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CHAPTER I 

INTRODUCTION 

Abstract 

 Application of modeling and simulation has been growing significantly in 

different stages of drug development, from early discovery to late clinical trials, in the 

past decade.  Mechanistic physiologically-based models to predict transport and 

accumulation of small molecules in organisms provide such a way to integrate 

information from different resources, including physiological / biological parameters and 

drug specific properties, for hypothesis testing, mechanisms exploration, guiding 

experimental design, pharmacokinetic prediction, and extrapolation of pharmacokinetic 

profiles across species.  With the continuously increasing interests and extensive research 

conducted in areas of systems biology, transporters, metabolic enzymes, and 

pharmacogenomics, the next step would be quantitatively integrating such information to 

guide drug development. Cellular pharmacokinetic modeling aims to predict 

pharmacokinetic behaviors of compounds at cellular / subcellular level by integrating 

physiological parameters of cells, as well as drug specific information, such as 

physicochemical properties (pKa, logP), unbound fraction, active transport, and metabolic 

information, etc.  This review will be focused on recent development of cellular 

pharmacokinetic models including empirical and mechanistic models.  Advantages and 

disadvantages of each type of models will be discussed. Relationship of cellular 
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pharmacokinetics (PK) with systemic PK and pharmacodynamics (PD), and potential 

applications of cellular pharmacokinetic modeling in physiologically-based 

pharmacokinetic (PBPK) modeling will be included.  

 

Keywords: Modeling and simulation; Cellular pharmacokinetics; Subcellular 

localization; Physiologically-based pharmacokinetic (PBPK) modeling; Cell 

permeability; Passive diffusion; Transporters; Metabolic enzymes; Site of action; 

Absorption, distribution, metabolism, excretion, and toxicity (ADMET) 
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Introduction 

 With the development of combinatorial chemistry synthesizing a large number of 

potential drug candidates is no longer a bottleneck in the drug discovery process.  High 

throughput pharmacological screening methods have also been developed to quickly 

assay drug biological activity.  Besides biological activities the high throughput methods 

for absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction are 

desired and become a major challenge in early drug discovery and development stages.  

Predictive physiologically-based pharmacokinetic (PBPK) models are mechanism-based 

mathematical models integrating prior knowledge in a quantitative way to predict 

pharmacokinetic properties of drugs in organisms (1-3).  PBPK modeling covers a wide 

range of models and address ADMET properties at different levels, from subcellular 

level, cellular level, tissue, organ, to the whole body (4-12).   

Cellular pharmacokinetics describes distribution and accumulation of compounds 

at cellular / subcellular level.  Subcellular distribution may play an important role in 

determining drug efficacy and toxicity.  If the site of the action is located in specific 

subcellular organelles, while the drug accumulates extracellularly or in other organelles, 

that might decrease the efficacy and induce non-specific toxicity.  Similarly, if a drug 

targets receptors on extracellular membrane surface, but it accumulates intracellularly 

due to non-optimized physicochemical properties, it might lead to toxicity as well.  

Pulmonary toxicity of amiodarone, an antiarrhythmic agent, is observed after chronic 

administration. One of the explanations of the side effects is intralysosomal accumulation 

and its main metabolites desethylamiodarone and the drug-induced intracellular storage 

of phospholipids (13, 14).  Recently research shows that in drug-resistant cancer cells, the 
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intracellular drug concentration often remains high (15, 16). One of the explanations for 

lack of efficacy is pH dependent ion trapping of weak basic agents to acidic intracellular 

compartment, extracting drugs away from their intracellular site of action (17-19).  

Having observed the impact of subcellular distribution on efficacy and toxicity, 

interests of quantitatively describing cellular pharmacokinetics have been increasing, and 

computational models have been developed as tools for understanding drug transport at 

cellular level, rationale drug design for specific subcellular targeting, and predicting 

absorption, tissue distribution, and clearance (4, 6, 7, 20-24).  A variety of strategies have 

been adapted to develop cellular pharmacokinetic models to predict subcellular 

accumulation or drug transport kinetics intracellularly.  In general, there are two major 

classes of mathematical techniques used for predicting cellular pharmacokinetics: 

empirical models, such as applying statistical analyses to determine the relationship 

between structures and subcellular localization of small molecules, quantitative structure-

activity relationships approaches, or fitting experimental data to get kinetic rate constant 

in compartmental models (21-31); and  mechanism based physiological models (4, 6, 7).  

This review will be focused on mathematical models have been developed to analyze or 

predict cellular / subcellular pharmacokinetics rather than summarizing subcellular 

localization properties of small molecules.  Features of each type of models and their 

potential contribution to systemic PK/PD modeling will be discussed.  

Subcellular compartment --- How do you define it? 

The definition of subcellular compartment may vary from models to models.  

Some cellular PK models treat the whole cell as one homogeneous compartment. 

Subcellular organelles have their unique functions and properties, such as intralumenal 
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pH, electrochemical potential, lipid bilayer composition, and proteins (17). Thus it is 

natural to treat each subcellular organelle as independent compartment, such as 

mitochondria, lysosomes, nuclei, endoplasmic reticulum, and Golgi apparatus.  For 

example, F. Rashid and R. W. Horobin developed a simplistic Chinese box (SCB) model, 

which defined the cellular / subcellular compartment as boxes (30, 32, 33).  They defined 

‘a box is a region of an organism considered discrete by a biologist’ (33). Some boxes 

may contain another box, such as nuclei may contain nucleoli (33).  Besides using 

organelles as subcellular compartment, another strategy to define subcellular 

compartment is to divide cellular compartment into N compartments, composed of a 

catenary chain of alternating aqueous and lipid phase as described by S. Balaz et al. (24, 

34-36).  The model developed by V. Y. Chen et al. defines the subcellular compartment 

other than cytosol as vesicles (23).  

pH-partition theory and ion-trapping mechanism 

Physiology of some subcellular organelles has been well studied to date.  

Mitochondria and lysosomes are relatively independent and membrane-enclosed 

organelles.  Mitochondria are involved in the intrinsic pathway of apoptosis, and thus 

become a target of anticancer agents (37-39).  The respiratory chains located in the 

mitochondrial inner membrane generate a proton gradient across the membrane, which 

yields a transmembrane potential and a pH gradient (40, 41).  Depending on the cell types 

and differentiation stages, the ratio of membrane potential and pH gradient might differ 

(40).  Many lipophilic cations have been observed accumulating in mitochondria as a 

function of the transmembrane electrical potential, which can be predicted by the Nernst 

equation (21, 40, 42-44), such as rhodamine 123 (40, 42, 45, 46), F16 (37, 38), and the 
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styryl family (47-50).  Lysosomes function as the digestive system of the cell.  Many 

degradative enzymes are located in lysosomes.  Lysosomal storage diseases are caused by 

the mutations in the genes that encode those enzymes (51).  Many clinically used drugs 

target lysosomes, such as antimalarial drug chloroquine (52-54), and antidepressant drugs 

(55).  Lysosomes are acidic intracellular organelles with intralumenal pH of 4.6-5.0 (56), 

while the cytosolic pH is near neutrality (~7.2) (17).  The low pH is caused by the 

activity of a proton ATPase rather than by a Donnan potential for protons, as originally 

proposed (56).  As a result, acidification is accompanied by the generation of an interior 

positive membrane potential (56).   

 One of the well-studied mechanisms of lysosomal accumulation of weakly basic 

molecules is the ion-trapping mechanism, which was described by De Duve et al. as early 

as in the Seventies (57).  For molecules with at least one ionizable group, the proportion 

of neutral species and ionized species may differ significantly in different pH 

environment,  depending on the acid dissociation constant (pKa) and pH, which can be 

described by the Henderson-Hasselbalch equation.  For weakly basic molecules with pKa 

close to physiological pH, they exist predominantly as neutral species in cytosol (pH ~ 

7.2).  After neutral molecules enter the acidic subcellular organelles, they become 

protonated due to the acidic environment. Generally the lipophilicity may differ three 

orders of magnitude between neutral species and ionized species (7). Thus after entering 

the acidic compartment, transmembrane permeability of the molecules is reduced due to 

the protonation, and accumulation is induced.  



 

 7

The Goldman-Hodgkin-Katz equation 

 The flux of ionic molecules across a biomembrane is a function of the 

transmembrane electrical potential and the concentration gradient of the molecules across 

the biomembrane.  It can be described by Nernst-Planck equation (equation 1.1).   

( ) ( )[ ( ) ]dC x zF dV xJ D C x
dx RT dx

= − +  ,     (1.1) 

 The first term is corresponding to the Fick’s law of diffusion, which gives the 

diffusion down the concentration gradient. The second term reflects the flux due to the 

transmembrane electrical potential.  D is the diffusion coefficient (area per time unit).  F, 

R, T, and z are the Faraday constant, molar gas constant, temperature (in Kelvin), and 

electric charge, respectively. Assume the transport direction (denoted by x) being 

perpendicular to the membrane, then dC(x)/dx reflects the concentration change along the 

membrane, and dV(x)/dx reflects the voltage change along the membrane. C(x) indicates 

the concentration at point x. If transmembrane electrical potential is assumed to be 

constant along the membrane, and the membrane thickness is d, equation 1.1 is rewritten 

as equation (1.2) and rearranged to obtain equation 1.3. 

( )[ ( ) ]dC x zF VJ D C x
dx RT d

= − +  ,     (1.2) 

( ) /1
( )

dC x dx
J zF VC x
D RT d

=
− −

 ,      (1.3) 

Let N = zFV/RT, and integration from x = 0 to d yields equation 1.4: 
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0
0

0

( ) /
/ ( ) /

/ ( )
/ ( ) /

[ln | ( ) | ln | (0) |]

    

  

        

d
d

d

dC x dxdx dx
J D NC x d

N dd Nd dC x
J D NC x d
N J N JNd C d C
d D d D

= −
+

⇒ = −
+

= − + − +

∫ ∫

∫ ,   (1.4) 

 Reorganize equation 1.4, one can obtain equation 1.5, which is the explicit 

expression of flux of ionic molecules across a biomembrane with transmembrane 

electrical potential and concentration gradient.  

( (0) ( ))
1

N
N

D NJ C e C d
d e

= −
−

 ,    (1.5) 

where D/d can be written as permeability (length per time unit), C(0) is the concentration 

at outer membrane surface, and C(d) is the concentration at inner membrane surface.  

Empirical and semi-empirical models  

Statistic based formulas are widely used in predicting different ADME properties, 

from basic physical properties of drug substances such as in vitro solubility (58-62) to 

more complex biological properties of drug-organism interaction, such as in vivo 

bioavailability (63-65).  Statistically based empirical formulas are usually built from 

databases of molecules that have been screened by a specific assay.  The assay data is 

related to the chemical structure of the molecules using probabilistic regression 

techniques.  This probabilistic regression can be summarized as an equation that specifies 

the relationship between the resulting physicochemical or biological property of interest 

(the dependent variable of the equation) to different parameters related to the chemical 

structure of the molecule (the dependent variables of the equation).  Using a training set 

of molecules, quantitative structure-activity relationship (QSAR) equations can be used 
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to predict the behavior of a previously untested test set of molecules. While QSAR 

models have been developed to study the physiochemical properties or pharmacological 

activities of small molecules extensively (66-75), models about structure – subcellular 

localization relationships (QSLR) are relatively underdeveloped (27-30, 32, 33, 76-78). 

Pseudo-equilibrium models 

In early nineties, F. Rashid and R. W. Horobin were aware of the importance of 

physicochemical properties, such as hydrophilicity / lipophilicity (logP), pKa (and thus 

electrical charges z), molecular size, and the properties of biological systems, in 

determining the localization of fluorescent molecules, and developed decision tree – like 

model, which comprised sets of nested if/then rules (79) to predict subcellular 

accumulation in various organelles.  At the beginning, a simple and generalized model, 

named the simplistic Chinese box (SCB) model, was developed to describe the 

interaction of molecular probes within living cell system (30, 32, 33).   The SCB model 

was applied to 41 cationic probes to study their mitochondrial localization as a function 

of logPoct (logarithm of octanol / water partition coefficient) (32).  LogP values fell 

between -3.6 and 21.0.  They observed that cationic molecules with logP between 0 and 5 

were expected to accumulate in the mitochondrial inner membrane.  Cationic molecules 

with logP < 0 would be excluded outside cells, and with logP > +5 would bind to external 

membrane irreversibly (32).  The model then was tested with 10 fluorescent 

mitochondrial probes and 7 vital dyes of mitochondria and the same trend was observed.  

Later on a library with 50 fluorescent probes with various physicochemical 

characteristics was studied for their lysosomal accumulation by the same group (30).  The 

conjugated bound number (CBN) was introduced to model non-specific protein binding.  
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Several scenarios were included: entry of cells, entry of lysosomes, retention in 

lysosomes, and selectively accumulate in lysosomes.  Probes that could enter the cells 

had 0 < logP < 5 and CNB < 40.  Probes with logP > 15, and / or CNB > 40 (regardless 

of hydrophilicity could also enter the cell by adsorptive pinocytosis. Markers of fluid 

phase pinocytosis could also enter the cells and were found having logP < 0, z <0, and 

CBN < 40. After the probes entered the cells, they accumulated in lysosomes and could 

be categorized into two groups: (1) Probes accumulating in lysosomes by ion trapping 

mechanisms had z ≤ 0, logPcation < 0, but logP free base > 0, pKa ~ 7, and CBN < 40; (2) 

Probes comprised of hydrolysable lipophilic esters, usually weak acids, had z ≤ 0, logP 

free base > 0, pKa ~ 7, and CBN < 40.  Those probes were converted into immobile free 

acids by lysosomal esterases and trapped in lysosomes by precipitation of insoluble weak 

acids in low pH environments (30).  To expend the same strategy to other organelles, 

such as endoplasmic reticulum, nuclear chromatin, and plasma membrane, amphipathic 

character (AI), the largest conjugated fragment value (LCF), and LCF/CBN ratio were 

introduced to the empirical model (29, 79, 80).   

Unlike the decision tree – like model, additive models were developed for a 

combinatorial library of cationic styryl dyes for their chemical properties (e.g. peak 

emission or excitation wavelength) and subcellular localization properties (mitochondria 

or non-mitochondria) (21, 81).  Model parameters for peak excitation and emission were 

obtained using least squares to minimize the additive function over all compounds having 

experimental data (21, 81).  The binary localization data were analyzed using factorial 

logistic regression. Cross-validation was carried out for both the spectral and localization 

analyses to obtain unbiased estimates of the prediction performance (21, 81).  
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Back to the Sixties, Hansch et al. published a series of papers describing the 

relationship between concentration and hydrophobicity (82-85).  A representative 

equation can be expressed by equation 1.7.  

log logx x HP Pπ = − ,     (1.6) 

21log a b c
C

π π ρσ= − + + ,   (1.7) 

where, Px and PH are the partition coefficients of a derivative and the parent molecule, 

respectively; C is the molar concentration; a, b, ρ and c are constants determined by 

minimizing least squares.  Later on, the Hansch-Fujita equations were extended and 

applied to a multi aqueous / lipid biosystem to study drug disposition and activity (35, 86, 

87).  Rather than using organelles as subcellular compartments, the QSAR models divide 

cellular compartment into continuous aqueous / lipid phases.  An empirical disposition 

equation was used to reduce the number of adjustable parameters, which expressed the 

concentration after a predetermined time of exposure as a function of octanol/water 

partition coefficient (35).  Adjustable parameters in the final equation were optimized by 

a combination of linear and non-linear regression analyses (35).  Simulated bioactivity - 

lipophilicity curves agreed well with observer data for 10 compounds.  The model could 

potentially be used to construct concentration - time profiles in smaller biosystems, such 

as bacterial or mammalian cells (35); or serve as a base for the development of 

mechanistic models (25, 88-91).  

Kinetic models 
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While the empirical models described above were focused on steady state 

distribution, kinetic models are always desired to describe the transport as a function of 

time.   

The time of exposure was integrated in the QSAR model discussed above by 

employing kinetics of the drug-receptor interaction based on mass action law (31). The 

kinetic model was named QSTAR model.  Adjustable parameters in the model were 

obtained by non-linear regression for 36 compounds (31).  The simulated inhibitory 

potency versus lipophilicity curve agreed well with the observed data (31).  This time 

course of drug concentration in the receptor surroundings serves as the base for 

constructing the differential equations for the receptor modification proceeding by any 

proposed mechanisms. 

The QSTAR subcellular pharmacokinetic model was further extended by 

integrating Michaelis-Menten kinetics of enzymatic reactions with respect to its two 

boundary cases, membrane accumulation, non-covalent protein binding, and excretion 

(88).  Differential equations were solved analytically, so the explicit parameters, such as 

elimination rate constant, maximal rate, and the Michaelis-Menten constant, were lumped 

together to form adjustable parameters in the final equation (88). The adjustable 

parameters were obtained by non-linear regression (88). In the discussion, the authors 

mentioned that the model “can not be applied to a broader series of compounds having 

diverse structures since it describes merely the structurally non-specific steps a 

compound has to undergo in microbial culture and does not incorporate the structural 

specificity of the enzyme-substrate interaction.”(88) 
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A two-compartment model, cytosol and vesicles, was developed for a library 

consisting of 80 fluorescent-tagged triazine compounds (23).  First-order kinetics was 

assumed between each compartment. Coefficients of variation (CV) of pixel intensities 

were linked to intracellular concentration by a statistical model. Rate constants in the 

model were obtained by optimization and the solutions within 5% of the best fit were 

chosen. With the help of subcellular pharmacokinetic modeling, the partition coefficients 

from the extracellular medium to the cytosol, and from the cytosol to the intracellular 

vesicles, could be quantitatively defined, which indicated the subcellular sequestration 

phenomenon.  Furthermore it provided bases for analyses of correlation of subcellular 

transport with chemical structures and physicochemical properties (23). 

Fluorescent microscopic imaging technique is one of the most often used methods 

to detect subcellular localization of small molecules (N. Zheng, manuscript in 

preparation). However, those methods are mainly applied to fluorescent molecules, which 

limit the method application to certain class of chemicals.  Drug-induced morphology 

changes of subcellular organelles can be detected using light microscopy or electron 

microscopy and can be used as surrogate evidence for subcellular localization.  Other 

techniques to determine subcellular localization include cell fractionation, radiography, 

uptake competition, and metabolic study, which could be labor intensive experiments.  

Limited information of subcellular localization and less diverse structures of small 

molecules might limit the development and predictive accuracy of empirical models.  

Thus mechanism based cellular pharmacokinetic models are developed.  
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Mechanistic physiologically-based models 

 Basic principles or mechanisms used in developing mechanistic physiologically-

based cellular pharmacokinetic models include: mass balance, Fick’s law of diffusion, 

pH–partitioning theory, ion-trapping mechanism, Henderson-Hasselbalch equation, 

Nernst–Planck equation, Michaelis–Menten equation, and other specific mechanisms 

involved.  In mechanistic physiologically-based cellular PK models, for the part that is 

difficult to be modeled with mechanistic strategy, empirical methods are often employed.  

If some parameters in the mechanistic models are difficult to be measured 

experimentally, regression methods will also be used to get the estimation.  

Generic models --- The History of 1CellPK 

 Generic models usually only include general mechanisms, such as passive 

diffusion, and thus can be applied to a large number of molecules.   

 Mechanistic models were developed for non-polarized suspension cells including 

cytosol, mitochondria and lysosomes as subcellular compartments (4-7).  Many of the 

equations originally were developed to predict plant uptake (92). The uptake of 

electrolytes into a single plant cell was modeled.  The plant cell was separated into the 

compartments, cytoplasm and vacuole, and was surrounded by the apoplast (92). Later on 

the model was applied to tumor cells (7).  Passive diffusion was modeled by Fick’s law 

of diffusion for neutral molecules, and by combination of Fick’s law of diffusion and 

Nernst–Planck equation for ionized molecules.  Those models considered both the 

physiological properties of the cells and physicochemical properties of the small 

molecules, and gave quantitative predictions of concentration-time profiles in functional 

subcellular organelles.    
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Specific models 

 Other than generic models which have been developed for certain classes of 

molecules, specific cellular pharmacokinetic models also have been developed to study 

single compounds to understand their transport or effects at cellular level. In specified 

models, more mechanisms are included other than passive diffusion, such as multiple 

transporters, specific binding, metabolic enzymes, and pharmacodynamic models.  

A series of papers were published to model cellular PK of paclitaxel capturing the 

effect of P-gp mediated efflux and intracellular binding to tubulins/microtubules (20, 93, 

94). Quantification of paclitaxel intracellular pharmacokinetics is important because it is 

closely related to its pharmacodynamics. At a starting point, the model first assumed 

passive diffusion of paclitaxel across the cell membrane (93). The model took account 

into saturable binding to extracellular proteins, saturable and nonsaturable binding to 

intracellular components, cell density variation, and enhancement of tubulin 

concentration.  The model was validated in human breast MCF7 tumor cells, which had 

negligible P-gp expression.  Later on the effect of P-gp mediated efflux was added into 

the model and validated in human breast carcinoma BC19 cells that  were derived from 

MCF7 cells transfected with mdr1 (94). Their study indicated that the P-gp mediated drug 

efflux accounted for more than 70% of total drug efflux when extracellular concentration 

was less than 200nM, but less than 30% of total efflux when extracellular concentration 

was 1000nM. Translating to clinical impact, their findings suggested that if the patient 

had similar P-gp expression level in tumor as BC19 cells in this study, then the role of P-

pg in the efflux was limited since the clinically relevant concentration range was larger 

than 200nM. They also found the dissociation constant (Km) of paclitaxel from P-gp 

measured in this study was three orders of magnitude different from previous 
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measurement in Caco-2 cell monolayer.  That could be due to different cell lines. More 

importantly, it indicated that the intracellular concentration played a role in determining 

the real Km.  After being experimentally validated, a parametric study was performed to 

study the effects of extracellular drug concentration, intracellular drug binding capacity 

and affinity, and P-gp expression level on the intracellular drug accumulation 

independently and simultaneously (20). The study showed that the four biological factors 

determine paclitaxel intracellular concentration interpedently. Among the four factors, 

extracellular concentration was the most sensitive factor, followed by intracellular 

binding capacity and affinity. The effect of P-gp expression was relatively minor, 

suggesting that to improve clinical efficacy, effective delivery of paclitaxel to tumor cells 

was more important than other factors, such as inhibition of P-gp efflux. 

Besides P-gp, other transporters also have been included in cell-based PK 

modeling. Poirier et al. reported a mechanism-based model including active uptake, 

nonspecific binding, and passive diffusion (95) to help better determine the Michaelis-

Menten parameters: Vmax and Km. The model was applied to estimate kinetic parameters 

of in vitro transport data from organic anion-transporting peptide (OATP) substrates and 

substrates of multiple uptake transporters. Compared with conventional two-step 

approach, the mechanism-based model showed significant improvement of accuracy and 

precision in Vmax and Km estimation.  Ranitidine absorptive transport in Caco-2 cells 

involved carrier-mediated uptake, P-gp mediated efflux, paracellular transport and 

transcellular transport (96). To capture the complex transport mechanisms, a PK model 

was developed by Bourdet et al. (96).  Meanwhile transport experiment of ranitidine was 

performed in Caco-2 cells in the absence or presence of uptake and efflux inhibitors as a 
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function of concentration. Parameters in the model were estimated by fitting the 

experimental data simultaneously using nonlinear least-squares regression.  Their 

simulations suggested that paracellular transport contributed to 60% of total transport. 

When the P-gp mediated efflux was inhibited, paracellular transport contribution was 

decreased to 40% of total transport. When the cation-selective apical uptake transporters 

were inhibited, paracellular transport contributed to 70% of total transport. Modeling and 

measuring ranitidine transport at different concentrations suggested that paracellular 

transport was concentration dependent and saturable. 

Metabolism is another interested component to be added in cell-based PK models.  

Theoretically, if the metabolic enzymes are located in cytosol, the substrate concentration 

points to the intracellular concentration and thus developing cell-based PK model is 

especially important. A catenary model was developed by Sun et al. (97) including 

passive diffusion, cellular binding, carrier-mediated and efflux transporters-mediated 

transport, and metabolic enzymes. The model was applied to study the transport and 

metabolism of baicalein in Caco-2 cells (98).   

Some of the advanced cell-based PK models have been linked to PD models (99). 

A cell-level mathematical model describing the cytokine granulocyte colony-stimulating 

factor (GCSF) / GCSF receptor (GCSFR) dynamics was developed by Sarkar et al. (99).  

The model started with the trafficking of GCSF/GCSFR system at molecular level. 

Extracellular GCSF molecules bound to GCSFR at cell surface becoming internalized 

and undergoing endocytic pathway. At cellular level, the model variables were 

extracellular ligand concentration, free surface receptors per cell, surface complexes per 

cell, intracellular ligand concentration per cell, free intracellular receptors per cell, 
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intracellular complexes per cell, degraded ligand per cell, and cell density, which was 

ligand dependent cell growth. Those variables changed over time and could be written in 

ordinary differential equations mechanistically. The cellular PK model was validated 

experimentally using wild-type GCSF and two single Asp->His mutants. The two 

mutants had similar affinity to cell-surface receptor as wild-type GCSF, but lower affinity 

to endosomal receptor, resulting in enhanced ligand recycling and ligand half-life. The 

PD model was an indirect model and the direct response from GSCF therapy was 

neutrophil production. In the original PK/PD model, two doses of GCSF were 

administered subcutaneously.  The PK part was fit by a bisegmental absorption model 

connected with a conventional two-compartment model. The cell-level PK model was 

integrated in the central compartment in replace of the saturable clearance. By integrating 

the cell-level model into PK/PD model, the effects of cellular / molecular parameters on 

pharmacodynamics could be studied mechanistically, such as the effects of endosomal 

binding affinity and extracellular binding affinity in the absence and presence of 

nonspecific clearance.  Such a model could be valuable in determining important 

parameters in PK/PD models. And the model was a first attempt to link cell-level PK 

model to systemic level PD model (99). 

Specific cellular pharmacokinetic models require more knowledge about the 

compounds interested.  While generic mechanistic cellular pharmacokinetic models are 

more useful in early drug discovery for high throughput screening and drug candidate 

identification, specific cellular pharmacokinetic models will be more useful for 

compounds in late drug development stage.   
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Comparison of empirical models with mechanistic models 

Both empirical models and mechanistic models have advantages and 

disadvantages.  Empirical models could be developed without knowing the details of how 

the compounds transport in biosystem, the mechanisms of action, but just based on 

observations.  Many principles or physical laws used in mechanistic models were 

developed as empirical models, such as Newton’s three Laws.  Started from simple linear 

regressions, empirical models become more and more complex with the rapid 

development of computational tools, new statistical methodology, more and more 

interactions among scientists with diverse background.  However, it requires a large 

amount of datasets and is difficult to be extrapolated to different scenarios, such as to 

different classes of molecules.  Mechanistic cellular pharmacokinetic models take into 

account physiological parameters and physicochemical properties of small molecules. 

Mechanism-based modeling does not require a large dataset of small molecules, but 

requires knowledge of all input parameters and usually the amount of input parameters is 

large.  Because of the large amount of input parameters, when the predicted values are 

not close to the observations, it is possible that there are too many adjustable parameters 

that could be adjusted to make the prediction close to observation.  However, the adjusted 

parameters need to be chosen carefully and based on scientific judgment.  Otherwise the 

model will lead to misinterpretation.  It is not encouraged to adjust the parameters just for 

fitting the observed data.  Neither the empirical model nor the mechanistic model is 

universally applicable in predicting cellular pharmacokinetics.   

A comparison of QSAR models with a mechanistic model was conducted by 

Horobin R.W et al. for more than 100 mitochondriotropic agents (79).  Both methods 

could predict lipophilic permanent cations and lipophilic weak acids and had 
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considerable agreement (79).  For electrically neutral species, including two zwitterions, 

QSAR model did a better prediction than the mechanistic model, because the mechanistic 

model considered biomembrane as a bulk lipid phase, so did not expect any abrupt 

increase in uptake about logP = 5 and no accumulation was predicted (79).  For lipophilic 

cations of partially ionized bases, the mechanistic model failed to predict 

mitochondriotropic behavior in eight of nine cases, while QSAR model successfully 

predicted all nine cases (79).  One of the explanations of the failure of mechanistic model 

might be that it did not include the complex formation between lipophilic cationic 

xenobiotics and the cardiolipin presented in the inner mitochondrial membrane (79, 100).  

Both methods failed to predict mitochondrial accumulation for four partially ionized 

hydrophilic compounds, among which two compounds were metabolized (79).  For five 

strong acids, which were reported accumulating in isolated mitochondria, both models 

also failed to predict mitochondrial accumulation  (79).  And that could be because 

neither model was intended to handle the isolated organelles (79).  Comparison of both 

types of models in terms of prediction accuracy showed that both approaches were useful 

but neither one was superior.  Nevertheless, to improve the prediction accuracy, 

mechanistic models could be extended according to the behavior of specific classes of 

molecules.  

Balaz B. et al. also performed a study to compare the predictive ability of a 

mechanistic model with empirical QSAR models using a dataset of toxicities against 

Tetrahymena pyriformis of 129 phenolic compounds (101). The response was 

concentration dependent toxicity and descriptors were logP and pKa. Predictive sum of 

squares of deviations between the calculated and experimental values of the omitted 
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points (PRESS) were calculated as a measurement of predictive ability.  For the 

mechanistic model, concentration was modeled with a disposition function which had 

physicochemical properties (i.e. logP and pKa) and the exposure time t as variables (87, 

101).  The model was further extended to include accumulation in the membranes and 

protein binding, hydrophobicity-dependent elimination, and hydrophobicity-independent 

elimination (89, 91).  Toxicity T was expressed as the reciprocal concentration (101).  For 

the QSAR modeling, polynomials with cross-terms of logP and pKa, and their inverse 

values were used.  A total of 113 empirical models were generated that had better 

statistics (i.e. the correlation coefficient, the fit standard error, and the value of the Fisher 

test) than the mechanistic model.  The best two models were chosen to be compared with 

the mechanistic model in terms of predictive ability.  The mechanistic model had slightly 

higher PRESS values than the empirical models (leave-one-out cross-validation and two 

types of leave-several-out cross-validation) (101). To further test the extrapolation ability 

of different models, the leave-extremes-out (LEO cross-validation) technique was applied 

to omit compounds with extreme logP and pKa values and 97 compounds were included 

with logP between 1.0 and 5.3 and pKa between 5.0 and 11.0.  A total of 105 empirical 

models were generated that had better statistics than the mechanistic model for the 

reduced dataset. However the mechanistic based model predicted much better than the 

empirical models for the compounds falling outside of the parameters space (101).  To 

summarize their findings, all empirical models had similar surface curves in the 

parameters space generated by the data but very different shapes in the areas outside the 

parameters space; predictive ability of the mechanism-based model was much better than 
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empirical models for compounds outside the parameters space.  Their study also 

suggested that mechanistic models could be extended to molecules outside of the dataset. 

Although it is difficult to judge which types of model is superior, the comparison 

of empirical models with mechanistic models performed by different groups using 

different dataset suggests that mechanistic models could be extended by adding new 

mechanism, could be extrapolated to compounds not included in the studying dataset, and 

could be well explained if discrepancies are observed.  For empirical models a large 

dataset including various classes of molecules is critical. Recently, a database containing 

945 molecules with various subcellular distribution properties was constructed in our 

group, which would serve as a starting point for further computational modeling of 

subcellular distribution (N. Zheng, manuscript in preparation).  

Cellular pharmacokinetics modeling in relation to macroscopic ADMET 

Scientists have done many in vitro and in vivo studies to show the contribution of 

subcellular sequestration on systemic distribution (102-106).  Propranolol was found to 

accumulate in mitochondrial and microsomal fractions in liver, lung, and kidney in rats 

after i.v. injection (102).  The antimalarial drug, mefloquine, showed significant 

accumulation in lysosomes in rat liver in an in vivo study (106).  High volume of 

distribution of mefloquine can be explained by lysosomal trapping (106).  Subcellular 

distribution of basic drugs chlorpromazine, imipramine, and biperiden in rat liver was 

studied 10 minutes after i.v. administration (103). The relative specific contents (the drug 

concentration per protein of each fraction divided by that of the total homogenate in 

lysosomes were found to the be highest compared with in other organelles (103).  And 

their contribution to subcellular distribution depends on the intralysosomal pH (103, 104, 
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107).  Extensive distribution in the lung has been observed for many lipophilic bases 

(108-113). Lysosomal trapping was proposed as a mechanism contributing to high 

accumulation in the lung (105, 111-114).   

However, quantitative relationship between subcellular distribution and tissue 

distribution is still under development. Quantitative prediction of subcellular 

pharmacokinetics itself can be challenging because of the multiple factors, such as the 

membrane potential, volume, surface area, intralumenal pH values, and intralumenal lipid 

contents of subcellular compartment, as well as the physicochemical properties of small 

molecules, and potential interaction / competition among different transport pathways.  

However, a predictive physiologically-based cellular pharmacokinetic model can be 

useful in optimization design of small molecules, hypothesis testing, guiding 

experimental design, and predicting outcomes that are difficult to be measured 

experimentally.  And most importantly cellular pharmacokinetic models could be 

extrapolated to organ /tissue and systemic levels to be related to macroscopic ADMET 

properties.  Cell-based PK models have been integrated into permeability limited whole 

body PBPK models to predict concentration-time profiles for a variety of compounds, 

such as methotexate (115, 116), cyclosporine A and its derivative SDZ IMM 125 (117-

119), terbinafine (120), FTY720 (121), everolimus (RAD001) (122), domperidone, a p-

glycoprotein (P-gp) substrate (123), and many macromolecules, such as phosphorothioate 

oligonucleotide ISIS1082 (124),  monoclonal antibodies (mAbs) (125-131). 

Conclusions 

 Biodistribution of small molecules at cellular / subcellular level has showed 

important effects on systemic distribution (102-106).  Extensive research that has been 



 

 24

conducted in areas of systems biology, transporters, metabolic enzymes, and 

pharmacogenomics brings up a question that how that information can be used in drug 

development efficiently. Modeling and simulation can help to bridge the gap between 

cellular / subcellular pharmacokinetics and systemic ADMET properties in a quantitative 

manner.  While physiologically-based models have the advantages of being flexible, 

interpretable, extendable, and extrapolatable; they also have the disadvantage that 

involves too many parameters, which may induce misinterpretation. Uncertainties and 

sensitivities associated with model parameters will be two issues in physiologically-based 

PK modeling.   

Specific aims 

The intestinal epithelial cells are the absorptive cells responsible for the majority of 

drug absorption (132).  Drugs transport through intestinal epithelium by several routes: 

passive transcellular transport, carrier-mediated transcellular transport, receptor-mediated 

endocytosis, paracellular passive transport and transporter-mediated efflux pathways such 

as P-glycoprotein (P-gp) (132, 133).  Among these transport routes passive transcellular 

process is the predominant pathway for most orally absorbed drugs based on a literature 

survey (134).   Studies show that paracellular pathway is molecular size and charge 

selective (134-136).  Paracellular passive permeability might play a major role in small 

molecules’ transport with molecular weight less than 200 Da  (137). Usually passive 

intestinal permeability is mainly determined by drug physicochemical properties and 

intestinal physiological properties.  To have favorable intestinal permeability drugs 

should be designed with proper physicochemical properties.   
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Computational tools to predict drug intestinal permeability are fast and cost 

effective and thus are promising and desired in early drug development.  Computational 

methods developed for intestinal permeability or oral absorption prediction can be 

classified into empirical models and mechanism-based models.  In early stage of 

modeling, a single physicochemical property such as octanol-water partition coefficient 

was used to predict intestinal permeability / oral absorption (138, 139).  It is generally 

admitted that the molecules with higher lipophilicity have higher intestinal permeability 

(140), however, this is not always valid (141), which indicates that models using a single 

parameter might be limited in several groups of compounds.  Lipinski and coworkers 

(142) established a simple empirical model, known as the ‘rules of 5’, to predict good 

oral absorption molecules based on the physicochemical properties of more than 2000 

drug candidates that had entered clinical phase II trials.  In this model, molecular weight, 

lipophilicity, numbers of hydrogen bond donors and acceptors were used as descriptors. 

Recently quantitative structure-property / activity relationships (QSPR / QSAR) have 

been introduced to oral absorption, intestinal permeability, and Caco-2 permeability 

prediction.  Descriptors can be classified as one dimensional (molecular weight, atom 

counts), two dimensional (fragment counts, topological indices, connectivity, flexibility), 

and three dimensional (molecular surface areas, molecular volume, interaction energies) 

descriptors (143).  However, as discussed above QSAR models require a training set with 

large diversity to be readily extrapolated to unrelated compounds.  

Considering the importance of both permeability and biodistribution at cellular / 

subcellular levels of small molecules, the aim of this project is to develop a mechanism 

based cellular pharmacokinetic model to predict transcellular permeability and 
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subcellular distribution. Furthermore, the cell based PK model will be integrated into 

whole body physiologically-based PK model to illustrate the effects of subcellular 

pharmacokinetics on systemic PK.   

Passive transport will be considered as a starting point.  The following specific 

aims will be addressed in this study. 

(1). To develop a physiologically-based cellular pharmacokinetic model to 

characterize transcellular permeability and subcellular accumulation of small molecules 

as a function of concentration gradient. Model will include physiological parameters of 

cells as well as physicochemical properties of small molecules; to perform parametric 

study to illustrate the sensitivity of model parameters; and to validate the model using 

published PAMPA, Caco-2, and human permeability data.  

(2). To apply the model to analyze and understand relationships between the chemical 

diversity and intracellular distributions of lysosomotropic monobasic amines.  

(3).  To illustrate how a mechanistic model can be used for guiding experimental 

design and hypothesis testing, using chloroquine as a model drug. 

(4).  To integrate the cell-based PK model to whole body physiologically-based PK 

model to study the effect of subcellular distribution on the lung distribution of weak basic 

molecules.  
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Table 1.1: Summary of empirical models for subcellular localization prediction  

method Interested 
localization 

Descriptors Number of 
compounds  

Reference 

QSAR mito logP, Z 41 (32) 
QSAR lyso logP, pKa, CBN, Z 50 (30) 
QSAR nuclei logP, pKa, Z, CBN, AI, 

LCF, LCF/CBN ratio  
44 (27) 

QSAR ER logP, pKa, Z, CBN, AI, 
LCF 

37 (29) 

QSAR mito / non-mito logP, pKa, Z, CBN, AI, 
LCF 

109 (79) 

Descriptor 
analysis 
 

mito / lyso / 
nuclus / cyto / 
ER / Golgi 
body /  plasma 
membrane / 
multiple 
localization 

483 2D and 3D MOE 
descriptors 

954 N. Zheng 
manuscript 
in 
preparation 

 

logP: logarithm of the octanol/water partition coefficient 
pKa: negative logarithm of the acidic associate constant 
Z: electrical charge 
CBN: conjugated bond number 
AI: amphilicity index 
LCF: the largest conjugated fragment 
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Table 1.2: Summary of mechanistic cellular PK models 

 
Drugs / 
molecules 

Model Components Cell Type Relationship 
with 
Systemic 
PK/PD 

References

Monovalent 
small 
molecules 

Passive transcellular 
transport and 
subcellular 
organelles 

Epithelial and 
round shaped 
non-polarized 
cells 

Absorption, 
tissue 
distribution  

(4-7) 

Paclitaxel P-gp efflux, 
extracellular / 
intracellular binding 

Human breast 
cancer cell lines 
MCF7 and 
BC19 

Uptake to 
cancer cells 

(20, 93, 
94) 

Substrates of 
multiple 
transporters 

Active uptake, 
passive diffusion, 
nonspecific binding 

Chinese hamster 
ovary (CHO) 
cells 
overexpressing 
Oatp1a1 or 
OATP1B1 and 
rat hepatocytes 

Liver 
clearance  

(95) 

Ranitidine Uptake and efflux 
transporters, 
paracellular and 
transcellular 
transport 

Caco-2 Absorption  (96) 

Baicalein  Passive diffusion, 
cellular binding, 
transporters and 
enzymes 

Caco-2 or other 
similar in vitro 
system 

Absorption, 
metabolism 

(97, 98) 

GCSF endosomal 
trafficking, PK/PD 

GCSF-
dependent 
human 
suspension cell 
line: OCI/AML1

Cell-
mediated 
clearance, 
link with 
PD 
modeling 

(99) 
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CHAPTER II 

 
A CELL-BASED MOLECULAR TRANSPORT SIMULATOR FOR 
PHARMACOKINETIC PREDICTION AND CHEMINFORMATIC 

EXPLORATION 

Abstract 

In the body, cell monolayers serve as permeability barriers, determining transport 

of molecules from one organ or tissue compartment to another. After oral drug 

administration, for example, transport across the epithelial cell monolayer lining the 

lumen of the intestine determines the fraction of drug in the gut that is absorbed by the 

body. By modeling passive transcellular transport properties in the presence of an apical 

to basolateral concentration gradient, we demonstrate how a computational, cell-based 

molecular transport simulator can be used to define a physicochemical property space 

occupied by molecules with desirable permeability and intracellular retention 

characteristics. Considering extracellular domains of cell surface receptors located on the 

opposite side of a cell monolayer as a drug’s desired site of action, simulation of 

transcellular transport can be used to define the physicochemical properties of molecules 

with maximal transcellular permeability but minimal intracellular retention. Arguably, 

these molecules would possess very desirable features: least likely to exhibit nonspecific 

toxicity, metabolism, and side effects associated with high (undesirable) intracellular 

accumulation; and most likely to exhibit favorable bioavailability and efficacy associated 

with maximal rates of transport across cells and minimal intracellular retention, resulting 
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in (desirable) accumulation at the extracellular site of action. Simulated permeability 

values showed good correlations with PAMPA, Caco-2, and intestinal permeability 

measurements, without “training” the model and without resorting to statistical regression 

techniques to “fit” the data. Therefore, cell-based molecular transport simulators could be 

useful in silico screening tools for chemical genomics and drug discovery.  

 

Keywords: Metoprolol; permeability; chemical space; computer aided drug design; 

virtual screening; chemical genomics; cellular pharmacokinetics; cheminformatics; drug 

transport; PAMPA; Biopharmaceutics Classification System 
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Introduction 

Drug uptake and transport across cell monolayers is an important determinant of 

in vivo bioavailability, biodistribution and activity (1). However, enzymes of low 

selectivity metabolize drugs inside cells (2, 3).  High permeability-high solubility drugs 

administered at high concentrations diffuse across cells fast enough – saturating 

transporters and enzymes- that only an insignificant fraction is diverted (4, 5). However, 

high intracellular drug concentrations can also be toxic.  For example, unwanted 

accumulation of small molecules in mitochondria can interfere with mitochondrial 

function, inducing apoptosis (6, 7).  Similarly, unintentional accumulation of molecules 

in other organelles can induce phenotypic effects unrelated to a drug’s primary 

mechanism of action – manifesting as non-specific toxicity (8).  Nevertheless, many 

drugs are agonists or antagonists of cell surface receptors (9).  Since receptor ligand 

binding domains are extracellular, intracellular drug accumulation is not essential for 

bioactivity (10).  Thus, molecules designed to reach and accumulate at a desired 

extracellular site of action should combine high transcellular permeability with minimal 

intracellular accumulation.  These desirable biopharmaceutical properties can lead, in 

turn, to more potent, bioavailable, stable, and nontoxic drug candidates. 

Poor pharmacokinetics and toxicity are important causes of failure in later, 

clinical stages of drug development (4, 11, 12). Therefore, ADMET (absorption, 

distribution, metabolism, elimination, and toxicity) profiling is desirable as early as 

possible, before drug candidates are tested in patients.  High throughput in silico ADMET 

models are one way to predict favored pharmacokinetics and toxicity profiles, early in the 

design of new drugs (12).  Mapping chemical spaces occupied by molecules possessing a 
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desirable therapeutic activity and favored ADMET properties can be used to guide the 

design, synthesis, and selection of series of lead compounds (13-15).  Along these lines, 

we sought to develop a fast, flexible, and scalable computational tool for predicting 

epithelial transcellular passive permeability and intracellular accumulation, which are 

important determinants of oral absorption prediction and toxicity prediction, respectively 

(16-18).   

Drug solubility and intestinal permeability are the two key criteria for the FDA’s 

Biopharmaceutics Classification System (BCS) (19).  At early stages of drug 

development mathematical models built on the basis of data derived from in vitro 

experiments such as PAMPA (parallel artificial membrane permeation assay) and Caco-2 

assay are widely used to predict human intestinal permeability. Most existing 

mathematical models to predict intestinal permeability are based on statistical regression 

methods that correlate PAMPA, Caco-2, or rat or human intestinal permeability 

measurements to 2D and/or 3D molecular descriptors (20-22).  However, the predictive 

power of these statistical models is inherently dependent on the quality of training data 

set, as well as the variability and reproducibility of the experimental assay. Furthermore, 

because of the statistical nature of the regression relationship, large amounts of data are 

needed to generate good models covering large realms of chemical space. To 

complement statistical regression methods, we decided to pursue a mechanism-based, 

mathematical modeling strategy to predict transcellular passive permeability, while also 

predicting the intracellular concentration of drug and its accumulation in organelles. In 

addition, on the basis of permeability and intracellular concentration of a reference “

lead” compound, we also sought a nonstatistical method that could map cell-
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permeant/impermeant and cell-toxic/nontoxic chemical spaces relative to that compound, 

to help guide drug lead development efforts of pharmaceutical scientists and medicinal 

chemists. 

Here, we present a mechanism-based modeling strategy that can predict intestinal 

transcellular passive permeability, as well as drug accumulation within cells. 

Mathematically, the model describes transcellular transport of small molecules based on a 

physical, compartmental model of a cell, coupling sets of differential equations 

describing the physics of passive diffusion of small molecules across membranes 

delimiting the different compartments (23). Without incorporating enzymatic 

mechanisms or specific binding interactions, the current version of the model can predict 

the behavior of nonzwitterionic, monocharged small molecules possessing one ionizable 

functional group in the physiological pH range. Nevertheless, the behavior of more 

complex molecules and mechanisms such as carrier mediated transport, metabolic 

processes, or multiple ionizable groups can be incorporated one by one in subsequent 

versions of the model, to predict the transport of low permeability, natural product like 

molecules, and to mimic more complex, physiological conditions. 

Methods 

Starting with a cell-based, molecular mass transport model developed to study the 

accumulation of lipophilic cations in tumor cells (23), we adapted the Nernst-Planck and 

Fick equations to simulate transport of molecules across epithelial cell monolayers, in the 

presence of an apical-to-basolateral, transcellular concentration gradient. For weakly-

basic / acid, drug-like small molecule, the cellular pharmacokinetic model considers three 

physicochemical properties as the most important determinants of intracellular 
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accumulation and transport: (1) the logarithm of the lipid/water partition coefficient of 

the neutral form of the molecule, logPn; (2) the logarithm of the lipid/water partition 

coefficient of the ionized form of the molecule, logPd; (3) and the negative logarithm of 

the dissociation constant of the protonated functional group, pKa.  Drug concentrations in 

different intracellular compartments are coupled to each other according to the 

topological organization of the cell (Figure 2.1A, B).  Different organelles have different 

pHs and transmembrane electrical potentials, so a molecule’s charge in different 

organelles can vary according to the molecule’s pKa, and transport properties across the 

membranes delimiting different compartments can vary depending on the membranes’ 

electrical potential (24-27).  With the model developed herein, the concentration of 

molecules in different subcellular compartments and the transcellular permeability 

coefficient (Peff) can be calculated for different time intervals after cells are exposed to 

drug (see appendix A). 

For modeling drug accumulation in the cytosolic compartment, the mitochondrial 

compartment, and the basolateral compartment, the total mass change of the molecule 

with time can be expressed by equations 2.1-2.3: 

bcbmcmcaa
c JAJAJA

dt
dm

,,, −−= , (2.1) 

mcm
m JA

dt
dm

,= , (2.2) 

bcb
b JA

dt
dm

,= , (2.3) 

where J is the net flux from the ‘positive’ side to the ‘negative’ side, m  is the 

total molecular mass, t is time, A is membrane surface area, subscripts c, a, b, and  m 

indicate cytosolic, apical, basolateral, and mitochondrial respectively.  The direction from 
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apical to basolateral compartment was defined from the ‘positive’ side to the ‘negative’ 

side. 

To solve the above equations, the relationships between fluxes and masses must 

be specified.  The bridge between these quantities is the concentration in each 

compartment.  Each side of equations 2.1, 2.2 and 2.3 is divided by the volumes of each 

compartment to get equations 2.4, 2.5, and 2.6.  
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where Cc, Cm, and Cb are cytosolic, mitochondrial, and basolateral concentration 

and Vc, Vm, and Vb are volumes of cytosolic, mitochondrial, and basolateral compartments 

respectively. The passive diffusion flux of neutral molecules across membranes is 

described by Fick’s First Law:  

)( io aaPJ −= , (2.7) 

where J is the molecular flux from the out   side   to the inside (i) (‘negative’ side) 

of the membrane, P is the permeability of the molecules across cellular membranes, and a 

is the activity of the molecules.  For electrolytes the driving forces across cellular 

membrane are not only chemical potential but also electrical potential, which is described 

by the Nernst-Planck equation.  With the assumption of a linear potential gradient across 

the membrane, a net current flow of zero and with each ion flux is at steady state, an 

analytical solution for the flux of the ion is  
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where RTzEFN /= , z is the electric charge, F is the Faraday constant, E is the 

membrane potential, R is the universal gas constant, and T is the absolute temperature 

(23). If equations 2.7 and 2.8 are combined, the net fluxes across each membrane for both 

neutral forms and ionic forms can be described by equation 2.9. 
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where Pn is the permeability of neutral form across the membrane, Pd is the 

permeability of ionized form across the membrane, ao,n and ai,n are the activities of 

neutral form outside and inside respectively, ao,d and ai,d are the activities of ionized form 

outside and inside respectively.  So the net fluxes across each membrane are 
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where Ja,c, Jc,m, and Jc,b are net flux across apical membrane, mitochondrial 

membrane, and basolateral membrane, respectively;  aa,n, ac,n, am,n, and ab,n are the neutral 

molecular form activities in the apical compartment, cytosolic compartment, 

mitochondrial compartment and basolateral compartment, respectively; aa,d, ac,d, am,d, and 

ab,d are the ionized molecular form activities in the apical compartment, cytosolic 

compartment, mitochondrial compartment and basolateral compartment, respectively;  Na, 

Nm, and Nb are the N values for apical membrane, mitochondrial membrane and 
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basolateral membrane, respectively.  The Henderson-Hasselbalch equation (2.13) 

describes the activity ratio of neutral form molecules and ionized form molecules,  

)(log a
n

d pKpHi
a
a

−= , (2.13) 

where ad and an are the ionized molecular form and the neutral molecular form, 

respectively, i is 1 for acids and -1 for bases; pKa is the negative logarithm of the 

dissociation constant.  Therefore, 

)(10 apKpHi
nd aa −×=  , (2.14) 

The relationship of the activities (an and ad) and the total molecular concentration 

can be expressed by equation 2.15 and 2.16 (28), 

d
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== , (2.15) 
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W is the volumetric water fraction, γ the activity coefficient, and Kn and Kd the 

sorption coefficients of the neutral and the ionized molecules respectively.  Kn and Kd are 

estimated by equation 2.17, where L is the lipid fraction in each compartment and 

/ ,log
, / 10 n d lipP

ow n dK = (logPn,lip and logPn,lip calculated with equations  2.28-2.31).  

dnowdn KLK /,/ 22.1 ××= , (2.17) 

The activity coefficient of all neutral molecules (γn) is related to the ionic strength 

I (moles).  Using the Setchenov equation, at I = 0.3 mol, γn is 1.23.  The activity of ions 

(γd) is calculated with the Davies approximation of the modified Debye-Hückel equation 

(23).  For monovalent ions at I = 0.3 mol, γd is 0.74.  For conditions outside the cell, no 

corrections for the ionic strength are made, and activities are set approximately equal to 
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concentration (γ = 1) (23).  Plug equation 2.15 and 2.16 into equations 2.10, 2.11 and 2.12 

to get equations 2.18, 2.19 and 2.20. 
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Plug equations 2.18, 2.19 and 2.20 into equations 2.4, 2.5, and 2.6 to get 

equations 2.21, 2.22, and 2.23. 
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The membrane permeability P (23) can be estimated using: 

xDKP Δ= / , (2.24) 

D is the diffusion coefficient which is about 10-14 m2 / s for organic molecules in 

biomembranes.  K is the partition coefficient, and approximates Kow.  xΔ is the membrane 

thickness and is considered about 50 nm for biomembranes.  Plugging these estimated 

numbers into equation 2.24 and doing a logarithm conversion gives equation 2.25. 

7.6loglog −= owKP , (2.25) 
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Per definition, the transcellular permeability coefficient (Peff) is calculated using: 

aaa

bb
eff CAdt

VdC
P

××
×

= , (2.26) 

where Aaa is the cellular monolayer area, dCb the total concentration change in 

basolateral compartment with time dt, and Ca the concentration in apical compartment, 

which is assumed to be constant in this model. 

MATLAB® was used to solve the system of coupled differential equations 

(equations 2.21, 2.22, and 2.23).  The concentrations in cytosol (Cc), mitochondria (Cm), 

basolateral compartment (Cb), and transcellular permeability coefficient (Peff) were solved 

numerically.  Cellular parameters describing the intestinal epithelial cell were obtained 

from the literature.  The MATLAB® solver, graphics scripts, and model parameters are 

included as appendix A. 

Using this model, permeability and intracellular concentration of 36 compounds 

were calculated (Figures 2.2, 2.3). These compounds were selected on the basis of the 

following criteria: (1) they are monoionized or neutral in the physiological pH 

environment; (2) their logPn, pKa, and Caco-2 permeability were experimentally 

measured and published. The octanol/water partition coefficients (logPn) were obtained 

from SRC PhysProp Database and other references in the scientific literature (29-31), and 

pKa values were also experimental data obtained from several published articles (10, 32-

40).  The partition coefficients of the ionized state of the molecules (logPd) were 

estimated from logPn according to equation 2.27 (23).   

7.3loglog −= nd PP , (2.27) 
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Equations 2.28-2.31 were used to obtain the liposomal partition coefficient for 

both neutral forms and ionic forms of bases and acids (34).  For ampholytes to get the 

liposomal partitioning, the equation for neutral forms of bases was applied. 

for neutral forms of bases: 2
,log 0.33log 2.2, 0.69n lip nP P R= + = ,  (2.28) 

for cationic forms of bases: 2
,log 0.37log 2, 0.49d lip dP P R= + = , (2.29) 

for neutral forms of acids: 2
,log 0.37log 2.2, 0.89n lip nP P R= + = , (2.30)  

for anionic forms of acids: 2
,log 0.33log 2.6, 0.72d lip dP P R= + = , (2.31) 

Additional literature references, logPn, logPd, pKa values, and calculated 

permeability and intracellular concentration obtained with our model are included in the 

appendix A. 

Linear regression was used to compare predicted permeability values with the 

Caco-2, PAMPA, and human intestinal permeability adopted from the literature (1, 12, 

40-47).  As noticed, Caco-2 permeability data obtained from different references differ 

even for the same drug, thus the mean values of Caco-2 permeability obtained from 

different literature sources were used to compare with the predicted permeability. 

Cell-permeant nontoxic chemical space, cell-permeant toxic chemical space, cell-

impermeant chemical space, cell-permeant chemical space, cell-toxic chemical space, and 

cell-nontoxic chemical space were defined by calculating  Peff, Cc, and Cm of weakly basic 

monocationic molecules spanning pKa from 1 to 14, logPn from -5 to +5, and logPd from 

-5 to +5.  Each one of these physicochemical parameters was varied independently in 0.1 

unit intervals, and combined with the other parameters.  To evaluate the robustness of the 

results obtained with the model, chemical space plots were visually inspected for 
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reproducibility and consistency after changing one parameter at a time while keeping the 

others unchanged.  The change of logPn and logPd were discussed under two conditions: 

(1). logPn and logPd changed independently; and (2). logPn and logPd linked to each other 

by equations 2.27 to 2.31.  Parameter values used in calculation are included in the 

appendix A.  . 

Results 

A cellular pharmacokinetic model of passive transcellular drug transport  

Transcellular permeability is a key property determining biodistribution of soluble 

drug molecules from one body compartment to another. For an orally administered drug 

with high solubility, the transcellular permeability of the cells lining the intestine 

determines the fraction of drug in the intestine that is absorbed by the body. In epithelial 

cells lining the lumen of the intestine (Figure 2.1A), apical microvilli make the apical 

surface area (48) much greater than the basolateral surface area (9).  The length of an 

epithelial cell is approximately 10 to 15 µm. Aaa is the effective cross-sectional area of 

each cell, corresponding to the total area of the cell monolayer across which transport 

occurs, divided by the total number of cells involved in the transcellular transport 

process.  Finally, the total volume of the cell V constrains its overall geometry in relation 

to Aa, Ab, and Aaa.  On the basis of these parameters, the apical-to-basolateral permeability 

of an intestinal epithelial cell can be calculated with equation 2.26. 

Setting cellular parameters to mimic an intestinal epithelial cell, the model 

captures the mass transport followed by a weak base or acid (nonzwitterionic molecule), 

through said cell (Figure 2.1B).  Such molecules exist as equilibrium mixtures of neutral 
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and ionic states, their proportions determined by the pH of the immediate environment.  

In the case of high solubility-high permeability molecules, passive diffusion is the 

dominant transcellular transport mechanism (4, 5, 46, 49), driven by concentration 

gradients of drugs and ions, and the transmembrane electrical potential.  Assuming that 

mixing of molecules within each subcellular compartment is faster than the rate at which 

they traverse the delimiting membranes, the mass of drug in each compartment can be 

modeled using a set of coupled differential equations based on an empirical relationship 

between lipophilicity and transmembrane permeability of small molecules, and Fick’s 

Law of diffusion (23). To traverse the cell, molecules first cross the apical membrane, 

distributing homogenously in the cytosol and partitioning into cytoplasmic lipids. From 

the cytosol, they also partition into and out of organelles, and exit the cell across the 

basolateral membrane.   

After simulating the transcellular transport process, the calculated permeability 

values were found to be consistent with the experimental values. Specifically, we first 

considered the intracellular concentration and permeability coefficient of molecules with 

physicochemical properties resembling β-adrenergic receptor blockers: metoprolol and 

related compounds (Figure 2.2; Table 2.1). Metoprolol is orally bioavailable, but less 

permeable and less toxic than more hydrophobic relatives, such as propranolol (50).  

Comparing the calculated results (Table 2.1) with the experimental data (Table 2.2), the 

calculated permeability coefficient of metoprolol is similar to the human permeability 

coefficient measured in intestinal perfusion experiments (51), and the coefficient of 

propranolol is 1 order of magnitude smaller than human permeability coefficients (51).  
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The in silico permeabilities are generally within an order of magnitude of experimentally 

measured Caco-2 and human intestinal permeability.  

Comparing the calculated permeabilities with experimental permeability data 

Correlation of predicted permeability with Caco-2 permeability and human 

intestinal permeability were plotted to evaluate the model.  Figure 2.2 is the scatter plot 

of predicted permeability and Caco-2 permeability of seven β-adrenergic receptor 

blockers - alprenolol, atenolol, metoprolol, oxprenolol, pindolol, practolol, and 

propranolol - possessing the same core structure (Table 2.1).  This homologous set of 

drugs has similar pKa values (Table 2.1).  A significant relationship was observed. 

Next, we examined the correlation of predicted and Caco-2 permeability of 36 

structurally unrelated compounds (including the 7 shown in Figure 2.2; Figure 2.3). By 

visual inspection, the predicted permeability of compounds shown in Figure 2.3 can be 

readily categorized into two groups: high permeability and low permeability. Using the 

predicted permeability of metoprolol (No. 18) as a reference (dashed horizontal line), 

compounds that fall into the dashed oval are predicted to be high permeability by the 

model and also exhibit high permeability in Caco-2 assays.  Most high permeability 

compounds transport predominantly by the transcellular pathway with some exceptions: 

for example, P-glycoprotein reportedly affects acebutolol (No. 1 in Figure 2.3) intestinal 

absorption (52).  In the scatter plot, the predicted permeability of acebutolol was higher 

than the Caco-2 permeability, which is consistent with P-glycoprotein efflux not being 

captured by the model.  In contrast, many (predicted) low permeability drugs and 

molecules possess a significant paracellular or active transport pathway. For example, 

mannitol (No. 17 in Figure 2.3) is widely used as a passive paracellular permeability 
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marker, so its measured permeability reflects paracellular transport - not only the passive 

transcellular diffusive permeability that is predicted by the model. Conversely, 

taurocholic acid and valproic acid are substrates of transporters (41), which leads to 

higher measured permeability, well above the passive permeability predicted by the 

model. 

Next, the calculated permeability of compounds that fell into the dashed oval in 

Figure 2.3 (those with correctly predicted, high Caco-2 permeability) were compared 

with PAMPA assay results, as reported in the scientific literature (Table 2.2). For each 

individual PAMPA assay result, compounds with higher-than-metoprolol permeability 

were defined “high permeability” and lower-than-metoprolol permeability were defined 

“low permeability” (53-55).  Table 2.2 shows that PAMPA permeability measured in 

different conditions is different and is affected by buffer conditions (54).  According to 

FDA waiver guidance (56) the reference drugs ketoprofen and naproxen would be 

misclassified in two PAMPA measurement, using metoprolol as the internal reference in 

the published data sets (Table 2.2).  Nevertheless, both naproxen and ketoprofen are 

correctly classified by our computational model.  

To compare the predicted permeability with human intestinal permeability, a 

scatter plot was graphed (Figure 2.4).  Since human intestinal permeability data are 

scarce, among the 36 compounds used in this study (those with experimentally measured 

logP, pKa, and possessing only one ionizable functional group in the physiological pH 

range) we only found 10 of them having human intestinal permeability data.  A 

significant linear relationship was obtained.  
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Probing the effects of drug physicochemical properties on cellular pharmacokinetics 

The physicochemical properties of drug molecules influence intracellular 

concentration and transcellular permeability.  For a monovalent cationic weak base, the 

model explicitly considers how three different parameters (the logarithm of the 

lipid/water partition coefficient of the neutral form of the molecule, logPn; the logarithm 

of the lipid/water partition coefficient of the ionized form of the molecule, logPd; and the 

negative logarithm of the dissociation constant of the protonated functional group, pKa) 

can affect these properties. In silico, one can change each property one at a time, keeping 

the others unchanged. Two conditions were considered here: (1) logPn and logPd vary 

independently (Figure 2.5A); and (2) logPn and logPd are linked by equations 2.27 to 

2.31 (Figure 2.5B).  Although the actual relationship between logPn and logPd of a 

molecule is neither perfectly linear nor completely independent, simulating these two 

extremes conditions linking logPn and logPd is one way to assess how physicochemical 

properties affect calculated permeability and intracellular concentration. For a 

metoprolol-like molecule cytosolic concentrations remain low and constant as logPn is 

varied between -5 and +3 (Figure 2.5A left and Figure 2.5B left). However, increasing 

logPn from +3 to +5 increases cytosolic concentration to levels that greatly exceed the 

extracellular drug concentration. For mitochondrial concentrations, as logPn increases 

from -5 to 5, there is a pronounced decrease in mitochondrial sequestration. For the 

transcellular permeability, there is an increase in permeability between logPn = 3 and 

logPn = 5, in parallel to the increase in cytosolic concentration. Thus, for a metoprolol-

like molecule, the desired logPn lies between 2 and 3, at which cytosolic and 

mitochondrial concentrations are minimal, whereas transcellular permeability is maximal. 



 

 56

Just as for the logPn parameter, the logPd values of a metoprolol-like molecule 

were varied to determine the effect on intracellular concentrations and permeability 

coefficients. For logPd values less than 2, the intracellular concentration of drug at the 

steady state is low and constant (Figure 2.5A middle and Figure 2.5B middle). However 

if logPd increases above 2, cytosolic concentrations increase and greatly exceed 

extracellular drug concentration. For logPd values greater than 3, there is more than a 10-

fold increase in mitochondrial concentration above the extracellular concentration. 

Nevertheless, increasing logPd has the greatest influence on the transcellular permeability 

value, with increasing logPd associated with the fastest rates of transcellular transport.  

Thus, according to these simulations, increasing logPd leads to the very desirable effects 

of increasing transcellular transport rates, although it also leads to the very undesirable 

effect of increasing cytosolic and mitochondrial drug accumulation.  

Finally, the pKa value of a metoprolol-like molecule was varied, to study the 

effect on subcellular transport and biodistribution properties.  Compared to the other two 

parameters, increasing pKa from 9 to 14 has little effect on transmembrane permeability 

(Figure 2.5A right and Figure 2.5B right).  However, decreasing it from 9 to 7 greatly 

increased the permeability. Lowering the pKa below 9 increased the cytosolic 

concentration, while increasing it above 9 increased the mitochondrial concentration. 

Thus the pKa of metoprolol is near the point where cytosolic and mitochondrial 

concentrations are minimized while transcellular permeability is maximized.  Again, by 

varying the physicochemical properties of a metoprolol-like molecule one at a time, the 

simulations suggests that the cellular pharmacokinetic properties of metoprolol are quite 
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good and would be difficult to improve by varying the physicochemical properties of the 

molecule, one at a time.  

Chemical space definitions and solutions 

Molecules with intracellular concentrations less than - and permeability values 

greater than - those for a molecule with metoprolol-like physicochemical properties 

would posses desirable phormacokinetic properties would be expected to lead to even 

higher oral bioavailability, improved biodistribution, and decreased metabolism, relative 

to metoprolol.  To identify the physicochemical properties associated with such 

molecules, we proceeded to calculate the intracellular concentrations and transcellular 

permeability values of over a million different possible combinations of pKa, logPn and 

logPd.  Four different regions of chemical space were defined relative to the steady-state 

permeability and intracellular concentration of a molecule with metoprolol-like properties 

as follows: (1) Permeant: Molecules with calculated Peff equal to or larger than Peff of the 

reference. (2) Impermeant: Molecules with calculated Peff less than the reference Peff. (3) 

Nontoxic: Molecules with both Ccyto and Cmito equal to or less than Ccyto and Cmito of the 

reference molecule. (4) Toxic: Molecules with either Ccyto or Cmito larger than Ccyto or 

Cmito of the reference molecule. Again, two independent set of simulations were carried 

out, to represent linearly correlated and uncorrelated logPn and logPd values. 

Complete analysis of regions of physicochemical property space surrounding 

molecules with metoprolol-like properties (Figure 2.6) reveal the extent to which cell 

permeability and intracellular accumulation may be related to the physicochemical 

properties of the molecules.  First, we consider the simulations in which logPn and logPd 

are varied independently from each other.  Note that about 42.7% of total chemical space 
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is occupied by combinations of pKa, logPn, and logPd that would make molecules more 

permeant than a molecule with metoprolol-like properties (Figure 2.6A). The remaining 

57.3% is occupied by combinations of pKa, logPn, and logPd that would make molecules 

less permeant than a molecule with metoprolol-like properties. Combinations of pKa, 

logPn, and logPd that lead to intracellular concentrations greater than those obtained with 

a molecule with metoprolol-like physicochemical properties lie within “toxic” chemical 

space, by definition. This region of chemical space comprises 60.6% of the total chemical 

space, with the remaining 39.4% falling in “nontoxic” space (Figure 2.6B).  If cellular 

permeability and toxicity were completely unrelated to each other, one would expect that 

16.8% of the molecules would fall under “permeantnontoxic” space (16.8% permeant 

nontoxic) 39.4% nontoxic 42.7% permeant). However, the actual fraction of molecules 

falling in cell permeant-nontoxic space (Figure 2.6C) is 1.5%, as permeability and 

intracellular accumulation are partly related to each other.  Thus, while combinations of 

pKa, logPn, and logPd promoting permeability and nontoxicity work against each other to 

some degree, there is a small chunk of physicochemical property space where molecules 

with greater permeability than metoprolol, but reduced intracellular accumulation, may 

reside. Indeed, there may be a small but significant number of molecules possessing a 

desirable combination of physicochemical properties leading to improved bioavailability 

and biodistribution properties relative to a molecule with metoprolol-like features. 

Last, we mapped the chemical space surrounding a molecule with metoprolol-like 

physicochemical properties, under conditions in which logPn and logPd are perfectly 

coupled to each other in a linear relationship (Figure 2.7).  Under these conditions, 

physicochemical property space is reduced to a plane, with a molecule of metoprolol-like 
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features sitting at the intersection of the boundary delimiting permeant-impermeant and 

toxic-nontoxic space (Figure 2.7).  The impermeant nontoxic and the impermeant toxic 

were 47.6% and 7.5% of the total space. Most importantly, while permeant toxic 

occupies 43.7% of the total space respectively, permeant nontoxic occupies 0.11% of this 

space.  Thus, our simulations also indicate that the extent to which logPn and logPd are 

coupled can severely restrict the ability to find a metoprolol-like molecule with improved 

biopharmaceutical features.  Furthermore, examining where permeant nontoxic space 

exists relative to metoprolol, one finds that lowering the pKa may be the only way to both 

increase the permeability and decrease the intracellular accumulation (toxicity) of 

metoprolol. For the β-blockers, the pKa of the molecule is determined by an isopropyl 

amine group that is shared by all the congeners (Table 2.1), and therefore this group may 

be essential for receptor binding.  One way around this constraint would be to change the 

ionization properties of the molecules by making them zwitterionic at physiological pH. 

However, the current model cannot capture the behavior of zwitterions, so a theoretical 

analysis of this optimization strategy must await development and validation of more 

advanced versions of the model. 

Discussion 

Transport of small molecules into and out of cells and organelles is determined by 

both passive and active transport mechanisms.  The cellular pharmacokinetic model 

elaborated in this study specifically captures passive transport mechanisms, determined 

by the physicochemical properties of small molecules, their interactions with 

phospholipid bilayers, and the concentration gradients of ions and macromolecules across 

cellular membranes (22, 48, 57, 58).  Empirical (12, 22, 59) and theoretical (60-62) 
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considerations establish three physicochemical properties of small molecules as key 

determinants of passive transport across membranes: size, charge, and lipophilicity.  Most 

molecules used for drug discovery and chemical genomics investigations are “small”, i.e. 

between 200 and 800 daltons, and therefore similar in size. Thus, the model is suitable for 

comparing the behavior of small molecules within this limited size range, where the main 

physicochemical properties influencing the distribution of molecules in cells are the 

multiple ionization states, and the lipophilicity of each ion. 

For model validation, metoprolol was used as a reference because it is an FDA-

approved drug that is 95% absorbed in the gastrointestinal tract (1), and it is 

recommended as an internal standard - to be included in experiments that assess drug 

permeability (56) - by the FDA. Metoprolol is generally included in published PAMPA, 

Caco-2, and intestinal permeability datasets, as a reference point with which to establish 

the threshold between high and low permeability compounds. Several metoprolol 

relatives - like atenolol - are orally bioavailable, moderate absorption, low metabolism, 

low toxicity, renally cleared (36, 63-66) with a well-characterized, passive-transport 

absorption mechanism (67), in vitro and in vivo permeability characteristics (51, 68) and 

measured micro pKa/(logP) properties (34).  Using the physicochemical properties of 

metropolol as a reference, cell-based molecular transport simulations were used to 

calculate the pharmaceutical properties of related β-adrenergic receptor antagonists.  

Setting cellular parameters and model geometry to mimic an intestinal epithelial cell, the 

simulations permitted testing the effects of different biological and chemical parameters 

on intracellular concentrations and transcellular permeability coefficients, through time.  

The steady-state values for high permeability compounds were comparable to 
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experimental measurements obtained through intestinal, in vivo perfusion experiments, 

and Caco-2, in vitro permeability assays (22, 69, 70).  In addition, running over a million 

different combinations of logPn, logPd, and pKa through the simulation allowed us to 

define a physicochemical property space leading to the most desirable biopharmaceutical 

characteristic (higher transcellular permeability with lower intracellular accumulation), 

relative to the simulated characteristics of a metoprolol-like molecule.   

We note that, since intracellular accumulation and permeability are related to each 

ther, optimizing a single biopharmaceutical property (permeability) of a compound at a 

time may lead to unfavorable biodistribution properties (intracellular accumulation) 

associated with toxicity or drug clearance by metabolism.  Indeed, complex properties 

like bioavailability may be predictable as nonlinear functions of the fundamental 

physicochemical properties of molecules, under conditions in which transcellular 

transport is maximized and intracellular concentrations are minimized.  Due to the 

limited experimental data available for fitting statistical models, and the relatively 

complex behaviors apparent in the simplified model presented in this study, our results 

suggest that purely empirical, statistical regression models built from human, Caco-2, or 

even PAMPA permeability data would be comparatively limited in their ability to predict 

bioavailability of small molecule drugs. Thus, cellular pharmacokinetic simulations could 

be used to complement to the more conventional, regression-based statistical approaches. 

This is especially true in situations when the statistical models lack power, such as when 

assay measurements are too variable or of low quality, or when a training dataset is 

unavailable, of dubious quality, or too sparse.  With continued validation and refinement, 
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cell-based mass transport simulators can become increasingly sophisticated in their 

ability to capture more complex phenomena of pharmaceutical importance.  

Admittedly the scope of the current, passive diffusion model is narrow, as its 

predictions apply only to nonzitterionic, monocharged molecules within a limited size 

range, administered at high concentrations so that they saturate specific binding sites on 

intracellular proteins, enzymes, and transporters.  However the therapeutic impact of the 

model could be substantial, since 80% of currently marketed therapeutic products are 

small molecules, administered orally and at high concentrations (19). Moreover the 

majority of these do target cell surface receptors or ion channels (9).  The FDA’s 

Biopharmaceutics Classification System (47) recognizes four classes of oral drug 

products: class I (high solubility-high permeability); class II (low solubility-high 

permeability); class III (high solubility-low permeability); and class IV (low solubility-

low permeability).  The model is mostly relevant to class I and II small molecule drugs, 

which turn out to be very common and well-behaved, encompassing about half of the 

drug products on the market (19).  Since extracellular receptor binding allows 

maximizing a drug’s transcellular permeability while minimizing intracellular 

accumulation, our model provides a mechanistic explanation as to why the major class of 

well-behaved, orally bioavailable drugs currently on the market does often target 

extracellular domains of cell surface receptors.  

To conclude, cell-based molecular transport simulators can be used to make other 

predictions in addition to transcellular permeability, which could also be experimentally 

tested.  Because each component that goes into the model can be studied and improved 

independently, more precise membrane transport equations including additional variables 
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(such as molecular weight)(60, 62) and additional subcellular compartments could be 

readily incorporated into the models, albeit at the expense of greater computational 

complexity.  Indeed, by checking predictions with experiments, the model can be 

gradually improved and evolved, and its scope can be extended to describe the transport 

of an increasing variety of molecules (such as zwitterions), under increasingly diverse 

conditions. Using single cells as pharmacokinetic units, it should be possible to model 

transport functions in multicellular organizations, simulating transport functions in tissues 

and even organs, and even incorporate intracellular enzymatic, transporter, and specific 

binding and nonspecific absorption activities through the Michaelis-Menten equation and 

binding isotherms.  By coupling cell-based, molecular transport simulators to other 

cheminformatic analysis tools (such as computational pKa and logP calculators), in silico 

screening experiments may be performed - rapidly, inexpensively, reproducibly, and 

reliably - on a large number of molecules, to explore the diversity of large collections of 

molecules in terms of their cellular pharmacokinetic and pharmacodynamic properties. 
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Table 2.1. Structures, physicochemical properties, average Caco2 permeabilities, and predictive permeabilities of seven β-
adrenergic blockers.    The logPn, lip values are the calculated liposomal logPn which were used in permeability calculation. 
 

Peff 
(10-6 cm/s) 

Ccyto 
(mM) 

Cmito 
(mM) 

Name Structures pKa logPn (29) logPn, lip 
 

Caco-2 Peff 
(10-6 cm/s)

Calculated 
alprenolol 

 
9.60 (40) 3.10 3.22 95.70 103.38 8.52 11.59 

atenolol 

 
9.60 (40) 0.16 2.25 1.07 8.42 2.23 8.76 

metoprolol 
 

9.70 (40) 1.88 2.82 40.15 36.63 4.13 12.95 

oxprenolol 

 
9.50 (40) 2.10 2.89 97.25 44.29 4.58 8.40 

pindolol 

 
9.70 (40) 1.75 2.78 54.53 32.56 3.86 12.65 

practolol 

 
9.50 (40) 0.79 2.46 2.91 14.35 2.60 7.29 

propranolol 

 
9.49 (33)  2.98 (31) 3.18  34.80  92.47  7.76  8.81  
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Table 2.2.  Comparison of predicted permeability with average Caco2 permeability and PAMA permeability of drugs within 
the predictive circle in Figure 2.3.    Permeability values are in unit of 10-6 cm/sec.  Metoprolol was chosen a reference compound. 
(H stands for ‘high permeability’, L stands for ‘low permeability’) 
 

 
Drugs 

Predicted 
Permeability 

PAMPA (54) PAMPA 
(55) 

(at pH7.4) 

PAMPA 
(53) 

(at pH7.4) 

Human 
intestinal 

permeability 
(47) 

FDA 
Waiver 

Guidance 
(56) 

Tentative 
BCS 

Classification 
(47) 

alprenolol 103.38 H 11.50 H   15.1 H     

antipyrine 209.00 H 2.87 L 0.82 L 13.2 H 560 H H  
chlorpromazine 737.26 H     4.0 H    1 

clonidine 45.92 H 10.41 H   14.0 H     
desipramine 468.18 H 16.98 H   14.6 H 450 H   

diazepam 201.67 H           
diltiazem 127.52 H 19.21 H 14 H 18.5 H    2 

ibuprophen 280.35 H 21.15 H   6.8 H    2 
imipramine 442.66 H 19.36 H   8.4 H     

indomethacin 354.22 H     2.4 L     
ketoprofen 145.35 H 2.84 L 0.043 L 16.7 H 870 H H  
lidocaine 130.27 H           

metoprolol 36.63 ref 7.93 ref 1.2 ref 3.5 ref 134 ref H  
naproxen 152.87 H 5.01 L 0.23 L 10.6 H 850 H H  

oxprenolol 44.29 H 14.64 H         
phenytoin 90.53 H 38.53 H   5.1 H     
pindolol 32.65 L 4.91 L   4.9 H     

piroxicam 1542.75 H 10.87 H   8.2 H 665 H   
propranolol 92.47 H 26.33 H 12 H 23.5 H 291 H H 1 

trimethoprim 194.61 H 3.14 L 2.2 H 5.0 H    4 
valproic acid 126.91 H          3 
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verapamil 208.36 H 23.02 H 14 H 7.4 H 680 H H 1 
warfarin 113.88 H     12.3 H     

 



 

 67

Table 2.3. Correlation of predicted permeability VS. human intestinal permeability.  
(Permeability values are in unit of 10-6 cm/sec.) 

 
Name Human 

Permeability 
(47) 

log(Peff, 
human) 

Predicted 
Permeability 

log(Peff, 
predicted) 

antipyrine 560.00 -3.25 209.00 -3.68 
atenolol 20.00 -4.70 8.42 -5.07 

desipramine 450.00 -3.35 468.18 -3.33 
ketoprofen 870.00 -3.06 145.35 -3.84 
metoprolol 134.00 -3.87 36.63 -4.44 
naproxen 850.00 -3.07 152.87 -3.82 
piroxicam 665.00 -3.18 1542.75 -2.81 

propranolol 291.00 -3.54 92.47 -4.03 
terbutaline 30.00 -4.52 24.15 -4.62 
verapamil 680.00 -3.17 208.36 -3.68 
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Figure 2.1. Model of an intestinal epithelial cell.  A) Cell morphology. B)   The path of 
a hydrophobic weak base across an intestinal epithelial cell. The neutral form of the 
molecule is indicated as [M] and the protonated, cationic form of the molecule is 
indicated as [MH+]. 
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Figure 2.2. Correlation of Caco2 permeability and predicted permeability of seven 
β-adrenergic blockers.   The X-axis indicates the logarithm values of average measured 
Caco2 permeability (cm/sec) and the Y-axis indicate the logarithm values of predicted 
permeability (cm/sec).  The dotted line is the linear regression line.  The linear regression 
equation is )76.0(4.244.0 2 =−= Rxy , the significance F of regression given by EXCEL 
is 0.011 (confidence level is 95%).  Numbers 1 through 7 indicate alprenolol, atenolol, 
metoprolol, oxprenolol, pindolol, practolol, and propranolol respectively.  The structures, 
physicochemical properties, average Caco2 permeability and predictive permeability 
were summarized in Table 2.1. 
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Figure 2.3. Correlation of Caco2 permeability and predicted permeability of thirty-
six drugs. The X-axis indicates the logarithm values of average measured Caco2 
permeability (cm/sec) and the Y-axis indicate the logarithm values of predicted 
permeability (cm/sec).  Metoprolol (No.18) was used as a reference drug. Details of 
calculated permeability and average Caco2 permeability were included in the 
Supplementary Materials. 
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Figure 2.4. Correlation of human intestinal permeability and predicted 
permeability. The X-axis indicates the logarithm values of measured human intestinal 
permeability (cm/sec) and the Y-axis indicate the logarithm values of predicted 
permeability (cm/sec).  A simple linear relation was obtained and expressed by the 
equation: 20.91 0.69( 0.71)y x R= − = , the significance F of regression given by EXCEL 
is 0.0016 (confidence level is 95%).  Calculated permeability and human intestinal 
permeability numbers were listed in Table 2.3. 
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Figure 2.5.   Effects of physicochemical properties on intracellular concentration at 
steady state, of a molecule with metoprolol-like properties (arrows). (A). logPn and 
logPd are not associated. (B). logPn and logPd are associated by a simple linear 
relationship expressed as equations 2.27-2.29.  The arrows indicate the liposomal logPn, 

lip and logPd, lip, which were used in permeability calculation.  (solid line = cytosolic; dark 
dotted line = mitochondrial) and permeability (light stippled line) 
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Figure 2.6.  The chemical space occupied by molecules with ideal pharmacokinetic 
properties:  A) permeability (defined as molecules with calculated Peff  equal or larger 
than Peff of a molecule with metoprolol-like properties); B) intracellular accumulation 
(defined as molecules with both calculated Ccyto and Cmito equal or less than that of the 
metoprolol-like reference molecule); and, C) permeability and intracellular accumulation 
(defined as molecules with calculated Peff equal or larger than Peff, and Ccyto and Cmito 
equal or less than Ccyto and Cmito calculated for a molecule with metoprolol-like 
properties.  Each row represents the same spaces with different rotating aspects.  logPn 
and logPd are not associated (change independently).  Numbers 1 through 7 are 
alprenolol, propranolol, oxprenolol, metoprolol, pindolol, practolol, and atenolol 
respectively.  The logPn and logPd values of each molecule were liposomal logPs used in 
calculation, which were listed in Table 2.1.  
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Figure 2.7.  The chemical space defined by metoprolol-like reference molecule.    
logPn and logPd are associated by a simple linear relationship expressed as equations 
2.27-2.29.   Numbers 1 through 7 are alprenolol, propranolol, oxprenolol, metoprolol, 
pindolol, practolol, and atenolol respectively.  The logPn and logPd values of each 
molecule were liposomal logPs used in calculation, which were listed in Table 2.1. 
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CHAPTER III 

SIMULATION-BASED CHEMINFORMATIC ANALYSIS OF ORGANELLE-
TARGETED MOLECULES: LYSOSOMOTROPIC MONOBASIC AMINES 

Abstract 

Cell-based molecular transport simulations are being developed to facilitate 

exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For 

this purpose, mathematical models of single cells are built from equations capturing the 

transport of small molecules across membranes. In turn, physicochemical properties of 

small molecules can be used as input to simulate intracellular drug distribution, through 

time. Here, with mathematical equations and biological parameters adjusted so as to 

mimic a leukocyte in the blood, simulations were performed to analyze steady-state, 

relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this 

target cell, in the presence of a homogenous extracellular drug concentration. Similarly, 

with equations and parameters set to mimic an intestinal epithelial cell, simulations were 

also performed to analyze steady state, relative distribution and transcellular permeability 

in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. 

With a test set of ninety-nine lysosomotropic small molecules gathered from the scientific 

literature, simulation results helped analyze relationships between the chemical diversity 

of these molecules and their intracellular distributions. 
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Introduction 

Weakly basic molecules possessing one or more amine groups accumulate in 

lysosomes and other membrane-bound acidic organelles because of the well-known ion 

trapping mechanism (1-3). Amines generally have a pKa value in the physiological pH 

range. Accordingly, they exist as a combination of ionized (protonated) and neutral 

(unprotonated) species. Because the pH of lysosomes is one or more units lower than the 

pH of the cytosol, the relative concentration of neutral and ionized species inside the 

lysosomes shifts towards the protonated, ionized state. Conversely, because the pH of the 

cytosol is higher, the relative concentration of neutral and ionized species in the cytosol 

shifts towards the neutral, unprotonated state. Since charged molecules are less 

membrane-permeant, the protonated species become trapped inside the membrane-

bounded compartments, relative to the neutral species. Within an acidic lysosome, the 

concentration of the neutral, membrane-permeant species is lower than its concentration 

in the more basic cytosol. This leads to a concentration gradient of the neutral form of the 

molecule across the lysosomal membrane, further driving the uptake of the neutral 

species of the molecule into the acidic organelle.   

In medicinal chemistry, the ability to modify the chemical structure of small 

molecules so as to tailor lysosomotropic behavior may be important for decreasing 

unwanted side effects, as much as it may be important for increasing efficacy. For many 

monobasic amines that target extracellular domains of cell surface receptors and ion 

channels, lysosomal accumulation can be considered as a secondary effect of the 

physicochemical properties of the molecule (4-8).   Previously, many monobasic amines 

have been experimentally analyzed in cell-based assays, in terms of their ability to 
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accumulate in lysosomes (6, 9-12).  In response to ion trapping, cells exposed to 

monobasic amines swell and become replete with large vacuoles (6, 9, 10, 13-15).  With 

a phase contrast microscope, swollen lysosomes can be easily discerned and scored.  

Furthermore, as monobasic amines accumulate in lysosomes, they can increase the pH of 

the organelle through a buffering effect, or by shuttling protons out of the lysosome, 

across the lysosomal membranes (16). Therefore, such molecules “compete” with each 

other for lysosomal accumulation, providing another way to assay for lysosomotropic 

behavior (16, 17).  A third way to assay lysosomotropic behavior is by labeling 

lysosomes with fluorescent probes (e.g. LysoTracker® dyes) (17).  As lysosomes expand 

in response to accumulation of lysosomotropic agents, they accumulate increasing 

amounts of the LysoTracker® dye and the cells become brightly labeled.  By virtue of 

these effects on live cells, many monobasic amines have been positively identified as 

“lysosomotropic”.   

Nevertheless, different studies analyzing lysosomotropic monobasic amines have 

also identified molecules that deviate from expectations. Furthermore, there is a broad 

range of concentrations at which vacuolation becomes apparent, spanning several orders 

of magnitude (10, 18-20). In addition, there are monobasic amines that do not exhibit any 

vacuolation-inducing behavior (6, 9, 10, 13, 14, 21), and do not compete with the 

lysosomal uptake of other lysosomotropic probes (6, 16), or that are cytotoxic (21). Most 

importantly, some lysosomotropic molecules have been reported to accumulate in other 

organelles, such as mitochondria (22). Alprenolol, chlorpromazine, fluoxetine, 

propranolol and diltiazem are some of the FDA approved drugs in this category (6, 16, 

22, 23) that have been classified as being both lysosomotropic and mitochondriotropic by 
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different investigators. In addition, certain monobasic amines may accumulate in 

lysosomes to a much greater extent than ion trapping mechanisms would predict (20). 

These apparent discrepancies in terms of the lysosomotropic behavior prompted 

us to begin exploring the relationship between the phenotypic effects of monobasic 

amines, and their subcellular distribution in lysosomes vs. other organelles. We decided 

to use a cell-based molecular transport simulator (24, 25) to begin exploring the different 

possible behaviors of monobasic amines inside cells based on the ion trapping 

mechanism, paying special attention to their accumulation in lysosomes, cytosol and 

mitochondria. The simulations help assess the entire range of expected variation in 

intracellular transport behaviors, based solely on the biophysical principles underlying 

the ion trapping mechanism. In turn, the expected range of transport behaviors can be 

related to experimental observations of a lysosomotropic test set of molecules obtained 

from published research articles.  Because the ability to optimize the subcellular transport 

of small molecules could have practical applications in drug development, we also deem 

it important to analyze the distribution of molecules inside non-target cells mediating 

drug transport in the presence of a transcellular concentration gradient.  In fact, although 

direct experimental measurement of subcellular concentration in the presence of a 

transcellular concentration gradient would be difficult, this may be the most relevant 

condition for drug uptake and transport throughout the different tissues of the body.   

Methods 

Modeling cell pharmacokinetics of target cells in suspension: the T-model 
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For subcellular compartments delimited by membranes, passive transport of small 

molecules in and out of these compartments is determined by the interaction of the 

molecules with the membrane, the concentration gradient of molecules across the 

membrane, the local microenvironment on either side of the membrane, and the 

transmembrane electrical potential (24, 25). Drug-membrane interactions are largely 

dependent on the physicochemical properties of small molecules (such as pKa and 

lipophilicity) and the environmental condition (such as local pH values and membrane 

potentials). Based on the biophysics of membrane transport, mass transfer of drug 

molecules between different organelles in a cell surrounded by a homogeneous 

extracellular drug concentration has been modeled mathematically by Trapp and Horobin 

(25) (Figure 3.1a).  Accordingly, three coupled ordinary differential equations (3.1, 3.2, 

and 3.3) describe the concentration change with time in each subcellular / cellular 

compartment.   
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where C indicates the concentration, J indicates the flux, A and V indicate the membrane 

surface area and volume respectively. The subscripts o,c,l, and m indicate extracellular 

compartment, cytosol, lysosomes, and mitochondria respectively. The directions of fluxes 

are indicated by the orders of the subscripts, e.g. mcJ ,  represents the flux from cytosol to 

mitochondria. Calculations for fluxes between each pair of compartments were the same as 
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described before (25). The ordinary differential equations were numerically solved 

(supplemental materials) (24). 

An important feature of this model is that at steady state, the drug accumulation in 

the cytosol is only dependent on the drug concentration outside the cell, the plasma 

membrane permeability properties, and the ionic conditions of the cytosol and the 

extracellular medium. Similarly, the drug accumulation inside any given organelle is only 

dependent on the drug concentration in the cytosol, the permeability properties of the 

membrane delimiting the organelle, the ionic conditions of the cytosol and the inner lumen 

of the organelle. Consequently, one can use the same equations to analyze steady state 

distribution drugs in lysosomes or mitochondria (and other organelles) simply by adjusting 

the pH of the organelle, the transmembrane electrical potential, and the organelle volume, 

surface area, and lipid fraction.  For mitochondria, the inner lumen pH was set at 8 (25) and 

the membrane potential was set at -150 mV (26).  Mitochondria were modeled as spheres 

with 1 µm radius. For lysosomes, the inner lumen pH was set at 5 (1, 27-29) and the 

membrane potential was set at +10 mV (30).  Leukocytes were modeled as spherical 

objects of 10 µm in diameter.  Plasma membrane potential was set at -60 mV (31) .  

Extracellular pH was set at 7.4 (blood).  Cytosolic pH was set at 7.0 (32).  Since we are 

more interested in the drug aqueous concentration in cytosol, the lipid fraction was set at 0 

in calculation. Other model parameters were adapted from literature (25). Hereafter, this 

cellular pharmacokinetic model applicable to free floating cells in suspension (e.g. 

leukocytes in circulation) will be dubbed Trapp’s Model or ‘T-Model’.   
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Modeling cellular pharmacokinetics of non-target, polarized epithelial cells: the R-
model 

For modeling drug transport across polarized epithelial cells (24), the cell surface 

area is divided into apical and basolateral membrane domains (Figure 3.1b). Similarly, the 

extracellular space is divided into apical and basolateral extracellular compartments. 

Accordingly, drug uptake into the cell is represented by mass transfer of drug molecules 

from the apical extracellular medium into the cytosol, across the apical membrane.  Drug 

efflux from the cells is represented by mass transfer from the cytosol to the basolateral 

medium, across the basolateral membrane.  Because the apical membrane is normally 

covered with microvilli, the apical membrane surface area (Aa) can be adjusted 

independently from the basolateral membrane (Ab). Similarly, the extracellular pH of the 

apical (pHa) and basolateral compartments (pHb), and transmembrane electrical potentials 

across apical and basolateral membranes (Ea and Eb) can be independently adjusted, so as 

to mimic the local microenvironment of the epithelial cells.   

A cellular pharmacokinetic model for simulating intracellular concentration and 

passive transcellular permeability in the presence of a transcellular concentration gradient 

was developed previously by our group (24, 33).  Mass transport across the boundary of 

each compartment can be described by equations 3.4 to 3.7. 
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The subscripts a and b indicate ‘apical’ and ‘basolateral’ respectively. Other 

symbols and subscripts mean the same as those in the T-model. As in the T-model, the 

inner lumen pH of mitochondria was set at 8 (25) and the mitochondrial membrane 

potential was set at -150 mV (26).  For lysosomes, the inner lumen pH was set at 5 (1, 27-

29) and the membrane potential was set at +10 mV (30).  Epithelial cells were modeled as 

cubical objects of 10 µm in length. Again since we are more interested in the drug aqueous 

concentration in cytosol the lipid fraction was set to 0. All other model parameters used in 

calculation were obtained from the literature (24), and can be found in the supplemental 

materials. To maintain sink condition in the basolateral compartment, we set the volume of 

the basolateral compartment (Vb) equal to the human blood volume (4.7 L).   

From simulating cytosol to basolateral flux of molecules in an intestinal epithelial 

cell, the transcellular permeability of the intestinal epithelial cell monolayer corresponds to 

the following equation (24): 

dtAC
dmP

aaa

b
eff ⋅⋅

= , (3.8) 

where Peff is the effective permeability, Ca is the initial concentration in the apical 

compartment and is considered to be constant, dmb/dt is the change in drug mass in the 

basolateral compartment per unit time, and Aaa is the apparent cross sectional area of the 

cell, which would approximately correspond to the total area of the surface over which 

drug transport is occurring divided by the number of cells that are effectively transporting 

drug. Henceforth, this cellular pharmacokinetic model that applies in non-target epithelial 

cells will be dubbed Rosania’s Model or ‘R-Model’.   

Analyzing organelle-targeting and transcellular permeability with R- and T-models 
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To analyze the intracellular distribution of monovalent weakly basic molecules 

possessing amine functionality, all different combinations of a) octanol : water partition 

coefficients of the neutral form of the molecule (logPn); b) octanol : water partition 

coefficients of the ionized form of the molecule (logPd); and c) pKa were used as input. 

LogPn and logPd spanned a range from -5 to +5, while logPd was constrained to a value 

less than or equal to logPn. pKa spanned a range from 0 to 14. pKa, logPn, and logPd were 

varied in 0.2 unit increments (24). The molecular charge (z) was set equal to 1, which 

means the simulated whole physicochemical space is specific for monovalent amine-

containing molecules. With R- and T-Model, simulations were performed until the 

system reached steady state (normally, at 106 seconds after beginning of the simulation). 

For R-Model simulations, initial apical drug concentration was set at 1 mM, and 

basolateral drug concentration was set at 0 mM. For T-model simulations, extracellular 

drug concentration was set at 1 mM, and kept constant. Accordingly, for each 

combination of pKa, logPn, and logPd used as input, there are seven output values: CcytoR, 

CmitoR, ClysoR (the steady-state cytosolic, mitochondrial and lysosomal concentration 

estimated with the R-model); Peff (the steady-state effective permeability estimated with 

the R-Model); and CcytoT, CmitoT, and ClysoT (the steady-state cytosolic, mitochondrial 

and lysosomal concentrations estimated with the T-Model). 

A test set of monobasic amines with associated lysosomotropic behaviors 

Focusing on lysosomal targeting, ninety-nine monobasic amines (Table 3.1) were 

found by searching PubMed abstracts and titles for articles containing the word 

“lysosome”, “lysosomal”, or “lysosomotropic”; from other articles referenced by these 

articles; and from current review articles describing the lysosomal accumulation of 
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weakly basic molecules (1). There are more lysosomotropic amine-containing molecules 

besides molecules included in our table (for example, zwitterions or dibasic amines). 

However since R- and T-Models have been validated mostly with molecules possessing 

one ionizable functional group, lysosomotropic amines with more than one ionizable 

functionality were not included. To estimate the pKa (at 37 ºC), logPn and logPd for each 

molecule, we used ChemAxon (http://www.chemaxon.com). A liposomal approximation 

(24, 34) was applied for logPn and logPd based on the values obtained from ChemAxon. 

Intracellular distributions were analyzed for those ninety-nine molecules at steady state 

with the T-model and R-model. Transcellular permeability was analyzed for the ninety-

nine molecules at steady state with the R-model. 

Interactive visualization of simulation results 

Visualization of simulation results was performed with the Miner3D® software 

package (Dimension 5, Ltd., Slovakia, EU). Simulation results were graphed as 3D 

scatter plots to shape the chemical spaces with logPn, logPd and pKa plotted on the three 

coordinate axes, and the analyzed steady state concentration or permeability determining 

the color and intensity of the points. For linking simulation results with the test set of 

lysosomotropic molecules, we used the pKa, logPn and logPd values obtained after 

liposomal approximations (24). 

To plot different chemical spaces we set a threshold concentration value to define 

accumulation in a specific subcellular compartment.  For intracellular concentration, the 

threshold lysosomal accumulation for lysosomotropic molecules was ClysoT ≥ 2 mM ( i.e. 

two-fold greater than extracellular concentration). The thresholds for selective lysosomal 

accumulation were ClysoT ≥ 2 mM; ClysoT / CmitoT ≥ 2 ; and ClysoT /CcytoT ≥ 2. The 
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threshold for mitochondrial accumulation was CmitoT ≥ 2 mM. The thresholds for 

selective mitochondrial accumulation were CmitoT ≥ 2 mM; CmitoT / ClysoT ≥2; and CmitoT 

/ CcytoT ≥2. The threshold for cytosolic accumulation was CcytoT ≥ 2 mM. The thresholds 

for selective cytosolic accumulation were CcytoT ≥ 2 mM; CcytoT / CmitoT ≥ 2; and CcytoT / 

CmitoT ≥ 2. The reason for using the two-fold concentration value as a threshold is 

because it gave the highest percentage of correct classification and lowest incorrect 

classification rate for the test set of lysosomotropic molecules (as detailed in the Results 

section).  

As recommended by the FDA, the permeability value of metoprolol was used as a 

threshold to distinguish high vs. low permeability molecules (24). Previously we 

calculated permeability for metoprolol, using the pKa and logPn obtained from 

experimental measurements, to be equal to 35 ×10-6 cm/sec (24). In the present study, we 

used this value as a threshold to distinguish high vs. low permeability molecules. In 

addition, we arbitrarily set a value of 1×10-6 cm/sec as a cut-off number to distinguish 

low from negligible permeability molecules. Accordingly, three permeability classes 

were defined as: negligible (Peff < 1×10-6 cm/sec); low (1 ≤ Peff < 35 ×10-6 cm/sec); and 

high (Peff ≥ 35 ×10-6 cm/sec).   

Results 

Defining a lysosomal accumulation threshold for lysosomotropic molecules 

We began by exploring the simulated property space occupied by monobasic 

amines, in relation to the test set of molecules obtained from published research articles 

(Table 3.1).  Three different lysosomal concentration thresholds (2, 4 and 8 mM) were 
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tested in terms of their ability to discriminate lysosomotropic vs. non-lysosomotropic 

compounds (Figure 3.2). For compounds with ≥ 2 mM accumulation in lysosomes 

(Figure 3.2a-d), eight (8) of the test compounds were below the accumulation threshold 

(Figure 3.2a, b), while ninety-one (91) were above the threshold (Figure 3.2c, d).  For 

compounds with ≥ 4 mM accumulation in lysosomes (Figure 3.2e-h), twelve (12) of the 

test compounds were below the accumulation threshold (Figure 3.2e, f), while eighty-

seven (87) were above the threshold (Figure 3.2g, h).  For compounds with a ≥ 8 mM 

accumulation in lysosomes (Figure 3.2i-l), fifty-six (56) lie below the accumulation 

threshold (Figure 3.2i, j) while forty-three (43) are above (Figure 3.2k, l).   

We established that a lysosomal accumulation threshold of 2 mM is best suited to 

distinguish lysosomotropic from non-lysosomotropic molecules, since it gave the highest 

correct classification in terms of matching simulation results with the experimentally-

observed, lysosomotropic behaviors. Accordingly, for a lysosomal accumulation 

threshold of 2mM, of the 8 molecules that were below the accumulation threshold, 5 

(62.5%) have been positively identified as non-lysosomotropic. Conversely, of the 91 

above the threshold, 8 (8.8%) non-lysosomotropic molecules have been incorrectely 

classified as lysosomotropic.  For a lysosomal accumulation threshold of 4 mM, of the 12 

below the threshold, 5 (41.7%) have been identified as non-lysosomotropic. Conversely, 

of the 87 above threshold, 8 (9.2%) non-lysosomotropic molecules have been 

incorrectely classified as lysosomotropic. For a lysosomal accumulation threshold of 8 

mM, of the 56 below the threshold, 9 have been positively identified as non-

lysosomotropic (16.1%).  Conversely, of the 43 above the threshold, 4 (9.3%) non-

lysosomotropic molecules have been incorrectly classified as lysosomotropic. 
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The test set appears highly clustered in relation to the available lysosomotropic, 
physicochemical property space 

Exploring the relationship between the physicochemical properties of the test set 

of molecules obtained from the literature with that of the theoretical physicochemical 

property space occupied by molecules that accumulate in lysosomes at the different 

threshold values, we observed that most of the test molecules tend to be clustered in very 

specific region of “lysosomotropic space”. In fact, physicochemical property space 

occupied by molecules that accumulate in lysosomes at ≥ 2 mM (Figure 3.2b) appears 

largely similar to the space of molecules that accumulate at ≥ 4 mM (Figure 3.2f) and at ≥ 

8 mM (Figure 3.2j). It was surprising that most lysosomotropic molecules in the 

reference set were calculated to have a lysosomal accumulation between 2- and 8-fold 

over the extracellular medium, although the largest portion of the calculated 

physicochemical property space that can be occupied by monobasic amines corresponds 

to > 8-fold lysosomal accumulation.  

Using simulation results to define the expected transport classes for monovalent 
weak bases 

Using a 2-fold or greater concentration of drug over the extracellular medium to 

distinguish high vs. low lysosomal, mitochondrial and cytosolic concentration, and by 

incorporating high vs. low permeability classification obtained with the R-model, a total 

of 16 classes of molecules can be  defined a priori (Table 3.1).  By mapping the test set 

of molecules to these 16 different classes, we find that some classes of molecules are 

well-represented by a number of molecules, while other classes of molecules are not 

represented at all (Table 3.1). However, according the simulation results, several of these 

a priori classifications are deemed to be “non-existent” by virtue of our being unable to 
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find a combination of physicochemical properties consistent with the corresponding class 

of molecules in simulations.  

Simulation results point to general trends in lysosomotropic behaviors 

For the test set of molecules, we observed that the simulated intracellular 

accumulation in non-target cells (R-Model) is much lower than the corresponding 

accumulation in target cells (T-model) (Table 3.1). The simulations yielded lysosomal 

accumulation occurring for a broad range of transcellular permeability values (Table 3.1). 

Unexpectedly, for most lysosomotropic molecules, the simulations indicate that 

mitochondrial accumulation may be much greater than lysosomal or cytosolic 

accumulation, suggesting that lysosomotropic behavior may not be exclusively related to 

selective accumulation in lysosomes. Lastly, we observed that none of the 

lysosomotropic molecules in the test set are able to accumulate in cytosol to a greater 

extent than they accumulate in mitochondria or in lysosomes (Table 3.1). In fact, plotting 

the physicochemical property space of such molecules yielded an empty space (data not 

shown), indicating that the lack of such type of molecules in the reference set is not 

because the test set is a biased sample, but rather it is expected based on the calculated 

cellular pharmacokinetic properties of monovalent weak bases.  

Calculating the physicochemical space occupied by selectively lysosomotropic 
molecules 

Selectively lysosomotropic molecules were defined as those that accumulate in 

lysosomes to a 2-fold (or greater) level over the extracellular medium, cytosol, and 

mitochondria. Out of the 91 reference lysosomotropic molecules (Figure 3.3a, out of 
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circle), only seventeen (17) (Figure 3.3c, d green circle) appear to be selective in terms of 

lysosomal accumulation. These 17 molecules (Figure 3.3c) appear clustered at the middle 

pKa value of the test set of molecules comparing with non-lysosomotropic molecules 

(Figure 3.3a, in blue circle) and non-selectively lysosomotropic molecules. Plotting the 

theoretical physicochemical property space occupied by selectively lysosomotropic 

molecules related to the reference molecules reveals that the test set of molecules that 

accumulate in lysosomes are highly clustered (Figure 3.3b) in the middle pKa and high 

logPd values. This can also be observed in the corresponding plot of non-selectively 

lysosomotropic and non-lysosomotropic physicochemical property space (Figure 3.3d). 

Analyzing the effect of transcellular permeability on selective lysosomal 
accumulation 

Next, we analyzed the relationship between selective lysosomal accumulation in 

target cells, and transcellular permeability in non-target cells, to determine if the ability to 

develop selective lysosomotropic agents may be constrained by desirably high 

transcellular permeability characteristics important for intestinal drug absorption and 

systemic tissue penetration (Figure 3.4).  As a reference, the permeability of metoprolol 

(Peff = 35×10-6 cm/sec) was used to distinguish high permeability from low permeability 

drugs. Accordingly, three permeability categories were defined: Negligible Permeability 

(Peff  < 1×10-6 cm/sec; Figure 3.4a, b); Low Permeability (1 ≤ Peff < 35×10-6 cm/sec; 

Figure 3.4c, d); and High Permeability (Peff  ≥ 35×10-6 cm/sec, Figure 3.4e, f).   

With increasing permeability, the simulation results indicate that physicochemical 

space occupied by selective lysosomotropic molecules shifts towards lower pKa values 

and higher logPd values. The position of selective lysosomotropic chemical space in 
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relation to the reference set of non-selective lysosomotropic or non- lysosomotropic 

molecules can be seen, for molecules with Peff < 1×10-6 cm/sec (Figure 3.4a); 1 ≤ Peff < 

35×10-6 cm/sec (Figure 3.4c); and Peff ≥ 35×10-6 cm/sec (Figure 3.4e). Accordingly, there 

is only one (1) selectively-lysosomotropic reference molecule with Peff < 1×10-6 cm/sec 

(Figure 3.4b; green arrow); five (5) with 1≤ Peff<35×10-6 cm/sec (Figure 3.4d; green 

arrow); and eleven (11) with Peff ≥ 35×10-6 cm/sec (Figure 3.4f; green arrow). Thus, high 

permeability and selective lysosomal accumulation are not mutually exclusive. 

Nevertheless, we observed that the selective lysosomotropic reference molecules with 

negligibly low and high permeability are tightly clustered in a small region of chemical 

space, at mid pKa and high logPd values. 

Demarcating the physicochemical property space of extracellular targeted molecules 

Extracellular-targeted molecules can be defined as those whose intracellular 

accumulation at steady state is less than the extracellular concentration (24). For drug 

development, such a class of molecules is important as many drug targets are 

extracellular. Accordingly, we analyzed simulation results to determine if there were 

molecules with low intracellular accumulation and high permeability, which would be 

desirable for the pharmaceutical design of orally absorbed drugs (Figure 3.5). By 

maximizing permeability and minimizing intracellular accumulation, (using Peff  ≥ 35×10-

6 cm/sec, Ccyto < 1mM, Cmito < 1mM, and Clyso < 1mM as thresholds in both the R and T 

models), we found five (5)  molecules falling into this class (Figure 3.5a, b, c; green 

circle): pyrimidine, benzocaine, β-naphthylamine, 8-aminoquinoline, and the anti-

epileptic drug candidate AF-CX1325XX. These are monobasic amines with pKa < 4.5. 

Molecules with pKa > 4.5 (the physicochemical property space shown in Figure 3.5c) 
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exhibit intracellular accumulation in lysosomes, cytosol or mitochondria to levels above 

those found in the extracellular medium.  Figure 3.5b shows the physicochemical space 

of molecules with high permeability and low intracellular accumulation. Figure 3.5c 

shows the physicochemical space of molecules with high intracellular accumulation 

regardless of permeability. Again we can see that molecules with low intracellular 

accumulation have a pKa < 4.5 and with high intracellular accumulation have a pKa > 4.5. 

Many reported lysosomotropic molecules appear to accumulate in mitochondria 

For the majority of the reportedly lysosomotropic monobasic amines in the test 

set, the model suggests that they accumulate in mitochondria more than they accumulate 

in lysosomes. In total, 56 of the 91 lysosomotropic molecules in the test set accumulate in 

mitochondria at 2-fold or greater levels than they accumulate in lysosomes, cytosol, or 

the extracellular medium (Figure 3.6a; Table 3.1, selectively mitochondrotropic 

compounds underlined). These molecules have a pKa of 8.2 or greater, a logPn of 1.5 or 

greater, and span a wide range of transcellular permeability values – from impermeant to 

very highly permeant. In addition, eighteen (18) lysosomotropic molecules also exhibit 

mitochondrial and high cytosolic accumulation, at concentrations comparable to the 

concentrations at which they accumulate in lysosomes (Figure 3.6b; Table 3.1). Again, 

these molecules span a broad range of transcellular permeability values, from impermeant 

to highly permeant.   Plotting the theoretical physicochemical property space occupied by 

lysosomotropic molecules with predicted, selective mitochondrial accumulation reveals 

that the molecules in the test set are clustered in this realm of physicochemical property 

space (Figure 3.6c). Similarly, plotting the physicochemical property space occupied by 
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lysosomotropic molecules that are predicted to accumulate in cytosol and mitochondria 

reveals that the molecules are clustered in this realm of chemical space.  

Calculated effect of pH in apical compartment on permeability and biodistribution 

Based on the simulations, the accumulation of monobasic amines in lysosomes is 

largely dependent on the difference in pH of between lysosome and extracellular medium 

(data not shown). While the pH of the medium bathing the target cells is expected to be 

rather constant, the pH surrounding an intestinal epithelial cell is expected to vary along 

the intestinal tract (35). To test if this variation would lead to major differences in the 

observed trends, we decided to test the extent to which the calculated chemical space 

occupied by selectively lysosomotropic molecules was affected by variation in the apical 

pH of non-target cells (Figure 3.7). We note that for selectively lysosomotropic 

molecules with negligible (Figure 3.7a), low (Figure 3.7b), and high (Figure 3.7c) 

permeability, the theoretical physicochemical property space occupied by selectively 

lysosomotropic molecules is similar, and the test molecules that fall into that region of 

chemical space tend to be the same. Similarly, other regions of physicochemical property 

space occupied with molecules of different permeability tend to be similar, with 

variations in the apical pH of the intestinal epithelial cell in a pH range of 4.5 to 6.8 (data 

not shown).   

Discussion 

Modeling the cellular pharmacokinetics of monobasic amines 

Over the past few years, mathematical models of cellular pharmacokinetics have 

been developed, based on coupled sets of differential equations capturing the 
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transmembrane diffusion of small molecules.  Previously, these models have been used to 

simulate the intracellular distribution of lipophilic cations in tumor cells (25), and the 

distribution and passage of small molecules across intestinal epithelial cells (24).  For a 

monovalent weakly acidic or weakly basic small molecule drug, three input physical-

chemical properties are used to simulate cellular drug transport and distribution: the 

logarithms of the lipid/water partition coefficient of the neutral form of the molecule 

(logPn) and ionized form (logPd), and the negative logarithm of the dissociation constant 

of the ionizable group (pKa). For monovalent weak bases, the transcellular permeability 

values calculated with this approach were comparable with measured human intestinal 

permeability and Caco-2 permeability, yielding good predictions (24). Similarly, the 

corresponding mathematical models were able to predict mitochondrial accumulation of 

lipophilic cationic substances in tumor cells (22, 25).  

For analyzing the lysosomotropic behavior of monovalent weak bases possessing 

amine functionality, we adapted these two mathematical models to simulate the cellular 

pharmacokinetic behavior of target cells exposed to a homogeneous extracellular drug 

concentration, and non-target cells mediating drug absorption in the presence of an 

apical-to-basolateral concentration gradient. The results we obtained establish a baseline, 

expected concentration of small drug-like molecules in mitochondria, lysosomes and 

cytosol of target cells, as well as permeability in non-target cells. With a test set of small 

molecules obtained from published research articles, the simulations permit exploring the 

relationship between physicochemical properties of the molecules, their simulated 

intracellular distributions and transport behavior, and experimentally reported cellular 

phenotypes.   
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Simulation-based analysis and classification of lysosomotropic behavior 

By analyzing the intracellular distribution and transcellular transport 

characteristics of a test set of molecules, together with more general physicochemical 

space plots covering all possible combinations of pKa, logPn and logPd, sixteen a priori 

classes of lysosomotropic behavior for monobasic amines were defined (Table 3.1). 

However, we noted that several of these classes are deemed to be non-existent by the 

simulations – meaning that there is no combination of pKa, logPn and logPd that will yield 

a molecule in such a class. For other classes, it was not possible to find a molecule in the 

reference set of lysosomotropic molecules whose calculated properties would lie within 

the physicochemical property space defining the hypothetical class of molecules. This is 

certainly the case for positively-identified, non-lysosomotropic molecules. These results 

argue for expanding the test set of monovalent, weakly basic molecules, so as to represent 

all possible classes of intracellular transport behaviors. 

An equally important observation from the simulation resides in the tight 

clustering of the reference molecules in constrained regions of physicochemical property 

space, in relation to the simulated physicochemical property space that is actually 

available for molecules in the different lysosomotropic and permeability categories. Thus, 

the diversity of lysosomotropic behaviors represented by the test set of molecules is 

significantly limited. Indeed, the simulations indicate that expanding the reference set of 

molecules to unexplored regions of physicochemical property space could be used to find 

molecules that better represent different types of expected cellular pharmacokinetic 

behaviors. For example, in the case of low or high permeability molecules that are 

selectively lysosomotropic, most of the molecules in the reference set are clustered at the 

high levels of pKa and high logP, whereas the simulations indicate that it should be 
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possible to find molecules with lower pKa and lower logP. The reason for the limited 

chemical diversity of reported lysosomotropic molecules is certainlly related to the 

choice of molecules that have been tested experimentally and reported in the literature:  

the emphasis has not been on the probing the chemical diversity of lysosomotropic 

character, but rather, in analyzing the lysosomotropic character in a related series of 

compounds (for example, studies looking at mono, bi, and tri-substituted amines, 

functionalized with various aliphatic groups (9)). In other cases, the emphasis has been 

on studying the lysosomotropic character of a specific type of compound developed 

against a specific drug target (6) (for example, beta-adrenergic receptor antagonists such 

as propranolol, atenolol, practolol, etc), rather than on the full chemical space occupied 

by lysosomotropic, monovalent weakly basic amines.  

Further experimental validation and testing of expected transport behaviors 

Using lysosomal swelling, cell vacuolation and intralysosomal pH measurements 

as phenotypic read outs, it may be possible to test both R- and T-model prediction about 

the varying extent of lysosomal accumulation of monovalent weak bases as a function of 

the molecule’s chemical structure or physicochemical properties.  For example, the 

models make quantitative predictions about the lysosomal concentration of molecules of 

varying chemical structure. Previous studies looking at the lysosomotropic behavior of 

various molecules have reported differences in vacuolation induction for different probes, 

at extracellular drug concentrations ranging from high millimolar to micromolar range 

(10, 13, 16).  Also, for some molecules vacuolation occurs after less than an hour 

incubation, while for other probes vacuolation occurs after twenty-four hour incubation, 

or longer (6, 9, 10, 13, 14, 16). Combinatorial libraries of fluorescent molecules are 
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available today (36, 37), offering yet another way to test predictions about the 

intracellular accumulation and distribution of probes. Furthermore, with organelle-

selective markers and kinetic microscopic imaging instruments, the rate and extent of 

swelling of lysosomes and other organelles could be monitored dynamically after 

exposure of cells to monovalent weakly basic molecules (37). For such studies, 

cheminformatic analysis tools are being developed to relate the intracellular distribution 

of small molecules as apparent in image data, with chemical structure and 

physicochemical features of the molecules, and the predicted subcellular distribution (38, 

39). Lastly, more quantitative assessments of model predictions can be made by directly 

monitoring the total intracellular drug mass (40, 41), as well as drug mass associated with 

the lysosomal compartment (20, 42, 43). Recently, methods are being developed to 

rapidly isolate the lysosomes and measure intralysosomal drug concentrations (43).   

To test model predictions about the lysosomotropic behavior of small molecules 

in the presence of an apical-to-basolateral concentration gradient, various in vitro cell 

culture models have been developed to assess drug intestinal permeability and oral 

absorption (44). These are Caco-2, MDCK, LLC-PK1, 2/4/A1, TC-7, HT-29, and IEC-18 

cell models (44). Among those models Caco-2 (human colon adenocarcinoma) cell 

monolayer is the most well-established cell model and has been widely accepted by 

pharmaceutical companies and academic research groups interested in studying drug 

permeability characteristics (44). In addition to Caco-2 cells, MDCK (Madin-Darby 

canine kidney) is a dog renal epithelia cell line and is another widely used cell line in 

studying cell permeability characteristics (45).  
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Towards a computer-aided design of organelle-targeted molecules: implications for 
drug discovery and development 

The ability to rationally tailor the transcellular permeability and subcellular 

distribution of monobasic amines can have important applications in medicinal chemistry 

efforts aimed at enhancing the efficacy of small molecules against specific targets, 

decreasing non-specific unwanted interactions with non-intended targets that lead to side 

effects and toxicity, as well as enhancing transcellular permeability for maximizing tissue 

penetration and oral bioavailability.  For many FDA approved drugs, lysosomal 

accumulation of the molecules would appear to be a non-specific effect of the molecule’s 

chemical structure. For example, in the case of the beta-adrenergic receptor antagonists 

like propranolol, the drug’s target is a cell surface receptor located at the plasma 

membrane. Thus, lysosomal (and any other intracellular) accumulation observed for this 

molecule is most likely an unintended consequence of its chemical structure (2, 6, 15, 16, 

43, 46).  In general, due to the abundance of lysosomotropic drugs (6, 9, 10, 16), 

lysosomal accumulation seems to be tolerated, although it may not be a desirable 

property.  

Nevertheless, there are certain classes of therapeutic agents where lysosomal 

accumulation may be highly desirable. For example, Toll-like receptor molecules are 

transmembrane proteins in the lysosomes of leukocytes (dendritic cells and 

macrophages). These receptors can be activated by endocytosed proteins, DNA and 

carbohydrates, and they generate inflammatory responses as part of the innate immune 

system (47, 48). Small molecule agents that either block or activate Toll-like receptors 

are being sought to inhibit inflammatory reactions (associated with autoimmune diseases) 

or promote resistance against viral infections, respectively (49, 50). A different class of 
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molecules where lysosomal accumulation would be highly desirable involves agents that 

affect lysosomal enzymes involved in tissue remodeling (51). Tissue remodeling is the 

basis of diseases like osteoporosis, which involves the loss of bone mass due to an 

imbalance in the rate of bone deposition and bone resorption.  

From the simulations, mitochondria also appear as an important site of 

accumulation of monobasic amines – even for many molecules that have been previously 

classified as being “lysosomotropic”. Our simulation results indicate that monovalent 

weak bases can selectively accumulate in mitochondria at very high levels –in fact, at 

much higher levels than they appear to be able to accumulate in lysosomes. From a drug 

toxicity standpoint, unintended accumulation of small molecules in mitochondria can 

interfere with mitochondrial function, leading to cellular apoptosis (52-54). Conversely, 

intentional targeting of small molecule therapeutic agents to mitochondria can be a 

desirable feature for certain classes of drugs: mitochondria dysfunction can cause a 

variety of diseases, so there is great interest in developing mitochondriotropic drugs (22, 

55-57).  

Nevertheless, perhaps the most important classes of subcellularly-targeted 

molecules are those that are aimed at extracellular domains of cell surface receptors (24). 

Many ‘blockbuster’ drugs in the market today target cell surface receptors, ion channels, 

and other extracellular enzymes, making extracellular space one of the most valuable 

sites-of-action for drug development (58).  Extracellular-acting therapeutic agents include 

anticoagulants that interfere with clotting factors in the blood, agents that interfere with 

pro-hormone processing enzymes, ion channel blockers for treating heart conditions, 

GPCR antagonists for hypertension, inflammation and a variety of other different 



 

 105

conditions, and many CNS-active agents that act on neurotransmitter receptors, transport 

and processing pathways. In order to target extracellular domains of blood proteins, cell 

surface receptors and ion channels, it is desirable that a molecule would have high 

transcellular permeability to facilitate absorption and tissue penetration. In addition, it 

would be desirable that the molecule would also have low intracellular accumulation so 

as to maximize extracellular concentration. The simulation results indicate that indeed, 

finding monovalent weak bases with high permeability and low intracellular 

accumulation in both target and non-target cells is possible, with several molecules in the 

reference set residing in this realm of physicochemical property space. 

To conclude, cell based molecular transport simulators constitute a promising 

cheminformatic analysis tool for analyzing the subcellular transport properties of small 

molecules. The ability to combine results from different models, visualize simulations 

representing hundreds of thousands of different combinations of physicochemical 

properties, and relate these simulation results to the chemical structure and phenotypic 

effects of specific drugs and small drug-like molecules adds a new dimension to the 

existing mathematical models. As related to the specific class of lysosomotropic 

monobasic amines analyzed in this study, interactive visualization of simulation results 

point to a richness in subcellular transport and distribution behavior that is otherwise 

difficult to appreciate. We anticipate that the complexity of subcellular transport 

behaviors will ultimately be exploited in future generations of small molecule drug 

candidates “supertargeted” to their sites of action (59), be it in the extracellular space, the 

cytosol, mitochondria, lysosomes and potentially other intracellular organelles.  
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Table 3.1. The test set of ninety-nine lysosomotropic monobasic amines.  Based on simulation results, compounds were classified 
by permeability (Peff  calculated with the R-model) and subcellular concentrations (calculated with the T-model) as follows: Low 
permeability: Peff  < 35×10-6 cm/sec; High permeability: Peff ≥ 35×10-6 cm/sec; Lyso: ClysoT > 2 mM; Mito: CmitoT > 2 mM; Cyto: 
CcytoT ≥ 2mM; Non-lyso: ClysoT < 2 mM; Non-mito: CmitoT < 2 mM; Non-cyto: CcytoT < 2mM.  Compounds appear in gray 
background if they were reported as non-lysosomotropic in published research articles; in italics if they appear as selective 
lysosomotropic in the simulations (ClysoT ≥ 2mM; ClysoT/CmitoT ≥ 2mM;  ClysoT/CcytoT ≥ 2mM); underlined if they appear as 
selectively mitochondriotropic in the simulations (CmitoT  ≥  2mM, CmitoT/ClysoT  ≥  2 mM, CmitoT/CcytoT ≥ 2 mM). In the table, a 
particular class “exists” if one can find a combination of physicochemical properties (within the range of pKa, logPn, and logPd input 
values) that yields the expected behaviour in the simulation. 
 
Category 1: Low Permeability, Non-lyso, Mito, Non-cyto Chemical space exists.    

Category 2: Low Permeability, Non-lyso, Non-mito, Non-cyto Chemical space exists.   

Category 3: Low Permeability, Non-lyso, Non-mito, Cyto     Chemical space does not exist.   

Category 4: Low Permeability, Non-lyso, Mito, Cyto   Chemical space exists.   

Category 5: Low Permeability, Lyso, Mito, Non-cyto Chemical space exists.      
Category 6: Low Permeability, Lyso, Non-mito, Non-cyto  Chemical space exists.   
Name pKa logPn logPd CcytoR CmitoR ClysoR Peff CcytoT CmitoT ClysoT Reference
lidocaine 7.2 2.71 1.16 0.15 0.06 1.74 26.67 1.87 0.81 22.26 (10) 
Category 7: Low Permeability, Lyso, Non-mito, Cyto  Chemical space exists.   
Name pKa logPn logPd CcytoR CmitoR ClysoR Peff CcytoT CmitoT ClysoT  
17-DMAG 7.31 2.46 0.87 0.15 0.06 1.69 13.01 2.05 0.81 22.73 (60) 
beta-dimethylaminoethylchloride 7.63 2.48 0.9 0.23 0.08 1.5 11.76 2.64 0.91 17.52 (21) 
diethylaminoethyl chloride 8.16 2.71 1.16 0.53 0.24 1.36 19.93 3.83 1.72 9.87 (21) 
triethanolamine 8.14 1.52 -0.18 0.4 0.14 1.39 0.91 3.57 1.25 12.35 (21) 
Category 8: Low Permeability, Lyso, Mito, Cyto   Chemical space exists.   
Name pKa logPn logPd CcytoR CmitoR ClysoR Peff CcytoT CmitoT ClysoT  
17-DMAP 8.3 2.47 0.89 0.62 0.31 1.35 10.79 4.17 2.08 9.07 (60) 
2-amino-1-butanol 9.49 2.04 0.55 1.67 9.57 1.29 5.84 10.16 58.1 7.82 (21) 
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2-amino-2-methyl-1,3-propanediol 9.14 1.56 0 1.44 3.32 1.3 1.58 8.01 18.52 7.22 (21) 
2-amino-2-methyl-1-propanol 9.68 1.92 0.41 1.73 14.32 1.29 4.27 10.85 89.76 8.06 (21) 
2-aminoethanol(ethanolamine) 9.22 1.75 0.22 1.51 4.42 1.29 2.66 8.62 25.18 7.36 (21) 
2-diethylaminoethanol 9.22 2.23 0.62 1.46 3.58 1.29 6.62 8.19 20.09 7.27 (21) 
2-dimethylamino-2-methyl-1-
propanol 9.25 2.17 0.55 1.47 3.76 1.29 5.65 8.31 21.23 7.3 (21) 
2-dimethylaminoethanol 8.71 2.01 0.37 0.96 0.81 1.32 3.42 5.44 4.56 7.46 (21) 
2-methylaminoethanol 9.46 1.89 0.32 1.63 7.29 1.29 3.41 9.67 43.34 7.66 (21) 
3-amino-1-propanol 9.49 1.77 0.24 1.66 8.67 1.29 2.85 9.99 52.26 7.76 (21) 
3-aminopropanal 9.14 1.77 0.24 1.46 3.6 1.29 2.76 8.17 20.17 7.25 (61) 
3-dimethylamino-1-propanol 8.83 2.03 0.39 1.08 1.13 1.31 3.66 5.98 6.25 7.23 (21) 
4-amino-1-butanol 9.55 1.92 0.41 1.69 10.52 1.29 4.24 10.34 64.43 7.88 (21) 
ammonia 8.55 1.81 0.41 1.05 1.08 1.31 3.8 5.67 5.82 7.08 (21) 
atenolol 9.32 2.29 0.76 1.57 5.7 1.29 9.32 9.15 33.13 7.5 (6) 
atropine 9.02 2.67 1.23 1.44 3.36 1.3 26.87 7.98 18.66 7.18 (10), (16) 
benzylamine 9.17 2.58 1.24 1.6 6.38 1.29 28.25 9.32 37.22 7.52 (10) 
butylamine 9.84 2.39 0.95 1.78 24.35 1.28 14.95 11.54 157.56 8.31 (21) 
diethylamine 10.2 2.36 0.84 1.82 45 1.28 11.68 12.09 298.98 8.53 (10), (21) 
dimethylamine 10.15 2.13 0.59 1.81 38.7 1.28 6.56 11.98 255.81 8.48 (21) 
ethylamine 9.86 2.11 0.62 1.78 22.73 1.28 6.99 11.46 146.61 8.28 (21) 
guanidine 12.09 1.82 0.39 1.86 461.27 1.28 4.17 12.78 3164.97 8.8 (10), (21) 
hexylamine 9.84 2.66 1.24 1.79 25.48 1.28 29.17 11.59 165.24 8.33 (21) 
isobutylamine 9.87 2.4 0.95 1.79 25.47 1.28 14.96 11.59 165.19 8.33 (21) 
isopropanolamine 9.26 1.89 0.38 1.55 5.16 1.29 3.87 8.94 29.72 7.44 (21) 
isopropylamine 10.06 2.25 0.78 1.81 37.09 1.28 10.16 11.95 244.64 8.47 (21) 
methylamine 9.72 2 0.5 1.74 16.1 1.29 5.27 11.02 101.71 8.12 (21) 
metoclopramide 8.73 2.56 0.99 1.05 1.06 1.31 14.48 5.81 5.82 7.22 (14), (13) 
morpholine 8.21 2.02 1.25 1.36 2.95 1.3 27.55 6.62 14.36 6.31 (10) 
N-acetylprocainamide 8.73 2.51 0.93 1.04 1.02 1.31 12.59 5.76 5.66 7.25 (10),(13) 
NAMA 8.72 2.38 0.79 1.02 0.97 1.31 9.09 5.68 5.36 7.29 (14) 
N,N-dimethyl-3-
chloropropylamine 8.38 2.5 0.92 0.69 0.38 1.34 11.66 4.41 2.45 8.54 (21) 
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N,N-dimethyl-benzylamine 8.67 2.84 1.3 1.02 0.98 1.31 29.42 5.65 5.4 7.25 (10) 
pentylamine 9.84 2.53 1.09 1.78 24.35 1.28 20.64 11.54 157.56 8.31 (21) 
practolol 9.32 2.47 0.97 1.59 6.15 1.29 15.16 9.3 35.98 7.54 (6) 
propylamine 9.85 2.27 0.8 1.78 23.26 1.28 10.58 11.49 150.19 8.29 (21) 
s-butylamine 10.07 2.4 0.95 1.81 39.59 1.28 15.03 12 261.77 8.49 (21) 
t-butylamine 10.27 2.27 0.81 1.83 59.14 1.28 10.92 12.26 395.97 8.59 (21) 
triethylamine 9.84 2.59 1.02 1.76 18.05 1.29 17.49 11.18 114.96 8.18 (21) 
trimethylamine 9.23 2.25 0.64 1.47 3.67 1.29 6.94 8.25 20.66 7.28 (10) 
tris(hydroxymethyl)methylamine 8.64 1.2 -0.4 0.93 0.75 1.32 0.58 5.29 4.25 7.51 (10),  (21) 
Category 9: High Permeability, Non-lyso, Mito, Cyto  Chemical space does not exist. 

Category 10: High Permeability, Non-lyso, Non-mito, Cyto Chemical space does not exist.  

Category 11: High Permeability, Non-lyso, Mito, Non-cyto   Chemical space exists. 

Category 12: High Permeability, Non-lyso, Non-mito, Non-cyto Chemical space exists.  
Name pKa logPn logPd CcytoR CmitoR ClysoR Peff CcytoT CmitoT ClysoT  
3-aminoquinoline 4.63 2.65 2.00 0.73 0.73 1.12 398.87 0.82 0.82 1.25 (1) 
8-aminoquinoline 4.07 2.65 2.00 0.78 0.78 0.90 425.43 0.81 0.81 0.94 (1) 
AF-CX1325XX 1.95 2.18 0.7 0.8 0.8 0.8 148 0.81 0.81 0.81 (62) 
aniline 4.5 2.62 1.2 0.73 0.73 1.1 372.35 0.82 0.81 1.22 (10) 
benzocaine 2.7 2.78 1.41 0.8 0.8 0.8 588.46 0.81 0.81 0.82 (13) 
beta-naphthylamine 4.12 2.95 1.57 0.77 0.77 0.93 838.56 0.81 0.81 0.98 (10) 
pyrimidine 1.55 2.17 1.4 0.8 0.8 0.8 144.65 0.81 0.81 0.81 (10) 
pyridine 4.95 2.44 1.88 0.69 0.69 1.3 229.69 0.82 0.82 1.56 (10) 
Category 13: High Permeability, Lyso, Non-mito, Non-cyto  Chemical space exists. 
Name pKa logPn logPd CcytoR CmitoR ClysoR Peff CcytoT CmitoT ClysoT  
17-AEP 6.59 2.56 0.99 0.14 0.09 2.43 37.31 1.17 0.80 20.89 (60) 
1-aminoisoquinoline 6.88 2.74 1.94 0.36 0.30 1.45 123.44 1.53 1.28 6.16 (1) 
1-dodecylimidazole 6.56 3.65 3.3 0.64 0.81 1.36 2615.12 1.27 1.61 2.7 (21) 
eserine 6.46 3.03 1.51 0.15 0.11 2.51 137.8 1.09 0.81 17.74 (10) 
harmine 5.95 2.81 2.06 0.38 0.36 1.82 265.16 0.91 0.88 4.40 (1) 
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imidazole 6.73 2.12 1.59 0.51 0.56 1.39 52.47 1.41 1.53 3.81 (21) 
papaverine 6.07 3.1 2.39 0.37 0.35 1.72 489.43 0.94 0.91 4.42 (1) 
pilocarpine 6.39 2.38 1.89 0.48 0.51 1.44 109.54 1.1 1.18 3.32 (10) 
s-collidine 7.06 2.71 1.71 0.3 0.2 1.47 74.19 1.76 1.18 8.61 (21) 
Category 14: High Permeability, Lyso, Non-mito, Cyto  Chemical space exists.   
Name pKa logPn logPd CcytoR CmitoR ClysoR Peff CcytoT CmitoT ClysoT  
cyproheptadine 7.77 3.67 2.23 0.35 0.14 1.41 235.81 3.02 1.22 12.12 (63) 
diltiazem 7.89 3.08 1.57 0.37 0.14 1.4 51.38 3.23 1.25 12.07 (16) 
N-dodecylmorpholine 7.5 3.58 2.14 0.24 0.1 1.49 203.16 2.44 0.98 15.24 (21) 
Category 15: High Permeability, Lyso, Mito, Non-cyto   Chemical space exists.     

Category 16: High Permeability, Lyso, Mito, Cyto   Chemical space exists.   
Name pKa logPn logPd CcytoR CmitoR ClysoR Peff CcytoT CmitoT ClysoT  
4-aminopyridine 8.63 2.18 1.59 1.71 11.8 1.29 64.2 9.96 68.73 7.5 (10) 
4-aminoquinaldine 8.5 2.7 1.82 1.49 4.21 1.29 104.97 7.87 22.31 6.85 (10) 
4-aminoquinoline 7.98 2.65 2.00 1.29 2.56 1.30 152.07 5.73 11.40 5.79 (1) 
4-dimethylaminopyridine 8.47 2.53 1.98 1.67 9.26 1.29 156.25 9.28 51.49 7.16 (10) 
9-aminoacridine 8.97 3.11 2.4 1.76 18.6 1.28 419.24 10.96 115.66 7.99 (10) 
alprenolol 9.32 3.04 1.71 1.67 9.42 1.29 84.41 10.09 56.88 7.77 (6) 
amantadine 10.33 2.57 2.04 1.86 288.64 1.28 186.33 12.73 1973.95 8.77 (16) 
amiodarone 8.17 4.58 3.38 0.88 0.74 1.32 3439.62 4.69 3.96 7.07 (4) 
amitriptyline 9.41 3.7 2.27 1.67 9.14 1.29 306.28 10.07 55.23 7.78 (64) 
biperiden 8.97 3.25 1.76 1.36 2.57 1.3 89.81 7.43 14.07 7.1 (65) 
chlorphentermine 10.24 3 1.62 1.84 65.54 1.28 70.54 12.32 439.85 8.61 (66), (46) 
chlorpromazine 8.87 3.7 2.27 1.33 2.33 1.3 288.89 7.19 12.66 7.05 (16) 
desipramine 9.66 3.4 2.01 1.76 18.13 1.29 170.9 11.17 115.25 8.17 (12) 
dibutylamine 10.36 2.93 1.48 1.84 72.43 1.28 51.13 12.37 487.37 8.63 (21) 
dihydroalprenolol 9.32 3.11 1.69 1.63 7.53 1.29 80.09 9.69 44.73 7.65 (7) 
dizocilpine 8.3 3.29 1.89 0.80 0.55 1.33 110.20 4.61 3.18 7.70 (67) 
dodecylamine 9.84 3.44 2.12 1.8 31.89 1.28 221.84 11.8 208.84 8.41 (21) 
ephedrine 9.19 2.63 1.94 1.8 31.41 1.28 146.48 11.65 202.78 8.29 (10) 
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fluoxetine 9.45 3.58 3.01 1.84 69.46 1.28 1731.76 12.27 463.16 8.55 (4), (23) 
imipramine 8.87 3.52 2.07 1.31 2.21 1.3 181.73 7.09 11.95 7.04 (4) 
iprindole 9.36 3.54 2.09 1.64 7.71 1.29 201.32 9.74 45.89 7.67 (66) 
mecamylamine 10.49 2.93 2.27 1.86 297.05 1.28 316.44 12.73 2032.53 8.77 (10) 
memantine 10.31 2.85 1.46 1.84 73.92 1.28 48.83 12.38 497.49 8.63 (11) 
octylamine 9.84 2.92 1.53 1.79 27.27 1.28 56.92 11.66 177.38 8.35 (21) 
perhexiline 10.2 3.83 3.28 1.86 244.79 1.28 3237.19 12.7 1671.65 8.76 (4), (68) 
phentermine 10.25 2.83 1.43 1.83 64.21 1.28 45.54 12.31 430.76 8.61 (66) 
piperidine 10.03 2.37 1.64 1.85 148.62 1.28 74.09 12.6 1009.79 8.71 (10) 
promazine 8.87 3.53 2.08 1.31 2.21 1.30 185.96 7.09 11.95 7.04 (64) 
propranolol 9.32 3.03 1.59 1.62 7.16 1.29 63.51 9.59 42.38 7.62 (10) 
sertraline 9.5 3.85 2.51 1.73 14.07 1.29 537.84 10.79 87.84 8.02 (64) 
thioridazine 8.61 4.01 2.61 1.11 1.27 1.31 608.81 5.96 6.80 7.02 (64) 
tributylamine 10.44 3.45 2.1 1.85 102.49 1.28 213.44 12.51 694.01 8.68 (10) 
verapamil 9.33 3.7 2.27 1.63 7.53 1.29 304.48 9.69 44.71 7.65 (16) 
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Figure 3.1. Diagrams showing the cellular pharmacokinetic phenomena captured by 
the two mathematical models used in this study: (left) the T-Model for a leukocyte-
like cell in suspension and (right) the R-Model for an epithelial-like cell.  
Key:  
ap: apical compartment; bl: basolateral compartment; cyto: cytosol; mito: mitochondria; 
lyso: lysosome; T1: flux of the ionized/unionized form between the cytosol and the 
extracellular compartment; T2: flux of the ionized/unionized form between the cytosol 
and lysosome; T3: flux of the ionized/unionized form between the cytosol and the 
extracellular compartment; R1: flux of the ionized/unionized form between the cytosol 
and the apical compartment; R2: flux of the ionized/unionized form between the cytosol 
and the basolateral compartment; R3: flux of the ionized/unionized form between the 
cytosol and the lysosome; R4: flux of the ionized/unionized form between the cytosol and 
the mitochondria. 
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Figure 3.2. Visualizing the simulated physicochemical property space occupied by 
lysosomotropic monobasic amines. Individual molecules in the test set are indicated by 
yellow dots. To discriminate between lysosomotropic vs. non-lysosomotropic molecules, 
three lysosomal concentrations were explored as thresholds: 2 mM (a-d); 4 mM (e-h); 
and 8 mM (i-l). Columns show non-lysosomotropic molecules (a, e, i); non-
lysosomotropic molecules plus lysosomotropic space (b, f, j); lysosomotropic molecules 
(c, g, k); and lysosomotropic molecules plus non-lysosomotropic space (d, h, l). 
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Figure 3.3. Visualizing the simulated physicochemical property space occupied by 
selectively lysosomotropic monobasic amines. Individual molecules in the test set are 
indicated by yellow dots. The four graphs show: (a) non-lysosomotropic molecules 
(inside blue circle) and non-selective lysosomotropic molecules (outside blue circle); (b) 
physicochemical property space occupied by selectively lysosomotropic molecules, in 
relation to non-lysosomotropic molecules (inside blue circle) and non-selective 
lysosomotropic molecules (outside blue circle); (c) selectively lysosomotropic molecules 
(inside green circle); (d) selectively lysosomotropic molecules (yellow dots in green 
circle) in relation to the union of non-selective lysosomotropic and non-lysosomotropic 
physicochemical property space. 
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Figure 3.4. Visualizing the relationship between transcellular permeability and 
lysomotropic character. Individual molecules in the test set are indicated by yellow 
dots. The six graphs show: (a) physicochemical property space occupied by molecules 
with Peff < 1 x 10-6 cm/s, in relation to non-selectively, lysosomotropic molecules; (b) 
selectively lysosomotropic molecules with Peff < 1 x 10-6 cm/s (yellow dots) in relation to 
the union of physicochemical property spaces occupied by non-selectively 
lysosomotropic, non-lysosomotropic, and selectively lysosomotropic molecules with Peff 
> 1 x 10-6 cm/s; (c) physicochemical property space occupied by molecules with 1 x 10-6  

cm/s < Peff < 35 x 10-6 cm/s, in relation to non-selectively lysosomotropic molecules; (d) 
selectively lysosomotropic molecules with 1 x 10-6  cm/s < Peff < 35 x 10-6 cm/s in relation 
to the union of physicochemical property spaces occupied by non-selectively 
lysosomotropic, non-lysosomotropic, and selectively lysosomotropic molecules 
excluding those with 1 x 10-6 cm/s < Peff < 35 x 10-6 cm/s; (e) physicochemical property 
space occupied by molecules with Peff > 35 x 10-6 cm/s, in relation to non-selectively, 
lysosomotropic molecules; (f) selectively lysosomotropic molecules with Peff > 35 x 10-6 

cm/s in relation to the union of physicochemical property spaces occupied by non-
selectively lysosomotropic, non-lysosomotropic, and selectively lysosomotropic 
molecules with Peff < 35 x 10-6 cm/s. Green arrow point to the general region of 
physicochemical property space where the reference molecules are visibly clustered. 
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Figure 3.5. Visualizing the simulated physicochemical property space occupied by 
molecules with low intracellular accumulation and high permeability. Individual 
molecules in the test set are indicated by yellow dots. The three graphs show: (a) 
molecules with low intracellular accumulation and high permeability (inside green 
circle); (b) physicochemical property space occupied by molecules with calculated low 
intracellular accumulation and high permeability (green circle same as in Figure 3.5a); (c) 
the simulated physicochemical property space occupied by molecules with high 
intracellular accumulation, regardless of permeability (green circle same as in Figure 
3.5a). 
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Figure 3.6.  Visualizing the simulated physicochemical property space of various 
classes of non-selective, lysosomotropic molecules. Individual molecules in the test set 
are indicated by yellow dots. The four graphs show: (a) fifty-six selectively 
mitochondriotropic molecules; (b) 18 lysosomotropic, molecules which are not selective 
in terms of lysosomal, mitochondrial or cytosolic accumulation; (c) the simulated 
physicochemical property space occupied by lysosomotropic molecules that are also 
selectively mitochondriotropic; (d) the simulated physicochemical property space of non-
selective lysosomotropic, non-selective mitochondriotropic molecules. 
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Figure 3.7. Visualizing the effect of extracellular pH on physicochemical property 
space occupied by selectively-lysosomotropic molecules.  Simulations were carried out 
using an apical pH of 4.5 (a-c) and 6.8 (d-f) in the R-Model. Yellow dots indicate 
individual molecules in the test set. Each row shows the physicochemical property space 
occupied by molecules in different permeability classes, as follows: (a) and (d) Peff < 1 x 
10-6 cm/s; (b) and (e) 1 x 10-6  cm/s < Peff < 35 x 10-6 cm/s, (d) and (f) Peff > 35 x 10-6 cm/s. 
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CHAPTER IV 

CELLS ON PORES: A SIMULATION-DRIVEN ANALYSIS OF 
TRANSCELLULAR SMALL MOLECULE TRANSPORT 

Abstract 

 A biophysical framework for modeling cellular pharmacokinetics (1CellPK) is 

being developed for enabling prediction of the intracellular accumulation and 

transcellular transport properties of small molecules using their physicochemical 

properties as input. To demonstrate how 1CellPK can be used to generate quantitative 

hypotheses and guide experimental analysis of the transcellular transport kinetics of small 

molecules, epithelial cells were grown on impermeable polyester membranes with 

cylindrical pores. The effect of the number of pores and their diameter on transcellular 

transport of chloroquine (CQ) was measured in apical-to-basolateral or basolateral-to-

apical directions, at pH 7.4 and 6.5 in the donor compartment. Experimental and 

simulation results with CQ support a cell monolayer-limited, passive diffusion transport 

mechanism.  Consistent with 1CellPK simulations, CQ mass and the net rate of mass 

transport varied <2-fold although total pore area per cell varied >10-fold. Thus, by 

normalizing the net of rate of mass by the pore area available for transport, cell 

permeability on 3µm pore diameter membranes appeared to be more than an order of 

magnitude less than on 0.4µm pore diameter membranes. Transcellular transport 

predictions remained accurate for the first four hours of drug exposure, but CQ mass 

accumulation predictions were accurate only for short CQ exposure times (5 minutes or 
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less). The kinetics and total mass of intracellular CQ indicates that CQ-induced 

lysosomal volume expansion does not fully account for the total intracellular CQ mass 

accumulation , especially in the basolateral-to-apical direction, although it can partly 

account for the gradual increase in CQ mass observed in apical-to-basolateral direction. 

 

Keywords: Systems biology; Epithelial cells; Membrane transport; Mathematical 

models; Pharmacokinetics; Cell permeability 
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Introduction 

The cell permeability of a small molecule (Pcell) is its rate of mass transport across 

an individual cell, as a function of the transcellular concentration gradient, normalized by 

the area over which transport occurs. Pcell is an important factor affecting the distribution 

of lipophilic nutrients (e.g. fat soluble vitamins), metabolites and signaling molecules 

(e.g. prostaglandins) inside and outside cells. Pcell can also influence the effects of 

lipophilic growth factors and morphogens (e.g. retinoids) affecting cell growth, 

differentiation, and motility. At the systemic level, Pcell can also affect the synthesis, 

uptake, distribution, metabolism and activity of lipophilic hormones (e.g. estrogen, 

testosterone), as well as that of xenobiotics and drugs.(1)  Several different molecular 

mechanisms may mediate transcellular mass transport including passive diffusion across 

membranes and protein channels, ATP-dependent transmembrane carriers and transporter 

proteins, paracellular transport, and vesicle-mediated transcytosis.(2)  Independently, the 

permeability of the matrix to which the cells are attached and the patterns - size and 

microscopic distribution of aqueous pores on this matrix - could affect the routes and 

rates of mass transport across cells.(2)  

Here, we used a biophysical model (3, 4) to analyze the transcellular transport 

route of a small molecule. Certainly, cell-substratum interactions can affect cell 

morphology, differentiation, gene expression and apoptosis,(5-7) and can impose steric 

constraints to the passive diffusion of small lipophilic molecules. Hence, we tested how 

cell monolayer architecture, as well as apical-to-basolateral (AP BL) and basolateral-to-

apical (BL AP) transport routes, may be influenced by the porosity properties of the 

underlying polyester membrane film to which cells are attached. For experiments, a 
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metabolically stable small molecule drug with high lipophilicity and high solubility (CQ) 

was used as a transport probe, while varying extracellular pH in drug donor or acceptor 

compartments. Our results demonstrate how a biophysical model like 1CellPK can be 

used to guide quantitative experimental analysis of transcellular transport properties of 

small molecules, potentially providing a framework for computational ab initio 

prediction of drug ADME properties. 

Materials and Methods 

Imaging of Cells on Pores.  

Madin-Darby canine kidney (MDCK) cells were purchased from ATCC (CCL-

34TM) and maintained in DMEM (Gibco 11995) plus 10% FBS (Gibco 10082), 1X non-

essential amino acids (Gibco 11140) and 1% penicillin/streptomycin (Gibco 15140), at 

37ºC with 5% CO2. Transwell® inserts (12-well, pore size is 3µm or 0.4µm) were 

purchased from Corning Incorporated (Cat No. 3460 and 3462). For confocal 

microscopy, a Zeiss LSM 510 microscope (Carl Zeiss Inc.) was used for both membrane 

and cells imaging with a 60X water immersion objective. Inserts (with or without cells) 

were put directly in the wells of two-well Lab-Tek®II chamber #1.5 coverglasses (Nalge 

Nunc International Corp., Naperville, IL) for imaging. Cells were pre-stained with 5 

µg/mL Hoechst 33342 (Molecular Probes H3570) for 30 minutes. LysoTracker® Green 

DND-26 (LTG, Molecular Probes L7526) and MitoTracker® Red (MTR, Molecular 

Probes M7512) were diluted with transport buffer (HBSS, 10mM HEPES, 25mM D-

glucose, pH 7.4) to 2.5 µM and 1 µM respectively. The insert with cells was put onto the 

Lab-Tek®II chamber’s cover glass. 1.5 mL of diluted dyes solution was added into the 
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chamber, and 0.5 mL of dyes free transport buffer was added into the apical compartment 

of the insert. After 10 minutes, the cells on the insert were imaged with the confocal 

microscope using enterprise laser (364 nm), argon laser (488 nm), helium neon 1 laser 

(543 nm) and the corresponding emission filters (BP 385-470, BP 505-530, and LP 560).  

Polyester Membrane Permeability Analysis.  

Polyester membranes without pores were purchased from AR Brown-US (One 

Oxford Centre 301 Grant Street, Ste: 4300, Pittsburgh, PA) and glued on the 12-well 

Transwell® inserts using ELMER’s instant glue. Trypan blue was used to test the leakage 

of the edges. Transport experiments of CQ and LY (Lucifer yellow, Sigma L0144) were 

performed at 8 different initial concentrations ranging from 0 to 7500 µM.  

Permeability Measurements of CQ on Membranes with MDCK Cells.   

Cells were seeded on Transwell® inserts (12-well, polyester membranes with 3µm 

or 0.4µm pores) with density at least 2×105 cells/cm2 for 1 or more days to form a 

monolayer. Transepithelial electrical resistance (TEER) values were measured both 

before and after transport experiments by Millipore Millicell® ERS. Cell monolayers 

were considered intact if both TEER values (background subtracted) were higher than 

100 Ω·cm2. CQ diphosphate (Sigma C6628) was dissolved in transport buffer, HBSS 

(Sigma H1387) without phenol red and sodium bicarbonate, supplemented with 25 mM 

D-glucose (Sigma G7021) and buffered with either 10 mM HEPES (pH 7.4) or 10 mM 

MES (pH 6.5). Inserts with cell monolayers were washed with drug free transport buffer 

(pH 7.4) twice, and then incubated for 20 minutes with 0.5 mL/1.5 mL transport buffer in 

apical/basolateral compartment (pH 7.4/7.4) respectively. After measuring TEER values, 
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0.5 mL/1.5 mL of CQ solutions (concentration ranges from 0-10 mM, pH 7.4 or 6.5) was 

added into the apical/basolateral compartment and 1.5 mL/0.5 mL of drug free buffer (pH 

7.4) was added into basolateral/apical compartment. 0.75 mL/0.4 mL of the donor 

solutions was taken out and replaced with the same volume of drug free transport buffer 

(pH 7.4) every 30 minutes. Transport experiments were performed at 37 ºC with shaking. 

Transport experiments were ended 4 hours after starting and both apical and basolateral 

solutions were collected for analyses. Every insert was washed twice with fresh buffer 

and TEER values were measured again. CQ concentration was determined with a 

standard curve, by absorbance measurement at 343 nm wavelength using a BioTek 

Synergy 2 plate reader (BioTek Instruments, Inc.).  

Intracellular CQ Mass Measurements.  

Cells on membrane inserts were quickly washed with buffer and then lyzed 1% 

Triton X-100 in transport buffer (pH7.4, 1.5 mL) for 1.5 hours following 5 minutes to 4 

hours CQ transport experiments in transwell inserts. CQ uptake was measured with 1mM 

concentration in the donor compartment The lysis solutions were centrifuged at 12,000 

rpm for 8 minutes. CQ concentration was measured with the aid of a standard curve, by 

absorbance at 343 nm wavelength using BioTek Synergy 2 plate reader. To normalize the 

intracellular mass by the density of cells on membranes, cell counts were performed by 

staining the cells on inserts with Hoechst dye. Cells were then imaged by Nikon 

TE2000S epifluorescence microscope using a 20X objective at DAPI channel. At least 

five 12-bit images were taken for every insert. Cell counts were automated with an 

imaging algorithm programmed in Metamorph® software (Molecular Devices 

Corporation, Sunnyvale, CA).  



 

129 

CQ Binding Measurements.  

Inserts were incubated with 1 mM CQ (pH 6.5 and pH 7.4) for 4 hours. Then 

inserts were washed with buffer for twice and incubated with 1.5 mL 1% Triton X-100 

for 1.5 hours. The solution was centrifuged at 12,000 rpm for 8 minutes and CQ 

absorbance in the supernatant was measured at 343 nm and the concentration established 

with a standard curve. In order to measure the binding of CQ to MDCK cells, cells were 

permeabilized with 60 µg/mL digitonin in HBSS-HEPES buffer (pH 7.4) or 1% Triton 

X-100 for 5 minutes on ice. Cells then were stained with trypan blue and checked under 

microscope to ensure that more than 95% cells were permeabilized with digitonin or 

Triton X-100 based on the appearance of stained nuclei. Cells were diluted with buffer 

and the same volume of CQ solutions (pH 7.4) were added into cell solutions. The 

mixture solutions of cells and CQ were incubated at 4ºC for 4 hours. The cells were 

centrifuged at 12,000 rpm for 8 minutes and the supernatant’s CQ absorbance was 

measured at 343 nm. CQ concentration in the supernatant was then calculated with a 

standard curve. The difference of the initial CQ mass and the final CQ mass in the 

supernatant was used as a measure of CQ binding to cells. 

Assessment of CQ Metabolism in MDCK Cells.  

A 1200 Series HPLC system (Agilent Technologies, Santa Clara, CA) coupled 

with a QTRAP 3200 mass spectrometer (Applied Biosystems, Foster City, CA) was 

employed for chemical analysis. Separation was performed on a Zorbax RX–C18 column 

(5 µm, 150 mm × 2.1 mm) (Agilent Technologies, Santa Clara, CA). The isocratic elution 

profile was 35% (v/v) of aqueous solution containing 5 mM ammonium acetate and 0.1% 

formic acid and 65% (v/v) of MeOH, maintained for 2.5 minutes. The flow rate was 1 
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mL/min and injection volume was 10 µL. An electrospray ionization source was used 

under positive ionization mode. Multiple reaction monitoring (MRM) scan was employed 

and ion transition is m/z 320.2→247.2. Data acquisition and processing were performed 

using Analyst® software (Applied Biosystems, Foster City, CA). To construct the linear 

calibration curves, the mixed working standard solutions at each concentration (0, 51, 

102, 204, 408, 816, 1020 ng/mL) were injected in triplicate. A 30 minutes gradient 

elution (the percentage of MeOH increased from 10% to 90% in 16 minutes and then 

maintained at 90% for additional 4 minutes and dropped to 10% at 21 minutes and 

maintained at 10% for another 9 minutes) and a full scan (m/z 150-500) were used to 

detect any possible metabolites of CQ. The MS parameters for full scan were similar with 

those of MRM scan except that CE is decreased to 20 units. The product ions of 

protonated CQ at m/z 179.1 and 247.1 were selected as the daughter ions for two 

precursor scans to detect the possible metabolites which also generate a product ion at 

m/z 179.1 or 247.1 or both of them. The scan range is m/z 150-800 and CE is 51 units. 

All the other LC and MS parameters of precursor scans were the same as those of full 

scan. Furthermore, based on a literature search,(8-10) 34 previously reported 

biotransformation processes were considered for CQ, such as mono- (+16 Da), di- (+32 

Da), trihydroxylation (or oxidation) (+48 Da), dehydrogenation (-2 Da) and oxidative 

dechlorination (-18 Da). The 4 most abundant product ions (m/z 247.1, 179.1, 142.2 and 

86.1) of protonated CQ were selected to generate 272 MRM scan channels by using 

Metabolite ID software (Applied Biosystems, Foster City, CA). With this method, no 

significant metabolism was detected through any one of the 34 possible CQ 

biotransformation processes.  
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Modeling CQ Transport.  

In 1CellPK (3, 4) we modeled five compartments: apical, cytosolic, mitochondria, 

lysosomes, and basolateral compartment. Simulations consider compartment volumes, 

pH, and membrane potential, and areas as constant.  Equations 4.1-4.4 are the 

concentration changing over time in each compartment express by net fluxes (J).  
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In the above equations, C indicates the total concentration, J indicates the flux, A and V 

indicate the membrane surface area and volume respectively. The subscripts a, c, m, l, 

and b indicate apical compartment, cytosol, mitochondria, lysosomes, and basolateral 

compartment respectively. The directions of fluxes are indicated by the orders of the 

subscripts, e.g. Jc,m represents the flux from cytosol to mitochondria. Equation (4.1) to 

(4.4) expressed apical to basolateral transport. Basolateral to apical transport can be 

easily derived. A molecule with two ionizable groups can be an ampholyte, a diacid or a 

dibase. In the case of CQ, it is a bivalent base and the pKa values of the two ionizable 

groups are 7.47 and 9.96 calculated by ChemAxon®. Three main species exist in 

solutions with pH ranging from 0 to 14, the neutral form, ionized forms with one positive 

charge or two positive charges (Table 4.1). Thus the total flux across each membrane is 

contributed by those three species freely dissolved in solutions.  



 

132 

Considering membrane permeation as the main rate limiting step governing the 

intracellular distribution and transcellular transport of CQ, mass transport across the 

membranes delimiting each compartment can be calculated with Fick’s equation and 

Nernst-Planck equation: 

1 2

1 2

1 2
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(4.5) 

where, subscripts o and i indicate outer- and inner- respectively. o could be a, b and c; i 

could be a, c, m, l, and b. Subscripts n, d1, and d2 indicate neutral form, ionized form 

with one charge, and ionized form with two charges, respectively. P represents the 

permeability across the bilayer membranes of each species and can be calculated from 

lipophilicity (logP) of that species (11, 12); f is the calculated activity coefficient of each 

species that can be calculated as described previously (11, 12); N = zEF/(RT), where z = 

+1 for Nd1 (ionized base with one charge), and z = +2 for Nd2 (ionized base with two 

charges); E, F, R, and T are membrane potential, Faraday constant, universal gas 

constant, and absolute temperature, respectively. Calculated logP values are 3.93, 0.43, 

and -0.91 for the neutral form, ionized form with one charge, and ionized form with two 

charges, respectively (Table 4.1), as calculated by ChemAxon®. After plugging in all 

parameters on the right hand of equation (4.1) to (4.4), the ordinary differential equations 

can be numerically solved. Once the concentration in the receiver compartment is 

calculated, the permeability of one cell (Pcell) can be calculated with equation 4.6:  

r r
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pore d

dC VP
dt A C

= ⋅
⋅
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Where, Cr and Vr are the concentration in the receiver compartment and volume of the 

receiver compartment respectively; Apore is the pore area underneath one cell; and Cd is 

the initial concentration in the donor compartment. The effective permeability can be 

calculated by equation 4.7: 

r r
app

insert d

dC V cellNoP
dt A C

⋅
= ⋅

⋅
, (4.7) 

Where, cellNo is the total cell number per insert, and Ainsert is the total area per insert. 

Monte Carlo Simulations.  

Monte Carlo simulations were performed with MATLAB®.  In 1CellPK the input 

parameters can be categorized into biological parameters and physiochemical parameters 

of the compounds. Physicochemical properties of CQ that used as input parameters are 

lipophilicity of neutral form and ionized forms with one or two charge (logPn, logPd1 and 

logPd2), and pKa values of two ionizable groups (pKa1 and pKa2). Biological parameters 

were apical membrane area (Aa), basolateral membrane area (Ab), mitochondrial 

membrane area (Am), lysosomal membrane area (Al), cytosolic volume (Vc), 

mitochondrial volume (Vm), lysosomal volume (Vl), volume of the receiver compartment 

(Vb for AP  BL transport and Va for BL  AP transport), pH value in the donor 

compartment (pHa for AP  BL transport and pHb for BL  AP transport), pH value in 

the receive compartment (pHb for AP  BL transport and pHa for BL  AP transport), 

pH value in mitochondria and lysosomes (pHm and pHl), apical membrane potential (Ea), 

basolateral membrane (Eb), mitochondrial membrane potential (Em), lysosomal 

membrane potential (El), lipid fraction in cytosol (Lc), mitochondria (Lm), and lysosomes 

(Ll), cell density, and pore density. Independent Monte Carlo simulations were performed 
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for pH 6.5 and pH 7.4, on 0.4µm- and 3µm- membranes, and in AP  BL and BL  AP 

transport directions. For each condition, 10,000 simulations were performed. In each 

simulation parameters were randomly sampled from uniform distributions (Table 4.2).   

Lipophilicity (logP) values for both neutral and ionized forms of CQ varied ± 0.5 log 

units based on weighted method prediction provided by ChemAxon®. Boundaries of 

lysosomal volume were determined based on experimental measurements.  Details of the 

calculations are described in legend of Table 4.2.  

Measurement of Lysosomal Volume Changes.  

MDCK cells were seeded on 96-well optical bottom glass-based plates (NuncTM Cat. 

164588) at the density of 1×105 cells/cm2 and let grown for 1 or 2 days in 150 µL fully 

supplemented DMEM. CQ diphosphate was dissolved in DPBS buffer (Gibco 14190) to 

a final concentration of 50 mM and diluted in cell culture medium to 50 µM.  Cells were 

incubated with 150 µL DMEM-CQ for 3.5 hours. LTG was added to CQ-treated and 

untreated cell culture to a final concentration of 0.5 µM for another 30 minutes 

incubation.  For fluorescence microscopy, a Nikon TE2000S microscope with a 100X oil 

immersion objective was used to image the lysosomes using the FITC filter set. Image 

analysis was carried out with MetaMorph® software. In calibration experiments, we 

determined this system could accurately resolve and measure objects >200 nm diameter, 

using fluorescent bead standards (Molecular Probes T14792) ranging from 100 to 4000 

nm diameters. We also determined the objective was capable of capturing fluorescent 

signals within 2 µm vertical spaces. For analysis, images were background subtracted, 

and each individual lysosome vesicle of each individual cell was manually outlined with 

the Circular Region Tool. Next, assuming spherical shape, the diameter of each 
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individual lysosome was estimated from the area of the regions. Because the height of 

cell monolayer was estimated to be 5-10 µm (Figure 4.1) and the depth of the focal plane 

is in the order of 2 µm , the total number of lysosomes associated with one cell was 

calculated by multiplying the region count by a factor of 2.5. The average diameter and 

total number of lysosomes in treated and untreated cells was calculated as the average 

value of those acquired from at least 5 images under the corresponding condition.  

Lysosomal pH Measurements.  

MDCK cells were seeded on 96-well optical bottom polymer-based plates 

(NuncTM Cat. 165305) at the density of 1×105 cells/cm2 and let grown for 1 to 2 days in 

150 µL fully supplemented DMEM. FITC-dextran (FD, Sigma FD150S) was dissolved in 

DPBS buffer to a final concentration of 10mg/mL and diluted in cell culture medium to 

0.2 mg/mL. Cells were incubated with 150 µL DMEM-FD for 24 hours to allow cell 

uptake of FD via endocytosis. To measure lysosomal pH during 50 µM CQ treatment, 

cells were washed twice with 100 µL DPBS buffer before incubation in 150 µL FD-free 

medium with or without CQ. At the end of 1 to 4 hours incubation, cells were washed 

with 100 µL DPBS buffer twice, immersed in 150 µL buffer, and scanned for fluorescent 

signal with BioTek Synergy 2 plate reader using Ex.485/20 and Em.528/20 filter set as 

well as Ex.450/50 and Em.528/20 filter set. For pH standard curves, FD pretreated cells 

were washed with 100 µL DPBS buffer twice, immersed in 150 µL DPBS-based 

solutions (pH 3 to 10) with 10 µg/mL Nigericin (Sigma N7143), let equilibrate for 10 

minutes and scanned for fluorescent signal with the same settings. Background 

fluorescence from MDCK cells without FD treatment was also recorded after wash. The 

fluorescence ratio (FR) was calculated based on equation 8:  
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where F485i and F450 i standard for integrated fluorescent intensity from the ith well of 

cells under Ex.485 nm and Ex.450 nm, respectively, and subscript bg indicates 

background fluorescence signal without FD treatment. FR values were plotted against 

known pH values to create a standard curve, or compared with the standard curve to 

calculate the lysosomal pH. 

Results 

Microscopic Analysis of Cells on Polyester Membranes.  

Optically-transparent track-etched polyester membranes of similar membrane 

thickness (~10 µm) were used for experiments. The fractional pore area of the 3µm-

membranes was about 28 times higher than the 0.4µm-membranes based on the 

manufacturer’s specification, and >10 times higher based on our measurements (Figure 

4.1). TEER values of 0.4µm-membrane was similar to that of 3µm-membranes (mean ± 

SD: 126 ± 8 vs. 118 ± 9 Ω·cm2, n = 8; p value = 0.0784). MDCK cells grown on 

polyester 0.4µm- or 3µm-membranes formed regular monolayers (Figure 4.1). No 

difference in monolayer architecture was visually apparent on 0.4µm- and 3µm-

membranes. TEER value of cells grown on 0.4µm- membrane was higher than on 3µm-

membrane (mean ± SD: 221 ± 16 vs. 117 ± 16 Ω·cm2, n = 48, background subtracted; p 

value < 10-4). This behavior can be explained by the difference in pore area available for 

transport or by differences in tightness of intercellular junctions. Seeded at the same 

density (2×105cells/cm2) and grown for two days, the cell number on 0.4µm-membrane 
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was slightly higher than the cell number on 3µm-membrane (mean ± SD: 4.9×105 ± 

6.4×104 vs. 3.9×105 ± 4.5×104, n = 8), which almost corresponded to the difference in 

surface area available for cell attachment (Figure 4.1). We did not observe any MDCK 

cells migrating through the pores.  

CQ Transcellular Transport Is Nonsaturable and Directly Proportional to the 
Transcellular Concentration Gradient.  

CQ and Lucifer Yellow (LY) transport across polyester membranes without pores is 

negligible: in the absence of pores, the amount of CQ or LY in the receiver compartment 

was undetectable after a 6 hour transport experiment (data not shown). Therefore, 

transport of small molecules across cell monolayers on nucleopore polyester membranes 

is driven primarily by the flux of molecules through the pores (not through the polyester 

film). On 0.4µm- and 3µm-membrane, CQ mass transport rate linearly correlated with 

the initial concentration in the donor compartment at pH 7.4 or 6.5, both over low 

concentration range (Figure 4.2) and even at higher concentrations (data not shown). The 

intercepts of the regression lines were all zero, after statistical testing for the intercept 

values. LY, a hydrophilic, cell membrane-impermeant small molecule, was used as a 

control probe to assess paracellular transport. Average apparent permeability of LY (AP 

 BL) was 0.70 ± 0.33 nm/sec (mean ± SD, n = 27) and 1.7 ± 2.1 nm/sec (mean ± SD, n 

= 23) measured on MDCK cells grown on 0.4µm- and 3µm-membranes, respectively (p 

value = 0.0273) with an apical pH value of 7.4. This is consistent with LY transport 

occurring mostly through a paracellular route. The Papp of CQ was approximately two 

orders of magnitude greater than the Papp of LY. We conclude that CQ traverses MDCK 
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cells mainly through a transcellular pathway, with the rate of transport being directly 

proportional to the concentration gradient in either AP  BL or BL  AP directions.  

Effects of pH and Pore Geometry on CQ Transport Routes and Cellular Uptake in 
AP  BL or BL  AP Directions.  

Comparing cells on 3µm- or 0.4µm-diameter pore membranes was used to study 

how differences in the porosity of the substratum can affect the transport route small 

molecules through epithelial cells (Figure 4.2). Comparing the regression coefficients, if 

the other conditions are the same (such as the pH and the transport direction), the mass 

transport rate of CQ on 3µm diameter pore membranes was only slightly greater (< 2-

fold) than on 0.4µm-membranes. However, the total pore area of the 3µm diameter pore 

membranes is >10-fold greater than that of a 0.4µm-membrane. If Pcell was an intrinsic, 

invariant property of the cells, one would have expected the mass transport rate to be 

directly proportional to the total pore area available for transport. Thus, Pcell is greatly 

affected by the porosity of the substratum. 

CQ is a weak base, with two amine groups that can be protonated within 

physiological pH values. The fraction of CQ with two charges is higher at pH 6.5 relative 

to pH 7.4 (Table 4.1). Conversely, the proportion of neutral CQ species is higher at pH 

7.4 than at pH 6.5. Consistent with transmembrane transport being a function of the 

charge and lipophilicity of CQ, the pH of the donor compartment exerted a major effect 

on CQ transcellular transport rate (Figure 4.2) with the rate of transport at pH 7.4 being 

seven times greater than that at pH 6.5, as expected based on transmembrane diffusion 

being the rate limiting step of CQ transport across cells. 
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For CQ, the BL  AP transport rate is only slightly higher than AP  BL 

transport rate for the same pH values and same membranes. Linear relationship of 

transport rate with initial concentration in the donor compartment was observed as well. 

Thus, unidirectional active transport mechanisms cannot be invoked to explain CQ 

transport across MDCK cells. Overall, the experiments are consistent with passive 

diffusion and transmembrane gradients being primarily responsible for driving the bulk 

of CQ transport across MDCK cells. 

During transport experiments, intracellular mass accumulation of CQ was linearly 

correlated with the initial concentration when the concentration in the donor compartment 

was lower than 1 mM and reached a plateau when the concentration in the donor 

compartment was higher (Figure 4.3) after 4 hours exposure to the drug. This plateau was 

related to cytotoxicity of CQ at high concentrations, apparent as nuclear shrinkage, 

chromatin condensation and cell monolayer disintegration (Figure 4.4). At pH 6.5, the 

CQ accumulation plateau is reached when the apical concentration is higher than 8 mM 

for AP  BL transport (Figure 4.3A); however the plateau is reached when the 

basolateral concentration is higher than 2 mM (Figure 4.3B). When the pH is 7.4, the 

plateau is reached when the concentration in the donor compartment is higher than 1 mM 

for both AP  BL and BL  AP transport (Figure 4.5C and 4.5D). This pH sensitivity 

of the intracellular accumulation is consistent with higher CQ lipophilicity at higher 

apical pH values, leading to greater influx from the donor compartment into the cytosol, 

and presumably, higher cytosolic concentration. Comparing AP  BL transport with BL 

 AP transport for the same conditions, the intracellular accumulation is similar for pH 

6.5 and pH 7.4 (Figure 4.5). Intracellular accumulation of CQ on 3µm-membranes and 
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0.4µm- membrane is similar for the same conditions (Figure 4.5), except for BL  AP 

transport when pH = 7.4 (Figure 4.5D) where it is slightly different (which could be due 

to an experimental measurement outlier, evident in the larger error bars).   

Simulation-Driven Quantitative Analysis of CQ Transport and Uptake.   

Monte Carlo simulations were used to assess the effect of measurement variability, 

experimental errors and other uncertainties in the input variables of the 1CellPK model, 

on the calculated mass transport rate (dM/dt; Figure 4.5A) , Pcell (Figure 4.5B),  Papp, 

(Figure 4.5C ) and intracellular mass accumulation (Figure 4.5D). Because of the 

observed toxicity occurring upon 4h exposure to CQ (Figure 4.3 and 4.4) mass 

accumulation of CQ was measured after 5 minutes incubation with 1mM CQ in the donor 

compartment.  Results showed that CQ uptake after 5 minutes incubation (Figure 4.5D, 

red lines) is much lower than that after 4 hours transport experiment (Figure 4.3) under 

the same conditions. 

For simulations, the apparent permeability (Papp) was calculated from measured 

dM/dt by normalizing over the initial concentration in the donor compartment and the 

total insert area.  Unlike Pcell measurements which normalize mass transport rate over the 

aqueous pore area of the polyester membrane, Papp measurements normalize the mass 

transport rate over both pore and non-pore regions of the polyester membrane. 

Comparing permeability normalized by the pore area (Pcell; Figure 4.5B, red lines) with 

the permeability normalized by total insert area (Papp; Figure 4.5C, red lines), Pcell of CQ 

on 0.4µm-membrane is at least an order of magnitude higher than that on 3µm-

membrane. However, Papp of CQ on 3µm-membrane is only slightly higher than on 

0.4µm-membrane (<2-fold). Per cell, the total pore area on 3µm-membrane is more than 
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an order of magnitude greater than on 0.4µm-membrane. Arguably, Pcell most accurately 

reflects a difference in the actual flux of CQ molecules across the basolateral membrane 

of cells on 0.4µm- vs. 3µm-membrane, at the single cell level. Most importantly, for 

dM/dt, , Pcell, and Papp, most of measured values fall between 10% and 90% quantiles of 

simulated distributions, and very close to the median (Figure 4.5A-C and Table 4.3).  

Simulations also capture the CQ uptake after 5 minutes incubation for AP  BL 

transport (Figure 4.5D, rows 1 – 4 and Table 4.3), although measured CQ uptake in the 

BL  AP direction was greater than predicted by the model (Figure 4.5D, rows 5 – 8 and 

Table 4.3). 

Probing the Mechanisms of Mass Accumulation upon Prolonged CQ Exposure.   

Although the initial input parameters for the simulations yielded dM/dt, Pcell, Papp values 

and CQ uptake after 5 minutes incubation consistent with experimental measurements, 

they consistently underestimated the intracellular mass of CQ after 4 hours transport 

experiment (Figure 4.7A).  Based on the simulation, intracellular CQ mass should reach 

steady state levels by 5 min incubation, but this was not observed experimentally (Figure 

4.7A).  We also found that binding of CQ to detergent-extracted (triton-treated) or 

permeabilized (digitonin-treated) cells was much lower than its measured cellular uptake 

at 37ºC (Figure 4.6). Measurements on triton-extracted cells indicated that the high, 

measured intracellular CQ mass was not due to DNA binding or to absorption to 

insoluble proteins or cytoskeletal elements. CQ binding to digitonin-permeabilized cells 

is similar to that of triton-extracted cells, so CQ binding to soluble proteins, to 

intracellular membranes or to lipid droplets cannot account for the missing intracellular 
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mass. Biochemical analysis with LC/MS reveals no metabolites of CQ, with all the 

intracellular CQ present in intact form (data not shown).  

CQ is a weakly basic molecule that accumulates in lysosomes through an ion 

trapping mechanism dependent on the acidic microenvironment (pH 4.5 to 5.5) of 

lysosomes. CQ incubation gradually expanded the lysosomal compartment in MDCK 

cells (Figure 4.7B).  The average number of lysosomes per cell was slightly lower in CQ-

treated cells as compared with untreated cells: 200 ± 35 (n = 6) vs. 253 ± 45 (n = 5) 

(mean ± SD, p-value = 0.059). However, the diameter of lysosomes is significantly 

increased in treated cells in comparison with untreated cells: 1.74 ± 0.19 µm (n = 6) vs. 

0.50 ± 0.03 µm in untreated cells (n = 5) (mean ± SD, p-value = 7.8E-12). The total 

lysosomal volume is 16.5 µm3 in untreated cells and 551.4 µm3 after 4 hours treatment 

with 50 µM CQ.  Overall, there was a 33.5-fold increase in the total lysosomal volume.  

The measured lysosomal pH of untreated cells was 5.03 ± 0.18 (mean ± SD, n = 4) and 

the lysosomal pH of CQ-treated cells slowly increased from 5.2 ± 0.2 at 1 hour 

incubation to pH 6.0 ± 0.3 at 4 hour incubation (mean ± SD, n = 6).   

Given that CQ exposure alters the lysosomal volume and pH over a 4 hour period, 

simulations were repeated with an average lysosomal pH value of 5.5 and an expanded 

lysosomal volume (Figure 4.7C). The experimental measured intracellular mass 

accumulation of CQ was extrapolated down to 50 µM CQ using the regression equations 

in Figure 4.3 for different conditions. After taking lysosomal swelling and pH increase 

into account, the predicted intracellular CQ mass is closer to experimental measurement 

for AP BL transport with pH 7.4 in apical compartment. However, in BL AP 

transport, the measured intracellular accumulation of CQ still exceeded the simulated 
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distributions by more than an order of magnitude, at least as much as was observed 

during the shorter, 5 minutes exposure (Figure 4.5D). 

Discussion 

In this study, a mathematical model (11-13) was employed to analyze the 

transport route of CQ across an MDCK monolayer, while studying how extracellular pH, 

substratum porosity, and transcellular concentration gradients affected the drug’s 

transport behavior.  In the computational simulations, pore size and density effects on 

Pcell can be largely accounted for as a steric constraint on the basolateral membrane 

surface area (Ab) and the effective cell cross sectional area (Aaa) over which flux 

effectively occurs. Biological variability, experimental errors, and other uncertainties 

(such as the effective basolateral surface area over which transport takes place, and the 

absolute concentration and permeability of different ionic species of CQ at any given pH) 

may lead to variations in experimental measurements and predictions. Monte Carlo 

simulations were used to account for parameter variations and uncertainties in input 

variables, yielding probabilistic distributions of 1CellPK results that were reasonably 

accurate with respect to experimental measurements.  

In the 1CellPK model, CQ is postulated to undergo very fast (instantaneous) 

mixing within the each subcellular compartment, with the transport of CQ across cellular 

membranes being the rate-limiting step determining the net rate of mass transport across 

the cell monolayer.  Both simulations and experiments are consistent with CQ traversing 

MDCK cell monolayers via a passive, transcellular membrane-limited diffusion route. 

However, discrepancies between CQ uptake measured after 4 hour incubations and model 

predictions point to a physiological mechanism responsible for the gradual intracellular 



 

144 

mass accumulation of CQ that is not captured by the model.  Experimentally, CQ 

accumulated intracellularly to a level higher than expected by lipid partitioning, 

macromolecular binding, ion trapping or membrane potential dependent sequestration in 

cytosol, lysosomes or mitochondria –all of which were included in the 1CellPK model or 

were controlled for in the experimental measurements. Other amine-containing molecules 

also accumulate to very high concentrations inside cells(14). CQ induced a gradual but 

significant increase in lysosomal volume in MDCK cells.  

One of the limitations of 1CellPK is that the compartment volumes, pH, 

membrane potentials are fixed and constant from the start of the simulations.  Thus 

gradual biological effects of a drug on cell physiological parameters are not readily taken 

into account.  Nevertheless, by using an expanded lysosomal volume (and an increased 

lysosomal pH) as input, simulations revealed that this lysosomal volume change can 

account for a significant increase in the total intracellular CQ mass especially in the AP 

 BL with pH 7.4 (Figure 4.7C). In BL  AP direction, the volume expansion cannot 

fully account for the additional mass, so an unknown factor affecting higher-than-

expected BL  AP mass sequestration remains to be identified. Another plausible reason 

that leads to under-prediction could be missing of cations and acidic phospholipids 

interactions, which could be dominant for moderate to strong basic drugs (15) because 

the ionic species are the major forms at physiological pH. In order to test how the 

electrostatic interactions would affect predictions, the lipid partitioning coefficient for 

ionic species, logKd = 2.3, was used in Monte Carlo simulations in stead of logPd1 = 0.43 

and logPd2 = -0.91 in equation 2.17.  LogKd was estimated using digitonin experiments 

data as the following: (1). Get the slopes of pmol/cell vs. CQ concentration in 
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the supernatant. Pool them together and the mean = 1.0×10-5 (pmol/cell : µM); (2). 

Assume cell volume = 103 µm3 and lipid fraction = 5% in each compartment. (3). Kd = 

Ccell pellet:CQ in supernatant = 1.0×10-5 / (1000×5%) ×109 = 190, thus logKd = 2.3.  

Comparison of simulation and experimental measurement of intracellular accumulation 

of CQ after 4 hours accumulation is shown in Figure 4.8. After considering the 

electrostatic interactions, predictions for AP  BL intracellular uptake are close to 

measurements (red lines) after 4 hours simulation.  After considering the electrostatic 

interactions, lysosomal swelling effects, and intralysosomal pH increment, predictions are 

close to measurement for all conditions.  Thus our hypothesis is that under-prediction 

could be explained by missing of interactions between cations and acidic phospholipids. 

And the experiments will be designed to measure the partitioning of cations into acidic 

phospholipids.  

As related to drug discovery and development, permeability measurements, 

including in vitro, in situ, and in vivo methods are low throughput and costly.(16-18) 

Permeability assays on cell monolayers are usually done in vitro, growing cells on semi-

permeable support membranes, and monitoring the rate of mass transport across the 

membranes, through time.(19-21) Cell permeability measurements often show huge 

variability between laboratories.(22, 23) and many factors have been proposed to 

contribute to these experimental variations.  Indeed, mathematical models are being 

increasingly used to facilitate empirical interpretation of cell-based transport mechanisms 

(24, 25). The ability to make predictions by using a molecule’s physicochemical 

properties (e.g. logP and pKa) as input may allow 1CellPK to be applied at the earliest 
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phases of drug development, to facilitate the rational design of drug candidates with the 

most desirable, cellular pharmacokinetic characteristics (3, 4, 13). 

To conclude, although the interplay between the physicochemical properties of 

small molecules and their cellular transport and disposition mechanisms are complex, 

they can be analyzed quantitatively with the aid of mathematical models.(13),23, 24  As our 

analysis demonstrates, 1CellPK is a good starting point for formulating mechanism-

based, quantitative hypotheses to guide additional experimental design to further refine 

our understanding of transcellular transport and subcellular distribution in the presence of 

a transcellular concentration gradient. The 1CellPK model can capture the effects of cell 

biological variables (pH values in donor and receiver compartment, pore size and density 

of the support filter, transmembrane concentration gradients, organellar volumes and pH) 

on small molecule transport mechanisms.  To test 1CellPK, cells on pores can be used to 

manipulate intracellular transport routes of small molecules while minimally perturbing 

cellular biochemistry. In future experiments, more precise patterning of pore number and 

geometry should allow more detailed exploration of the phenotypic effects of spatial 

gradients of small molecules inside individual epithelial cells in a monolayer. In addition, 

with the Michaelis-Menten equation, transporters or enzymatic mechanisms can be 

incorporated into the model, to capture their phenotypic effects on transcellular transport 

routes. 
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Table 4.1.  Calculated distribution and logP values for each microspecies of CQ at 
pH 6.5 and pH 7.4, used as input for 1CellPK.  The numbers 7.47 and 9.96 correspond 
to the pKa values of the protonation sites of the molecule, calculated by ChemAxon®. 
 

Structure calculated 

logP 

fraction 

at pH6.5 

(%) 

fraction 

at pH7.4 

(%) 

 

3.93 0.00 0.04 

 

0.43 5.49 31.55 

 

-0.91 94.49 68.33 
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Table 4.2.  Parameter ranges for Monte Carlo simulations. 

 logPn  [3.43,  4.43] 
 pKa1 [9.46, 10.46]  
 pKa2 [6.97, 7.97] 
 logPd1 [-0.07,  0.93] 
 logPd2 [-1.41,  -0.41] 
 cell number / insert [ 2×105, 4×105] 
 pore density 

(pore number / cm2) 
[ 3.2×106, 4.8×106] for membranes with 0.4µm pores 
[ 1.6×106, 2.4×106] for membranes with 3µm pores 

 Aa (µm2) [100, 1000]  
 Ainsert (cm2) 1.12 
 Apore (µm2) 

insert

cell number/insertaverage pore area/cell area of single pore
pore density A

= ×
×

 
 Ab (µm2) [Apore, 100]  
 Vc  (µm3) [500, 3000]  
b Vl (µm3) [9.24, 23.8] / [196.5, 906.3] 
 Vm (µm3) [10.48, 262]  
a Al (µm2) 314 
a Am (µm2) 314 
a Vb (µm3) 1.5mL for AP->BL transport, volume of donor compartment 

0.5mL for BL->AP transport, volume of donor compartment 
 Ea (mV) [-14.3, -4.3]  
 El (mV) [5, 15] 
 Eb (mV) [6.9, 16.9] 
a Em (mV) -160mV 
 pHc  [7.0, 7.4] 
c pHl [4.8, 5.2] /  [4.63, 6.37] 
 pHm [7.8, 8.2] 
 pHa  [7.0, 7.4] for pH=7.4 in the donor compartment 

[6.4, 6.6] for pH=6.5 in the donor compartment 
 Lc [0.05, 0.15]  
 Lm [0.05, 0.15]  
 Ll [0.05, 0.15]  
a pHa/b  7.4; pH value in the receiver compartment 
 
a indicates parameters that do not influence permeability or intracellular accumulation 
calculations shown by performing parametric studies 
 
b Uniform distribution upper and lower boundaries for lysosomal volume were calculated 
based on experimental measurement and calculated as described below.  The measured 
lysosomal volume was calculated by equation (s)E1 using measured number and 
diameter of lysosomes. 
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31( ( ) )
6lV n dπ= × ,  (s)E1 

where n is the number of lysosomes / cell, and d is the diameter of a lysosome.  The 
average number of lysosomes per cell was 200 ± 35 (n = 6) and 253 ± 45 (n = 5) for 
treated (50µM CQ for 4hours) and untreated cells, respectively.  The diameter of 
lysosomes was 1.74 ± 0.19 µm (n = 6) and 0.50 ± 0.03 µm (n = 5) for treated (50µM CQ 
for 4hours) and untreated cells, respectively.  Thus the measured lysosomal volume was 
551.4 ± 204.9 and 16.5 ± 4.19 µm3 (mean ± SD) for treated and untreated cells, 
respectively.  The standard deviation of lysosomal volume was estimated by equation 
(s)E2 (partial derivative method for error propagation estimation) (25) assuming there is 
no correlation between n and d.  

2 2 2 2( ) ( )
l

l l
V n d

V VSD SD SD
n d

∂ ∂
= +

∂ ∂
,  (s)E2 

The equations (s)E3 and (s)E4 were applied to calculate the upper (b) and lower (a) 
boundaries of the uniform distribution of Vl. . 

1 ( )
2

mean a b= + , (s)E3 

21variance ( )
12

b a= − , (s)E4 

By plugging in the above measurement, uniform distribution [9.24, 23.8] and [196.5, 
906.3] µm3 were used for Vl for untreated and treated cells, respectively.  
 
C Uniform distribution upper and lower boundaries of lysosomal pH for Monte Carlo 
Simulations with CQ-expanded lysosomal volume (Figure 4.7) were calculated as the 
following. The measured mean value and maximum standard deviation are 5.5 and 0.5, 
respectively. Thus the variance is 0.25.  The upper (b) and lower (a) boundaries of the 
distributions were calculated from equations (s)E3 and (s)E4, which are derived for 
uniform distribution probability function.  Thus uniform distribution [4.63, 6.37] was set 
for pH in lysosomes of cells under 50 µM CQ treatment.  
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Table 4.3. Simulation and quantitative experimental data of CQ transport across 
MDCK cells on polyester membranes of varying porosity, at donor compartment 
pH 6.5 and 7.4.  The prefix ‘sim.’ indicates simulation data corresponding to 10%, 50%, 
and 90% quantiles of simulated dM/dt (10-6 pmol/sec/cell), Pcell (10-6 cm/sec), Papp (10-

6cm/sec) and intracellular mass accumulation (10-3 pmol/cell) after 5 minutes incubation, 
using the parameters in Table 4.2 (non-lysosomal swelling cells). The prefix ‘exp.’ 
indicates the experimental data.  
 
 

   pH = 6.5, 0.4µm pH = 6.5, 3µm pH = 7.4, 0.4µm pH = 7.4, 3µm 
  10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90%

  A. overall effects of parameters (AP BL) 
sim.dM/dt 1.78 7.75 23.7 5.00 12.0 31.3 11.7 54.7 229 29.2 91.8 321
exp.dM/dt 2.20 ± 0.718 5.19 ± 1.01 22.8 ± 0.741 46.6 ± 6.28 
sim.Pcell 91.0 407 1264 9.26 22.6 59.7 602 2904 12401 54.1 172 612
exp. Pcell 218 ± 34.4 14.0 ± 3.33 1560 ± 161 85.9 ± 15.6 
sim.Papp 0.455 2.04 6.24 1.31 3.17 8.35 3.04 14.5 62.3 7.64 23.9 84.4
exp.Papp 1.35 ± 0.442 1.98 ± 0.471 7.85 ± 0.810 12.1 ± 2.21 
sim.mass 0.490 1.04 2.16 0.451 0.971 2.03 3.14 7.61 18.0 2.99 7.23 17.8
exp.mass 3.73 ± 0.14 1.88 ± 0.54 8.72 ± 0.94 8.90 ± 0.26 

  B. overall effects of parameters (BL AP) 
sim.dM/dt 1.70 7.42 22.9 4.88 12.0 30.9 10.7 52.9 214 27.2 84.6 309
exp.dM/dt 5.25 ± 1.24 7.12 ± 0.473 29.4 ± 1.54 63.8 ± 15.9 
sim.Pcell 85.4 390 1228 9.10 22.3 58.9 548 2767 11616 50.8 159 585
exp. Pcell 382 ± 81.7 15.8 ± 2.45 2000 ± 353 114 ± 19.0 
sim.Papp 0.439 1.96 6.19 1.28 3.13 8.18 2.77 13.8 57.4 7.11 22.4 82.3
exp.Papp 1.92 ± 0.411 2.24 ± 0.346 10.0 ± 1.77 16.2 ± 2.69 
sim.mass  0.020 0.091 0.309 0.060 0.151 0.425 0.137 0.679 2.56 0.378 1.11 3.56
exp.mass 3.52 ± 0.93 4.94 ± 1.06 8.28 ± 0.75 11.8 ± 1.9 
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Figure 4.1. Microscopic images of polyester membranes and MDCK cells grown on 
a 0.4µm-membrane. (A) shows orthogonal planes of 3D reconstructions of MDCK 
monolayers grown on a polyester membrane with 0.4 µm pores. Cells were stained with 
LTG, MTR and Hoechst and imaged as detailed in the methods. (B) and (C) show 
confocal microscope images of membranes with 0.4µm- and 3µm- pores, respectively. 
(D) and (E) are scan electron microscope (SEM) images of membranes with 0.4µm - and 
3µm- pores, respectively. The table details microscopic measurements of pore geometry, 
density and cell monolayer characteristics, as analyzed in this study. 
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Figure 4.2. The relationship between mass transport rate and the initial 
concentration of CQ in the donor compartment. (A) represents AP  BL transport 
(pHa = 6.5), and (B) represents BL  AP transport (pHb = 6.5). (C) represents AP  BL 
transport (pHa = 7.4), and (D) represents BL  AP transport (pHb = 7.4). The linear 
regression equations are included in the tables. 
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Figure 4.3. The relationship between intracellular CQ mass and the initial 
concentration of CQ in the donor compartment. (A) represents AP  BL transport 
(pHa = 6.5), and (B) represents BL  AP transport (pHb = 6.5). (C) represents AP  BL 
transport (pHa = 7.4), and (D) represents BL  AP transport (pHb = 7.4). The linear 
regression equations shown in the table (right) were obtained by performing regressions 
on the data obtained from the four lowest concentrations tested.  
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Figure 4.4.  Cell images stained with DAPI after transport experiments. (A) Images 
were taken for AP BL transport. (B) Images were taken for BL AP transport. Images 
in the same row were taken for the transport experiments with the same concentration in 
the donor compartment.  Images in the same column were taken for the transport 
experiments with the same type of membrane and pH value in the donor compartment. 
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Figure 4.5.  Histogram plots of Monte Carlo simulations showing calculated dM/dt 
(A), Pcell (B), Papp (C), and intracellular CQ mass accumulation at 5 minutes incubation 
(D), for the various experimental conditions analyzed in this study.  The solid red lines 
indicate experimentally-measured mean values and the dashed red lines indicate 
measured standard deviation.  
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Figure 4.6.  CQ binding experiments.  (A) The change of bound CQ mass is 
proportional to CQ concentration in digitonin-treated and triton-treated cells; (B) 
comparison of CQ binding at 4ºC (digitonin-treated and triton-treated cells) and 37ºC 
(triton-treated cells).  The values and standard deviations were calculated from the 
regression lines using CQ concentration equal to 500 or 1000 µM: for uptake at 4ºC, 
regression lines in the table of Figure 4.7A were used; for uptake at 37ºC, the regression 
line for AP BL transport on 0.4µm- membrane in Figure 4.5C was used. 
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Figure 4.7.  Effects of lysosomal swelling on CQ intracellular mass accumulation. 
(A) Comparison of simulated intracellular mass and experimental data at the end of a 5 
minute and 4 hour of AP BL transport experiment. 1CellPK model is capable of 
predicting CQ accumulation in MDCK cells at early time point but not after prolongued 
treatment, indicating the presence of biological changes in response to CQ treatment. The 
simulations in the panel were performed with non-swollen lysosomes. (B) Lysotracker 
Green (LTG) staining of MDCK cells treated with CQ free medium (left) and 50 µM CQ 
diluted in medium (right) for 4 hours. (C) Histograms of Monte Carlo simulation of 
lysosomal expansion and pH effect on intracellular CQ mass accumulation. All model 
parameters were kept the same as in Figure 4.5 except that the measured lysosomal 
volume and pH values were used as input (as median values of a uniform distribution, see 
legend of Table 4.2 for boundary calculation). The red lines show intracellular mass 
accumulation of CQ with initial concentration of 50 µM extrapolated from regression 
lines of experimental measurements (Figure 4.3C). The left-most histograms in each 
figure are the same as in Figure 4.5D (the third and fourth rows). 



 

158 

 
 
 

Figure 4.8. Histograms of log10(intracellular mass, pmol/cell). X-axis indicates 
log10(intracellular mass, pmol/cell) and y-axis indicates density.  Red solid lines indicate 
mean values of measured intracellular accumulation of CQ (pmol/cell) after 4 hours 
incubation.  The first and third column indicates simulations without lysosomal swelling 
or intra-lysosomal pH incensement. The second and fourth column indicated simulation 
with lysosomal swelling and intra-lysosomal pH incensement.  
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CHAPTER V 

SINGLE-CELL PHYSIOLOGICALLY-BASED PHARMACOKINETIC 
(1CELLPBPK) MODELING OF DRUG DISTRIBUTION IN THE LUNG 

Abstract 

 
Purpose:  Use a computational, multiscale predictive model to explore the effects of drug 

sequestration within lysosomes and mitochondria on the uptake, accumulation, and efflux 

of small molecule drugs in rat lungs. 

Methods:  A single cell-based virtual lung model (the Cyberlung) was developed. This 

Cyberlung (including airways and alveoli) was plugged into a whole body 

physiologically-based pharmacokinetic model. Using this 1CellPBPK model, we 

explored the theoretical distribution of beta-blockers (atenolol, metoprolol, and 

propranolol). For the Cyberlung, input parameters were physicochemical properties (pKa 

and logP) of the drugs, and physiological parameters for each type of cells in the lung, 

such as intracellular pH values, cellular membrane areas, cellular membrane potential, 

cellular/subcellular organelle volumes, lipid fractions, number of cells, etc.  For the rest 

of the PBPK model, input parameters are blood flow rate to each organ, volume of each 

organ, tissue : blood partition coefficients (Kp) for each drug in each organ, and clearance 

rate.  Tissue distribution data were obtained from different published research articles to 

validate models. Differential equations were solved numerically using Matlab® . 
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Results:  For all three drugs, the model predicts lung distribution kinetics close to 

experimental measurements (atenolol and propranolol) or experimentally measured Kp 

for the lung (metoprolol).  If subcellular organelles (lysosomes and mitochondria) are 

included the drug accumulation in the lung will be increased, but not significantly, due to 

the small volume of lung.  The volume and lipid fraction of mitochondria or lysosomes in 

the lung has a minimal effect on the systemic drug concentration in blood.  

Conclusions:  Weak basic molecules show significant sequestration in acidic subcellular 

organelles at cellular level. However, at tissue level, subcellular sequestration contributes 

to increment of drug distribution in the lung but not significantly, because the relative 

volume fraction of subcellular compartment is small.  Successful integration of a single-

cell based Cyberlung model with a whole-body PBPK model constitutes an important 

step towards ab initio single-cell based predictive modeling of drug pharmacokinetics at 

the whole body level. 

 

Keywords: Cellular pharmacokinetics; Physiologically-based pharmacokinetic (PBPK) 

modeling; Drug transport; Permeability; Subcellular localization; Lung distribution  
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Introduction 

Quantitative predictions from pre-clinical data to human situation are always 

challenging, however are critical to drive the decision making as drug candidates move to 

later stage of drug development (1-3). Whole body physiologically-based 

pharmacokinetic (WBPBPK) models are mathematical models that integrate anatomical 

and physiological parameters (such as organ regional blood flow rate and organ 

volumes), and compound specific properties (such as physicochemical properties, tissue-

to-blood partition coefficient, blood-to-plasma partition coefficient, unbound fraction in 

plasma, intrinsic clearance, and even formulation effects) to predict absorption, 

distribution, metabolism and excretion (ADME) of compounds in animals and humans 

(1-7).  Beside WBPBPK models, specific PBPPK models also have been reported to 

predict absorption (8-11), clearance (12), volume of distribution (13), tissue distribution 

(14-18), and drug-drug interaction in humans (19-23).   

In WBPBPK modeling, tissue-to-plasma partition coefficients (Kp) are one of the 

most costly and labor intensive parameters to be experimentally measured.  To facilitate 

the application of PBPK modeling various in silico models have been developed to 

predict Kp values (13, 16, 17, 24-27).  Poulin and coworkers (24-27) developed tissue-

composition based equations to predict compound distribution in various tissues.  Their 

models assumed that compounds are homogenously distributed within each tissue, or 

predominantly distributed in the interstitial space of the tissue.  Passive diffusion was 

assumed to govern the distribution of molecules.  In their prediction, the most 

pronounced discrepancy observed between predicted and measured Kp values was for the 

lung for lipophilic basic molecules (pKa > 7).  Rodgers and coworkers (16, 17) modified 
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Poulin et al. equations. They categorized molecules into moderate-to-strong bases and 

acids, very weak bases, neutrals, and zwitterions.  For the moderate-to-strong bases, 

electrostatic interactions between the ionized form and intracellular acidic phospholipids 

were assumed to be predominant (16).  Passive distribution between compartments and 

non-saturating binding were also assumed (16).   Although by incorporating electrostatic 

interactions, Kp predictions in the lung were improved, under-prediction was still 

prevailed, suggesting other mechanisms contributing to the distribution in the lung (16). 

Previously, single cell-based pharmacokinetic model (1CellPK) has been 

developed to predict intracellular / subcellular accumulation and transcellular 

permeability of small molecules in polarized and non-polarized cells (28-31).  The 

1CellPK model was validated for compounds with published measured permeability (28), 

and ninety-nine monobasic amines (29).  It was tested quantitatively for prediction of 

intracellular mass accumulation and transcellular permeability of a lipophilic basic 

compound, chloroquine (CQ), and showed good agreement with measured transcellular 

permeability up to 4 hours and intracellular mass accumulation after 5 minutes 

incubation.  Based on single cell prediction, we observed that for monobasic amines, their 

intracellular distribution was not homogenous. For most of them, high lysosomal or 

mitochondrial accumulation was observed (29). 

 Extensive distribution in the lung has been observed for many lipophilic bases 

(32-37). Lysosomal trapping was proposed as a mechanism contributing to high 

accumulation in the lung (35-39).  Here we constructed WBPBPK models incorporating a 

Cyberlung, which was developed based on 1CellPK, to quantitatively explore the impact 

of organellar accumulation on the distribution in the lung of several beta-blockers 
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(atenolol, metoprolol, and propranolol) with similar structures, similar pKa values, 

different logP values, and different plasma binding affinity. We test the hypothesis that 

organellar accumulation of drugs could have a significant effect on lung tissue 

pharmacokinetics depending on the drugs’ physicochemical properties.  

Methods  

Development of the 1CellPBPK model 

 The structure of the cell-based PBPK model (1CellPBPK) is illustrated in Figure 

5.1.  Briefly, the Cyberlung consists of eight cellular compartments: 1: surface lining 

liquid (aEp); 2: macrophage (imEp); 3: epithelial cells (cEp); 4: interstitium (int); 5: 

immune cells (imInt); 6: smooth muscle (sm); 7: endothelial cells (cEd); and 8: plasma 

(plung).  Both tracheobronchial airways and alveolar region were included in the model. 

Amongst the eight compartments, epithelial cells and endothelial cells are modeled with 

the R-model and other compartments are modeled with the T-model (J. Yu, manuscript in 

preparation). Lysosomes and mitochondria are integrated in the cEp (cEpMito and 

cEpLyso) and cEd (cEdMito and cEdLyso) for alveolar region and in the cEp (cEpMito 

and cEpLyso), cEd (cEdMito and cEdLyso), and sm (smMito and smLyso) for the 

tracheobronchial airways.  Mass change with time (dM/dt) can be expressed by mass 

balance equations (5.1-5.14). 

,lu
, , ,lu

v
v lu lu vb aEd plung cEd lu v

dC
V Q C A J Q C

dt
= − −  ,      (5. 1) 

, , , int,
cEd

aEd cEd plung cEdMito cEd cEdMito cEdLyso cEd cEdLyso bEd cEd
dM A J A J A J A J

dt
= − − − ,  (5. 2) 
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,
cEdLyso

cEdLyso cEd cEdLyso

dM
A J

dt
= ,         (5. 3) 

,
cEdMito

cEdMito cEd cEdMito
dM A J

dt
= ,         (5. 4) 

int
int, int, int, ,intbEd cEd sm sm imInt imInt bEp bEp

dM A J A J A J A J
dt

= − − − ,    (5. 5) 

int, , ,
sm

sm sm smMito sm smMito smLyso sm smLyso
dM A J A J A J

dt
= − − ,     (5. 6) 

,
smMito

smMito sm smMito
dM A J

dt
= ,        (5. 7) 

,
smLyso

smLyso sm smLyso

dM
A J

dt
= ,        (5. 8) 

int,
imInt

imInt imInt
dM A J

dt
= ,         (5. 9) 

,int , , ,
cEp

bEp bEp cEpMito cEp cEpMito cEpLyso cEp cEpLyso aEp aEp cEp

dM
A J A J A J A J

dt
= − − − ,  (5.10) 

,
cEpMito

cEpMito cEp cEpMito

dM
A J

dt
= ,        (5.11) 

,
cEpLyso

cEpLyso cEp cEpLyso

dM
A J

dt
= ,        (5.12) 

,
imEp

imEp aEp imEp

dM
A J

dt
= ,         (5.13) 

, , ,
aEp

aEp aEp cEp imEp aEp imEp e mucus aEp

dM
A J A J K M

dt
= − − ,     (5.14) 

The subscripts indicate each compartment as described above. A and J indicate 

membrane surface area and flux, respectively.  The two subscripts of J indicate the 
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transport direction.  For example, in equation 5.1, ,plung cEdJ  is the flux from lung plasma 

to endothelial cytosol.  ,e mucusK  is the mucus clearance.  The Cyberlung is connected with 

other tissues by the plasma compartment (Figure 5.1, equation 5.1).  Vv,lu is the blood 

volume in the lung, Cv,lu is the venous blood concentration in the lung, and Qlu is the 

blood flow of the lung. 

All other organs were assumed to be well-stirred compartments (perfusion-limited 

model).  For a non-elimination organ/tissue, the mass change within that organ/tissue can 

be expressed by equation 5.15. 

,
t

t t ab t v t
dCV Q C Q C
dt

= − ,         (5.15) 

where, subscript t stands for a non-elimination organ, such as heart (ca), bone (bo), 

muscle (mu), fat (fa), skin (sk), thymus (th), brain (br), spleen (sp), gut (gu), and rest of 

body (rob). V stands for volume of the tissue; Ct stands for total tissue concentration; Qt 

stands for blood flow rate of that organ; Cab stands for arterial blood concentration; and 

Cv,t is venous tissue concentration. Venous tissue concentration can be converted to total 

tissue concentration by equation (5.16). 

,
, / :

t
v t

p t

CC
K B P

= ,          (5.16) 

where, Kp,t is tissue : plasma partition coefficient, and B:P is blood : plasma partition 

coefficient. If a drug is delivered orally, the mass balance equation for the gut is 

described by equation (5.17). 

,
gu

gu abs gu ab gu v gu

dC
V R Q C Q C

dt
= + − ,       (5.17) 
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where, Rabs is the absorption rate.  For liver (hv) mass balance is expressed by equation 

5.18 (7). 

, , , int, , , hv
hv ha ab sp v sp gu v gu hv v hv u v hv u

dCV Q C Q C Q C Q C in vivo CL C
dt

= + + − − ,  (5.18) 

where, in vivo CLint,u is scaled, unbound in vivo intrinsic clearance, Cv,hv,u is unbound 

venous liver  concentration, Qha is hepatic arterial blood flow, and Qhv is the total liver 

blood flow.  For kidney (re) mass balance is expressed by equation 5.19.  

, , , ,
re

re re ab re v re re u v re u
dCV Q C Q C CL C
dt

= − − ,      (5.19) 

where, CLre,u is unbound renal clearance. For arterial blood and venous blood, mass 

balance can be expressed by equation (5.20) and (5.21), respectively. 

,
ab

ab lu v lu lu ab
dCV Q C Q C

dt
= − ,        (5.20) 

,
vb

vb i v i lu vb iv
i

dCV Q C Q C K
dt

= − +∑ ,       (5.21) 

where, Kiv is the intravenous injection or infusion rate, Cvb is venous blood concentration, 

and QiCv,i is production of blood flow rate (Qi) and venous tissue concentration (Cv,i). 

 Input parameters for the Cyberlung are described in another paper (J. Yu, 

manuscript submitted, appendix E). The thickness of surface lining liquid in alveoli = 

5µm is used in all simulations; otherwise, it will be specified.  Other physiological 

parameters were collected from published research papers and summarized in Table 5.1 

and 5.2. Differential equation systems were solved numerically using Matlab® ode15s 

function. 
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Modeling pharmacokinetics of atenolol using the 1CellPBPK model 

 For atenolol, a semi-empirical PBPK model was constructed due to the limited 

experimental data for tissue : plasma partition coefficients (Kp,t).  A seventeen-

compartment model was constructed including arterial blood, venous blood, brain, liver, 

Cyberlung (as described by equation 5.1-5.14), and rest of body.  Observed 

pharmacokinetic data in each tissue were extracted from Street J.A. et al. (34) by a 

computer program ‘Grab graph data’ (http://www.frantz.fi/software/g3data.php). Tissue 

kinetic data were analyzed using noncompartmental analysis with WinNonlin (Pharsight 

Corporation, Mountain View, CA).  Tissue : blood partition coefficient (Kp,b) was 

calculated by the ratio of AUC0-inf, tissue / AUC0-inf, blood and summarized in Table 5.2.  The 

tissue concentration was measured by total radioactivity (34). However since the most 

component in the major circulation is parent compound (40), total radioactivity can be 

considered as a surrogate of parent compound concentration.  To determine the Kp,b for 

the rest of body, several values were tested (0.1, 0.5, 1, 5, and 10), and  the Kp,b,rest of body 

value that gave the best prediction was chosen.  Atenolol is mainly eliminated by the 

kidney and negligibly bound to plasma proteins (41).  In vivo plasma clearance was 

obtained from published literature (41) and converted to blood clearance by assuming the 

clearance rate is the same using equation 5.22. 

:
p

b

CL
CL

B P
= ,          (5.22) 

where, CLb and CLp are blood and plasma clearance, respectively. Clearance was 

allocated to venous blood compartment.  Thus the mass change in venous blood is 

expressed by equation 5.23. 
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, , ,
vb

vb br v br hv v hv rob v rob lu vb b vb iv
dCV Q C Q C Q C Q C CL C K
dt

= + + − − +
,  (5.23) 

 In the simulation, a 300mg rat was given 1mg/kg i.v. bolus injection to mimic the  

experiment (34).  Thus Kiv was set to 0 and the initial concentration given to venous blood 

was dose / venous blood volume. Initial concentration given to other compartments was 

0.  Two scenarios were simulated: with lyso/mito and without lyso/mito. With lyso/mito 

was defined as: Vmito or Vlyso = 0.1 Vcyto and lipid fraction in mitochondria and lysosome 

= 0.05. Experimental data were obtained from literature to compare with simulation (34). 

Modeling pharmacokinetics of metoprolol using the 1CellPBPK model 

 Metoprolol is a beta-blocker with intermediate lipophilicity and plasma binding.  

The difference is not significant between R- and S- metoprolol for blood : plasma ratio, 

unbound fraction in plasma, and tissue : plasma partition coefficient of most tissues (42) 

as summarized in Table 5.2. Observed values for S-metoprolol were used in simulations.  

A 39-compartment model was developed including arterial blood, venous blood, heart, 

brain, liver, gut, spleen, kidney, muscle, skin, adipose, bone, rest of body, and the 

Cyberlung (14 compartments in the tracheobronchial airways and 12 compartments in the 

alveolar region). Clearance of metoprolol was obtained from literature (43), and was 

modeled using equation 5.24. 

max
, , , , ,

, ,

hv hv
hv ha ab sp v sp gu v gu hv v hv vp hv u

m vp hv u

dC V VV Q C Q C Q C Q C C
dt K C

= + + − −
+ , (5.24) 

where Vmax has the unit of ng/min/g liver, and Km has the unit of ng/mL, Cvp,hv,u is the 

unbound plasma concentration in the liver.  For the tissue, it is assumed that 1g = 1mL. 
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Vhv is the weight / volume of the liver. Intravenous injection was modeled with the 

infusion rate = 2.3µg/min. 

Modeling pharmacokinetics of propranolol using the 1CellPBPK model 

 Propranolol is a beta-blocker with high lipophilicity and high plasma binding.  

Unbound fraction in the plasma may differ ten fold for R-propranolol and S-propranolol 

(0.017 and 0.13, respectively), and blood : plasma ratio differs within two fold (0.77 and 

1.29, respectively) (16).  Input parameters were obtained from literature and summarized 

in Table 5.2 (27). The liver was modeled using equation 5.25 (27). 

, , , ,( ( ) )hv
hv ha ab sp v sp gu v gu ha ab gu v gu sp v sp h

dCV Q C Q C Q C Q C Q C Q C E
dt

= + + − + + , (5.25) 

where Eh is the hepatic extraction ratio and was calculated by equation 5.26 and the 

intrinsic clearance CLint was also obtained from Poulin et al.  (27). 

int int/ ( )h hvE CL CL Q= + ,         (5.26) 

 Simulated kinetics in tissues were compared with experimental data (44). For 

simulation in this study, dose = 1.5mg/kg was used.  For i.v. injection, initial 

concentration in venous blood was calculated by equation 5.27. 

0, /vb vbC Dose V= ,          (5.27) 

Effects of the thickness of surface lining liquid in alveoli on drug accumulation in 
the lung 

 Since the volume of surface lining liquid contribute a large proportion to the total 

lung volume, we investigated the effect of the thickness of surface lining liquid in alveoli 

on drug accumulation in the lung, two values, 1 µm and 5 µm, were used in simulation.  
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Results 

Subcellular sequestration affects accumulation of atenolol, metoprolol, and 
propranolol in the lung but not significantly, and has little effect on distribution 
kinetics in other tissues and plasma  

 To validate the 1CellPBPK model, experimental pharmacokinetic data were 

obtained from literature (34, 42, 44) and plotted to compare with simulated results. For 

atenolol, only lung, brain, and liver were included, which are organs with relatively small 

volumes (Table 5.1).  Other organs were lumped together as the rest of body.  Several 

Kp,b for the rest of body were tested (0.1, 0.5, 1, 5, and 10), and Kp,b,rest of body = 1 gave the 

best prediction for all tissues and plasma among five tested values, and thus was chosen.  

Pharmacokinetics in all tissues was closely predicted for atenolol (Figure 5.2 and 5.3).  

Figure 5.2 shows the lung accumulation (plotted in mass, right axis) and plasma 

concentration - time profile (plotted in concentration, left axis).  After adding subcellular 

compartments (lysosomes / mitochondria), the total lung mass was increased, but not 

significantly. The pharmacokinetics in the lung follows the pharmacokinetics in the 

plasma because lung is a highly perfused organ and the elimination phase is mainly 

clearance driven.  Tissue distribution in other organs is not affected by subcellular 

sequestration in the lung because the volumes of subcellular organelles are small. On the 

other hand, the rest of body has significant effects on the pharmacokinetics in other 

tissues and plasma, due to its large volume.   

 For metoprolol, since pharmacokinetics in tissues are not available, predicted 

lung: unbound plasma partition coefficient (Kp,u) was compared with observed Kp,u and 

values predicted by other two in silico method (16, 26).  Cyberlung predicted Kp,u is 

closer to observed value than other two in silico methods (Table 5.3).  Since current 
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Cyberlung model does not include non-specific binding, such as binding to proteins, and 

the binding fraction of metoprolol in the lung is not available, the calculated values in 

Table 5.3 represent unbound lung : unbound plasma partition coefficient.  If binding 

fraction is considered for the lung, predicted lung accumulation by the Cyberlung will be 

increased based on current prediction.  Comparing with and without subcellular 

organelles, Kp,u values predicted by the Cyberlung are not significantly different. 

 For propranolol, 1CellPBPK predictions closely agree with observed 

pharmacokinetics in tissues and plasma (Figure 5.4 and 5.5) (44).  Propranolol highly 

binds to plasma (87%) (27) and lung tissue (90%) (45). Current Cyberlung does not 

include protein binding component, thus predicted values are compared with lung 

accumulation after binding correction (Figure 5.4). Free lung mass predicted by 

Cyberlung is slightly higher than observed lung accumulation. Subcellular sequestration 

increases lung accumulation but not significantly, and has no effects on distribution in 

other tissues and organs.  

Drug accumulation in the lung decreases with the decreasing thickness of surface 
lining liquid in alveoli 

 Total lung volume calculated for the Cyberlung (Table 5.1) is slightly higher than 

measured total lung volume (2.8 mL vs. 1.25 mL). Surface lining liquid contribute a large 

proportion to lung volume. The measure thickness of surface lining liquid may vary from 

1 µm to 10 µm. To investigate the effect of thickness of surface lining liquid on drug 

accumulation in the lung, simulations were running with two values, 1 µm and 5 µm. 

Figure 5.6 shows the results for atenolol and propranolol. After the thickness of surface 

liquid lining is decreased to 1 µm, the mass accumulation in the lung is decreased as well 
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due to the decreasing of total lung volume. The difference between with and without 

subcellular organelles is more significant, which is because the volume of surface lining 

liquid is a large proportion of lung volume, but it does not contain subcellular organelles. 

The drug concentration in the lung also decreases with the decreasing volume of surface 

lining liquid (Table 5.3). 

Conclusion and Discussion 

The ultimate goal of cell based pharmacokinetic modeling and simulation is to 

predict human situation.  This chapter includes some preliminary study of integrating cell 

based pharmacokinetic model to whole body PBPK model.  The first organ developed 

based on cellular pharmacokinetic model was the lung (J. Yu, manuscript submitted).  

Lung is a functionally important, but with relatively simple anatomy organ.   

In PBPK modeling, tissue : plasma partition coefficients (Kp) are one of the most 

costly input parameters, which are time consuming and labor intensive.  Tissue 

composition-based in silico methods have been developed to predict Kp (13, 16, 17, 24-

27). Kp values in the lung are often under-predicted for lipophilic moderate-to-strong 

bases (16). We modeled three beta-blockers with different lipophilicity, different protein 

binding, but similar pKa values using 1CellPBPK.  For all three compounds, atenolol, 

metoprolol, and propranolol, predicted lung accumulation is close to observed kinetics 

(Figure 5.2, 5.4, and Table 5.3).  After adjusting the thickness of surface lining liquid 

within a physiologically reasonable range, the prediction accuracy can be improved 

(Figure 5.5).  Adding 10% subcellular compartment (i.e. Vmito = Vlyso = 0.1 Vcyto), lung 

accumulation of three compounds is increased, but not significantly, depending on the 

relative volume fraction of subcellular organelles. With whole body PBPK model, we can 
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evaluate the effects that have been observed at cellular level to systemic level.  Similar to 

subcellular sequestration, 1CellPBPK could also be used as a cost effective tool to 

evaluate the effects transporters and metabolic enzymes at systemic level.  

Exploring current 1CellPBPK model, it can be used: (1). to optimize 

physicochemical properties (logP and pKa) to find compounds having lung distribution 

that does not follow plasma pharmacokinetics; (2). to simulate the pharmacokinetics for 

pulmonary delivery drugs; (3) to analyze the drug distribution in the airways, alveoli, and 

different cell types in the lung.  

With the increasing number of parameters in the PBPK models, uncertainties and 

variabilities associated with the parameters will become important and need to be paid 

attention to.  
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Table 5.1. Physiological parameters for tissue volumes and blood flow rates in a 250 
g rat. Values are obtained from Poulin et al. (27). Both tissue volumes and blood flow 
rates are expressed as fractions or functions of body weight. 
 
 Volumes (V) Blood Flow Rates (Q) 
Tissues fraction of 

total body 
volume 

volume (mL) fraction of 
cardiac 
output 

blood 
flow rate 
(L/min) 

Arterial blood 0.0272 6.8 --- --- 
Venous blood 0.0544 13.6 --- --- 
Adipose 0.076 19.0 0.07 5.82 
Bone 0.04148 10.37 0.122 10.14 
Brain 0.0057 1.425 0.02 1.66 
Gut 0.027 6.75 0.131 10.88 
Heart 0.0033 0.825 0.049 4.07 
Kidney 0.0073 1.825 0.141 11.72 
Liver 0.0366 9.15 0.175 b 14.54 
  total surface lining liquid   

airways 0.005 a 0.292 0.162 0.01 0.831 Lung 
alveoli  2.544 1.935 1 83.09 c 

Muscle 0.404 101.0 0.278 23.10 
Skin 0.19 47.5 0.058 4.82 
Spleen 0.002 0.5 0.02 1.66 
Rest of body 0.12002 30.005 0.077 6.3979 
 
a. The lung volume used in this study was calculated by summing up the total cell volume 
and surface lining liquid volume of the Cyberlung (including airways and alveoli).  The 
reported lung volume is 0.005 of body weight by Poulin et al. (27), thus for a 250g rat, 
the lung volume is about 1.25 mL by assuming that tissue density is 1 g/mL. The lung 
volume of rat reported by different studies may vary from 0.0045 – 0.0071 of body 
weight for different strains and genders of rats (46).  
b. The blood flow rate for the liver corresponds to the summation of portal vein and 
hepatic artery. The portal vein represents 15.1%, where 13.1% for gut and other and 2% 
for spleen. 
c. Total cardiac output was calculated with an allometric equation (0.235·body weight0.75) 
in L/min (27).  
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Table 5.2. Summary of in vivo, in vitro and physicochemical properties for atenolol, 
metoprolol, and propranolol    
 
 atenolol metoprolol 

(R- / S-) 
propranolol 

MW 266.3 267.4 259.4 
logPn 0.16 a 1.88 a 2.98  a 

logPd -3.54 a -1.82 a -0.72 a 

pKa 9.6 a 9.70 a 9.49  a 

unbound fraction in plasma (fup) 0.96 b 0.80 / 0.81 e 0.13 (27) g 

blood : plasma ratio (B:P) 1.11 b 1.52 / 1.51 e 0.80 (27) g 
Adipose --- 1.05 / 0.97 e 0.18 (27) h 
Bone --- 5.17 / 5.35 e 6.90 (27) h 
Brain 0.11 c 6.47 / 6.97 e 9.20 (27) h 
Gut --- 13.12 / 11.34 e 8.22 (27) h 
Heart --- 6.90 / 6.24 e 4.97 (27) i 
Kidney --- 26.72 / 26.73 e 3.80 (27) i 
Liver 3.21 c 40.08 / 44.55 e 5.67 (27) h 
Lung --- --- --- 
Muscle --- 5.64 / 5.59 e 2.20 (27) i 
Skin --- 3.18 / 2.92 e 7.22 (27) i 
Spleen --- 22.69 / 22.45 f 2.98 (27) i 

 
 
 
 
 
tissue : plasma 
partition 
coefficient (Kp)  

Rest of body 1.00 c 0.66 c 1.25 c 
CL   38.9 

ml/min/kg 
(41) d 

Vmax = 10215 
ng/min/g liver 
Km = 959.97 ng/mL 
(43) d 

1000 
µl/min/106 

cells (27) d 

 
a  Physicochemical properties of atenolol were obtained from Zhang et al. (28) 

b  In vitro data measured in humans were used as surrogate for rats. 
c  Tissue : blood partition coefficients were calculated as described in method “Modeling 

pharmacokinetics of atenolol using the 1CellPBPK model”. For atenolol Kp of rest of 
body was optimized, for metoprolol and propranolol, Kp values of rest of body were 
arbitrary numbers and not optimized. 

d  Observed clearance was adapted from literature.  
e  Measured tissue : plasma partition coefficients were obtained from Rodgers T. et al. 
(42) 
f  Tissue : plasma partition coefficients for the spleen were calculated in GastroPlusTM 

using the equations published by Rodgers T., Leahy D., and Rowland M.  (16, 17) 
g  Measured values were obtained from Poulin P. et al. (27) 
h  Calculated tissue : plasma partition coefficients were obtained from Poulin P. et al. (27) 
i   Measured tissue : plasma partition coefficient obtained from Poulin P. et al. (27) 
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Table 5.3. Comparison of tissue : unbound plasma partition coefficient (Kp,u )values 
in the lung of S-metoprolol  
 

 
Observed (42) 32 ± 4.9 

In silico (Rodgers T. et al.) (16) 22.9 

In silico (Poulin P. et al.) (26) 3.72 

Cyberlung without lyso/mito a 23.56 

Cyberlung with lyso/mito  a 25.52 

Cyberlung without lyso/mito b 15.67 

Cyberlung with lyso/mito  b 20.32 

 
a. The thickness of surface lining liquid in alveoli = 5µm.  
b. The thickness of surface lining liquid in alveoli = 1µm.  
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Figure 5.1. Integration of 1CellPK to 1CellPBPK model 
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Figure 5.2.  Comparison of predicted pharmacokinetics of atenolol in the lung and 
plasma with observed pharmacokinetics.  
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Figure 5.3.  Comparison of predicted pharmacokinetics of atenolol in the various 
tissues with observed pharmacokinetics. (A) brain, (B) liver, (C) lung, and (D) blood. 
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Figure 5.4.  Comparison of predicted pharmacokinetics of propranolol in the lung 
and plasma with observed pharmacokinetics. 
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Figure 5.5.  Comparison of predicted pharmacokinetics of propranolol in the 
various tissues with observed pharmacokinetics. (A) lung and blood, (B) liver, (C) 
kidney, (D) heart, (E) brain, and (F) muscle. 
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Figure 5.6.  Effects of the thickness of surface lining liquid in alveoli on drug 
accumulation in the lung. (A) atenolol, (B) propranolol. 
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CHAPTER VI 

FINAL DISCUSSION 

 
 A mechanism base cellular pharmacokinetic model (1CellPK) has been developed 

to simulate the transcellular permeability and subcellular distribution (1).  This project is 

the first step toward building a ‘bottom-up” model to simulate drug transport in humans.  

Cells are the smallest living unit in organism. Understanding and modeling of drug 

transport at cellular and subcellular level are essential for developing physiologically-

based pharmacokinetic (PBPK) models.  In the current model, the simplest but the most 

important transport mechanism, passive diffusion, was considered. For the transport 

ionized molecules across biomembrane, the combination of Fick’s law of diffusion and 

Nernst–Planck equation was used.  Input parameters of the model are cellular 

physiological parameters and physicochemical properties of small molecules, including 

pH values in each compartment, membrane potential of each biomembrane, volume and 

surface area of each compartment, lipid fraction in each compartment, and lipophilicity 

and acid dissociation constant of small molecules.  The model performs well in predicting 

highly permeable molecules and lysosomotropic phenomenon.  Nevertheless, the model 

is still a relatively simple model and many important factors have not been included.  In 

the following we will be discussing several aspects that the current 1CellPK model can be 

improved and the future outlook of 1CellPK. 
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Integration of molecular size 

 Current 1CellPK model assumes the diffusion coefficient of small molecules is 

constant, which limits the application 1CellPK model to molecules with certain range of 

molecular radius.  Diffusion coefficient in liquid essentially is a function of molecular 

radius s described by Stoke-Einstein equation (equation 6.1) (2). 

4 6       kTD n
n aπ η

= ≤ ≤ ,    (6.1) 

where k is the Boltzmann’s constant, a is the radius of the solute and η is the solution 

viscosity, and n is related to the radii of solute. When the solutes are large with radii 

grater than 5-10 Å, n = 6. From Stokes-Einstein equation, one sees that the diffusion 

coefficient is proportional to the reciprocal of the radius, which is approximately 

proportional to the cube root of the molecular weight.  Studies showed that paracellular 

pathway is molecular size and charge selective (3-5).  Paracellular passive permeability 

might play a major role in small molecules passive transport with molecular weight less 

than 200 Dalton (6).  Thus integrating the molecular size into current 1CellPK may 

improve both the transcellular and paracellular transport prediction. 

Integration of molecular interactions 

 During the transport process across the cells or into the cells, there are many steps 

may involve molecular interactions.  For example, when the molecules transport across 

the biomembrane, they may interact with the lipid and be trapped in the lipid bilayer.  

After entering the cellular membrane, molecules many interact with macro molecules 

located inside cells, such as DNA and proteins. Current 1CellPK model takes into 

account lipid partitioning with neutral lipid in each compartment (cytosol, mitochondria, 
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and lysosomes).  However for moderate - to - strong bases (pKa ≥ 7), they exist mainly as 

ionic species in physiological pH (~7).  Thus electrostatic interaction between ionic 

species and acidic phospholipids might be an important factor determining intracellular 

accumulation of small molecules (7), which is not included in the current 1CellPK model.  

 Besides passive interactions with macromolecules and acidic phospholipids, 

interactions with transporters and metabolic enzymes are also important mechanisms to 

be included for specific classes of molecules.  With the discovery of structures of 

transporter proteins, 1CellPK model can also include the structures of transmembrane 

transporters for modeling of transporter mediated transport.  

Mechanistic models for hypothesis testing and experimental design 

 In chapter 4, chloroquine was used as a compound to test 1CellPK prediction of 

permeability and intracellular accumulation. While 1CellPK can capture the transcellular 

permeability and intracellular accumulation after short time incubation, the intracellular 

accumulation was under-predicted after 4 hours incubation.  That suggests that the 

current 1CellPK does not include some mechanisms that are involved in chloroquine 

uptake up to 4 hours.  We observed lysosomal swelling and intralysosomal pH increment 

during the uptake.  In order to capture the lysosomal volume and intralysosomal pH 

increment, we ran Monte Carlos simulation with measured lysosomal volume and pH 

after incubation.  Lysosomal swelling can explain part of the under-prediction but the 

model still under-predicts the uptake of chloroquine after long time incubation.  We 

further observed two-phase uptake kinetics of chloroquine within 4 hours incubation 

while the model predicts the steady state reached within 1 minute.   To bridge the 

discrepancy between model prediction and observation, the model is proposed to include 
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the following mechanisms for chloroquine or other similar drugs uptake. (1) To include 

the volume change as a function time.  Monte Carlo simulation suggests the volume 

change has significant effects on chloroquine uptake. However, it was a rough estimation. 

A more accurate method is to integrate volume change as a function of time or 

concentration in 1CellPK model. (2) Another mechanism that may cause under-

prediction is intracellular inclusion formation due to the high intracellular concentration 

(8). (3) Chloroquine is well known to induce autophagy, organellar sequestration in 

autophagosomes and cytoplasmic vacuolization, followed by chromatin condensation, 

caspase activation, DNA loss and shrinkage (9-12). That complicated process may also 

increase chloroquine uptake assuming the autophagosome is an acidic compartment.   

 It is always desired that prediction closely agrees with observed data.  However, if 

discrepancies between predictions and observations are observed, it encourages 

researchers to explore the mechanisms that are not included in the current model. 

Extension of 1CellPK towards multiorgan PBPK modeling 

 In this thesis, the 1CellPK was developed into a multiscale virtual lung model (the 

Cyberlung). And the lung model was further integrated into whole body PBPK model to 

study the effects of subcellular distribution on systemic distribution.  That will be one of 

the directions for future development. Potentially, multiscale organs developed from the 

cell-based pharmacokinetic model can be used to predict absorption, tissue distribution, 

and clearance.  1CellPK has been used to predict transcellular permeability, which is one 

of the critical factors determining oral absorption (13-17). By combining the GI anatomy, 

drug dissolution profiles, transit time, precipitation, metabolism enzymes in the GI track, 

transporters, and other procedures involved in absorption, 1CellPK can be extended to 
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predict drug absorption (18-21).  The Cyberlung has shown the ability of predicting the 

distribution of several beta-blockers in the lung. With the same strategy, 1CellPK model 

can be extended to other organs or tissues for tissue distribution predictions (22).  The 

cellular pharmacokinetic model may also be extended for clearance prediction by 

integrating transporters and metabolic enzymes (23-25).  The ultimate goal is to elaborate 

cell based pharmacokinetic model to multiorgan PBPK models for absorption, 

distribution, and elimination predictions, and furthermore link to pharmacodynamic 

modeling.  

 While extrapolating 1CellPK to the virtual lung, we have not considered 

microcirculation, which is responsible for the distribution of blood within tissues. The 

flow rate could be different from the macro blood flow rate to or from the tissue or organ 

to account fro heterogeneity in tissue distribution (26). The flow rate could be determined 

by the diameter and the length of the vessels of the microcirculation and could be 

predicted by Hagen-Poiseuille equation. Some models have been reported to model the 

solute change between blood and tissue including microcirculation and cell metabolism 

of nutrients (26, 27). For the lung computational models of the human pulmonary 

microcirculation was developed to simulate regional variations in blood flow (28, 29). 

They could be adapted and integrated with 1CellPK to take into account of the 

heterogeneous distribution of compounds.  

Disseminating 1CellPK 

 Current 1CellPK model, the Cyberlung, and 1CellPBPK model are all developed 

in Matlab® platform, which is not user-friendly software and requires programming 

skills.  In order to share the 1CellPK model with other pharmaceutical scientists, 
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implementing the model in user-friendly software is necessary.  Virtual Cell is a user-

friendly computational tool for systems biologists to model, analyze, and interpret 

complicated cellular events, such as calcium dynamics in a neuronal cell, and 

nucleocytoplasmic transport (26, 27).  By porting 1CellPK into Virtual Cell, 

mathematical models of small molecule transport could be easily shared amongst the 

systems biology community, and used to study the synthesis, metabolism and transport of 

lipophilic hormones and xenobiotics, as well as studying of the effect of exogenous 

membrane-permeant small molecule probes on biochemical signaling networks. Within 

Virtual Cell, 1CellPK can be integrated with biochemical signaling networks or reaction-

diffusion models for in silico analysis. 
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APPENDIX A 

1CellPK Matlab Code  

% The following section is to calculate the intracellular 
% concentration and permeability of each drug given pKa, logPn(o/c) and  
% electrical charges. 
  
% Clear the memory 
clear 
  
% Constant 
T = 273.15+37;           % Body temperature (37centigrade) 
R = 8.314;               % Universal gas constant 
F = 96484.56;            % Faraday constant 
La = 0;                  % Lipid fraction in apical compartment 
Lc = 0.05;               % Lipid fraction in cytosol 
Lm = 0;                  % Lipid fraction in mitochondria 
Lb = 0;                  % Lipid fraction in basolateral compartment 
Wa = 1-La;               % Water fraction in apical compartment 
Wc = 1-Lc;               % Water fraction in cytosol 
Wm = 1-Lm;              % Water fraction in mitochondria  
Wb = 1-Lb;               % Water fraction in basolateral compartment 
gamma_na = 1;           % Activity coefficient of neutral molecules in apical compartment 
gamma_da = 1;           % Activity coefficient of ionic molecules in apical compartment 
gamma_nc = 1.23026877;  % Activity coefficient of neutral molecules in cytosol 
gamma_dc = 0.73799822;  % Activity coefficient of ionic molecules in cytosol 
gamma_nm = 1;           % Activity coefficient of neutral molecules in mitochondria 
gamma_dm = 1;           % Activity coefficient of ionic molecules in mitochondria 
gamma_nb = 1;     % Activity coefficient of neutral molecules in basolateral compartment 
gamma_db = 1;     % Activity coefficient of ionic molecules in basolateral compartment 
Ca = 1 ;                 % Apical initical drug concentration (mM) 
  
% Areas and volumes (units in m^2 and m^3) 
Aa = 50*10^(-10) ;           % The apical membrane surface area 
Aaa = 20*10^(-10) ;          % The monolayer area 
Am = 100*3.14*10^(-12);     % The mitochondrial membrane surface area 
Ab = 10^(-10);              % The basolateral membrane surface area 
Vc = 10*10^(-15);            % The cytosolic volume 
Vm = 100*5.24*10^(-19);     % The mitochondrial volume 
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Vb = 4.7*10^(-3);           % The volume of basolateral compartment 
     
% Membrane potential (units in 'Voltage') 
Ea = -0.0093 ;              % The membrane potential of apical membrane 
Em = -0.16;                 % The membrane potential of mitochondrial membrane 
Eb = 0.0119 ;               % The membrane potential of basolateral membrane 
  
% pH values 
pHa = 6.8;                  % pH in apical compartment 
pHc = 7.0;                  % pH in cytosol 
pHm = 8.0;                 % pH in mitochondria 
pHb = 7.4;                  % pH in basolateral compartment 
  
% Read the drug properties 
% If the drug is neutral at physiological pH 
% the z is given 10^(-6) in stead of 0 since if z=0 the differenctial 
% equations can't be solved 
[DrugName,pKaall,logPnall,ZNall] = textread('drug.dat', '%s %f 
%f%f','commentstyle','matlab'); 
  
% Calculate the ionized logP(o/w); 
logPdall = logPnall-3.7 ; 
  
% The calculated results are saved in this file 'Peff_all.dat' 
len = length(pKaall) ; 
fid1 = fopen('Peff_all.dat','w'); 
str1 = ' Name --------------- pKa ----- logP_n,lip ---logP_d,lip---Cc(mM)-----Cm(mM)-----
--Cb(mM)-------Peff(cm/sec) ' ; 
fprintf(fid1,'%s\n',str1) ; 
  
for n = 1:len 
    if ( abs(ZNall(n)-1) <= 10^(-6) )  
        logP_nlipT(n) = 0.33*logPnall(n)+2.2 ; 
        logP_dlipT(n) = 0.37*logPdall(n)+2 ; 
    end 
    if ( abs(ZNall(n)+1) <= 10^(-6) )  
        logP_nlipT(n) = 0.37*logPnall(n)+2.2 ; 
        logP_dlipT(n) = 0.33*logPdall(n)+2.6 ; 
    end 
    if ( abs(ZNall(n)-0) <= 10^(-5) )  
        logP_nlipT(n) = 0.33*logPnall(n)+2.2 ; 
        logP_dlipT(n) = 0.33*logPdall(n)+2.2 ; 
    end 
end 
  
% Get the first two decimals 



 

 200

logP_nlip = round(logP_nlipT*100)/100 ; 
logP_dlip = round(logP_dlipT*100)/100 ; 
  
  
% Solve the differential equation system for each drug: 
% Given a system of linear ODE's expressed in matrix form: 
% Y' = AY+G with initial conditions Y(0) = RR, 
  
for n = 1:len 
    pKa = pKaall(n); 
    logP_n = logP_nlip(n) ; 
    logP_d = logP_dlip(n) ; 
    z = ZNall(n) ;       
  
    % Parameters Calculation 
    i = -sign(z) ; 
    Na = ((z)*(Ea)*F)/(R*T); 
    Nm = ((z)*(Em)*F)/(R*T); 
    Nb = ((z)*(-Eb)*F)/(R*T); 
     
    Pn = 10^(logP_n-6.7);                
    Pd = 10^(logP_d-6.7);                
    Kn_a = La*1.22*10^(logP_n);          
    Kd_a = La*1.22*10^(logP_d);          
    Kn_c = Lc*1.22*10^(logP_n);          
    Kd_c = Lc*1.22*10^(logP_d);          
    Kn_m = Lm*1.22*10^(logP_n);          
    Kd_m = Lm*1.22*10^(logP_d);          
    Kn_b = Lb*1.22*10^(logP_n);          
    Kd_b = Lb*1.22*10^(logP_d);          
     
    % Construct the matrix A and G 
    fn_a = 1/(Wa/gamma_na+Kn_a/gamma_na+Wa*10^(i*(pHa-pKa))/gamma_da... 
           +Kd_a*10^(i*(pHa-pKa))/gamma_da); 
    fd_a = fn_a*10^(i*(pHa-pKa)); 
    fn_c = 1/(Wc/gamma_nc+Kn_c/gamma_nc+Wc*10^(i*(pHc-pKa))/gamma_dc... 
           +Kd_c*10^(i*(pHc-pKa))/gamma_dc); 
    fd_c = fn_c*10^(i*(pHc-pKa)); 
    fn_m = 1/(Wm/gamma_nm+Kn_m/gamma_nm+Wm*10^(i*(pHm-
pKa))/gamma_dm... 
           +Kd_m*10^(i*(pHm-pKa))/gamma_dm); 
    fd_m = fn_m*10^(i*(pHm-pKa)); 
    fn_b = 1/(Wb/gamma_nb+Kn_b/gamma_nb+Wb*10^(i*(pHb-pKa))/gamma_db... 
            +Kd_b*10^(i*(pHb-pKa))/gamma_db); 
    fd_b = fn_b*10^(i*(pHb-pKa)); 
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    k11 = -(Aa/Vc)*Pn*fn_c-(Aa/Vc)*Pd*Na*fd_c*exp(Na)/(exp(Na)-1)... 
           -(Am/Vc)*Pn*fn_c-(Am/Vc)*Pd*Nm*fd_c/(exp(Nm)-1)... 
           -(Ab/Vc)*Pn*fn_c-(Ab/Vc)*Pd*Nb*fd_c/(exp(Nb)-1) ; 
    k12 = (Am/Vc)*Pn*fn_m+(Am/Vc)*Pd*Nm*fd_m*exp(Nm)/(exp(Nm)-1) ;  
    k13 = (Ab/Vc)*Pn*fn_b+(Ab/Vc)*Pd*Nb*fd_b*exp(Nb)/(exp(Nb)-1) ; 
    S1 = (Aa/Vc)*Ca*(Pn*fn_a+Pd*Na*fd_a/(exp(Na)-1)) ; 
     
    k21 = (Am/Vm)*Pn*fn_c+(Am/Vm)*Pd*Nm*fd_c/(exp(Nm)-1) ; 
    k22 = -(Am/Vm)*Pn*fn_m-(Am/Vm)*Pd*Nm*fd_m*exp(Nm)/(exp(Nm)-1) ;  
    k23 = 0; 
    S2 = 0; 
  
    k31 = (Ab/Vb)*Pn*fn_c+(Ab/Vb)*Pd*Nb*fd_c/(exp(Nb)-1) ; 
    k32 = 0; 
    k33 = -(Ab/Vb)*Pn*fn_b-(Ab/Vb)*Pd*Nb*fd_b*exp(Nb)/(exp(Nb)-1) ; 
    S3 = 0; 
  
    A = [k11, k12, k13; k21, k22, k23; k31, k32, k33]; 
    G = [S1, S2, S3]'; 
    RR = [0,0,0]'; 
    t = 1000;   % Calculate the intracellular concentration and permeability and t=1000s, 
which is at steady state 
     
    [V,E] = eig(A); 
    E = diag(E); 
    H = inv(V)*G; 
    B = V \ RR; 
    C = B + H./E; 
    Z = -(H./E) + exp(t * E).*C ; 
    Y = real(V * Z); 
    Y = Y'; 
    Peff = Y(3)*Vb/(t*Aaa*Ca); 
    NA = [pKa, logP_n, logP_d, Y, Peff*10^(8)]; 
    str = DrugName{n}; 
    fprintf(fid1,'%s\t %12.2f %12.2f %12.2f %12.2f %12.2f  %+12.4e  %12.2f\n',str, NA') 
;   
end 
    fclose(fid1); 
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APPENDIX B 

Examples of Matlab Code of Monte Carlo Simulations  

% This script is to perform Monte Carlo simulations for 1CellPK 
% This script uses Case#1 as and example: 
% Case# 1: AP->BL transport, pHa = 6.5, 0.4um-membrane, 5min 
% Case# 2: AP->BL transport, pHa = 6.5,   3um-membrane, 5min 
% Case# 3: AP->BL transport, pHa = 7.4, 0.4um-membrane, 5min 
% Case# 4: AP->BL transport, pHa = 7.4,   3um-membrane, 5min 
 
% Case# 5: BL->AP transport, pHb = 6.5, 0.4um-membrane, 5min 
% Case# 6: BL->AP transport, pHb = 6.5,   3um-membrane, 5min 
% Case# 7: BL->AP transport, pHb = 7.4, 0.4um-membrane, 5min 
% Case# 8: BL->AP transport, pHb = 7.4,   3um-membrane, 5min 
 
% Case#1: AP->BL transport, pHa = 6.5, 0.4um-membrane,5min 
clear ;                     % Clear the memory 
z1 = 1 ;                   % ionization group 1 of CQ 
z2 = 2 ;                   % ionization group 2 of CQ 
i1 = sign(z1) ; 
i2 = sign(z2) ; 
 
T = 310.15 ;              % temperature 
R = 8.314 ;                % universal gas constant 
F = 96484.56 ;          % faraday constant 
C_a = 1 ;                   % initial drug concentration (mM) 
 
sim = 10000;             % number of simulations 
paraNo = 25;                 
outputNo = 7;           % number of output parameters 
Para = zeros(sim,paraNo); 
Results = zeros(sim,outputNo); 
 
dMdt_exp = 2.2E-6;              % +/- 7.18E-7, pmol/sec/cell, measured after 4hrs  
Ppore_exp = 2.18E+02;         % +/- 34.4, 10^-6 cm/sec, measured after 4hrs 
Peff_exp = 1.35;                     % +/- 0.442, 10^-6 cm/sec, measured after 4hrs 
IntraMass_exp = 0.00373;      % +/- 0.00014 pmol/cell , measured after 5min 
 
for i = 1:sim 
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    % Drug information -- ChemAxon calculation including logPn, pKa1, and pKa2 
    logPn = 3.93-0.5+rand();    % unif [3.43, 4.43] ;  
    pKa1 = 9.96-0.5+rand();     % unif [9.46, 10.46] ; 
    pKa2 = 7.47-0.5+rand();     % unif [6.97, 7.97] ; 
    logPd1 = 0.43-0.5+rand();   % unif [-0.07, 0.93] ; 
    logPd2 = -0.91-0.5+rand();  % unif [-1.41, 0.41] ; 
    Pn = 10^(logPn-6.7);                
    Pd1 = 10^(logPd1-6.7);   
    Pd2 = 10^(logPd2-6.7);   
         
    CellNo = 2*10^5*(1+rand());              % cell number/insert: unif [2*10^5, 4*10^5] 
    PoreDens = 4*10^6*0.4*(2+rand());   % pore number/cm^2: unif [3.2*10^6, 4.8*10^6] 
    A_insert = 1.12*10^(-4) ;                     % insert area: 1.12 cm^2 
    PoreNo_insert = PoreDens*A_insert*10^(4);          % pore number/insert 
    PoreNo_cell = PoreNo_insert/CellNo ;                    % average pore number/cell 
    A_pore_insert = 3.14*((0.4/2)*10^(-6))^2*PoreNo_insert ;   % pore area / insert (m^2) 
    A_pore_cell = 3.14*((0.4/2)*10^(-6))^2*PoreNo_cell ;   % average pore area / cell 
(m^2) 
     
    A_a = 10^(-10)*(1+9*rand());     % apical membrane surface area: unif [10^(-
10),10*(10)^(-10))] (m^2) 
    A_aa = A_pore_cell;               % pore area/cell (m^2) 
    A_b = A_aa+(10^(-10)-A_aa)*rand();     % basolateral membrane surface area: unif 
[A_aa, 10^(-10))] (m^2) 
    A_l = 100*3.14*10^(-12);                     % lysosomal membrane surface area (m^2) 
    A_m = 100*3.14*10^(-12);                   % mitochondrial membrane surface area (m^2) 
    V_c = 0.5*10^(-15)*(1+5*rand());        % cytosolic volume: unif [0.5*10^(-15), 
3*10^(-15)] (m^3) 
    V_l = 10^(-18)*(9.24+(23.8-9.24)*rand());    % lysosomal volume: unif [9.24*10^(-
18), 23.8*10^(-18)] (m^3) 
    V_m = 100*5.24*10^(-19)/5*(1+24*rand());  % mitochondrial volume: unif 
[10.48*10^(-18), 262*10^(-18)](m^3) 
    V_b = 1.5*10^(-6);                                          % basolateral volume: 1.5 mL 
   
    % Membrane potential (unit in 'Voltage') 
    E_a = -0.0093-0.005+0.01*rand();  % apical membrane potential: unif [-0.0143, -
0.0043]  
    E_l = 0.01-0.005+0.01*rand();    % lysosomal membrane potential: unif [0.005, 0.015] 
    E_m = -0.16 ;                               % mitochondrial membrane potential 
    E_b = 0.0119-0.005+0.01*rand();     % basolateral membrane potential: unif [0.0069, 
0.0169] 
     
    % pH values 
    pH_a = 6.4+0.2*rand();     % pH in apical compartment: unif [6.4, 6.6] 
    pH_c = 7.0+0.4*rand();      % pH in cytosol: unif [7.0, 7.4] 
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    pH_l = 4.8+0.4*rand();       % pH in lysosomes: unif [4.8, 5.2] 
    pH_m = 7.8+0.4*rand();     % pH in mitochondria: unif[7.8, 8.2] 
    pH_b = 7.4;                          % pH in basolateral compartment 
 
    % Apical Compartment 
    fn_a = 1 / (1 + 10^(i1*(pKa1-pH_a)) + 10^(i1*(pKa1-pH_a)+i2*(pKa2-pH_a))) ; 
    fd2_a = fn_a * 10^(i1*(pKa1-pH_a)+i2*(pKa2-pH_a)) ; 
    fd1_a = fn_a * 10^(i1*(pKa1-pH_a)) ; 
    Nd2_a = z2*E_a*F/(R*T) ; 
    Nd1_a = z1*E_a*F/(R*T) ; 
 
    % Cytoplasm 
    L_c = 0.05+0.1*rand();       % lipid fraction in cytosol: unif [0.05, 0.15]  
    W_c = 1-L_c ;                     % water fraction in cytosol 
    Is_c = 0.3 ;                           % ion strength in cytosol (mol) 
    gamman_c = 10^(0.3*Is_c) ;    % activity coefficient of neutral molecules in cytosol 
    gammad1_c = 10^(-0.5*z1*z1*(sqrt(Is_c)/(1+sqrt(Is_c))-0.3*Is_c));   % activity 
coefficient of monovalent base in cytosol 
    gammad2_c = 10^(-0.5*z2*z2*(sqrt(Is_c)/(1+sqrt(Is_c))-0.3*Is_c));   % activity 
coefficient of bivalent base in cytosol 
    Kn_c = L_c*1.22*10^(logPn) ; 
    Kd1_c = L_c*1.22*10^(logPd1) ; 
    Kd2_c = L_c*1.22*10^(logPd2) ; 
    an_c = 1 / (1 + 10^(i1*(pKa1-pH_c)) + 10^(i1*(pKa1-pH_c)+i2*(pKa2-pH_c))) ; 
    ad2_c = an_c * 10^(i1*(pKa1-pH_c)+i2*(pKa2-pH_c)) ; 
    ad1_c = an_c * 10^(i1*(pKa1-pH_c)) ; 
    Dd2_c = ad2_c / an_c ; 
    Dd1_c = ad1_c / an_c ; 
    fn_c = 1 / (W_c/gamman_c + Kn_c/gamman_c + Dd2_c*W_c/gammad2_c + 
Dd2_c*Kd2_c/gammad2_c  + Dd1_c*W_c/gammad1_c + Dd1_c*Kd1_c/gammad1_c ) ; 
    fd2_c = fn_c * Dd2_c ; 
    fd1_c = fn_c * Dd1_c ; 
 
    % Mitochondria 
    L_m = 0.05+0.1*rand();   % lipid fraction in mitochondria: unif [0.05, 0.15] 
    W_m = 1-L_m ;                % water fraction in mitochondria  
    Is_m = 0.3 ;                       % ion strength in mitochondria (mol) 
    Nd2_m = z2*E_m*F/(R*T) ; 
    Nd1_m = z1*E_m*F/(R*T) ; 
    gamman_m = 10^(0.3*Is_m) ;    % activity coefficient of neutral molecules in 
mitochondria 
    gammad1_m = 10^(-0.5*z1*z1*(sqrt(Is_m)/(1+sqrt(Is_m))-0.3*Is_m));   % activity 
coefficient of monovalent base in mitochondria 
    gammad2_m = 10^(-0.5*z2*z2*(sqrt(Is_m)/(1+sqrt(Is_m))-0.3*Is_m));   % activity 
coefficient of bivalent base in mitochondria 
    Kn_m = L_m*1.22*10^(logPn) ; 
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    Kd1_m = L_m*1.22*10^(logPd1) ; 
    Kd2_m = L_m*1.22*10^(logPd2) ; 
    an_m = 1 / (1 + 10^(i1*(pKa1-pH_m)) + 10^(i1*(pKa1-pH_m)+i2*(pKa2-pH_m))) ; 
    ad2_m = an_m * 10^(i1*(pKa1-pH_m)+i2*(pKa2-pH_m)) ; 
    ad1_m = an_m * 10^(i1*(pKa1-pH_m)) ; 
    Dd2_m = ad2_m / an_m ; 
    Dd1_m = ad1_m / an_m ; 
    fn_m = 1 / (W_m/gamman_m + Kn_m/gamman_m + Dd2_m*W_m/gammad2_m + 
Dd2_m*Kd2_m/gammad2_m ... 
           + Dd1_m*W_m/gammad1_m + Dd1_m*Kd1_m/gammad1_m ) ; 
    fd2_m = fn_m * Dd2_m ; 
    fd1_m = fn_m * Dd1_m ; 
 
    % Lysosomes 
    L_l = 0.05+0.1*rand();     % lipid fraction in mitochondria: unif [0.05, 0.15] 
    W_l = 1-L_l ;                    % water fraction in lysosomes 
    Is_l = 0.3 ;                         % ion strength in lysosomes (mol) 
    Nd2_l = z2*E_l*F/(R*T) ; 
    Nd1_l = z1*E_l*F/(R*T) ; 
    gamman_l = 10^(0.3*Is_l) ;   % activity coefficient of neutral molecules in lysosomes 
    gammad1_l = 10^(-0.5*z1*z1*(sqrt(Is_l)/(1+sqrt(Is_l))-0.3*Is_l));   % activity 
coefficient of monovalent base in lysosomes 
    gammad2_l = 10^(-0.5*z2*z2*(sqrt(Is_l)/(1+sqrt(Is_l))-0.3*Is_l));   % activity 
coefficient of bivalent base in lysosomes 
    Kn_l = L_l*1.22*10^(logPn) ; 
    Kd1_l = L_l*1.22*10^(logPd1) ; 
    Kd2_l = L_l*1.22*10^(logPd2) ; 
    an_l = 1 / (1 + 10^(i1*(pKa1-pH_l)) + 10^(i1*(pKa1-pH_l)+i2*(pKa2-pH_l))) ; 
    ad2_l = an_l * 10^(i1*(pKa1-pH_l)+i2*(pKa2-pH_l)) ; 
    ad1_l = an_l * 10^(i1*(pKa1-pH_l)) ; 
    Dd2_l = ad2_l / an_l ; 
    Dd1_l = ad1_l / an_l ; 
    fn_l = 1 / (W_l/gamman_l + Kn_l/gamman_l + Dd2_l*W_l/gammad2_l + 
Dd2_l*Kd2_l/gammad2_l ... 
           + Dd1_l*W_l/gammad1_l + Dd1_l*Kd1_l/gammad1_l ) ; 
    fd2_l = fn_l * Dd2_l ; 
    fd1_l = fn_l * Dd1_l ; 
 
    % Basolaterial Compartment 
    fn_b = 1 / (1 + 10^(i1*(pKa1-pH_b)) + 10^(i1*(pKa1-pH_b)+i2*(pKa2-pH_b))) ; 
    fd2_b = fn_b * 10^(i1*(pKa1-pH_b)+i2*(pKa2-pH_b)) ; 
    fd1_b = fn_b * 10^(i1*(pKa1-pH_b)) ; 
    Nd2_b = z2*(-E_b)*F/(R*T) ; 
    Nd1_b = z1*(-E_b)*F/(R*T) ; 
 
    % Solve the differential equation system: 
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    % Given a system of linear ODE's expressed in matrix form: 
    % Y' = AY+G with initial conditions Y(0) = RR, 
        k11 = -(A_a/V_c)*Pn*fn_c-
(A_a/V_c)*Pd1*Nd1_a*fd1_c*exp(Nd1_a)/(exp(Nd1_a)-1)... 
               -(A_a/V_c)*Pd2*Nd2_a*fd2_c*exp(Nd2_a)/(exp(Nd2_a)-1)... 
               -(A_m/V_c)*Pn*fn_c-(A_m/V_c)*Pd1*Nd1_m*fd1_c/(exp(Nd1_m)-1)... 
               -(A_m/V_c)*Pd2*Nd2_m*fd2_c/(exp(Nd2_m)-1)... 
               -(A_l/V_c)*Pn*fn_c-(A_l/V_c)*Pd1*Nd1_l*fd1_c/(exp(Nd1_l)-1)... 
               -(A_l/V_c)*Pd2*Nd2_l*fd2_c/(exp(Nd2_l)-1)... 
               -(A_b/V_c)*Pn*fn_c-(A_b/V_c)*Pd1*Nd1_b*fd1_c/(exp(Nd1_b)-1)... 
               -(A_b/V_c)*Pd2*Nd2_b*fd2_c/(exp(Nd2_b)-1) ; 
        k12 = 
(A_m/V_c)*Pn*fn_m+(A_m/V_c)*Pd1*Nd1_m*fd1_m*exp(Nd1_m)/(exp(Nd1_m)-1)... 
               +(A_m/V_c)*Pd2*Nd2_m*fd2_m*exp(Nd2_m)/(exp(Nd2_m)-1);  
        k13 = (A_l/V_c)*Pn*fn_l+(A_l/V_c)*Pd1*Nd1_l*fd1_l*exp(Nd1_l)/(exp(Nd1_l)-
1)... 
               +(A_l/V_c)*Pd2*Nd2_l*fd2_l*exp(Nd2_l)/(exp(Nd2_l)-1);    
        k14 = 
(A_b/V_c)*Pn*fn_b+(A_b/V_c)*Pd1*Nd1_b*fd1_b*exp(Nd1_b)/(exp(Nd1_b)-1)... 
               +(A_b/V_c)*Pd2*Nd2_b*fd2_b*exp(Nd2_b)/(exp(Nd2_b)-1); 
        S1 = (A_a/V_c)*C_a*(Pn*fn_a+Pd1*Nd1_a*fd1_a/(exp(Nd1_a)-1)... 
               +Pd2*Nd2_a*fd2_a/(exp(Nd2_a)-1)) ; 
 
        k21 = (A_m/V_m)*Pn*fn_c+(A_m/V_m)*Pd1*Nd1_m*fd1_c/(exp(Nd1_m)-1)... 
               +(A_m/V_m)*Pd2*Nd2_m*fd2_c/(exp(Nd2_m)-1) ; 
        k22 = -(A_m/V_m)*Pn*fn_m-
(A_m/V_m)*Pd1*Nd1_m*fd1_m*exp(Nd1_m)/(exp(Nd1_m)-1)... 
               -(A_m/V_m)*Pd2*Nd2_m*fd2_m*exp(Nd2_m)/(exp(Nd2_m)-1) ;  
        k23 = 0; 
        k24 = 0 ; 
        S2 = 0; 
 
        k31 = (A_l/V_l)*Pn*fn_c+(A_l/V_l)*Pd1*Nd1_l*fd1_c/(exp(Nd1_l)-1)... 
               +(A_l/V_l)*Pd2*Nd2_l*fd2_c/(exp(Nd2_l)-1) ; 
        k32 = 0;   
        k33 = -(A_l/V_l)*Pn*fn_l-(A_l/V_l)*Pd1*Nd1_l*fd1_l*exp(Nd1_l)/(exp(Nd1_l)-
1)... 
               -(A_l/V_l)*Pd2*Nd2_l*fd2_l*exp(Nd2_l)/(exp(Nd2_l)-1) ;  
 
        k34 = 0 ; 
        S3 = 0;     
 
        k41 = (A_b/V_b)*Pn*fn_c+(A_b/V_b)*Pd1*Nd1_b*fd1_c/(exp(Nd1_b)-1)... 
               +(A_b/V_b)*Pd2*Nd2_b*fd2_c/(exp(Nd2_b)-1) ; 
        k42 = 0; 
        k43 = 0; 
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        k44 = -(A_b/V_b)*Pn*fn_b-
(A_b/V_b)*Pd1*Nd1_b*fd1_b*exp(Nd1_b)/(exp(Nd1_b)-1)... 
                -(A_b/V_b)*Pd2*Nd2_b*fd2_b*exp(Nd2_b)/(exp(Nd2_b)-1); 
        S4 = 0; 
 
        A = [k11, k12, k13, k14; k21, k22, k23, k24; k31, k32, k33, k34; k41, k42, k43, 
k44]; 
        G = [S1, S2, S3, S4]'; 
        RR = [0,0,0,0]'; 
        t = 300 ;   % time in sec (5min) 
 
 
        [V,E] = eig(A); 
        E = diag(E); 
        H = inv(V)*G; 
        B = V \ RR; 
        C = B + H./E; 
        Z = -(H./E) + exp(t * E).*C ; 
        Y = real(V * Z); 
        Y = Y' ; 
         
        Ppore = Y(4)*V_b /(t*A_aa*C_a)*10^(2)*10^6 ;   % Pcell, 10^(-6)cm/sec 
        Peff = Y(4)*V_b*CellNo/(t*A_insert*C_a)*10^(2)*10^6;  % Peff, 10^(-6)cm/sec, 
normalized by insert area, which is 1.12 cm^2 
        Mass_cell = (Y(1)*V_c + Y(2)*V_m + Y(3)*V_l)*10^12 ; % cellular mass, 
pmol/cell 
        dMdt = Y(4)*V_b/t*10^12;        % transport rate: pmol/sec/cell 
         
    Para(i,:) = [A_a*10^12,PoreNo_cell, 
A_l*10^12,A_m*10^12,A_b*10^12,V_c*10^18,V_l*10^18,V_m*10^18,V_b*10^6,E_a
*1000,E_l*1000,E_m*1000,E_b*1000,... 
                     pH_a,pH_c,pH_l,pH_m,pH_b,CellNo,PoreDens, pKa1,pKa2,logPn,logPd1, 
logPd2]; 
    Results(i,:)=[Y(1),Y(2),Y(3),Ppore, Peff, dMdt, Mass_cell]; 
          
end 
 
comb = [Results(:,1:7),Para]; 
fid5 = fopen('AtoB_pH65_04um_5min.dat','w'); 
fprintf(fid5,'%12.4e %12.4e %12.4e %12.4e %12.4e  %12.4e %12.4e %12.2e %12.0f 
%12.4e %12.4e %12.4e  %12.4e %12.4e %12.4e %12.4e %12.4f %12.4f %12.4f %12.4f 
%12.2f %12.2f %12.2f %12.2f %12.2f %12.0f %12.0f %12.2f %12.2f %12.2f %12.2f 
%12.2f \n', comb') ;  
fclose(fid5); 
 
figure(1) ; clf ; hold on ; 
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grid on; 
hist (log10(comb(:,4)),1000); 
line([log10(Ppore_exp), log10(Ppore_exp)],[0,50],'Color','r','LineWidth',3); 
xlabel('log_{10} (P_{cell}, 10^{-6} 
cm/sec)','FontSize',30,'FontWeight','Bold','FontName','Times'); 
xlim([0, 6]); 
ax1 = gca; 
set(get(ax1,'Ylabel'),'String','Frequency','FontSize',30,'FontWeight','Bold','FontName','Ti
mes') ; 
set(ax1,'LineWidth',2.0,'FontSize',30,'FontWeight','Bold','FontName','Times') ; 
title ('histogram of cell 
permeability','FontSize',30,'FontWeight','Bold','FontName','Times') ; 
 
figure(2) ; clf ; hold on ; 
grid on; 
hist (log10(comb(:,5)),1000); 
xlim([-3, 3]); 
line([log10(Peff_exp), log10(Peff_exp)],[0,50],'Color','r','LineWidth',3); 
xlabel('log_{10} (P_{app}, 10^{-6} 
cm/sec)','FontSize',30,'FontWeight','Bold','FontName','Times'); 
ax1 = gca; 
set(get(ax1,'Ylabel'),'String','Frequency','FontSize',30,'FontWeight','Bold','FontName','Ti
mes') ; 
set(ax1,'LineWidth',2.0,'FontSize',30,'FontWeight','Bold','FontName','Times') ; 
title ('histogram of apparent 
permeability','FontSize',30,'FontWeight','Bold','FontName','Times') ; 
 
figure(3) ; clf ; hold on ; 
grid on; 
hist (log10(comb(:,6)),1000); 
xlim([-8,-2]); 
line([log10(dMdt_exp), log10(dMdt_exp)],[0,50],'Color','r','LineWidth',3); 
xlabel('log_{10} (dM/dt, 
pmol/sec/cell)','FontSize',30,'FontWeight','Bold','FontName','Times'); 
ax1 = gca; 
set(get(ax1,'Ylabel'),'String','Frequency','FontSize',30,'FontWeight','Bold','FontName','Ti
mes') ; 
set(ax1,'LineWidth',2.0,'FontSize',30,'FontWeight','Bold','FontName','Times') ; 
title ('histogram of transport rate','FontSize',30,'FontWeight','Bold','FontName','Times') ; 
 
figure(4) ; clf ; hold on ; 
grid on; 
hist (log10(comb(:,7)),1000); 
xlim([-5,-0]); 
line([log10(IntraMass_exp), log10(IntraMass_exp)],[0,50],'Color','r','LineWidth',3); 
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xlabel('log_{10} (intracellular mass, pmol/cell) 
','FontSize',30,'FontWeight','Bold','FontName','Times'); 
ax1 = gca; 
set(get(ax1,'Ylabel'),'String','Frequency','FontSize',30,'FontWeight','Bold','FontName','Ti
mes') ; 
set(ax1,'LineWidth',2.0,'FontSize',30,'FontWeight','Bold','FontName','Times') ; 
title ('histogram of intracellular 
mass','FontSize',30,'FontWeight','Bold','FontName','Times') ; 
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APPENDIX C 

Scripts 

Symbols: 
a ---- activity  
A ---- membrane area 
Aaa ---- effective cross-sectional area 
B:P ---- blood : plasma partition coefficient 
C ---- concentration  
CL ---- clearance 
E ---- membrane potential 
F ---- the Faraday constant  
J ---- net flux cross the membrane  
K ---- sorption coefficients 
Kow ---- lipophilicity of small molecules 
Kp,t  ---- tissue : plasma partition coefficient  
Kiv ----  the intravenous injection or infusion rate 
L ---- lipid fraction  
logP ---- octanol water partition coefficient 
logPlip ---- liposomal partition coefficient  
m  ---- mass 
pKa ---- the negative logarithm(log10) of the dissociation constant 
P ---- permeability of molecules through the membrane  
Papp ---- apparent permeability 
Pcell ---- cell permeability 
Peff  ---- effective permeability 
Q  ---- blood flow rate  
R ---- the universal gas constant  
Rabs ---- absorption rate 
T ---- temperature 
V ---- volume  
W ----Volumetric water fraction 
z ---- electric charge 
γ --- activity coefficient 
 
Subscripts 
a ---- apical 
b ---- basolateral 
c ---- cytosol 
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d ---- ionic form 
m ---- mitochondria 
n ---- neutral form 
aEp ---- surface lining liquid 
imEp  ---- macrophage 
cEp  ---- epithelial cells 
cEpMito ---- mitochondria in epithelial cells 
cEpLyso ---- lysosomes in epithelial cells 
int ---- interstitium 
imInt  ---- immune cells 
sm  ---- smooth muscle cells 
smMito ---- mitochondria in smooth muscle cells 
smLyso ---- lysosomes in smooth muscle cells 
cEd  ---- endothelial cells  
cEdMito ---- mitochondria in endothelial cells 
cEdLyso ---- lysosomes in endothelial cells 
plung  ---- plasma in the lung 
ca  ---- heart 
bo  ---- bone 
mu  ---- muscle 
fa  ---- fat 
sk  ---- skin 
th  ---- thymus  
br  ---- brain 
sp  ---- spleen 
gu  ---- gut  
rob  ----rest of body 
hv  ---- liver 
ha  ---- hepatic arterial blood 
vb  ---- venous blood 
ab   ---- arterial blood
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APPENDIX D 

Tables and Figures Regenerated at 410K for Chapter II 
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Table Appd.D.1. Structures, physicochemical properties, average Caco2 permeabilities, and predictive permeabilities of seven β-
adrenergic blockers in Figure Appd.D.2.  The logPn, lip values are the calculated liposomal logPn which were used in permeability 
calculation. 
 

Peff 
(10-6 cm/s) 

Ccyto (mM) Cmito (mM) Name Structures pKa logPn  logPn, lip Caco-2 Peff 
 (10-6 cm/s) 

Calculated 
alprenolol 

 
9.60 3.10 3.22  95.70  91.18 7.89 7.82 

atenolol 

 
9.60 0.16 2.25  1.07  7.44 2.07 5.99 

metoprolol 
 

9.70 1.88 2.82  40.15  32.28 3.82 8.69 
oxprenolol 

 
9.50 2.10 2.89  97.25  39.16 4.25 5.76 

pindolol 

 
9.70 1.75 2.78  54.53  28.78 3.57 8.50 

practolol 

 
9.50 0.79 2.46  2.91  12.71  2.41  5.03  

propranolol 

 
9.49 2.98  3.18  34.80  81.73  7.19  6.03  



 

 

214

Table Appd.D.2.  Comparison of predicted permeability with average Caco2 permeability and PAMA permeability of drugs within 
the predictive circle in Figure Appd.D.3.  Permeability values are in unit of 10-6 cm/sec.  Metoprolol was chosen a reference 
compound. (H stands for ‘high permeability’, L stands for ‘low permeability’) 
 

 
Drugs 

Predicted 
Permeability PAMPA PAMPA 

(at pH7.4) 
PAMPA 
(at pH7.4) 

Human 
intestinal 
permeability  

FDA 
Waiver 
Guidance 

Tentative BCS 
Classification 

alprenolol 91.18  H 11.5 H   
 15.1 H     

antipyrine 209.00 H 2.87 L 0.82 L 13.2 H 560 H H  
chlorpromazine 653.08  H     4.0 H    1 
clonidine 43.82  H 10.41 H   14.0 H     
desipramine 410.18  H 16.98 H   14.6 H 450 H   
diazepam 196.71  H           
diltiazem 122.32  H 19.21 H 14 H 18.5 H    2 
ibuprophen 321.84  H 21.15 H   6.8 H    2 
imipramine 391.33  H 19.36 H   8.4 H     
indomethacin 406.52  H     2.4 L     
ketoprofen 167.04  H 2.84 L 0.043 L 16.7 H 870 H H  
lidocaine 126.50  H           
metoprolol 32.28  ref 7.93 ref 1.2 ref 3.5 ref 134 ref H  
naproxen 175.61  H 5.01 L 0.23 L 10.6 H 850 H H  
oxprenolol 39.16  H 14.64 H         
phenytoin 86.02  H 38.53 H   5.1 H     
pindolol 28.78  L 4.91 L   4.9 H     
piroxicam 1541.60  H 10.87 H   8.2 H 665 H   
propranolol 79.41 H 26.33 H 12 H 23.5 H 291 H H 1 
trimethoprim 194.22  H 3.14 L 2.2 H 5.0 H    4 
valproic acid 144.11  H          3 
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verapamil 191.16  H 23.02 H 14 H 7.4 H 680 H H 1 
warfarin 129.23  H     12.3 H     
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Table Appd.D.3: Correlation of predicted permeability vs. human intestinal 
permeability. (Permeability values are in unit of 10-6 cm/sec.) 
 

Name Human 
Permeability 

log(Peff, 
human) 

Predicted 
Permeability 

log(Peff, 
predicted) 

antipyrine 560.00 -3.25 209.00 -3.68 
atenolol 20.00 -4.70 7.44 -5.13 

desipramine 450.00 -3.35 410.18 -3.39 
ketoprofen 870.00 -3.06 167.04 -3.78 
metoprolol 134.00 -3.87 32.28 -4.49 
naproxen 850.00 -3.07 175.61 -3.76 
piroxicam 665.00 -3.18 1542.75 -2.81 

propranolol 291.00 -3.54 81.73 -4.09 
terbutaline 30.00 c -4.52 22.96 -4.64 
verapamil 680.00 -3.17 191.16 -3.72 
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Figure Appd.D.1. Correlation of Caco2 permeability and predicted permeability of 
seven β-adrenergic blockers. The X-axis indicates the logarithm values of average 
measured Caco2 permeability (cm/sec) and the Y-axis indicate the logarithm values of 
predicted permeability (cm/sec).  The dotted line is the linear regression line.  The linear 
regression equation is )76.0(4.244.0 2 =−= Rxy , the significance F of regression given 
by EXCEL is 0.011 (confidence level is 95%).  Numbers 1 through 7 indicate alprenolol, 
atenolol, metoprolol, oxprenolol, pindolol, practolol, and propranolol respectively.  The 
structures, physicochemical properties, average Caco2 permeability and predictive 
permeability were summarized in Table Appd.D.1. 
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Figure Appd.D.2. Correlation of Caco2 permeability and predicted permeability of 
thirty-six drugs. The X-axis indicates the logarithm values of average measured Caco2 
permeability (cm/sec) and the Y-axis indicate the logarithm values of predicted 
permeability (cm/sec).  Metoprolol (No.18) was used as a reference drug. Details of 
calculated permeability and average Caco2 permeability were included in the 
Supplementary Materials. 
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Figure Appd.D.3. Correlation of human intestinal permeability and predicted 
permeability. The X-axis indicates the logarithm values of measured human intestinal 
permeability (cm/sec) and the Y-axis indicate the logarithm values of predicted 
permeability (cm/sec).  A simple linear relation was obtained and expressed by the 
equation: )73.0(57.095.0 2 =−= Rxy , the significance F of regression given by EXCEL 
is 0.0016 (confidence level is 95%).  Calculated permeability and human intestinal 
permeability numbers were listed in Table Appd.D.3. 
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Figure Appd.D.4.   Effects of physicochemical properties on intracellular concentration 
(solid line = cytosolic; dark dotted line = mitochondrial) and permeability (light stippled 
line) at steady state, of a molecule with metoprolol-like properties (arrows). A. logPn and 
logPd are not associated. B. logPn and logPd are associated by a simple linear relationship 
expressed as equations 2.27-2.29.  The arrows indicate the liposomal logPn, lip and logPd, 

lip, which were used in permeability calculation.   
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APPENDIX E 

Parameters for the Tracheobronchial Airways and Alveolar Region in the Rat 

 Tracheobronchial Airwaysa Alveolar Regiona  

Compartments 
Average 
thickness 

(μm) 

Surface 
area 
(cm2) 

Volume 
(cm3) 

Average 
thickness 

(μm) 

Surface 
area  
(cm2) 

Volume  
(cm3) 

Surface lining 
liquid 15b  108 0.162 5 3870 1.935 

Macrophage - - - - 42 0.0282 
Epithelium 24-9c  108 0.072d 0.384 3870 0.148 
Interstitium 1d 108 0.0108d 0.693 3870 0.268 

Immune cells - 1.08b 0.000108d - 4.2d 0.00282d

Smooth muscle 19.3-4.3e  216d 0.047d - - - 
Endothelium 0.4f  5.4d 0.000216d 0.358 4520 0.162 

a. All parameters were extracted from (1) unless otherwise specified 
b.  (2) c. (3) d. Calculated or estimated e. (4) f. (5) 
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