FINDING THE CONVEX HULL OF
A SIMPLE POLYGON IN LINEAR TIME
S. Y. Shin
T. C. Woo
Department of Industrial & Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109
February 1985

Technical Report 85-3

Finding the Convex Hull of
a Simple Polygon in Linear Time

S. Y. Shin
T. C. Woo

Department of Industrial & Operations Engineering
University of Michigan
Ann Arbor, Michigan 48109

November 1984

This work was supported in part by AFOSR under contract F4920-82-C-0089 and in
part by [BM Data Systems Division.

Summary

A new linear algorithm for finding the convex hull of a simple polygon is
given. Based on the original idea by Sklansky (7), our version is easy to
understand. Adopting the form of CH-POL by Toussaint and Avis (9), the
presentation is concise. As shown in the Appendix, a PASCAL implementation of

the algorithm itself is only half a page long.

In the paper, we define a "zipper" as a non-self-intersecting, concave
chain. Choosing an extreme vertex of the polygon as the initial zipper, we
update it by classifying a vertex of the given polygon by one of three cases.
Case 1: vertex of the given polygon is added to the zipper. Case 2: vertex of
the given polygon is not added to the zipper. Case 3: zipper vertex is
deleted. We show that, after a complete traversal of the given polygon, the

zipper thus constructed is the convex hull.

Abstract

Though linear algorithms for finding the convex hull of a simply-connected
polygon have been reported, not all are short and correct. A compact version
based on Sklansky's original idea (7) and Bykat's counter-example ®) is given.

Its complexity and correctness are also shown.

Keywords: Convex hull, linear algorithm, computational geometry

1. Introduction

There have been many reports on a linear algorithm for finding the convex
hull of a simple polygon. Certain versions were prone to counter-examples. In
particular, a recent version by Ghosh and Shyamasundar (1) turned out to be
incorrect (2)3), Ideally, an algorithm should be not only correct but also
easy to implement. McCallum and Avis (4), for example, reported a version using
two stacks. Lee (3) used one stack but the algorithm itself was two pages long.
Recently, Graham and Yao (6) reported a compact algorithm that is said to be
similar in spirit to Lee's version. Both (5) ang (6) included two types of
pocket test. In this paper, we present a version employing only one pocket

test.

Perhaps, the simplest version is still the one presented by Sklansky (7) in
1972. After a counter-example by Bykat (8), sufficiency condition was esta-
blished by Toussaint and Avis (9) in 1982 and by Orlowsky (10) in 1983. Almost
concurrently, Sklansky gave a modified version (11) byt it was later shown to be
incorrect by Toussaint and E1 Gindy (12) gur search for a simple, concise, and
correct linear convex hull algorithm traces the following path. For simplicity,
we adopt the ideas from the original version by Sklansky (7). For conciseness,
we follow the form of CH-POL by Toussaint and Avis 9). For correctness, we
use the notion of a pocket (or lobe) as in Graham and Yao (6) (or Lee (5)y with

Bykat's counter-example (8) in mind.

2. Preliminaries

Let P be a simple polygon with n vertices. Each vertex Vi, i =0, 1, 2,

...y (n-1), is represented by its X and Y coordinates, (X;j,Y;). Let Vy be the
vertex with the minimum Y coordinate. If two or more vertices are tied then we
choose among them the vertex with the minimum X coordinate as Vy. Starting from
Vg and traversing the boundary B(P) of P in the clockwise order, we label the
jth vertex from Vg as Vi, where i is j modulo n. These vertices in sequence are
maintained as a circular doubly linked list. Throughout this paper we assume
the following:

(1) The boundary B(P) of a simple polygon P is traversed in the clockwise
order from Vq.

(2) No three consecutive vertices are colinear.

Definition 2.1: L(Pi,Pj) denotes a directed line segment joining two points Pj

and Pj in the direction from P; to Pj.

Definition 2.2: An edge E(V{,Vi,)) of P is a directed line segment L(Vi,Vi,])
joining two adjacent vertices Vi and Vi,; on B(P). A chain C(Vi,vj) is a
sequence of edges E(Vi’vi+l)’ E(Vi+l’vi+2)""’ E(Vj-l’vj) on B(P) in the

clockwise order.

Definition 2.3: A vertex V; of P is extreme if V; cannot be expressed as a

convex combination of other vertices in P, i.e., V; is extreme if and only if

Vi4 L a;V:, I a;=1, and a; = 0.
VIR AT J

Definition 2.4: The convex hull CH(P) of P is the smallest convex polygon

containing P.

Definition 2.4 necessarily implies that every vertex of CH(P) is an extreme
vertex of P. Hence, one way to find CH(P) is to discard all non-extreme
vertices. To characterize a non-extreme vertex, we employ the notion of a

pocket.

Definition 2.5: A pocket PKT(Vi,Vj) is one or more regions bounded by L(Vi,vj)

and C(Vi,Vj) such that all points in C(Vi,vj) are on or to the right of

L(Vi,Vj).
We state an interesting property of a pocket due to Graham and Yao (6),

Lemma 2.1: Let V. be in a PKT(vi,Vj). If V; is neither Vi nor Vj, then V. 1is

not an extreme vertex aof P.

3. Property of Zipper

A pocket PKT(Vi,Vj) is said to be maximal with respect to C(VD,Vq) if
C(Vi’vj) is not contained in another pocket PKT(V),Vp), where o Si<j=aq,
and 0 = k «<m < q. Let an ordered list (20’21'22'""Zj) be the sequence
of all vertices in C(VO,Vq) such that PKT(Zj,Zj,1), 0 = i < J, is maximal with
respect to C(VO,Vq). The seguence of line segments (L(Zg,21),L(Z1,Z9),...,

L(Zj_l,zj)) is said to be a zipper ZPR(VD,Vq) as illustrated in Figure 3.1.

<Insert Figure 3.1»

In this section, we show that ZPR(VO,Vq) is concave and non-self-intersec-
ting. Our first lemma forms the basis for showing this property. In its proof

and in all subsequent discussions, we use the following notations.

the most recently visited vertex in P.

0
+
.—‘

[

Vq: = the previous (counter-clockwise) vertex of VQ+1 in P.
Zj: = the vertex that is most recently added into ZPR(Vq,Vq).
Zj-l: = the previous vertex of Zj in ZPR(VO,Vq).

: in P,

Ve: = the previous vertex of ZJ

Lemma 3.1: Let ZPR(VD,VQ) = (L(ZD,ZI), L(Zl,22,),..., L(Zj-l’zj)) and 0 ¢« q < n.
Any vertex V| in the chain C(Zr,vq) must be to the right of L(Zj,Zi,1),

0ic<re«j, if V£,

Figure 3.1 Vertices of a polygon P and ZPR(Vg,V,)

[Proof] The proof will be by the induction on the subscript i of a zipper
vertex Z; in ZPR(VO,VqL Let Z_y be a point on the horizontal line
containing Zj such that Z_; lies to the right of Zj. Let Lj be the line
containing L(Z;_y,Z;), i=0,1,2,..,j. L; partitions the plane into two
half planes. Let LHP; be the half plane to the left of L(Z;_;,Z;) and RHP;

be the other.

i =0: Since Vg is extreme, Vy coincides with Zg. By the way
in which Vg is chosen, the Y coordinate of Vg is not greater than the Y
coordinate of any other vertex in P. Therefore, C(VO,Vq) cannot pass
through LHPy. Now, RHPy is partitioned by L; into two regions, RHPy N LHP;
and RHP3 NRHP;. We need to show that C(Zl,vq) cannot be in RHP, N LHP;.
Suppose that some vertices in C(Zl,Vq) are in RHPy N LHP;. Let W bhe the
vertex in C(Zl,Vq) such that C(Zg,W) is to the right of L(Zg,W). Clearly,
PKT(Zg,W) contains C(ZO,ZI), which contradicts the maximality of

PKT(Zg,Zy). Suppose that the lemma is true for 1 =m-1 < j-2.

m
i=m: We need to show that C(Z,1,Vy) cannot be in R = [N RHPLIN
D=0

LHPy,1 @s shown in Figure 3.2
<Insert Figure 3.2>
Suppose that some vertices in C(Zm+l’Vq) are in R, Let W be the vertex in

C(Zm+l,vq) such that C(Zp,W) is to the right of L(Zy,W). PKT(Zy,W)

contains C(Zp,Zy,1), which contradicts the maximality of PKT(Zp,Zp,1)-

L1 1
‘ [A RHP,] N LHP
p:g. P 2

-1

Vq+l

m
Figure 3.2 C(Vms1Vq) cannot be in [pf:'ORHPp I N LHPma1

[pnoRHPp] n LHPm#l)

As 1llustrated in Figure 3.3, the property described in Lemma 3.1 does not
necessarily hold true unless Vj is an extreme vertex of P. We next state the
lemmas characterizing a ZPR(VD,Vq), the proofs of which are direct consequences

of Lemma 3.1.
<Insert Figure 3.3»

Lemma 3.2: Let ZPR(Vg,Vq) = (L(Zg,21), L(Z],22),..., L(zj_l,zj)L The internal
angle ANGLE (Z3,Z;,),Z5,p) between two consecutive line segments L(Zj,Zj,;) and

<

L(Zi,1,Z542) 0 = 1 2 j-2, is strictly between zero and 180 degrees.
Lemma 3.3: A ZPR(VD,Vq) is not self-intersecting.

Finally, we show that a zipper vertex Z, cannot be in a pocket PKT(Zi,Zi+l) if

k # 1 and k # i+1. We use this property to update ZPR(VD,Vq).

Lemma 3.4: Let ZPR(Vg,Vq) be (L(Zg,2)),L(Z,2p),. .., L(Z5.1,Z5)).
Then, Zk ﬁPKT(Zi,Zi+l) = 7, if k=i or i+l
@ otherwise

forallo=i«<j and o=k 32j.

[Proof] Suppose that Z, NPKT(Z;,Z5,1) # 8 for some k # 1 and k # i+l.

Then either P is not simple or V, is not an extreme point.

Figure 3.3: Lemma 3 ! does not hold true if Vg is not extreme.

4. Updating of Zipper

Consider the relationship between two line segments L(Zj_l,zj) and E(V,,Zj)
As 1llustrated in Figure 4.1, the vertex Vg,) can be in any one of the four
quadrants formed by the extensions of these two line segments. The quadrants
are:

Qla: to the right of L(Zj_l,zj) and to the right of E(V*,Zj)

Qlb: to the right of L(Zj_l,zj) and to the left of E(V*,Zj)

Q2a: to the left of L(Zj_l,zj) and to the right of E(V*,Zj)

Q2b: to the left of L(Zj_l,zj) and to the left of E(V,,ZJ)

«Insert Figure 4.1»

If VQ+1 is in Qlb, it is also in PKT(Zj_l,Zj). By Lemma 2.1, VQ+1 and its
clockwise vertices in PKT(Zj_l,Zj) can be deleted. Otherwise, we need to show
if the existing zipper vertices are to be deleted or kept to advance to Vq+l'
The following three lemmas as illustrated in Figure 4.2 are useful for the

updating of ZPR(VU,VqL

<Insert Figure 4.2
Lemma 4.1: Let ZPR(VU,Vq) = (L(ZU’ZI)’ L(Zl,22),...., L(Zj-l'zj)) and Vq = Zj£
Vg. ALl pockets PKT(Zi,Zj,;), o =1 ¢ j, are maximal with respect to C(VO,VQ+1),

if VQ+1 is in Qla.

[Proof] If Vgel = Vo then ZPR(VU,VQ) together with E(Vq,VQ+l) forms a

convex polygon since Va+1 = Vo and ZPR(VO,Vq) is concave and non-self-

Zj-1 Qa Z; " Q2a

..................................

....................................

PKT(Zj-!,Zj)

,v*

Figure 4.1 : Possible locations of vertex Vge

(b) Niustration of Lemma 4.2

VQ+|

(c) IMustration of Lemma 4.3

Figure 42 Updeting Zipper Vertices

intersecting. Therefore, the result follows immediately.

Let us consider the case for Vg,j # Vg. Since ZPR(V,Vg) implies that
PKT(Z3,25,1), © 21 < j, is maximal with respect to C(vg,V q), all we need to
show is that E(Z;

1) is PKT(Z; 1) and is maximal with respect to

Vo JVgs

C(VD,VQ+1). First we show E(Zj,VQ+1)rﬁ PKT(Z3,25,1) # E(Zj,VQ+l) for any

0 =i« j. By Definition 2.5, Vg1 cannot be in PKT(Z5.1,Z3) since Vg, is

in Qla. From Lemma 3.4, Zj cannot be in PKT(Z;,Zj,1) for any o = i « j-1.

Therefore, E(Zj,Vg,1) M PKT(Z4,Z4,1) # E(Z3,Vqy) for any o = 1 < .

Finally, there does not exist a vertex V. in C(Vp,Vx) such that C(VrrVq+1)
and L(Vp,Vg,1) form a pocket PKT(Vp,Vq,)) since ZPR(Vg,Vq) is concave and P
is simple. Hence, the result follows.

Lemma 4.2: Let ZPR(Vq,Vq) = (L(Zg,2}), L(Z),25),.., L(Z51,Z5)). IF C(Vg,Vy),

I»q, is in PKT(ZJ l,Z), then Vy,y is also in PKT(ZJ 1 J) unless Vp,1 is to the

left of L(Zj.1,Z5)-

[Proof] Since P is simple, C(Vq,vr+l) can get out of PKT(Zj_l,Zj) only

through L(Zj_l,Zj).

Lemma 4.3: Let ZPR(Vq,Vq) = (L(Zg,2)), L(Z1,Zp),eeey L(Z321,25)). Then PKT(Z5_1,Z5)
is not maximal with respect to C(VD,VQ+1), if Vq+l is in quadrant Q2a or

Q2b.

[Proof] ANGLE(ZJ 1:Zj:Vqs1) 1s greater than or equal to 180 degrees since
Vg+1 1s in Q2a or Q2b. Since ZPR(VO,Vq) is concave and non-self-
intersecting, there must exist a vertex Z in ZPR(VD,Vq) such that L(Z,Vq,))
and C(Z,Vq,1) form a pocket PKT(Z,Vg,1). Clearly, PKT(Z,Vg,)) contains

C(Z5.1,Z3).

5. The Algorithm and Its Analysis

Our linear algorithm for finding the convex hull of a simple polygon P

takes Vi, i=0,1,...n-1, as input and constructs a ZPR(VO,Vq) with vertices Zj.

Algorithm 5.1

Step 0. Zy <== Vg, Z] <== V1, j <== 1, q <= 1.

while (Vq # V) do;

Step 1. if VQ+1 is to the right of L(Zj_l,Zj), then do;
Step la. if Vg41 is to the right of E(V*,Zj)

then j <«-- j+l, Zj <mm VQ+1, q <-- g+l.
Step 1b. else while (Vg1 1s on or to the right of L(Z;_1,Z;)) do;

q <= g+l

end
end

Step 2. else do;

while (Zj # Vg and Zj_1 is not to the right of L(Zj,vq+l)) do;
J e gl
end.
J = 341, 7y == Vgu1, G <= gel.
end

end

Step 3. Stop.

We show the correctness of Algorithm 5.1 with the following lemma.

Lemma 5.1: Algorithm 5.1 constructs ZPR(VO,Vq) correctly.

(Proof] The proof will be by induction on the number of times Step 1 is
reached. Initially, the statement is trivially satisfied by Step 0 of the
algorithm. Suppose that the lemma is true when Step 1 is executed m times.
Then, there are three cases:

(1) Case la: Vg, is in Qla

(2) Case 1b: Vg, is in Qlb

(3) Case 2 : Vg,) is in Q2a or Q2b

Case la: VQ+1 qualifies as a zipper vertex if PKT(ZJ,VQ+1) is maximal with
respect to C(VO,VQ+1). Since Vq+l is in quadrant Qla, by Lemma
4.1, PKT(Zj,Vq,]) is maximal. Indeed, Step la takes Vq,) as the
new Zj. Since the correct vertex is added to the zipper the next
time Step 1 is reached, the induction holds. Now, Lemma 4.1
requires the precondition that Vq equals Zj. This precondition is
satisfied iteratively after executing Step la or Step 2. After
executing Step 1b, though Vq # Zj, the control must go to Step 2
because Vq,; cannot be to the right of L(Zj.,Zy). Hence, the
precondition for Lemma 4.1 is always satisfied.

Case lb. Because Vq+l is in quadrant Qlb, by Definition 2.5, Vq+l is in
PKT(Zj_l,ZjL Therefore, Vg,] should not be a zipper vertex.
Furthermore, by Lemma 4.2, all the subsequent vertices in PKT(Zj_l,Zj)
should not be in the zipper ZPR(VO,Vq) either. This is pfecisely
what Step lb does. Since no zipper vertex is added, the next

time Step 1 is reached, ZPR(VO,Vq) is still correct.

10

Case 2: Step 2 deletes Zj since PKT(Zj_l,Zj) is not maximal with respect
to C(VD,VQ+1) by Lemma 4.3. The old Zj—l becomes the new Zj.
This process is repeated until either Zj = Zg or Zj-l is to the
right of L(Zj:Vq+l)- At that point PKT(ZJ,Vq+l) is maximal
with respect to C(VU,Vq+l), because ZPR(Vg,Vq,1) is concave and
non-self-intersecting. Hence, the lemma is true.

When Vq+l coincides with Vg, Step 3 terminates the algorithm, and the lemma is

still true by the induction hypothesis.

Since ZPR(VO,Vq) is concave and non-self-intersecting, it must form a convex
polygon P, containing P if Vq = Vg. Since every vertex of P, is a vertex of
P, it is clear that P, is the smallest convex polygon containing P. By

Definition 2.4, P, must be the convex hull of a simple polygon P.

Theorem 5.1: Algorithm 5.1 finds the convex hull of a simple polygon P with n
vertices in 0(n) time.
[Proof] The algorithm moves forward, except in Step 2, until V; is

revisited. Step 2 is executed at most a total of n-3 times.

11

6. Concluding Remarks

Algorithm 5.1 removes the vertices that cause self-intersection @) in
CH-POL 9), 1t is shorter than the version by Graham and Yao (6) when both

the Left Hull and the Right Hull are taken into account.

Acknowledgement

The authors wish to thank J. D. Wolter and H. C. Lee for their critical
reading of the manuscript and their constructive suggestions. J. D. Wolter
implemented Algorithm 5.1 in several languages. His version in PASCAL is

supplied in the Appendix.

12

10.

11.

12.

References

S. Ghosh and R. Shyamasundar, A Linear Time Algorithm for Obtaining the Convex

Hull of a Simple Polygon, Patt. Recog., 16, 8, (1983), 587-592.

R. Shyamasundar, Note on a Linear Time Algorithm for Obtaining the Convex
Hull of a Simple Polygon, private communication, August 28, 1984,

T. Woo and S. Shin, Counterexamples, private communications, July 10, 1984
and October 15, 1984.

D. McCallum and D. Avis, A Linear Time Algorithm for Finding the Convex
Hull of a Simple Polygon, Infor. Proc. Lett., 9, (1979), 201-205.

D. Lee, On Finding the Convex Hull of a Simple Polygon, Intern. J. of
Comput. and Infor. Science, 12, 2, (April 1983), 87-98.

R. Graham and F. Yao, Finding the Convex Hull of a Simple Polygon, J. of
Algorithms, 4, (1983), 324-331.

J. Sklansky, Measuring Concavity on a Rectangular Mosaic, IEEE Trans.
Comput., 21, (1972), 1355-1364. -

A. Bykat, Convex Hull of a Finite Set of Points in Two Dimensions, Infor.
Proc. Lett., 7, 6, (1978), 296-298.

G. Toussaint and D. Avis, On a Convex Hull Algorithm and its Application
to Triangulation Problems, Patt. Recog., 15, 1, (1982), 23-29.

M. Orlowsky, On the Condition for Success of Sklansky's Convex Hull
Algorithm, Patt. Recog., 16, 6, (1983), 579-586.

J. Sklansky, Finding the Convex Hull of a Simple Polygon, Patt. Recog.
Lett., 1, (1982), 79-83.

G. Toussaint and H. E1 Gindy, A Counterexample to an Algorithm for
Computing Monotone Hulls of Simple Polygons, Patt. Recog. Lett., 1, (1983),
219-222.

13

Appendix

program main (input,output);

var X,Y: array [0..50] of real; {coordinates of points}
V,Z: array [0..50] of integer; {polygon and hull}
q,J: integer; {index into polygon and hull}
n: integer; {number of vertices}
is integer: {loop index}

{ Is point p to the left of Line (a,b)? }
function left (p,a,b: integer) :boolean;
begin
left := (Y[p] - Y[al)*(X[b] - X[al) > (X[p] - X[al)*(Y[b] - Y[al);
end;

{ Is point p to the right of Line (a,b)? }
function right (p,a,b: integer) :boolean;
begin

; right := (Y[p] - Y[al)*(X[b] - X[al) < (X[p] - x[al)*(Y[b] - Y[al);
end;

{ Read in the Polygon }
procedure readin;

var i: integer;
W: array [0..50] of integer;
mx,my: real;
mi: integer;

begin

{ Read in the number of points }
repeat
write(' Number of points? ');
read(n);
until (n > 3) and (n < 50);

mx :
my :

1e38;
1e38;

" n

{ While reading in vertices, find an extremal one }
for i :=0 ton-1
do begin
write(' ',i:3,': ');
read(X[i],Y[i]);
Wil := i;
if (Y[i] < my) or ((Y[i] = my) and (X[i] < mx))
then begin
mx :
my :
mi :
end;

X[il;
Y[il;
i;

end;

14

end;

begin

{ Reorder with an extreme vertex first }
V[n]:=W[mil;
for i := 0 to n-1
do begin
V%i] := Wimil;
mi := (mi + 1) mod n;
end;

{ Get the polygon, and echo it back }
readin;
writeln(' Polygon:');
for i := 0 to n-1 do
writeln(' ',1:3,': *,X[Vv[il]:10:5,', ',Y[V[i]]:10;5);

{Step 0}
q =1

jee=1
z[0] :
Z(1] :

v[0];
v[1];

I T

while (g < n) do
if right (V[g+l], z[j-11, z[j])
then
if right (V[g+l], V[(g-11, V[q])
then begin
{ Step la }
Ji=i+]
q:=g+1;
Z[3] := Vlal;
end
else
{ Step 1b }
while not left (V[g+ll, z[j-11, Z[j]) do
q:=q+1;
else begin
{ Step 2 }
while j > 0 and ngt right (z[j-1], z[j], Vlg+l]) do
Ji=J-14
Je=i+
q:=q+ 1
end,

{ Print the hull }
writeln(' Hull:');
for i := 0 to j-1 do
writeln(' ',i:3,': ',x[z[i]]:10:5,',",Y[Z[1]]:10:5);

end.

15

