of the (a) lepton momentum, (b) the transverse
W mass, (c) the HT variable and (d) missing transverse energy compared to the simu-
lated expectation in the W + 2 jet event sample. The simulation is normalized to the
integrated luminosity of the data sample using the expected cross sections (absolute
normalization) except for the W+ jets sample which is normalized on the ”untagged
sample” to the data, taking into account all the other backgrounds.
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Figure 5.4: Distribution in the W + 2 jets sample of the (a) pT of the leading and (b) next to
leading jet, (c) of the distance in the η − ϕ plane between the two jets and (d) of
the dijet mass (d) between the two jets in the W + 2 jet sample compared with the
simulated expectation. The simulation is normalized to the integrated luminosity of
the data sample using the expected cross sections (absolute normalization) except for
the W+ jets sample which is normalized on the ”untagged sample” to the data, taking
into account all the other backgrounds.
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0 20 40 60 80 100 1200

500

1000

1500

2000

2500

3000

3500

4000

4500

WtrMass (data:black, WH-MC:red)WtrMass (data:black, WH-MC:red)

0 10 20 30 40 50 60 70 80 90 1000

20

40

60

80

100

120

Ratio (data / WH-MC) on WtrMass vs MET

0

50

100

150

200

250

Ratio (data / WH-MC) on WtrMass vs MET

Figure 5.6: (a) W transverse mass for loose electron on data (black) as QCD sample and WH MC
(red) as real W sample. (b) 2D ratio plot of data / WH MC on W transverse mass vs
Missing Et. Normalization of WH MC is same as in Fig. (a). QCD events distribute low
E/T and low MT

W which can be eliminated by triangle cut of MT
W > −0.5E/T + 40GeV

as shown in black line. WH MC is normalized on W peak.

(a) (b)



108

JetsEta10 TR1Z0
Entries  8427

Mean   -0.06097

RMS     1.739

 / ndf 2χ  25.02 / 23

Prob   0.349

p0        0.0198± 0.9198 

p1        0.0294± 0.0341 

p2        0.00691± 0.01469 

-3 -2 -1 0 1 2 3

0.6

0.8

1

1.2

1.4

1.6

1.8

2

JetsEta10 TR1Z0
Entries  8427

Mean   -0.06097

RMS     1.739

 / ndf 2χ  25.02 / 23

Prob   0.349

p0        0.0198± 0.9198 

p1        0.0294± 0.0341 

p2        0.00691± 0.01469 

ratio of data to MC JetsEta20 TR1Z0
Entries  8426

Mean   -0.06668

RMS     1.695

 / ndf 2χ   42.6 / 23

Prob   0.007714

p0        0.0209± 0.9393 

p1        0.02692± -0.02513 

p2        0.00572± 0.02346 

-3 -2 -1 0 1 2 3

0.6

0.8

1

1.2

1.4

1.6

1.8

2

JetsEta20 TR1Z0
Entries  8426

Mean   -0.06668

RMS     1.695

 / ndf 2χ   42.6 / 23

Prob   0.007714

p0        0.0209± 0.9393 

p1        0.02692± -0.02513 

p2        0.00572± 0.02346 

ratio of data to MC

DEtaJets0 TR1Z0
Entries  8441

Mean   0.3436

RMS     2.874

 / ndf 2χ  8.765 / 7

Prob    0.27

p0        0.0162± 0.9532 

p1        0.009223± -0.002181 

p2        0.00495± 0.02063 

-6 -4 -2 0 2 4 6

0.6

0.8

1

1.2

1.4

1.6

1.8

2

DEtaJets0 TR1Z0
Entries  8441

Mean   0.3436

RMS     2.874

 / ndf 2χ  8.765 / 7

Prob    0.27

p0        0.0162± 0.9532 

p1        0.009223± -0.002181 

p2        0.00495± 0.02063 

ratio of data to MC DphijjJets0 TR1Z0
Entries  8425

Mean    1.588

RMS    0.9285

 / ndf 2χ  10.79 / 17
Prob   0.867
p0        0.054± 1.114 
p1        0.0732± -0.2867 
p2        0.0217± 0.1011 

 (jet-jet)φ∆
0 0.5 1 1.5 2 2.5 3

Nu
m

be
r o

f e
ve

nt
s 

/ 0
.0

75

0.6

0.8

1

1.2

1.4

1.6

1.8

2
DphijjJets0 TR1Z0
Entries  8425

Mean    1.588

RMS    0.9285

 / ndf 2χ  10.79 / 17
Prob   0.867
p0        0.054± 1.114 
p1        0.0732± -0.2867 
p2        0.0217± 0.1011 

ratio of data to MC

Figure 5.7: Reweighting functions on the jet angular distributions of simulated W/Z + jets events.
(a) Leading jet η. (b) 2nd Leading jet η. (c) ∆η(jet1, jet2). (d) ∆φ(jet1, jet2).
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Figure 5.8: Shape uncertainty on the dijet mass in Wjj and Wbb events: a) uncertainty originating
from the η, ϕ, δ−η, δ−ϕ reweighting ; b) additional uncertainty on the shape as obtained
by a fit to the ratio of data to the reweighted simulation to the data; the fitted result
is also shown; the actual uncertainty is the fit to which is conservatively added another
+5% uncertainty.
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Figure 5.9: Kinematic distributions in the W + 2jets sample with exactly one jet b-tagged. (a) pT

of the leading jet. (b) pT of the second leading jet. (c) ∆R between the two leading jets.
(d) invariant mass of the leading two jets. The dots represent the distribution of data
events, which are compared to the solid line representing the sum of the background
events. The simulated events are fully normalized and corrected as discussed previous
sections. The expected contribution of the Standard Model WH events with mH = 115
GeV shown in the plot scaled up by a factor of 10.
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Figure 5.10: Kinematic distributions in the W + 2jets sample with 2 jet b-tagged. (a) pT of the
leading jet. (b) pT of the second leading jet. (c) ∆R between the two leading jets.
(d) invariant mass of the leading two jets. The dots represent the distribution of data
events, which are compared to the solid line representing the sum of the background
events. The simulated events are fully normalized and corrected as discussed previous
sections. The expected contribution of the Standard Model WH events with mH = 115
GeV shown in the plot scaled up by a factor of 10.
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Figure 5.11: The dijet invariant mass distributions (linear scale) of events with single or double b-
tagged jets. a) W +2jet events with exactly one jet tagged as Tight b jet. b) W +3jet
events with exactly one jet tagged as Tight b jet. c) W + 2jet events with at least
two jets tagged as oldLoose b jets. d) W +3jet events with at least two jets tagged as
oldLoose b jets. The simulated processes are normalized to the integrated luminosity
of the data sample using the expected cross sections (absolute normalization) except
for the W + jets sample which is normalized on the ”untagged sample” to the data,
taking into account all the other backgrounds. The backgrounds labeled as “other”
in the figure are dominated by single-top production. Also shown is the contribution
expected for standard model WH production with mH = 115 GeV, multiplied by a
factor 10.
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Figure 5.12: The dijet invariant mass distributions (logarithmic scale) of events with single or double
b-tagged jets. a) W +2jet events with exactly one jet tagged as Tight b jet. b) W +3jet
events with exactly one jet tagged as Tight b jet. c) W + 2jet events with at least
two jets tagged as oldLoose b jets. d) W +3jet events with at least two jets tagged as
oldLoose b jets. The simulated processes are normalized to the integrated luminosity
of the data sample using the expected cross sections (absolute normalization) except
for the W + jets sample which is normalized on the ”untagged sample” to the data,
taking into account all the other backgrounds. The backgrounds labeled as “other”
in the figure are dominated by single-top production. Also shown is the contribution
expected for standard model WH production with mH = 115 GeV, multiplied by a
factor 10.



CHAPTER VI

Multivariate Analysis

This analysis is challenged by the overwhelming background events, particularly

the W + bb̄ events which are irreducible to WH. Even when the optimized set of

event selection criteria is applied, the signal significance S/
√
B of W +2jet events is

∼ 0.069, which is increased to ∼ 0.146 with one jet b-tagged and ∼ 0.210 with two jet

b-tagged. To maximize the sensitivity of this analysis, we explore two multivariate

analysis techniques, the Matrix Element Method (ME) and Artificial Neural Net-

work (ANN), to further discriminate the Higgs signal from background events. The

description of the Matrix Element Method as well as the discriminant calculations

is given in Section 6.1. The ME discriminant is used as one of the input variables

to the Artificial Neural Network. The optimization of the neural network and its

implementation details are summarized in Section 6.2.

6.1 Matrix Element Method

6.1.1 Introduction to the Method

Given that the set of reconstructed four-momenta of the physical objects in the

final state is ~x, the test on the hypothesis that an event is a signal event, is built as

a Bayesian posterior probability

(6.1) P (S|~x) =
PS(~x)

PS(~x) + PB(~x)

113
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where P (S|~x) is the test for an event with final states ~x to be a signal event, PS(~x)

and PB(~x) are the probability density functions for a signal and background event to

appear in final states ~x. The test is maximal when the set of variables ~x contains all

the relevant information that distinguishes between signal and background events.

The Matrix Element Method defines event discriminant of signal against back-

ground as Ds(~x) = P (S|~x) and makes use of all the available kinematic information

in the event. The probability density functions can be numerically calculated based

on the normalized differential cross sections of their corresponding physics processes.

The differential cross sections are proportional to the parton-level matrix elements

of the processes in the calculation, hence the name Matrix Element Method.

6.1.2 Event Probability Density Function

The event probability density function for a physics process is defined as the

properly normalized differential cross section with reconstructed four-momenta ~x,

(6.2) P (~x) =
1

σ
× dσ

d~x

where dσ(~x) is the differential cross section at the reconstructed level, defined as

(6.3) dσ(~x) =
∑

i,j

∫

d~y[fi(q1, Q
2)dq1×fj(q2, Q

2)dq2×
dσhs,ij

d~y
×W (~x, ~y)×Θparton(~y)] ,

with the terms explained below.
∑

i,j

is the sum over the initial parton flavors in the hard scatter collision. For

instance, the combinations of partons ij like ud̄, cs̄, d̄u or s̄c in pp̄ collisions can

produce W+H events via their annihilation.

fi(q1, Q
2) and fj(q2, Q

2) are the parton distribution functions of partons i and

j, which respectively carry momentum of q1 and q2. They are evaluated at the

factorization scale Q2 using leading-order PDFs of CTEQ6 [105] with LHAPDF

[106] as the interface.
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dσhs,ij

d~y
is the differential cross section of the hard scatter collision as a function

of four momenta ~y at parton level. It is proportional to the square of the matrix

element, as

(6.4) dσhs =
(2π)4

4
√

(q1q2)2 −m2
1m

2
2

|M|2dΦn(~y)

where the first term is the flux factor, dΦn(~y) is the n-body phase space factor of

which n = 4 for two jet events, and M is the matrix element. In this analysis,

the matrix elements are generated using MadGraph [107] at leading order. A total

of 8 different matrix elements in the 2 → 4 processes are used, as shown in Fig.

6.1. For t-channel single top production, tq is assigned as the final state for 2 → 4
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Figure 6.1: The corresponding Feynman diagrams of the leading-order matrix elements used in the
calculation of event probability density functions. Upper row: ud→tb, ub→td; Middle
row: ud→Wbb, sg→Wcg, ud→Wgg. Lower row: uu→WW , ud→WZ, ud→WH .

diagram. The processes Wgg, Wcg and Wbb are chosen for W + jets because they

give the largest cross sections after applying the b-tagging efficiency when generated
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by MadGraph.

W (~x, ~y) is the transfer function which stands for the conditional probability of the

reconstructed states with ~x given the parton-level states ~y. The transfer function is

parameterized using simulated events for each object type such as jet, electron and

muon, as well as for the different detector regions. The jet transfer functions [108]

are considered to be the energy difference between the parton and the jet with angles

well measured, as

(6.5) Wjet(~x, ~y) = W (Ejet − Eparton) × δ(Ωjet − Ωparton)

where W (Ejet−Eparton) are parameterized as double Gaussian functions. An example

of the energy difference for light jets, b jets and soft-muon-tagged b jets is shown

in Fig. 6.2. The electron transfer function [109] is assumed to be a function of

Figure 6.2: Energy difference between a reconstructed jet and its matched parton for three types
of jets for all detector regions and all jet energies.

reconstructed electron energy Ee, parton-level electron energy Ep and production
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angle θ with respect to the beam axis, as

(6.6) Welectron(~x, ~y) = W (Ee, Ep, θ) × δ(Ωe − Ωp)

where W (Ee, Ep, θ) is a Gaussian function with its width dependent on the electron

energy. The muon transfer function [110] [111] is determined as functions of ∆( q
pT

) =

( q
pT

)µ − ( q
pT

)p and ηCFT . Similarly,

(6.7) Wµ(~x, ~y) = W (∆(
q

pT
), ηCFT ) × δ(Ωµ − Ωp)

where W (∆( q
pT

), ηCFT ) is Gaussian function with parameters determined by fitting

1/pT .

Θparton(~y) are the parton level cuts applied in order to avoid singularities in the

matrix element calculation. All differential cross sections are calculated with these

cuts, which are looser than those applied at the reconstructed level. They are sum-

marized as ∆R(qi, qj) > 0.5, pT (qi) > 6 GeV, |η(qi)| < 3.5 and no cuts are applied

to lepton or neutrino.

∫

d~ydq1dq2 is an integration over the phase space of final state partons with ~y and

initial parton momenta q1 and q2. There are in total 14 independent spatial degrees

of freedom for the lepton, neutrino, and two partons, giving

(6.8) d~y2 = dq1dq2d|p|`dΩ`d|p|νdΩνd|p|q1dΩq1d|p|q2dΩq2

However, 4 degrees of freedom are removed from the integration by the δ functions in

the two jet transfer functions, which assumes the angles of matched jets and partons

are well measured. Similarly, 2 more degrees of freedom are removed because of the

well measured lepton angles. According to energy and momentum conservation, 4

more degrees of freedom are removed by eliminating d|p|νdΩν and reducing dq1dq2

to dpz. The phase spaces for different physics processes are then

(6.9) d~yW+jets = drWd|pq1|d|pq2|dpsystem
z
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(6.10) d~ysingle top = drtopdrWd|pq2|dpsystem
z

(6.11) d~yWW = drWdrWd|pq2|dpsystem
z

(6.12) d~yWZ = drWdrZd|pq2|dpsystem
z

(6.13) d~yWH = drWdrHd|pq2|dpsystem
z

where drW , drtop and drH are used to uniformly sample a Breit-Wigner distribution

from the square of the invariant mass distribution for the W boson, top quark and

Higgs boson respectively. This minimizes the integration time because when the

invariant masses mlep,ν, mlep,ν,b and mb,b are far from the masses of W , t and H

boson, the contributions of the matrix elements for these processes are negligible

from the integration results. These multidimensional integrals are calculated using

the VEGAS algorithm [112] of Monte Carlo integration techniques as implemented

in the GNU Scientific Library [113].

The normalization constant σ in Eq. 6.2 is defined as the integration of the

differential cross section over the reconstructed level phase space, as

(6.14) σ =
∑

i,j

∫

d~xd~y

[

σi,j(~y)

~y
×W (~x, ~y) × Θcuts(~x)

]

where Θcuts(~x) represents the selection cuts at the reconstructed level, summarized

as the following:

• Lepton PT > 15 GeV

• Electron (muon) |η| < 1.1(2.0)

• Missing ET > 15 GeV
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• Leading jet PT > 25 GeV

• Leading jet |η| < 2.5

• Second jet PT > 20 GeV

• Second jet |η| < 3.5

These cuts, slightly different from the selection cuts in the data, are included in the

calculation to approximate the acceptance difference between signal and background

events. The statistical uncertainty from the Monte Carlo integration is less than 1%.

Although these are 13 dimensional integrals, the integration time is trivial since they

are performed once for all.

Note that practically there is no prior knowledge about assigning a parton to a

jet. The event differential cross section has to be modified as

dσ(l, j1, j2) = αj1→p1αj2→p2dσ(l, j1 → p1, j2 → p2)

+αj2→p1αj1→p2dσ(l, j2 → p1, j1 → p2)

(6.15)

where the α parameters in this analysis are determined using the b-tagging informa-

tion and tag rate functions. For example, given one jet tagged and the other one not

in the two jets events of Wcg hypothesis, the differential cross section would be

dσWcg(l, j1, j2) = εc(j1)(1 − εl(j2))dσWcg(l, j1 → c, j2 → g)

+εc(j2)(1 − εl(j1))dσWcg(l, j1 → g, j2 → c)

(6.16)

where εc and εl are the tag rate functions.

6.1.3 The Matrix Element Discriminant

The discriminant for WH signal event in this analysis is built as

(6.17) DWH(~x) =
PWH(~x)

PWH(~x) + PB(~x)
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where the background probability density function PB(~x) is defined as

PB(~x) =CWbbPWbb(~x) + CWcgPWcg(~x) + CWggPWgg(~x)

+CWWPWW (~x) + CWZPWZ(~x) + CtbPtb(~x) + CtqbPtqb(~x)

(6.18)

where CWbb, CWcg, CWgg, CWW , CWZ, Ctb and Ctqb are the relative background

fractions, which represent the contribution of each background process to the total

background and satisfy CWbb + CWcg + CWgg + CWW + CWZ + Ctb + Ctqb = 1.

The corresponding matrix elements for tt̄ and multijet events are not available

in this analysis. An approximation is performed by assigning these events to the

most similar background processes which have their dedicated matrix elements. The

discriminant distributions of tt̄ and multijet processes are compared to other back-

grounds with the least χ2 test. The results are shown in Tab. 6.1.3.

The background process without matrix element The most similar background process
tt→ ` + jets tb
tt→ `` tb
multijet Wbb, Wcg and Wgg

Table 6.1: For three of the background processes in the analysis, tt→ ` + jets, tt→ `` and multijet,
there is no dedicated matrix element. Using a χ2 we determined the background sample
with a matrix element which is most similar to each of the three. For the purpose of
determining the constants in the background probability density function tt→ ` + jets
and tt→ `` are treated as tb and multijet events are treated as W+jets.

The seven relative fractions of the background events can be optimized to give

the best sensitivity to the Higgs signal. However, it is time consuming to do the six

dimensional optimization. The CWW , CWZ, Ctb and Ctqb are fixed according to the

ratios of their expected number of events to those of the total background processes,

in both single and double b-tagged samples. The rest of CWbb, CWcg and CWgg are

optimized using a 2-dimensional grid search to find the values which would give the

best expected upper limit on σ(WH) × BR(H → bb̄) at 95% C.L.. Two examples

of optimization are shown in Fig. 6.3 and Fig. 6.4. The optimization is done
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Figure 6.3: Result of the two-dimensional grid optimization for the constants CWbb and CWcg in
the e+jets channel for single and double tagged events. The result shown is for a Higgs
mass of 115 GeV.
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Figure 6.4: Result of the two-dimensional grid optimization for the constants CWbb and CWcg in
the µ+jets channel for single and double tagged events. The result shown is for a Higgs
mass of 115 GeV.

separately in the electron and muon final states with single b-tagged and double

b-tagged jets, as well as averaged over different masses of the Higgs boson. The

optimized background fractions are summarized in Tab. 6.1.3. The relative large

values of Ctb are due to the contributions of tt̄ events. The discriminating power

would be improved by adding the corresponding matrix elements to the background

processes such as tt̄ and multijet events.

Note that an approach of adding b-tagging information directly into the dis-

criminant is tried and gives better performance without systematic uncertainties.

However, the method turns out to be affected by the large shape systematic due to

b-tagging information. It gives ∼ 8% worse performance and is thus abandoned.
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Optimized Background Fractions
1 tag 2 tags

Electron Muon Electron Muon
CWbb 0.254 0.443 0.583 0.481
CWcg 0.197 0.243 0.022 0.124
CWgg 0.394 0.172 0.043 0.074
CWW 0.023 0.023 0.002 0.002
CWZ 0.010 0.010 0.027 0.025
Ctb 0.092 0.079 0.314 0.286
Ctqb 0.030 0.030 0.009 0.009

Table 6.2: Background fractions chosen for each analysis channel. The CWbb, CWcg and CWgg

constants are obtained from an optimization for the best expected limit on the WH
cross section. The optimization is done separately for each Higgs mass, and we use an
average over the constants for the various Higgs masses in each of the four channels.

The W + 3jet event samples in the analysis are treated like W + 2jet events

by integrating over only the leading two jets with 2 → 4 matrix elements. The

distributions of ME discriminant for W +2jet events with mH = 115 GeV are shown

in Fig. 6.5. The data events are well described the simulated events. The WH

events are scaled up by a factor of 10 to be visible. They are clearly separated

from the other background events and peak at the value close to 1. The resulting

ME discriminants are used as one of the input variables to the Neural Network as

discussed in the next section.

6.2 Artificial Neural Network

6.2.1 The Architecture of the Network

The Artificial Neural Network (ANN) is further used in this analysis to correlate

the kinematic information of the physics objects to separate the signal events from

the background events. ANN consists of groups of interconnected artificial neurons;

each neuron gives a certain response to input signals. The entire network maps a set

of input variables ~x into a set of output variables ~y, where the mapping is nonlinear if

any of the neurons has nonlinear response to its input. The feed-forward multilayer
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perceptron of the TMultiLayerPerceptron class implemented in TMVA [114] of the

ROOT framework [115] is selected for this analysis. The neuron response functions

in the packages are provided with ρ = α× κ, where the synapsis function κ could be

any of linear sum, squared sum and absolute sum; the activation function α could

be any of linear, sigmoid, tanh and radial functions.

The structure of the network is 8 : 8 : 1, where 8 nodes in the first layer correspond

to 8 input variables, the second layer is the hidden layer with 8 nodes, and one node

of the final layer corresponds to the output. The desired output of the network is

set to 1 for the signal and 0 for the background.

6.2.2 The Input Variables

The input variables have to be carefully selected for the neural network in order to

achieve its maximal performance. In principle, the selected variables should describe

the full kinematic information of the event and also be capable of discriminating the

signal from the background. The discriminating power in this analysis is quantified

by varying the values of input variables by 10% RMS. The difference of the output

represents the discriminating power of the input variable. An example of studies

on the nine input variables is shown in Fig. 6.6. As can be seen in the plots,

the η(leadingjet), η(secondleadingjet) andmT (lepton, E/T ) have little discrimination

power and are thus discarded. Therefore, combined the dijet invariant mass, ME

discriminant and the rest of the six variables, the list of final input variables to the

neural network is:

• invariant mass of dijet mT (jet1, jet2)

• Matrix Element discriminant

• pT (leading jet), pT (second leading jet)
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• ∆R(jet1, jet2), ∆φ(jet1, jet2)

• pT (lepton− E/T system)

These input variables, except for the ME discriminant which has been shown the

previous section, are shown separately for both electron and muon final states with

W + 2jet events, as in Fig. 6.7, 6.8, 6.9 and 6.10. The single b-tagged events are

shown in Fig. 6.11, 6.12, 6.13 and 6.14, while the double b-tagged events are shown

in Fig. 6.15, 6.16, 6.17 and 6.18. The distributions of the data events are consistent

with those of the simulated events.

6.2.3 The Neural Network Training and the Output

The training of the neural network is back propagated using the Broyden, Fletcher,

Goldfarb, Shanno (BFGS) algorithm, which is built in TMVA. Given that the desired

output of the neural network is ŷ (1 for the signal, 0 for the background), the error

on the agreement of the network response with the desired output is defined as

(6.19) E(~x1, ..., ~xN |~w) =

N
∑

i=1

1

2
(yi − ŷi)

2

where i is the ith event out of the total N training events, ~xi is the set input variables

for event i, yi is the output of the event i and ~w is the set of weights in the neural

network to be adjusted. The training process is to find the set of weights that

minimizes the error. The set of weights ~x is updated after each training epoch,

which is defined as a loop over all the training events.

In this analysis, WH and Wbb events are used as signal and background events

for the training. The samples are required to have the same size by reducing the

larger sample with an event weight. The training samples are respectively further

divided into two equal subsets, one called training events and the other called test

events. The test events are used to monitor the performance of the network. When
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the training error is decreasing but the test error is increasing, overtraining may

occur. The number of epochs for convergent training is finally selected to be 200,

with which the test error no longer decreases obviously as the number of training

epochs is increasing.

The neural networks are trained separately for Run IIa and Run IIb event samples,

electron and muon final states, single b-tagged and double b-tagged events and over

different Higgs boson masses. The training events are then removed from the event

samples used in the analysis. The data events and simulated events are finally fed

into the trained neural networks. The combined distributions of the neural network

output are shown in Fig. 6.21 (linear vertical scale) and Fig. 6.22 (logarithmic

vertical scale). The distributions of the data events are well described by those of

the simulated events. The WH signal events, scaled up by a factor of 10 to be visible,

are peaked at high values close to 1.0.
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Figure 6.5: Distributions of the Matrix Element discriminant. The data events are compared to the
simulated events for both single and double b-tagged jets. a) ME discriminant for the
single b-tagged events. b) ME discriminant for the double b-tagged events. c) Log scale
of figure (a). d) Log scale of figure (b). The simulation is normalized to the integrated
luminosity of the data sample using the expected cross sections (absolute normalization)
except for the W+ jets sample which is normalized on the ”pre-tag sample” to the data,
taking into account of all the other backgrounds. The WH expected contribution which
is scaled by a factor of 10 is peaking at high values of the ME discriminant as shown in
c) and d).
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Figure 6.7: Distributions of the input variables for the neural network, of the W+ 2 jet electron
(CC+EC) analysis with the Run IIb data set before b-tagging: a) pT of leading jet, b)
pT of sub-leading jet, c) pT of e−E/T system, d) dijet invariant mass.
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Figure 6.8: Distributions of the input variables for the neural network, of the W+ 2 jet muon
analysis with the Run IIb data set before b-tagging: a) pT of leading jet, b) pT of
sub-leading jet, c) pT of µ-E/T system, d) dijet invariant mass.
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Figure 6.9: Distributions of the input variables for the neural network and the neural network
output of the W+ 2 jet electron (CC+EC) analysis with the Run IIb data set, before
b-tagging: a) pT of dijet system, b) ∆φ between two leading jets, c) ∆R between two
leading jets, d) neural network output (using the mH = 115 GeV, double b-tag neural
network).
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Figure 6.10: Distributions of the input variables for the neural network and the neural network
output of the W+ 2 jet muon analysis with the Run IIb data set, before b-tagging: a)
pT of dijet system, b) ∆φ between two leading jets, c) ∆R between two leading jets,
d) neural network output (using the mH = 115 GeV, double b-tag neural network).
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Figure 6.11: Distributions of the input variables for the neural network of the W+ 2 jet electron
(CC+EC) analysis with the Run IIb data set, for events with a single b-tag (exclusive):
a) pT of leading jet, b) pT of sub-leading jet, c) pT of e-E/T system, d) dijet invariant
mass.
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Figure 6.12: Distributions of the input variables for the neural network of the W+ 2 jet muon
analysis with the Run IIb data set, for events with a single b-tag (exclusive): a) pT of
leading jet, b) pT of sub-leading jet, c) pT of µ-E/T system, d) dijet invariant mass.
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Figure 6.13: Distributions of the input variables for the neural network and the neural network
output of the W+ 2 jet electron (CC+EC) analysis with the Run IIb data set, for
events with a single b-tag (exclusive): b-tagging: a) pT of dijet system, b) ∆φ between
two leading jets, c) ∆R between two leading jets, d) neural network output (using the
mH = 115 GeV, single b-tag neural network).
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Figure 6.14: Distributions of the input variables for the neural network and the neural network
output of the W+ 2 jet muon analysis with the Run IIb data set, for events with a
single b-tag (exclusive): b-tagging: a) pT of dijet system, b) ∆φ between two leading
jets, c) ∆R between two leading jets, d) neural network output (using the mH = 115
GeV, single b-tag neural network).
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Figure 6.15: Distributions of the input variables for the neural network of the W+ 2 jet electron
(CC+EC) analysis with the Run IIb data set, for events with a double b-tag: a) pT of
leading jet, b) pT of sub-leading jet, c) pT of e-E/T system, d) dijet invariant mass.
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Figure 6.16: Distributions of the input variables for the neural network of the W+ 2 jet muon
analysis with the Run IIb data set, for events with a double b-tag: a) pT of leading
jet, b) pT of sub-leading jet, c) pT of µ-E/T system, d) dijet invariant mass.
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Figure 6.17: Distributions of the input variables for the neural network and the neural network
output of the W+ 2 jet electron (CC+EC) analysis with the Run IIb data set, for
events with a double b-tag: b-tagging: a) pT of dijet system, b) ∆φ between two
leading jets, c) ∆R between two leading jets, d) neural network output (using the
mH = 115 GeV, double b-tag neural network).
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Figure 6.18: Distributions of the input variables for the neural network and the neural network
output of the W+ 2 jet muon analysis with the Run IIb data set, for events with a
double b-tag: b-tagging: a) pT of dijet system, b) ∆φ between two leading jets, c) ∆R
between two leading jets, d) neural network output (using the mH = 115 GeV, double
b-tag neural network).
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Figure 6.19: Distributions (Log-y) of the input variables for the neural network and the neural
network output, of the W+ 2 jet electron analysis with the Run IIb data set, for
events with a double b-tag: b-tagging: a) pT of dijet system, b) ∆φ between two
leading jets, c) ∆R between two leading jets, d) neural network output (using the
mH = 115 GeV, double b-tag neural network).
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Figure 6.20: Distributions (Log-y) of the input variables for the neural network and the neural
network output, of the W+ 2 jet muon analysis with the Run IIb data set, for events
with a double b-tag: b-tagging: a) pT of dijet system, b) ∆φ between two leading jets,
c) ∆R between two leading jets, d) neural network output (using the mH = 115 GeV,
double b-tag neural network).
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Figure 6.21: Distributions (with linear vertical scale) of the neural network output compared with
the simulated expectation. a) before b-tagging for the single-tag NN. b) before b-
tagging for the double-tag NN. c) in the single b−tagged sample for the single-tag
NN. d) in the double b−tagged sample for the double-tag NN ; The simulation is
normalized to the integrated luminosity of the data sample using the expected cross
sections (absolute normalization) except for the W+ jets sample which is normalized
on the ”pre-tag sample” to the data, taking into account all the other backgrounds.
The WH expected contribution for mH = 115 GeV, multiplied by a factor 10, is
peaking at high values of the NN output as shown in c) and d).
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Figure 6.22: Distributions (with logarithmic vertical scale) of the neural network output compared
with the simulated expectation. a) before b-tagging for the single-tag NN. b) before
b-tagging for the double-tag NN. c) in the single b−tagged sample for the single-tag
NN. d) in the double b−tagged sample for the double-tag NN ; The simulation is
normalized to the integrated luminosity of the data sample using the expected cross
sections (absolute normalization) except for the W+ jets sample which is normalized
on the ”pre-tag sample” to the data, taking into account all the other backgrounds.
The WH expected contribution for mH = 115 GeV, multiplied by a factor 10, is
peaking at high values of the NN output as shown in c) and d).



CHAPTER VII

Results of WH Production Search

There is no evidence of the Higgs boson observed in the data. Thus we use

the output of the neural network to set upper limits on the cross section of pp̄ →

WH → lνbb̄. The systematic uncertainties as well as their correlations are taken

into account when the limits on the production cross sections are evaluated using a

modified frequentist approach. Both the experimental and theoretical uncertainties

are discussed in Section 7.1. The method of setting upper bounds on the cross

sections is described in Section 7.2. A brief summary on this analysis and the results

are made in the last Section 7.3.

7.1 Systematic Uncertainties

The experimental systematic uncertainties are obtained by shifting the central

values of the variables with ±σ, where σ is the standard deviation representing the

size of the uncertainty. All shifted variables are propagated through the full analysis

to the distributions of the final variable. If the ratio of the shifted final variable

to the original one is flat over the distributions, a constant number of systematic

uncertainty is used in the limit calculation. Otherwise, if the ratio is not constant

over the distributions, it is fitted with a polynomial function, which is then used as

a shaped systematic uncertainty in the limit calculation.
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The correlations of the systematic uncertainties among different event samples are

summarized in Tab. 7.1, with the naming convention explained in Tab. 7.2. Most

of the uncertainties in the 16 different event samples are correlated except for those

specific to lepton type (electron or muon) and are derived for W + 2jet or W + 3jet

events. The correlations are maintained through the limit calculation.

Various systematic uncertainties for the different physics processes with single and

double b-tagged events are listed in Tables 7.3, 7.4, 7.5 and 7.6. They are summarized

as:

• Uncertainties on the efficiencies of the triggers, as described in Section 5.1.1,

are determined using the data samples. For the triggers used for the EM skims,

the value is taken from the statistical error on the measurement of these trigger

efficiencies, and determined to be ∼ 4%. For the triggers used for MU skims,

the uncertainty is in addition estimated by comparing the events fired by single

muon triggers to the events fired by all the triggers, and finally added up to

∼ 5%. The dependence on the shapes is also confirmed to be flat. The uncer-

tainties on the efficiencies of lepton identification are determined in a similar

way and estimated to be ∼ 5%.

• Uncertainties of jet identification, JES and JetSSR add up to 6%. The reweight-

ing on the jet angular distributions due to W + jets modeling gives another 5%

to W + jets events. An additional uncertainty of 7% is added to the W + jets

background accounting for the difference in the dijet mass distribution between

data events and simulated events. The uncertainties on both the jet reweighting

and dijet mass are shape dependent.

• Uncertainty of jet taggability is 3%. For the b-tagging efficiencies, it is 4% on
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average for each heavy flavor jet, while it could be up to 25% for the light jets

due to rescaling procedure of the scale factor to W + jj event samples. This

uncertainty is translated into 7% uncertainty on the total background of the

single b-tagged events and is negligible for the double b-tagged events.

• Uncertainty on the cross sections of WH and diboson production is 6%, while

it is ∼ 11% for top quark production. Due to the normalization of W + jets as

well as calculating HF factors, an uncertainty of 20% is assgined to W+h.f.jets

events.

• Uncertainty on the multijet events is estimated by a variation of ±15% (the

uncertainty of the multijet fake rates) in the events sample where the lepton

is back-to-back relative to a jet in the transverse plane. The uncertainty is

determined to be ∼ 26%.

• The overall experimental systematic uncertainty for WH is approximately 14%

for single and double b-tagged events. The uncertaintly on luminosity reweight-

ing is ∼ 5%, while the total uncertainty on luminosity measurement of 6.1% is

treated separatedly in the analysis.

7.2 Limits on WH Production Cross Sections

The number of events (Tab. 5.16) in the data samples, as well as the distributions

of the dijet mass (Fig. 5.10 and 5.9) and neural network output (Fig. 6.21 and 6.22),

are well described by the simulated background events. There is no excess of the
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electron electron electron electron muon muon muon muon
2jet-1b 2jet-2b 3jet-1b 3jet-2b 2jet-1b 2jet-2b 3jet-1b 3jet-2b
IIa IIb IIa IIb IIa IIb IIa IIb IIa IIb IIa IIb IIa IIb IIa IIb

DZero Lumi x x x x x x x x x x x x x x x x
Lumi x x x x x x x x x x x x x x x x
JESID x x x x x x x x x x x x x x x x
bTag Tagga HF x x x x x x x x x x x x x x x x
bTag Tagga LF WH x x x x x x x x x x x x x x x x
EMID x x x x x x x x
Bkgd Xsec EW x x x x x x x x x x x x x x x x
Jet NN MMLM x x x x x x x x
Bkgd Xsec NN HF WH x x x x
Bkgd WbbRW NN shape x x x x x x x x
Bkgd QCDev x x x x x x x x
Bkgd WjjRW NN shape x x x x x x x x
Bkgd Xsec Top x x x x x x x x x x x x x x x x
Bkgd Xsec singletop x x x x x x x x x x x x x x x x
Jet DJ MMLM x x x x x x x x
Bkgd Xsec DJ HF WH x x x x
Bkgd WbbRW DJ shape x x x x x x x x
Bkgd WjjRW DJ shape x x x x x x x x
Bkgd Xsec NN HF WH IIb x x x x
Bkgd Xsec DJ HF WH IIb x x x x
MUTrigger WH x x x x x x x x
MUID x x x x x x x x
Bkgd QCDmv x x x x x x x x
WHNLO x x x x x x x x x x x x x x x x

Table 7.1: Sources of the systematic uncertainties of the sixteen event samples. The naming conven-
tions is explained in the Table 7.2. The terms labeled with × means they are associated.
Those sources with names starting with Bkgd apply only to the background, while the
other apply to both the background and signal, except for the last error of the table is
only for WH .
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Collie name Explanation, see following tables for the processes to which they apply

DZero Lumi Part of the Luminosity uncertainty coming from Dzero
Lumi Part of the Luminosity uncertainty correlated with CDF
JESID JES, JER and Jet-id uncertainties added in quadrature
bTag Tagga HF Tagging and Taggability uncertainties added in quadrature, for heavy flavor
bTag Tagga LF WH Tagging and Taggability uncertainties added in quadrature, for direct light tagging
EMID EM-id, -reconstruction, -scale, -smearing and -trigger added in quadrature
Bkgd Xsec EW Diboson cross section uncertainties
Jet NN MMLM “additional” dijet mass shape uncertainty for 2 jet sample
Bkgd Xsec NN HF WH uncertainty on Heavy flavor K-factor in Run IIa for 2 jet sample
Bkgd WbbRW NN shape uncertainty on Wbb reweighting for 2 jet sample
Bkgd QCDev uncertainty on electron QCD background, annticorrelated with Wjj normalization
Bkgd WjjRW NN shape uncertainty on Wjj reweighting for 2 jet sample
Bkgd Xsec Top tt̄ cross section uncertainty
Bkgd Xsec singletop single top cross section uncertainty
Jet DJ MMLM “additional” dijet mass shape uncertainty for 3 jet sample
Bkgd Xsec DJ HF WH uncertainty on Heavy flavor K-factor in Run IIa for 3 jet sample
Bkgd WbbRW DJ shape uncertainty on Wbb reweighting for 3 jet sample
Bkgd WjjRW DJ shape uncertainty on Wjj reweighting for 3 jet sample
Bkgd Xsec NN HF WH RunIIb uncertainty on Heavy flavor K-factor in Run IIb for 2 jet sample
Bkgd Xsec DJ HF WH RunIIb uncertainty on Heavy flavor K-factor in Run IIb for 3 jet sample
MUTrigger WH uncertainty on muon trigger efficiency
MUID muon-id, -reconstruction, and -smearing added in quadrature
Bkgd QCDmv uncertainty on muon QCD background, annticorrelated with Wjj normalization
WHNLO uncertainty on WH higher order kinematics (applies only to the signal)

Table 7.2: The naming convention of the systematic uncertainties in Tab. 7.1. Those sources with
names starting with Bkgd apply only to the background, while the other apply to both
the background and signal, except for the last entry of the table is only for WH .
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WH WW/WZ/ZZ Wbb/Wcc Wjj/Wcj tt̄ tb/tqb multijet
EM Trigger eff. 2.9 4.0 3.0 3.0 3.1 4.1
EM ID/Reco eff. 4.2 4.2 4.2 4.2 4.2 4.2
EM energy/smearing 3.0 3.0 3.0 3.0 3.0 3.0
Jet ID/Reco eff. 3.0 3.0 3.0 3.0 3.0 3.0
Jet Energy Scale 2.0 5.0 5.0 2.0 3.5 5.0
Jet SSR 2.0 6.0 4.0 3.0 5.0 2.0
ALPGEN reweighting(shape) 5.0 5.0
Dijet mass (shape) 7.0 7.0
Jet taggability 3.0 3.0 3.0 3.0 3.0 3.0
NN-tagger S.F. 5.0 5.0 6.0 15.0 1.0 1.5
Cross Section 6.0 6.0 10.0 12.0
Normalization 20.0 5.0
Total uncertainty 13.1 15.5 25.0 20.3 17.4 17.4 26.0

Table 7.3: Systematic uncertainties (%) for different physics processes containing electron in the
final states with single jet b-tagged. The total uncertainties are also summarized in the
table.

WH WW/WZ/ZZ Wbb/Wcc Wjj/Wcj tt̄ tb/tqb multijet
EM Trigger eff. 3.6 4.0 3.0 3.0 3.7 4.5
EM ID/Reco eff. 4.2 4.2 4.2 4.2 4.2 4.2
EM energy/smearing 3.0 3.0 3.0 3.0 3.0 3.0
Jet ID/Reco eff. 3.0 3.0 3.0 3.0 3.0 3.0
Jet Energy Scale 2.0 3.5 3.0 2.0 3.0 3.0
Jet SSR 2.0 3.0 6.0 2.0 5.0 2.0
ALPGEN reweighting(shape) 5.0 5.0
Dijet mass (shape) 7.0 7.0
Jet taggability 3.0 3.0 3.0 3.0 3.0 3.0
NN-tagger S.F. 6.0 8.0 10.0 25.0 6.5 6.5
Cross Section 6.0 6.0 10.0 12.0
Normalization 20.0 5.0
Total uncertainty 14.9 15.8 26.4 28.4 17.4 17.7 26.0

Table 7.4: Systematic uncertainties (%) for different physics processes containing electron in the
final states with double jet b-tagged. The total uncertainties are also summarized in the
table.
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WH WW/WZ/ZZ Wbb/Wcc Wjj/Wcj tt̄ tb/tqb multijet
Muon Trigger eff. 5.0 5.0 5.0 5.0 5.0 5.0
Muon (iso.) ID/Reco eff. 3.0 3.0 3.0 3.0 3.0 3.0
Muon track match eff. SF 2.0 2.0 2.0 2.0 2.0 2.0
Muon energy/smearing 2.0 2.0 2.0 2.0 2.0 2.0
Jet ID/Reco eff. 3.0 3.0 3.0 3.0 3.0 3.0
Jet Energy Scale 2.0 5.0 5.0 2.0 3.5 5.0
Jet SSR 2.0 6.0 4.0 3.0 5.0 2.0
ALPGEN reweighting(shape) 5.0 5.0
Dijet mass (shape) 7.0 7.0
Jet taggability 3.0 3.0 3.0 3.0 3.0 3.0
NN-tagger S.F. 5.0 5.0 6.0 15.0 1.0 1.5
Cross Section 6.0 6.0 10.0 12.0
Normalization 20.0 5.0
Total uncertainty 13.9 15.8 25.5 20.9 17.4 17.7 26.0

Table 7.5: Systematic uncertainties (%) for different physics processes containing muon in the final
states with single jet b-tagged. The total uncertainties are also summarized in the table.

WH WW/WZ/ZZ Wbb/Wcc Wjj/Wcj tt̄ tb/tqb multijet
Muon Trigger eff. 5.0 5.0 5.0 5.0 5.0 5.0
Muon (iso.) ID/Reco eff. 3.0 3.0 3.0 3.0 3.0 3.0
Muon track match eff. SF 2.0 2.0 2.0 2.0 2.0 2.0
Muon energy/smearing 2.0 2.0 2.0 2.0 2.0 2.0
Jet ID/Reco eff. 3.0 3.0 3.0 3.0 3.0 3.0
Jet Energy Scale 2.0 3.5 3.0 2.0 3.0 3.0
Jet SSR 2.0 3.0 6.0 2.0 5.0 2.0
ALPGEN reweighting(shape) 5.0 5.0
Dijet mass (shape) 7.0 7.0
Jet taggability 3.0 3.0 3.0 3.0 3.0 3.0
NN-tagger S.F. 6.0 8.0 10.0 25.0 6.5 6.5
Cross Section 6.0 6.0 10.0 12.0
Normalization 20.0 5.0
Total uncertainty 15.3 16.0 26.8 28.8 17.4 17.7 26.0

Table 7.6: Systematic uncertainties (%) for different physics processes containing muon in the final
states with double jet b-tagged. The total uncertainties are also summarized in the table.
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Higgs boson signal over the background events. Therefore, using the neural network

output of W + 2jet events for both the data and simulated samples, the limits on

the production cross sections of pp̄→WH → lνbb̄ are calculated through a modified

frequentist method with Poisson log-likelihood test [116] [117].

7.2.1 The Limit Calculation Method

The so called CLs method [116] provides an efficient procedure for combining

independent results with small statistics to test the hypotheses of the Higgs boson’s

existence at a given mass. The key features of the method are the modified frequentist

confidence level CLs and the Poisson log-likelihood ratio test statistic.

Given that for a single bin i, the predicted signal and background numbers are si

and bi, and the observed number in the data is di, the ratio of Poisson likelihoods

can be built as

(7.1) Qi =
P (data|s+ b)

P (data|b) =
e−(si+bi)(si + bi)

di

di!
/
e−bibdi

i

di!
.

The total N bins can thus be combined into single ratio

(7.2) Q =
N
∏

i=1

Qi .

In this way, the distributions of different event samples, such as single and double b-

tagged samples, are able to be combined together straightforwardly. An alternative

form called log-likelihood ratio (LLR) is introduced to simplify the computation, as

(7.3) χd =
N

∑

i=1

χdi
=

N
∑

i=1

−2lnQi =
N

∑

i=1

2[si − diln(1 +
si

bi
)] .

Note that there is singularity in the test statistic in case of zero background expec-

tation bi = 0.
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The frequentist confidence level for excluding the signal+background (s + b) hy-

pothesis is

(7.4) CLs+b = Ps+b(χ ≤ χd) =

∫ χd

−∞

dPs+b

dχ
dχ .

However, the use of CLs+b alone may even lead to exclusion of the background, if

there are few background events observed. The confidence level is modified to be

(7.5) CLs =
CLs+b

CLb

where CLb = Pb(χ ≤ χd) =
∫ χd

−∞
dPb

dχ
dχ. The Higgs signal is excluded at a confidence

level of 1−CLs. The dPs+b/dχ and dPb/dχ are defined as the distributions of Poisson

probability with a mean value of s + b or b. The distributions could be sampled

via many pseudo-experiments simulating the possible outcomes. The computation

time is shortened by instead computing the Poisson probability distribution function

(PDF) for each instance of the test statistic and convoluting these PDFs.

The systematic uncertainties are incorporated by smearing the PDFs of Ps+b and

Pb with Gaussian functions. In practice, for each pseudo-experiment, the mean value

of the PDF is recalculated as

(7.6) µnew = µ(1 +
∑

k

Gk)

where Gk is the random value from an individual Gaussian distribution of uncertainty

source k. The other practical method is to incorporate uncertainties via a Gaussian

approximation into the explicit calculation of PDFs. More details can be found

in [117]. The correlated uncertainty must be maintained the same among different

event samples for each pseudo-experiment. The above procedures have the effect

of broadening the PDFs and degrading the separation power. A so called profile-

likelihood technique [118] is introduced to reduce the impact by maximizing the
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background PDFs over the possible space to find the model that best fits the data.

Note that in order to speed up computation and reduce the uncertainty due to

histogram shape, the histograms of the final variables are rebinned and smoothed via

the 353QH algorithm [119] and the Gaussian adaptive kernel estimation algorithm

[120].

The limits on the production cross section in this analysis are quoted at 95% C.L.

(CLs = 5%). The production rate of WH is RWH = σWH × L × εacceptance, where

σWH , L and εacceptance are the cross section, luminosity and signal acceptance. If the

criteria that CLs ≤ 5% is not achieved, the cross section is scaled up by a ratio Xf

to recalculate the limits. This is done iteratively by adjusting the Xf up step by step

until the CLs ≤ 5% is satisfied. Two values of CLs, expected and observed, are used

in the analysis. The expected limits are calculated simply by substituting d with b

in Eq. 7.5.

7.2.2 The Upper Limits on WH Production Cross Section

The limits on the production cross section of σ(pp̄ → WH) × BR(H → bb̄) are

calculated for a total of 16 event samples according to combinations of Run IIa and

Run IIb, electron and muon, single and double b-tagged jets, as well as W +2jet and

W + 3jet. Note that since neural network is trained against only Wbb background,

the dijet mass is used instead of the NN output in the limit calculation for W +3jet

event samples. The mass of the Higgs boson is searched in the range of 100 − 150

GeV with each mass point separated by 5 GeV.

The ratios of the cross section limits to the Standard Model prediction for mH =

115 GeV are shown in Tab. 7.7. Compared to the previous analysis on 1 fb−1 of data

from the Run IIa dataset, the expected (observed) limit improves by ∼ 14% (43%)

based from the event selection. Both the individual uses of the Neural Network
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Analysis Dijet Mass Neural Network Matrix Element ME + NN

1.0 fb−1 Run IIa results (March 2007) 14.2 (18.8) – ( – ) – ( – ) – ( – )

Run IIa 2jet 12.4 (10.7) 10.9 (10.8) 10.6 (10.1) 10.5 (10.1)
Run IIa W+2/3jet 11.8 (12.2) 10.5 (11.7) 10.1 (10.9) 10.0 (10.6)
Run IIb W+2jet 10.3 (13.0) 8.9 (9.0) 8.3 (7.8) 8.1 (8.7)
Run IIb W+2/3jet 9.7 (11.3) 8.7 (8.2) 8.1 (7.3) 7.8 (7.6)
Run IIa/b W+2jet 7.9 (8.8) 7.2 (7.3) 6.6 (6.3) 6.6 (7.4)
Run IIa/b W+2/3jet 7.5 (8.5) 6.9 (7.1) 6.4 (6.1) 6.4 (6.7)

Table 7.7: The ratios of the expected (observed) production cross section limits to the Standard
Model prediction, where the cross section is σ(pp̄ → WH)×BR(H → bb̄) with the Higgs
boson mass mH = 115 GeV. The electron and muon, single and double b-tagged have
been combined for all the numbers in the table. The 1.0 fb−1 Run IIa results (March
2007) are the previous cut-based analysis without multivariate analysis techniques.

and the Matrix Element methods significantly enhance the sensitivity of the analysis

to the Higgs boson signal. Combining the Matrix Element and Neural Network

approaches further lowers the expected (observed) cross section limit from 7.5 (8.5)

to 6.4 (6.7), corresponding to an improvement of at least 15% relative to the cut-

based only analysis.

The sensitivity of this analysis to the Higgs boson signal is interpreted via the

distributions of log-likelihood ratios (LLR), as shown in Fig. 7.1(a). The capability

of discriminating the signal+background (s+b) hypothesis from the background only

(b) hypotheses is reflected by the separation between LLRs+b and LLRb curves. The

fluctuation of the background only hypothesis, including the systematic uncertainty,

is represented by the bands of the LLRb, of which the width for 1σ and 2σ is shown

in the plot. The distribution of LLRobs with respect to LLRs+b and LLRb indicates

how much the data distribution is like signal+background or background only. The

significance of the LLRobs in this analysis is still limited by statistics, within 1σ

standard deviation.

The cross section limits on σ(pp̄ → WH) × BR(H → bb̄) with mH range 100

− 150 GeV are summarized in Tab. 7.8 and Fig. 7.1(b). The observed limits are
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consistent with the expected ones. The ratios of the cross sections limits increase

with the Higgs boson mass, as expected from the discussions in Section 2.2.2. The

cross section limits are at least 4 times above the prediction of the Standard Model

theory. The observed (expected) ratio for the Higgs boson with a mass of 115 GeV

is 6.7 (6.4), which translates to a cross section of ∼ 0.8 pb compared to the Standard

Model expectation of 0.13 pb.

mH(GeV ) 100 105 110 115 120 125 130 135 140 145 150

σexpected/σSM 5.3 4.9 5.8 6.4 7.5 9.5 13.7 16.1 23.0 36.1 56.0
σobserved/σSM 5.2 4.2 5.1 6.7 8.2 9.8 16.7 17.3 23.3 43.7 52.4

Table 7.8: The ratios of 95% C.L. expected and observed limits on σ(pp̄ → WH)×B(H → bb̄), to
their corresponding Standard Model prediction, as a function of the Higgs boson mass
mH .

7.3 Conclusions

A search for pp̄→WH → lνbb̄ has been performed with 2.7 fb−1 of data collected

at the DØ detector between April 2002 and April 2008. The dataset is split into Run

IIa and Run IIb, with Run IIb utilizing an upgrade of the DØ detector in 2006 with

better tracking and triggers.

To select events of the Higgs boson associated with a W boson, the events are

first required to fire specific DØ triggers. Those events with an isolated high pT

electron or muon, a high missing ET and 2 or 3 energetic jets in the final state,

are selected into different event samples according to lepton types and number of

jets. The DØ neural network b-jet tagging algorithm is used to further select events

into orthogonal event samples, one with exactly one jet tagged as a Tight b jet and

the other with two jets tagged as oldLoose b jets. The kinematic distributions and

number of events in the data samples are consistent with the simulated events of the
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Standard Model processes.

We explored multivariate analysis techniques to improve the Higgs signal sensi-

tivity. The Matrix Element method correlates the parton level calculation of physics

processes with all available kinematic information in the event to discriminate signal

from background. The Matrix Element discriminant, as well as seven relevant vari-

ables, are further used as the input to a neural network to better separate the Higgs

signal.

No evidence of the Higgs boson is observed. Instead, upper limits on the Higgs

production cross section are calculated using the modified frequentist CLs method.

We present the limits in the form of a ratio of the cross section limit σ(pp̄→WH)×

BR(H → bb̄) to the Standard Model expectation; the observed (expected) limit for

the Higgs boson with mH = 115 GeV is 6.7 (6.4). The sensitivity of this analysis

has improved relative to the previous analysis due to the improved event selection

and multivariate techniques. The results of the WH search with mH ranging from

100 GeV to 150 GeV, significantly contribute to the 0.9 − 4.2 fb−1 results on the

Standard Model Higgs production in March 2009. The DØ combination results are

shown in Fig. 7.2 [19], and the Tevatron combination results are shown in Fig. 7.3

[20].

The sensitivity of the WH search in the future could be further improved in many

ways, some of which are work in progress:

• Integrated luminosity of the data. So far 6.1 fb−1 of data has been collected

at the DØ detector till up to June 2009, of which 5 fb−1 is being analyzed.

Significantly more data will be delivered by the Tevatron through the year 2010.

The statistics might be sufficient for an exclusion or evidence on the low mass

Higgs boson.
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• More triggers could be added for events with electron in the final states. In

this analysis, Single EM and EM+JET triggers are applied on Run IIa dataset,

while only Single EM triggers are used for Run IIb dataset. For future analysis,

Single EM and EM+JET triggers or even more could be used through all the

dataset. This would bring at least ∼ 5% increase to the event acceptance.

• The muon isolation criteria of ScaleCalorimeterHalo < 0.08 and ScaledTrackHalo <

0.06 could be replaced with CalorimeterHalo < 2.5 GeV and TrackHalo < 2.5

GeV, in order to increase the acceptance to the muons particularly for those

with pT < 20 GeV. The other lepton identification criteria could also be fur-

ther optimized. The requirement on the Missing energy E/T > 20 GeV could be

loosened to E/T > 15 GeV, which is feasible with muon in the final state and

increases the signal acceptance by a ∼ 5%. In addition, more soft interaction

background events (> 10% ) could be rejected by requiring jets to be confirmed

with a vertex.

• An improvement on the dijet mass resolution will dramatically improve the

sensitivity of this analysis. It has been seen in the ZH analysis via jet energy

resolution, but not yet confirmed with WH analysis.

• Improvements on the b-tagging efficiency would most efficiently increase the

sensitivity of the analysis. A smaller fake rate would also greatly reduce the

systematic uncertainties. Asymmetric b-tagging, where the tagging criteria of

double b-tagged jets could be different on the leading jet and sub-leading jet,

could also be explored.

• The demanding computation time of the Matrix Element method could be chal-

lenging to an analysis with higher integrated luminosity. Some other multivari-
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ate analysis techniques can be explored. The Boosted Decision Tree (BDT) is

an ideal candidate method because it is fast, stable, less sensitive to additional

variables and can easily achieve its best performance.

With increasing capability of the Tevatron and LHC, a conclusion on the Higgs boson

will become a reality in the near future.
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Figure 7.1: The results of calculation on the upper limits of WH production cross section σ(pp̄ →
WH) × BR(H → bb̄). The 2.7 fb−1 of Run IIa and RunIIb datasets with the 16 event
sub-samples are combined in the plots. a) The log-likelihood ratios as a function of the
Higgs boson mass mH . The dashed lines represent for LLRb (upper line) and LLRs+b

(lower line), while the solid line represents LLRobs. The green band (inner region) and
yellow band region (extended from the inner to the outermost) stand for the ±1σ and
±2σ standard deviations. b) The ratios of the upper limits on the production cross
sections to those predicted by the Standard Model for σ(pp̄ → WH)×BR(H → bb̄), as
a function of mH . The solid line and dashed lines represent the observed and expected
limits at 95%C.L. respectively. The straight line at ratio = 1.0 indicates the Standard
Model prediction.
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Figure 7.2: The ratios of 95%C.L. cross section limit on the Standard Model Higgs production to
the Standard Model expectation, as a function of mH . The solid and dashed lines
represent the observed and expected limits respectively, while the green and yellow
bands stand for 1σ and 2σ standard deviations. The searches for WH/ZH/H , with
H → bb̄/W+W−/γγ/τ+τ− final states, using 0.9 − 4.2 fb−1 of data collected at the
DØ detector have been combined in this plot. [19]
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Figure 7.3: Observed and expected upper limits on the Standard Model Higgs production at the
Tevatron as a function of the Higgs boson mass. The limits are expressed as the con-
straints on the ratio of experimental production cross section to the one predicted by
the Standard Model. The solid curve represents the observed ratio, while the dotted
is the expected (background-only hypothesis) ratio. The limits are calculated with a
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limits at 68% and 95% probability respectively in the absence of signal. [20]
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