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CHAPTER I 

 

Introduction 

 

The state of stress in the lithosphere reflects both the weight of overlying material 

(lithostatic pressure) and non-lithostatic (tectonic) stresses related to global mantle 

convection and the subsequent motion of lithospheric plates (e.g. Turcotte & Oxburgh 

1972).  As all deformation is inherently tied directly to the state of stress, determining the 

origin of stresses within the lithosphere is a fundamental aspect of understanding 

processes at multiple scales, including global tectonic patterns, intra-plate deformation, 

regional faulting behavior and grain-scale seismic anisotropy.  Although the origin of the 

lithospheric stress field has been the subject of considerable research even prior to the 

advent of plate tectonics, active debate still continues regarding the relative influence of 

different sources of stress (e.g. Steinberger 2001; Lithgow-Bertelloni and Guynn 2004; 

Ghosh et al. 2008, 2009).  The high degree of uncertainty regarding the origins of the 

lithospheric stress field largely arises from a relatively poor understanding of the 

lithosphere and convecting mantle’s density and rheological structure, which inherently 

govern how stresses are generated and distributed.  Consistent advances in multiple fields 

(Gung et al. 2003; Mitrovica & Forte 2004; Li et al. 2007; for example), however, have 

greatly improved our understanding of the Earth’s structure in the past decade, allowing a 

reexamination of the forces acting on and within the lithosphere.  The primary goal of
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this thesis is to reexamine how the forces acting on and within the lithosphere contribute 

to the total lithospheric stress field, in the light of recent advances in our knowledge of 

lithospheric structure, mantle rheology and mantle flow modeling.  This thesis also aims 

to critically evaluate whether specific numerical approximations are appropriate for 

studying the lithosphere’s state of stress and provide guidance for future studies if the 

numerical approximations do indeed neglect key processes.  

From a broad perspective, the tectonic stress state arises from the action of gravity 

on lateral variations in density. At any given point in the lithosphere we can separate 

contributions from edge forces at plate boundaries, basal stresses related to mantle flow 

and variations in topography and density within the lithosphere (internal loads).  Edge 

forces, for example the thickening of the oceanic lithosphere as it ages, commonly 

referred to as ridge push, are a necessary approximation because of our incomplete 

knowledge of the rheology of plate boundaries and of the density structure of lithosphere 

and mantle. The lithosphere’s response to different sources of stress is represented in part 

by the world stress map (Zoback 1992), which displays variations in stress regime 

(extension, compression, strike-slip) and orientation across tectonic provinces.  The 

information contained within the world stress map reflects a compilation of diverse data 

sets including but not limited to seismic observations from earthquakes, large-scale 

faulting patterns, regional tectonic structures and borehole data.  Although the world 

stress map contains no direct information regarding stress magnitude, large-scale stress 

patterns that remain coherent across long-wavelengths provide a potential benchmark for 

modeling the lithospheric stress field. The long-wavelength of many observed stress 

patterns (1000’s of km) compared to the thickness of the lithosphere (< ~ 200-300 km) 
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may also indicate these stress patterns are coherent throughout the thickness of the 

lithosphere, in contrast to a scenario where the lithospheric stress field is strongly depth-

dependent.  The assumption that the lithosphere behaves in a mechanically coherent 

fashion is a controversial subject as this depends directly on the rheological structure of 

the lithosphere (e.g. Kohlstedt et al. 1995), which at present is the focus of intense 

research (Jackson 2003; Burov and Watts 2006; Regenauer-Lieb et al. 2006; Thatcher & 

Pollitz 2008; Bürgmann & Dresen 2008).  Multiple studies have shown how variations in 

lithospheric strength as a function of depth and time can lead to depth-dependent stress 

and strain distributions (e.g. Kusznir & Bott 1997; Liu et al. 2000).  The hypothesized 

presence of a weak lower crust and subsequent localized channel flow in the Tibetan 

Plateau (e.g. Royden et al. 1997; Clark & Royden 2000) illustrates how variations in 

lithospheric strength may lead to partially decoupled regions of deformation. 

Nonetheless, the idea of a mechanically coherent lithosphere has served as the basis for 

the vast majority of numerical studies modeling the lithospheric stress field. 

By considering the lithosphere as a mechanically coherent body and neglecting 

any variations in the stress field as a function of depth, the lithosphere can be treated as 

thin shell (global) or sheet (regional) based on its thickness relative to the radius of the 

earth.  To determine the relative influence of different sources of stress in different 

regions, lithospheric stress studies first independently calculate each source of stress and 

then apply them to the lithospheric numerical model.  Stresses related to variations in 

topography and density within the lithosphere are determined by constructing a 

lithospheric density model (based on geophysical or geologic observations) (e.g. Bassin 

et al. 2000) and then solving for the non-lithostatic stress field balancing gradients in 



! "!

lithostatic pressure (Artyushkov 1973).  The influence of plate-boundary interactions is 

often represented as a force applied to the corresponding plate boundary regions within 

the lithospheric model.  Shear stresses at the base of the lithosphere related to mantle 

flow are typically modeled by solving numerically for global viscous convection patterns 

based on the rheological structure of the mantle and applied surface plate motions (Hager 

& O’Connell 1979) or internal body forces relate to density heterogeneity (Hager & 

O’Connell 1981).  The resulting viscous shear stresses are then extracted at the base of 

the lithosphere (defined by a viscosity contour or fixed depth) and applied to the 

independent lithospheric model.  Inherently, improved understanding of these sources of 

stress is the key to understanding the origins of the lithospheric stress field.  

Prior to the compilation of the world stress map as a reference guide, early studies 

treating the lithosphere as a thin elastic shell (Solomon et al. 1975; Richardson et al. 

1979) explored the relative influence of edge forces and basal tractions on global stress 

patterns and attempted to asses their relative influence based on limited documented 

stress patterns, namely in North America and Europe.  Although these studies were able 

to reproduce certain observed stress patterns, large uncertainties associated with the 

magnitude of basal shear stresses, taken as proportional to plate velocities, prevented a 

robust analysis of the relative contributions of edge forces and basal shear to the stress 

patterns in lithospheric plate interiors.  Similarly, these global studies lacked the effects 

of intra-continental variations in topography and density on stress patterns (Artyushkov 

1973), which early on were hypothesized to play a potentially large in role in large 

orogenies such as Tibet (Molnar & Tapponier 1978).   
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Subsequent global lithospheric stress studies using forms of the thin sheet or shell 

approximation (e.g. Bai et al. 1992; Richardson 1992; Bird 1998; Steinberger et al. 2001; 

Lithgow-Bertelloni & Guynn 2004; Ghosh et al. 2008, 2009) sequentially reexamined 

estimates of the relative contribution of different sources of stress, as models of 

lithospheric and mantle density structure improved. Similarly, studies focusing on 

individual lithospheric plates (e.g. Richardson & Redding 1991; Humphreys & Coblentz 

2007) or tectonic provinces (e.g. Jones et al. 1996; Flesch et al. 1999; Flesch et al. 2001; 

Ghosh et al. 2006; Dyksterhuis et al. 2005; Flesch et al. 2007; Klein et al. 2009) allowed 

direct comparison to regions with relatively well-documented stress and/or strain rate 

distributions.  Despite the significant advances provided by these studies with respect to 

understanding the origins of the lithospheric stress field, a great deal of uncertainty still 

remains about the relative influence different sources of stress.  One source of this 

uncertainty relates to the simplified lithospheric structures assumed when calculating 

stresses related to variations in topography and density. 

Inherently, changes in lithostatic pressure related to variations in topography and 

density vary as a function of depth, although the use of a thin sheet or shell 

approximation to model the lithosphere implies that the stress field remains constant as a 

function of depth.  To account for this lack of stress depth-dependence the lithostatic 

pressure is integrated over the thickness of the lithosphere at each point, which allows 

one to solve for the stresses balancing gradients in the integrated pressure as originally 

described by Artyushkov (1973).  Although solving for stresses balancing variations in 

integrated pressure permits use of thin sheet or shell models, this method requires 

integration from a uniform lithospheric base depth in order to remain consistent with the 
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numerical approximation.  The assumption of a uniform lithospheric base depth is highly 

problematic as continental lithosphere may extend below 200 km depth in cratonic 

regions (e.g. Jordan 1975; Gung et al. 2003) and as low as 50-60 km in parts of young, 

tectonically active regions such as the Western USA (Li et al. 2007).  Similarly, the 

thickness of oceanic lithosphere increases from effectively 0 km at a mid-ocean ridge to 

roughly a maximum depth of 100 km based on a half-space cooling model (Turcotte & 

Schubert 2002).  The majority of previous studies have commonly selected 100 km as a 

models base depth, which is meant to reflect an average lithospheric thickness value.  The 

question remains, however, to what degree will global or plate-scale estimates of the 

lithospheric stress field change if one considers a wide range of model base depths that 

reflect the minimum and maximum end-members of lithospheric thickness estimates or 

even shallower base depths above the base of the lithosphere?   

Aside from the assumption of model base depth, Lithgow-Bertelloni & Guynn 

(2004) found that for a constant mantle density and a 100 km base depth, enforcing 

isostasy (constant pressure at model base depth) through lower crustal density 

adjustments leads to significantly different stress distributions than a model with no 

isostatic enforcement.  Moving the base depth significantly deeper than 100 km increases 

the influence of the assumed mantle density structure, although different assumptions 

about the composition and isostatic state of the mantle lithosphere can lead to different 

conclusions regarding the stress state of deep lithospheric roots (Zoback & Mooney 2003; 

Pascal 2006).  Given this range of possibilities for constructing the lithospheric density 

model, Chapter II explores the dependence of the lithospheric stress field on a multiple 

parameters including model base depth, isostatic enforcement and mantle density 
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structure.  The goal of Chapter II is to both determine the relative influence of these 

parameters and given the resulting variability of the stress field, critically analyze 

whether a depth-independent analysis is a reasonable approximation for the stress field 

solution. 

The lithospheric structures and resulting stress distributions in Chapter II make no 

assumptions regarding the origins of topography, although early convection studies 

established that mantle flow contributes to surface topography (e.g. Hager et al. 1985).  

Independent isostatic analysis of lithospheric structure also suggests that sub-lithospheric 

density variations contribute to observed topography, which Panasyuk & Hager (2000) 

estimated to be on the order of +/- 1 km expanded to a degree 6 wavelength.  Dynamic 

topography on the order of +/- 1 km roughly coincides with estimates from convection 

studies, although the amplitude of dynamic topography in different locations largely 

depends on the assumed mantle density structure.  For example, Cenozoic dynamic 

subsidence in Southeast Asia may be on the order of 2 km or more due to prolonged 

subduction (Lithgow-Bertelloni & Gurnis 1997; Lithgow-Bertelloni & Guynn 2004), 

while 0.5 - 1.0 km of dynamic uplift in Eastern and Southern Africa reflects a low density 

anomaly originating in the deep lower mantle (Lithgow-Bertelloni & Silver 1998).  While 

calibrating estimates of dynamic topography using both predictive convection models and 

surface observations remains a highly active field of research (e.g. Steinberger 2007; 

Spasojevic 2008), comparatively little work has focused on the contribution of dynamic 

topography to the lithospheric stress field.   

The contribution of dynamic topography to the lithospheric stress field is 

commonly assessed by subtracting an estimate of dynamic topography from observed 
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topography and then calculating the stress patterns associated with the adjusted 

lithospheric structure using the GPE approximation (Lithgow-Bertelloni & Guynn 2004; 

Ghosh et al. 2009).  Lithgow-Bertelloni & Guynn (2004) also considered the effects of 

instantaneous radial displacement of the lithosphere, which combined with dynamically 

supported GPE variations strongly influenced regional stress patterns, particularly in 

areas of long-lived subduction.  Although the afore mentioned studies provide a 

qualitative comparison between stress patterns with or without the contribution of 

dynamic topography estimated from mantle flow models (Steinberger et al. 2001; 

Lithgow-Bertelloni & Guynn 2004) or isostatic analysis of lithospheric structure  (Ghosh 

et al. 2009), no comprehensive quantitative comparisons exist.  The goal of Chapter III is 

to provide a quantitative estimate of the contribution of dynamic topography to the global 

lithospheric stress field.  In providing such quantitative estimates, dynamic topography 

determined from both convective flow models and isostatic analysis is considered.  The 

sensitivity of dynamic topography and the resulting stress patterns to lithosphere-

asthenosphere viscosity contrasts and mantle density structure is explored.  Finally, the 

magnitude of membrane stresses associated with dynamic vertical deflection of the 

lithosphere is discussed and compared to the magnitude of stresses associated with 

variations in gravitational potential energy. 

While Chapter III focuses on the influence of radial stresses at the base of the 

lithosphere, Chapter IV addresses the effects of lateral variations in horizontal shear on 

lithospheric stress patterns.  Lateral variations in horizontal shear largely reflect changes 

in the viscosity or thickness of the asthenosphere, and as a result the lithosphere-

asthenosphere viscosity structure prescribed in convection studies plays a first order role 
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in controlling the magnitude of horizontal shear at the base of the lithosphere.   In 

comparison to convection models with layered (radially symmetric) viscosity structures, 

convection models containing lateral variations in lithospheric thickness (and hence 

viscosity) show a factor of 2-4 increase in horizontal shear magnitudes beneath thick 

continental roots where the asthenosphere is significantly thinner (Conrad & Lithgow-

Bertelloni 2006; Cooper & Conrad 2007).  Although the influence of variations in 

lithosphere-asthenosphere viscosity contrasts on horizontal shear and subsequent 

lithospheric stress patterns has been examined (Lithgow-Bertelloni & Guynn 2004; 

Ghosh et al. 2008), at present no study has explored the role thick continental roots play 

on controlling lithospheric stress patterns related to horizontal shear.  Chapter IV 

compares lithospheric stress patterns related to horizontal shear derived from convection 

models with either layered or laterally-varying viscosity structures, and assesses whether 

taking into account more realistic lithospheric viscosity structures is likely to improve fits 

between calculated and observed stress patterns as hypothesized by Lithgow-Bertelloni & 

Guynn (2004). 

 Chapter IV has been accepted for publication in Geophysical Research Letters, 

while Chapters II and III, respectively, will be submitted shortly for publication in 

Geophysical Journal International and Earth and Planetary Science Letters.
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CHAPTER II 

 

The Effects of Lithospheric Thickness and Density Structure on Earth’s Stress Field 
 

2.1 Abstract 

The details of lithospheric structure, i.e., variations in lithospheric thickness and 

density contribute strongly to Earth's stress field. The relationship between the 

lithosphere's isostatic state, sub-crustal structure and stress field, however, remains 

unresolved due to the poor constraints on its thickness, composition and rheology.  Here, 

we present calculations that systematically explore variations in a vertically-averaged 

lithospheric stress field over wavelengths of ~200 km, as a function of mantle density 

structure, lithospheric thickness (base depth) and lateral boundary conditions to study the 

influence of lithospheric strength variations on intraplate stresses.  We compute the mean 

outward stress (integrated pressure / base depth) of 2o x 2o lithospheric columns and then 

solve for the resulting global vertically averaged stress field in an elastic finite element 

model.  The results are discussed in the context of both global and regional stress 

patterns.  For a 100 km base depth, a conventional value for average lithospheric 

thickness, stress patterns are fairly insensitive to mantle density structure, regardless of 

whether the mantle density is independently determined by tectonic and petrologic 

considerations or by enforcing isostasy.  Increasing the base depth up to 250 km to 

account for continental roots, however, leads to strong differences in the stress patterns 



! "#!

associated with the two mantle density structures due to the progressively larger 

component of mantle lithosphere in each column.  Decreasing the model base depth, a 

proxy for vertical decoupling due to low viscosity channels within the crust or lithosphere 

as a whole, strongly alters stress patterns and magnitudes, because the influence of 

topographic variations increases.  For example, in the Western USA, systematically 

decreasing the base depth from 100 km to 25 km leads to ~ 50% increases in the 

extensional stress magnitudes.  We find that restricting mean outward stress variations to 

specific areas, mimicking lateral variations in strength has a large effect on regional stress 

patterns, because stress transmission is then restricted to shorter distances. The lack of 

stress transmission over large distances is most prevalent for models with shallower base 

depths.  We may summarize our findings simply as follows: A realistic lithospheric 

structure (density and rheology) is the controlling factor in the stress patterns determined 

from it. The choice of mantle density structures, assumptions about average lithospheric 

thickness and the extent of vertical and lateral decoupling all affect stress patterns and 

magnitudes significantly.  In our view, it is not possible to assess the relative contribution 

of topography, density variations, basal shear and plate boundary forces to the 

lithospheric stress field of any given region using depth-integrated approximations.  Our 

results highlight the need for future studies to incorporate the full 3-D variations in 

density and rheology to elucidate the origin of stress distributions within the lithosphere. 

 

2.2 Introduction 

Variations in lithospheric thickness and density produce tectonically significant 

stresses in the Earth's lithosphere (Artyushkov 1973; Molnar and Tapponnier 1978; 

Dahlen 1981; Fleitout & Froidevaux 1982; Fleitout & Froidevaux 1983).  Such variations 
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play a particularly significant role in regions with large topographic gradients including 

mid-ocean ridges (Richardson et al. 1978; Dahlen 1981; Turcotte 1983; Richardson & 

Redding 1991; Richardson et al. 1992; Zoback 1992), Tibet (Molnar & Tapponnier 1978; 

England & Houseman 1986; England & Houseman 1988; England & Houseman 1989; 

Houseman & England 1993; Molnar et al. 1993; England & Molnar 1997; Flesch et al. 

2001; Liu & Yang 2003; Ghosh et al. 2006) and Western North America (Jones et al. 

1996; Jones et al. 1998; Flesch et al. 2000; Flesch et al. 2007; Humphreys & Coblentz 

2007; Klein et al. 2009).  The stresses arising from such variations are often quantified in 

terms of the lithosphere's gravitational potential energy (GPE) (e.g., Artyushkov 1973; 

Molnar & Lyon-Caen 1988; Coblentz et al. 1994), which refers to the integrated 

lithostatic pressure of an isostatically compensated lithospheric column.  Stresses related 

to GPE gradients represent a depth-independent (or vertically-averaged) state of stress 

balancing variations in topography and density.  At first glance, the world stress map 

shows a great deal of short wavelength variations, which seem to indicate a strong local 

dependence on topography and structure. An in-depth look reveals a number of coherent, 

long-wavelength stress patterns (Zoback 1992) which may accurately reflect the state of 

stress throughout the thickness of the lithosphere. If the latter holds true then using the 

GPE approximation is perfectly valid as a key to detangling the origins of the observed 

stress and deformation field.   

This method is particularly attractive because of its elegance and simplicity. 

However, it requires a number of important assumptions including the model base depth 

and lithospheric density structure.  GPE studies commonly use a 100 km base depth as a 

compromise average lithospheric thickness, although continental roots may extend down 
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to 200-250 km depth (Gung & Romanowicz 2003).  Recent studies also suggest the 

lithospheric thickness in the tectonically active Western US lies well below 100 km in 

many places (Zandt et al. 1995; Li et al. 2007; Levander et al. 2008).  Consequently, 

selecting a 100 km base depth includes large sections of asthenospheric material in 

regions with thinner lithosphere or potentially neglects important GPE contributions from 

thick continental roots (Zoback & Mooney 2003; Pascal 2006).  Considering the GPE 

contribution of thick continental roots, however, requires assumptions about the density 

structure of the deep lithosphere and its role in the isostatic support of topography.  

Alternatively, one can also choose to asses the GPE contribution from only shallow base 

depths in the strong crustal lithosphere (Klein et al. 2009), where topography dominates 

the GPE signal.  Restricting the lateral extent of the model to a specific region with a 

relatively uniform lithosphere-asthenosphere boundary partially resolves the issue of 

where to place a model base depth, although regional modeling imposes lateral boundary 

conditions that may dominate the calculated stress patterns. The presence or absence of a 

dynamic component to Earth’s topography related to large-scale mantle flow (Hager et 

al. 1985; Gurnis 1993; Lithgow-Bertelloni & Silver 1998) may also be crucial as it can 

have a strong influence on intraplate stress patterns in regions of long-lived subduction 

(Lithgow-Bertelloni and Guynn, 2004). 

The strong effect of these assumptions and approximations are clearly illustrated 

by the large differences between two end-member models in our previous work 

(Lithgow-Bertelloni and Guynn, 2004). While we kept the model base depth constant to 

100 km, one end-member model enforced isostatic compensation by varying the density 

of the lower crust, and the other did not. The patterns of stress so derived (Figure 16 in 
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Lithgow-Bertelloni and Guynn, 2004) bore little resemblance to each other, although the 

average and maximum stress magnitudes were comparable.  In this study, we take our 

previous results as the initial point of departure to explore how the lithospheric stress 

field varies as a function of  the density structure of the mantle lithosphere, its average 

thickness and proxies for vertical and lateral variations in strength.   

First, we present the formulation for the integrated lithostatic stress (ILS) and 

outline an array of diverse lithospheric structures for which the integrated lithostatic 

stress is calculated.  Our designed array of lithospheric structures contains both 

compensated and uncompensated end members, with a focus on variations in mantle 

density structure, model base depth and lateral stress boundary conditions.  Using this 

series of lithospheric structures we demonstrate how these variables affect depth-

integrated lithospheric stress patterns.  The implications of the results are discussed in the 

context of both the validity of the GPE method and the direction of future lithospheric 

stress studies. 

 

2.3 Theory 

The equation of mechanical equilibrium is 

         (2.1) 

where ! is the density, g is the acceleration due to gravity,  z is a unit vector in the 

vertical direction, and the stress contains deviatoric ("ij) and isotropic (p the pressure) 

contributions 

! 

" ij = # ij $ p%ij          (2.2) 
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If we assume that 1) the upper and lower surfaces of the lithosphere are free of tractions 

and 2) that the lateral distance over which the loads vary is large compared with the 

thickness of the lithosphere then the bending stresses vanish !xz= !yz=0.  If we further 

assume that all gradients in lithostatic pressure are balanced by deviatoric stresses then by 

substituting (2.2) into (2.1) we may write 
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         (2.3) 

where i,j run over the horizontal coordinates only (x,y), the over-bar denotes vertically 

averaged quantities and the vertically averaged zz-component of the stress is 
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where h is the topography above sea level and z is defined positive upwards and zero at 

sea level.  The quantity L is typically taken as the base of the lithosphere and we discuss 

the choice of L further below.  

In this study, because we wish to consider both isostatically compensated and 

uncompensated models of the lithosphere, we refer to ! as the mean outward stress 

(MOS), rather than the terminology used in many previous studies in which ! is referred 

to as the gravitational potential energy (GPE) divided by the reference level (L) 

! 

GPE = "gzdz
#L

h

$            (2.5) 

Indeed, one can show that ! is simply related to GPE divided by the reference level (L), 

but only in the special case of isostatic compensation  

! 

"(L *#)
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 (isostatic)      (6) 



! "#!

The gravitational potential energy (2.5) is therefore properly defined in terms of the body 

force, which, unlike the pressure, does not depend on the load above (Houseman and 

England, 1986).  The analysis of Molnar and Lyon-Caen (1988) defines GPE in terms of 

Equation (2.4), which is valid in the context of their study since they also assumed 

isostatic equilibrium.   

Lateral variations in ! are a source of horizontal deviatoric stress in the 

lithosphere (Equation 2.3), although unless directly specified variations in ! may be 

balanced by both isotropic and deviatoric stresses.  The quantity ! represents the mean 

outward stress exerted by a column at x,y on surrounding lithosphere.  In regions of 

isostatically compensated high topography or thick crust, the resulting stress state is 

tensional, whereas in regions of low topography of thin crust, the stress regime tends to 

be compressional.  In detail, lateral variations in ! and their influence on the lithospheric 

stress state depend sensitively on whether the lithosphere is in isostatic equilibrium. 

Deviations from isostasy in the lithosphere, however are substantial and have an 

important influence on its state of stress (Lithgow-Bertelloni and Guynn, 2004) as we 

explore in Chapter III.  At long wavelengths lateral variations in mantle properties at the 

lithosphere-asthenosphere boundary or deflections generated by mantle flow (dynamic 

topography) are two such examples. Dynamic topography is a determining contribution 

to Earth’s gravitational potential (Hager et al., 1985), explains anomalously high 

topography and bathymetry (Lithgow-Bertelloni and Silver, 1998) and might be crucial 

for the state of stress in the lithosphere in regions of long-lived subduction (Lithgow-

Bertelloni and Guynn, 2004). 
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We have found that the choice of L is important and has a significant effect on the 

computed stress field, and this dependence is the focus of subsequent sections.  Most 

previous studies have generally assumed L to be a constant and equal to some convenient 

value, e.g. L=100 km, independent of geographic location.  This is an approximation 

since the base of the lithosphere and the depth of compensation vary considerably with 

tectonic province, or with the age of the ocean floor.  As the density contrast across the 

base of the lithosphere is small compared with that at the base of the crust, or at the free 

surface, one might expect computed stresses to be insensitive to the choice of L. 

However, lateral variations in L are very large and similar to the value of L itself, and this 

means that the choice of L is of comparable importance to the specification of topography 

or crustal thickness. 

The strength of the lithosphere is likely to vary considerably laterally and with 

depth and the effect of these variations can be explored by varying the value of L.  There 

are two issues: 1) the lithosphere may have weak layers (Kohlstedt et al. 1995) within it 

that do not transmit stresses effectively.  We explore the limit of a layer of no strength 

within the lithosphere at depth S by setting L=S.  This is akin to trying to separate the 

GPE contributions to the stress field from different parts of the lithosphere (Klein et al. 

2009).  2) By setting the lithospheric thickness to a constant value, independent of 

location, in many regions large thicknesses of weak asthenospheric mantle will be 

captured in the integral (Equation 4), which should not be included because they do not 

effectively support deviatoric stress.   

The depth of compensation is often assumed to coincide with the base of the 

lithosphere, but this is unlikely to be a good approximation in all tectonic provinces.  The 
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depth of compensation may be defined as the depth D for which the lithostatic pressure is 

uniform across the globe.  Setting D equal to the depth of the base of the thickest 

lithosphere is not a good approximation because lateral variations in the density of the 

asthenosphere can be substantial. 

  For example, Figure 2.1 shows a highly simplified scenario where the 

compensation depth of the deepest lithospheric column includes large sections of 

asthenospheric material in the neighboring thinner lithospheric columns.  Although the 

change in rheology between the lithosphere and asthenosphere will certainly affect the 

distribution of stresses, using GPE makes no distinction between regions with different 

rheologies and the assumption of global isostatic compensation requires the 

asthenospheric material be included in the force balance between columns.  Placing the 

model base depth above the global compensation depth removes the amount of 

asthenospheric material in selected columns, although unaccounted for pressure gradients 

now exist at the base of the model. 

 

2.4 Lithospheric Structure 

2.4.1 Crustal Lithosphere 

Crustal thickness and density values are taken from the Crust 2.0 model  (Bassin 

et al. 2000).  Specifically, the models include Crust 2.0 density and thickness values for 

ice, sediment and crustal layers.  Layers representing the upper, middle and lower crust 

are combined into a single layer with an average density (Figure 2.2c-d).  The same is 

done for unconsolidated and consolidated sediment layers.  Crust 2.0 elevations and 

bathymetry are taken from ETOPO5 (Figure 2.2a). 
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2.4.2 Mantle Lithosphere 

The thickness of the lithosphere can vary geographically by hundreds of 

kilometers (see Figure 1 from Conrad & Lithgow-Bertelloni, 2006).  In oceanic regions, 

crustal thickness is nearly constant, but lithospheric thickness depends on the age of the 

ocean floor and ranges from 0 at the ridge to as much as 100 km for the oldest ocean 

floor.  Estimates of the maximum thickness of the continental thermal lithosphere range 

anywhere between < 200 to > 300 km (e.g. Jordan 1975; Rudnick et al. 1998; Artemieva 

& Mooney 2001; Gung & Romanowicz 2003) and vary strongly as a function of tectonic 

province.  However, these measures are uncertain, and in comparison to the crustal 

portion of the continental lithosphere, fewer constraints exist on the thickness and 

composition of the lithospheric mantle.  The composition of the lithospheric mantle is 

also less certain than the overall bulk composition of the crust. For the oceans, 

petrological models for the origin of basalt provide a basis for constructing a model of the 

lithospheric mantle. An undepleted peridotitic source that partially melts to produce 

MORB, leaves behind a depleted residue (a harzburgite), whose thickness depends on the 

degree of partial melt. As the oceanic lithosphere cools undepleted mantle also becomes 

part of the lithospheric column, and its thickness increases with age. For continents, the 

picture is less clear and the composition of the continental mantle lithosphere likely 

varies strongly as a function of tectonic province and age (e.g., Rudnick et al. 1998; 

Artemieva & Mooney 2001; Kaban et al. 2003; Artemieva 2006).  In the thickest cratonic 

portions of very fast seismic velocity (e.g. Jordan 1975; Gung and Romanowicz 2003), 

the lithospheric mantle may be cold and buoyant (to survive for billions of years), which 

requires the presence of a depleted layer overlying an undepleted upper mantle layer.   
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We choose to define the base of the lithosphere thermally rather than mechanically, and 

do not at first worry about vertical variations in lithospheric strength, in which case the 

relative density and thickness of the depleted and undepleted lithospheric mantle layers 

control !.  

 We examine two end-member models to determine the density of both continental 

and oceanic mantle lithosphere.  In the first model, the density of the lithospheric mantle 

is adjusted so that each lithospheric column is isostatically balanced relative to a 

reference mid-ocean ridge column.  In the second model, described in detail in section 

3.2.2, we make use of a new model for Earth’s lithospheric thickness and composition 

(de Koker et al. 2005), which incorporates a layered lithospheric mantle. The relative 

thickness an density of the depleted and undepleted layers varies with the age of the 

ocean floor and tectonic province in the continents , described in section 2.4.2.2. 

 

2.4.2.1 Isostatically Adjusted Mantle Density 

Earth’s topography results not only from inhomogeneities in the thickness and 

density of the crust and mantle lithosphere, but also from lateral variations in density in 

the asthenosphere and mantle flow. Ascertaining all these components is difficult because 

it requires information we do not presently have for the globe, such as extremely high 

resolution images of the lithosphere-asthenosphere boundary, like USArray has provided 

for parts of North America (Li et al. 2007; Levander et al. 2008) and a full understanding 

of dynamic topography.  The latter remains uncertain because amplitudes generated by 

most flow models (e.g. Lithgow-Bertelloni & Richards 1998) needed to match Earth’s 

geoid are nearly 3000 m peak to peak and vary as a function of mantle heterogeneity 
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assumed, viscosity structure and the degree of mass transfer between upper and lower 

mantle. A complete examination of the role of dynamic topography or a representation of 

lateral variations in density at the lithosphere-asthenosphere boundary are beyond the 

scope of this paper. Therefore we adopt a different strategy that is also in keeping with 

previous studies (Ghosh et al. 2006; Humphreys & Coblentz 2007;  Ghosh et al. 2009; 

other earlier ones) that use the GPE formulation: we examine as one end member  

lithospheric structures that are fully compensated and adjust the mantle density to 

accomplish compensation. 

 The mantle density of isostatically compensated models is adjusted relative to an 

Atlantic mid-ocean ridge column (29oN,43oW) taken from the thermodynamic 

lithosphere model of de Koker et al. (2005).  The bathymetric and crustal structure of this 

reference column is as follows: 3.028 km of water at 1020 kg m-3,  0.07 km of sediment 

at 1700 kg m-3 and 6.5 km of crust at 2861 kg m-3.  The mantle portion of the column 

contains both a chemically depleted and undepleted section, whose density is a function 

of both temperature, pressure and composition (see below).  The thickness and resulting 

average density of each layer is determined by the model base depth, which is our 

primary motive for constructing the reference column in this manner as the average 

mantle density should vary depending on the assumed base depth.  

Adjusting the mantle to enforce isostatic compensation does not remove the 

contribution of dynamically supported topography to the lithospheric stress field as we 

show in Chapter III.  An alternative is to remove this contribution by first subtracting 

positive or negative dynamic topography (computed from a mantle flow model) from 

observed topography, and then adjusting the density of the crust or mantle to enforce 
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isostatic compensation (e.g. Lithgow-Bertelloni & Guynn 2004).  One may also calculate 

the residual topography of each lithospheric column relative to a reference column and 

then remove the non-isostatic component of topography from each column, as done by 

Ghosh et al. (2009).  We chose not explore these approaches because of the uncertainties 

in the origin and magnitude of dynamic topography already mentioned and because in 

this study we are not interested in separating mantle from lithospheric contributions to 

stresses.   

 

2.4.2.2 Thermodynamically Calculated Mantle Density 

As an alternative end-member to enforced isostatic compensation we examine a 

model where we make no assumptions about how surface topography is compensated.  

To do so we use a previously constructed model for lithospheric thickness and density (de 

Koker et al., 2005).  Starting from the crustal data of CRUST 2.0 the lithospheric 

thickness and density is determined by first performing a tectonic regionalization of 

oceans and continents. Oceanic regions are regionalized by the age of the ocean floor and 

continental ones are divided into four tectonic provinces: cratons, platforms, active 

margins (including previous orogenies and passive margins). These provinces are 

obtained by grouping the finer division in CRUST2.0.  The model aims to determine the 

optimal thickness and density of the lithospheric mantle, with crustal thicknesses and 

densities are taken directly from CRUST2.0.  

The lithospheric mantle itself is divided into two layers, 1) the depleted 

(harzburgite) complement to MORB that originates from partial melting of 2) an 

underlying enriched pyrolitic source.  In oceanic lithosphere, the thickness of the depleted 
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layer is determined by  multiplying crustal thickness by a factor (in this case 6.5) 

proportional to the expected melt fraction needed to produce 6 km of MORB crust 

(Asimow et al. 1995; Klein and Langmuir 1987). Because CRUST2.0 does not have 

variations in oceanic crustal thickness, the thickness of this layer is fixed at 39 km. The 

remainder oceanic lithospheric mantle is assumed to be pyrolitic.  In continental regions 

the thickness of the depleted layer varies by tectonic province, its thickness obtained also 

by multiplying the thickness of the mafic lower crust as found in CRUST2.0 (Figure 

2.2d) by a factor, which varies by tectonic province. The total thickness of the lithosphere 

is given by the depth at which the conductive part of the geotherm joins the adiabat (Tc = 

1600 K), which defines T(r) down to the base of the model.  

With the strategy outlined above, de Koker et al. (2005) made two important 

innovations to determine the density of the mantle lithosphere: 1) Compute the density of 

depleted and undepleted mantle layers as a function of depth using a self-consistent 

thermodynamic model for mantle petrology and physical properties (Stixrude and 

Lithgow-Bertelloni 2005a), which matches existing petrological and mineral physics 

experimental constraints; 2) Determine the best multiplicative factor to obtain depleted 

mantle thickness, by requiring that the spherically averaged pressure at the base of the 

model match PREM and its narrow error bounds (Masters and Gubbins 2002).   

 We will refer to this model henceforth as TDL (thermodynamically determined 

lithosphere).   The compositions for harzburgite and for pyrolite are taken from Workman 

and Hart (2005); oceanic geotherms are computed as a function of age using half-space 

cooling and the Müller et al. (1997) data supplemented as in Xu et al (2006) for regions 

with no data; continental geotherms (different for each tectonic province) are taken from 
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the literature (Pollack & Chapman 1977; Jaupart & Mareschal 1999; Michaut & Jaupart 

2004).  The base of the model is chosen at a depth of 350 km below sea-level because 1) 

the depleted layer is not expected to be thicker than this, and 2) there are no major phase 

transitions close to this depth.  The base of the model is therefore assumed to be 

chemically and lithologically homogeneous.   

 Because isostasy is not enforced in the TDL model, lateral pressure gradients 

exist at the base of the model, which should reflect the dynamic support of elevation from 

large-scale mantle flow.  From this assumption de Koker et al. (2005) estimated global 

magnitudes of dynamic topography, which showed global swells on the order 1-2 km.  In 

the context of this study, this lithospheric structure implies that at any selected base depth 

there are lateral gradients in basal pressure.  The TDL lithospheric structure, however, 

allows us to examine the influence of thick continental roots on the global stress field, of 

lateral variations in lithospheric thickness, without making initial assumptions regarding 

extent and nature of the isostatic compensation. 

 

2.4.3 Approximated Regional Analysis  

To examine the differences between global and regional models and approximate 

lateral variations in strength, we use an end-member proxy, which should capture the 

extreme case in which each lithospheric region is completely decoupled from 

surrounding areas. This extreme is unlikely to be present in the Earth, as even across 

rheological boundaries a portion of the stress normal to the boundary will be transmitted.  

Besides allowing a crude first-order examination of lateral variations in strength, it also 

yields a baseline with which to assess differences between global and regional analyses. 
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In selected models, we modify the lithospheric structure of each column outside the 

region of interest and set it equal to the lithospheric structure of the reference oceanic 

column used for isostatic adjustments.  In other words, the entire world is assumed to be a 

mid-ocean ridge, except in the specified region.  This provides a lateral 'stress' boundary 

condition for the region of interest, although the model is still global geometrically and 

no lateral displacement boundary conditions are imposed. 

 

2.5 Numerical Method 

2.5.1 Model Geometry and Governing Equations 

We follow the method of Lithgow-Bertelloni and Guynn (2004) to compute the 

global stress field from the mean outward stress values calculated for each lithospheric 

structure (Equation 2.4).  The global stress field is calculated by applying the mean 

outward stress values to a 3D numerical model that solves the equations of conservation 

of mass and momentum via the finite element method. 

The mean outward stress calculated for each lithospheric column is applied to the 

horizontal faces of a corresponding element in the upper layer of elements following 

Richardson & Redding (1991) to avoid numerical instabilities related to compression and 

relaxation of the material.  We use the finite element package ABAQUS (Hibbit & 

Sorenson 2002) to solve for the resulting elastic stress field balancing the variations in 

mean outward stress.  To obtain the global elastic stress field, ABAQUS solves the 

fundamental equations elasticity, or more specifically conservation of mass and 

momentum (Equation 2.3) together with the following constitutive equation that relates 

stress and strain for a linearly elastic solid 
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1+ #
E
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#
E
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where 

! 

E  is the Young's Modulus, and 

! 

"  is Poisson's ratio. 

Our numerical models consists of two vertically and laterally homogeneous 

spherical layers divided into 2o x 2o equal area 8-node quadrilateral continuum shell 

elements, which are geometrically 3D but formulated similarly to shell elements (Hibbit 

& Sorenson 2002).  Interestingly, the stress state obtained by using continuum shell 

elements is nearly identical to the stress state obtained by using 3D continuum elements 

(Lithgow-Bertelloni & Guynn 2004).  This is not surprising, because given the lateral 

distance over which lithospheric loads change we expect bending moments to be small, 

which indeed was the case for our previous study (the median value of !zx and !zy  was 

two orders of magnitude smaller than the normal stresses).  The thickness of the top layer 

corresponds with the base depth of each model while the lower base layer thickness 

remains fixed at 100 km.  The bottom nodes of the lower layer are pinned in all three 

directions and since our model is global no artificial lateral displacement or stress 

boundary conditions exist.   

We assign laterally homogenous elastic properties to both layers of elements with 

the top layer and bottom layers having, respectively, Young's Modulus values of 1011 Pa 

and 106 Pa and a Poisson's ratio of 0.3.  The upper layer's Young's modulus is meant to 

represent those of crustal rocks and thus serve as a mean value for the lithosphere.  The 

low Young's modulus value of the basal layer prevents transmission of stresses associated 

with the pinned basal nodes into the upper layer of elements.  Since the elastic properties 

remain constant throughout each layer, their values only influence the calculated strains 

and not the stress itself. 
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2.5.2 Non-Lithostatic vs. Deviatoric Stress Representation 

The calculated stress field 

! 

" ijbalancing mean outward stress variations is 

equivalent to a depth-integrated non-lithostatic stress field.  Due to our choice of 

continuum shell elements, the calculated planar stress state reduces the 3D stress tensor in 

spherical coordinates to a 2D stress tensor, 
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       (2.8) 

which is defined in terms of a north(n)-east(e)-radial(r) coordinate system.  As discussed 

above, this planar stress state is very similar to the planar stress state obtained by using 

full 3D continuum elements and then extracting the in-plane components (

! 

" nn , 

! 

" ee ,

! 

" ne) 

as done in Lithgow-Bertelloni & Guynn (2004).  The similarity of the planar stress states 

obtained by using either element reflects that using the full 3D equation should produce 

very small out of plane compared to in-plane stress components (

! 

" rr , 

! 

" re ,

! 

" rn  << 

! 

" nn , 

! 

" ee ,

! 

" ne) as long as the loads are oriented parallel to the plane of the shell or sheet 

structure.  If this is not the case, the orientation of the principal stress axis will be at an 

oblique angle to the plane of the shell. 

 The calculated non-lithostatic stress tensor (

! 

" ij ) contains both a deviatoric (

! 

" ij) 

and a non-lithostatic hydrostatic component (

! 

P nl), where 

! 

" ij = # ij + P = # ij + $kk
" nn +" ee +" rr

3
       (2.9) 

which becomes 

! 

" ij = # ij + $kk
" nn +" ee

3
         (2.10) 
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because the non-lithostatic vertical stress (

! 

" rr) is effectively zero in this case. For the 

example of all out-of-plane stress components (

! 

" rr, 

! 

" re ,

! 

" rn) taken as 0, the non-

lithostatic isotropic pressure and deviatoric stress tensor in matrix form are 
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Following Lithgow-Bertelloni and Guynn (2004) we present the full stress tensor 

determined in our numerical calculations.  We present the stress tensor in this form as 

horizontal deviatoric stresses alone do not accurately represent the stress magnitudes 

needed to balance mean outward stress variations in our elastic calculations, which do not 

assume incompressibility.   

 

2.6 Global and Regional Stress Patterns  

2.6.1 Reference Models 

Our goal is to examine the separate effects of 1) using a more realistic lithospheric 

thickness and structure and 2) spatial gradients in lithospheric thickness. We start with 

two models containing a commonly assumed 100 km base depth and either an 

isostatically adjusted (Figure 2.3a) or thermodynamically determined (Figure 2.3b) 



! ""!

mantle density.  The mean outward stress and stress patterns in these models are designed 

to serve as a reference point for the proceeding models with different base depths or 

lateral stress boundary conditions.  Significantly, although noticeable differences exist 

between the average density of the isostatically compensated (Figure 2.4a) and TDL 

mantle structures (Figure 2.4b), especially near continental margins, the mean outward 

stress distribution and resulting stress patterns are quite similar.  This in part reflects the 

strong influence of topography and crustal density for a 100 km base depth, which limits 

the potential influence of mantle density variations compared to deeper base depths.  As a 

general trend, however, enforcing isostasy by adjusting the mantle density minimizes 

gradients in the mean outward stress and consequently slightly lowers stress magnitudes 

in many regions compared to the TDL mantle density model.  The largest deviations in 

the stress patterns between the two models occur in the polar regions and near continental 

margins where the largest density variations also exist (Figure 2.4a-b). 

The stress patterns in general strongly resemble previously published stress 

models for a 100 km base depth (Steinberger et al. 2001; Lithgow-Bertelloni & Guynn 

2004; Ghosh et al. 2009). Stress magnitudes (Figure 2.3) range from < 10 MPa to 10's of 

MPa, with the largest stress magnitudes occurring in regions with large topographic 

gradients (e.g., pacific margin of North and South America, Tibet and Eastern Africa).  

The maximum stress magnitudes reach ~ 75 MPa in Tibet for the TDL mantle density 

(Figure 2.3b). 

 

2.6.2 Thick Continental Roots 
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Moving the model base to deeper depths increases the mantle thickness and places 

the center of gravity lower in the lithospheric column, thereby reducing the influence of 

topographic gradients on stress patterns.  For the case of the isostatically adjusted mantle 

structure with a 175 km base depth (Figures 2.5a), global stress patterns are similar to 

those for the 100 km base depth model.  The similarity of the patterns reflects that the 

mean outward stress variations remain strictly related to surface and moho topography, 

while the deeper base depth simply changes the mantle density required to enforce 

isostasy.  The increase in base depth decreases mean outward stress gradients in 

continental regions, thereby reducing the resulting stress magnitudes throughout the 

majority of topographically high continental areas.  Reduced mantle density variations 

between columns required to satisfy isostatic constraints (Figure 2.4c) partially explain 

this pattern.  Averaging the mean outward stress variations over thicker columns also 

reduces the mean outward stress gradients and stress magnitudes in continental regions.  

Mean outward stress gradients in the ocean basins remain essentially unaffected 

compared to the continental regions, resulting in higher oceanic stress magnitudes.  

Increasing the base depth to 250 km (Figure 2.6a) largely reproduces these trends. 

In contrast to isostatically adjusted mantle structures, increasing the base depth for 

the TDL mantle structure incorporates additional mantle density variations that have no 

assigned role in enforcing isostatic balance.  As a result, the additional mantle in each 

column may drive the models towards or away from regional isostatic compensation, and 

increase or decrease regional mean outward stress gradients.  The mantle incorporated by 

increasing the base depth from 100 km to 175 km leads to larger gradients in the mean 

outward stress distribution (Figure 2.5b), particularly across tectonic provinces where 
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different mantle geotherms influence the density structure.  The new mean outward stress 

distribution often magnifies the stress magnitudes in certain areas while the orientations 

remain similar (i.e. Antartica, Mediterranean, Ural Mountains, Western Australia, ...), 

while in other regions the stress orientation is strongly modified as well (i.e. Western 

North America and Andes).  Increasing the base depth to 250 km (Figure 2.6b) generates 

the largest mean outward stress gradients and resulting stress magnitudes despite the 

lowest averaged mantle density variations (Figure 2.4f), where the stress field in many 

regions strongly deviates from the 100 km reference model.  In many regions, the stress 

magnitudes are more than a factor of 2 larger than those in the isostatically compensated 

model with a 250 km base depth (Figure 2.6).   This suggests a key role for either 

dynamically supported topography or the inadequacy of the integrated lithostatic stress 

formulation for capturing realistic variations in L. 

 

2.6.3 Effects of Strength Variations Within the Lithosphere 

  We now assess the possibility that the observed lithospheric stress field reflects 

pressure variations from base depths shallower than 100 km.  For us this is a proxy, 

within a homogeneous model, for vertical strength variations within the lithosphere. In 

other words, an end member representation of how complete vertical decoupling within 

the lithosphere would alter stress patterns and affect deformation. Put a different way, the 

hypothesis is that deeper parts of the lithosphere will not be able to effectively transmit 

the stress upward, leading to vertical decoupling within the lithosphere and a strong 

depth-dependence of the lithospheric stress.  We illustrate the general pattern and 

physical effects globally (Figure 2.7) and then focus in on a few regions, to illustrate the 
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physics that control the emerging patterns, including possible lateral variations in strength 

between tectonic provinces. 

Decreasing the base depth from 100 km to 50 km for the TDL mantle density 

structure (Figure 2.7) illustrates the development of large-scale stress patterns related to 

regions of high topography.  As the base depth decreases the relative contribution of 

topography to the mean outward stress increases, as shown in Tibet, the Western US and 

the Andes.  The larger influence of the topographically highest regions at a 50 km base 

depths reveals a long-wavelength stress pattern where compressional stresses run parallel 

to a large percentage of the Pacific plate boundary (Figure 2.7b).  This pattern is actually 

slightly developed in the 100 km base depth model (Figure 2.7a), but not highly apparent 

without the example of the 50 km base depth case where the compressional stress 

magnitudes increase up to a factor of 2 in some areas.  The ability of the global model to 

develop long-wavelength trends across multiple plates is due to both the long wavelength 

of the loads along the pacific plate-boundary as well as the homogenous elastic 

lithosphere, which allows for efficient transmission of stresses.  In this case, one may 

think of the stress response of the lithosphere to the loading of each column as a Green’s 

function. The stress resultant in each column is the sum of all the Green’s functions 

resulting from the load on each lithospheric column on the rest of the globe. The lack of 

these stress patterns in the world stress map reflects a number of factors, but most 

importantly variable lithospheric thickness across tectonic provinces and the presence or 

large lateral and vertical rheological variations in the lithosphere.  

To take a closer look at the effects of complete vertical decoupling on regional 

stress patterns without the presence of the large global elastic stress patterns, we assign 
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the mean outward stress of the reference column to elements outside of either a region 

encompassing roughly North America or the Continental US as in section 3.3.  The 

compressional stress pattern running parallel to the North American plate boundary for a 

100 km base depth and isostatically adjusted mantle density (Figures 2.3a and 2.8a) is 

largely eliminated by assigning a fixed mean outward stress value outside the North 

American continent (Figure 2.8b).  The assigned fixed mean outward stress value 

changes long-wavelength mean outward stress gradients, which in turn alters the resulting 

stress patterns within North America.  Extensional stresses in Western North American 

oriented perpendicular to the plate boundary remain largely unaffected by the stress 

boundary conditions, although in Alaska and the Western Continental US a component of 

plate-boundary perpendicular extension is translated into plate boundary parallel 

extension. Extensional stress magnitudes in Greenland and the North Atlantic increase 

due to a decrease in mean outward stress to the East.  Restricting the mean outward stress 

variations further to within the Continental US and neighboring Atlantic (Figure 2.8c) 

reduces extensional stress magnitudes in the western US, which decrease significantly 

due to the smaller mean outward stress variations across neighboring Western Pacific 

regions.  Extensional stress magnitudes along the mid-Atlantic ridge also decrease due to 

the reduced local mean outward stress variations.  

Maintaining the regional stress boundary conditions and decreasing the model 

base depth from 100 km (Figure 2.9a and 2.10a) to 50 km (Figure 2.9b and 2.10b) and 25 

km (Figure 2.9c and 2.10c) increases extensional stress magnitudes in the topographically 

high Western US as integrated pressure gradients related to topography are averaged over 

a smaller column thickness.  For a 100 km base depth, the extensional stress magnitudes 
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in the Western US range on average between 5-15 MPa, which for a 50 km and 25 km 

base depth increase, respectively, to 10-20 MPa and 15-25 MPa.  Compressional and 

extensional stress magnitudes in the continental interior (Figure 2.9) also increase 

between ~ 50-100% as the base depth decreases by a factor 2, which is a response to both 

larger E-W and N-S mean outward stress gradients.  At base depths of 50 km and 25 km 

a strike-slip state of stress dominates the majority of the continental USA interior and 

Western Atlantic basin, which contrasts sharply with the 100 km base depth stress 

patterns and observed regional stress patterns (Zoback 1992).  Notably, for a 100 km base 

depth the non-lithostatic extensional stress magnitude range of 5-15 MPa in the Western 

USA is very close to the deviatoric extensional stress magnitude ranges of 5-10 MPa 

(Flesch et al. 2007; Humphreys & Coblentz 2007) reported in previous regional modeling 

studies for a 100 km base depth.  The remaining difference in stress magnitude between 

this study and the previously studies is likely that we do not remove the non-lithostatic 

isotropic stress component from the stress tensor.   

 

2.7 Implications of a Shallow Uncompensated Model Base Depth or Full Vertical 

Decoupling  

The end result of assuming full vertical decoupling between deeper layers of the 

lithosphere by decreasing the model base depth to shallow lithospheric depths is to 

concentrate integrated stress differences related to topography into thinner lithospheric 

columns, thereby increasing the magnitude of the lithospheric stress response.  This trend 

has been noted by previous studies examining depth-dependent stress distributions as a 

function of time (Kusznir & Bott 1977; Bott & Kusznir 1979; Liu et al. 2000, for 
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example) or other depth-independent stress studies varying the model base depth (Molnar 

et al. 1993; Klein et al. 2009).  In the case of this study and Klein et al. (2009) the model 

base depth is uncompensated and therefore unaccounted for basal tractions exist at the 

model base.  As a result, the stresses calculated for a shallow model base depth are only 

reasonable estimates under the following conditions: horizontal stress (

! 

" nn , 

! 

" ee ) 

gradients across the model base depth are small; a rheologically weak layer at the model 

base leads to sharp stress gradients and weak coupling between layers above and below 

the base depth.  Based on these conditions, the validity of isolating stress fields from 

different sections of an isostatically balanced column largely depends on the lithospheric 

rheological structure or the distribution of pressure gradients as a function of depth. 

As an example, consider the stress state between two isostatically balanced 

lithospheric columns extending to a depth of 100 km and containing a 2 km elevation 

difference (Figure 2.11).  The crustal density and moho depth are equal in both columns, 

while the mantle density in the topographically high column is adjusted to enforce 

isostatic compensation relative to the mantle density of 3300 kg m-3 in the reference 

column.  The difference in mean outward stress between the topographically high column 

(MOStop) and reference column (MOSref) serves as a proxy for the magnitude of 

extension in the topographically high column.  Placing the model base depth at the 

isostatic compensation depth generates ~ 36 MPa of extension in the topographically high 

column (Figure 2.12).  Moving the base depth above the isostatic compensation depth 

implies two distinct horizontal stress states exist above the base depth and between the 

base depth and isostatic compensation depth (Figure 2.11).  Systematically decreasing the 
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base depth increases the magnitude of extension in both column layers, with the stress 

difference across the layers staying ranging between ~ 36 MPa to 26 MPa (Figure 2.12).   

Although these vertical gradients in horizontal stress are likely much larger than 

those in the lithosphere due to the simplifications in this example, the results clearly 

demonstrate why placing the base depth at uncompensated shallow depths requires 

significant assumptions about the rheological structure of the lithosphere.  In the case of 

the Western US, Klein et al. (2009) argued that a shallow base depth (20 km) was 

reasonable based on the magnitude of shear stresses related to mantle flow in the region.  

This analysis, however, excludes vertical gradients of horizontal stress across the shallow 

model base depth that result from pressure gradients between the model base depth and 

the base of the lithosphere.  If these gradients are large, then the calculated stress state in 

the shallow lithosphere may not be accurate unless a weak decoupling layer exists at the 

base of the seismogenic lithosphere.  The relative strength contrast across the base depth 

determines the validity of the uncompensated shallow base depth approximation.  Rather 

than assume a full horizontal stress decoupling across an uncompensated model base 

depth, it is strongly preferable to use either expanded thin-viscous sheet approximations 

(Bird 1989; Medvedev & Podladchikov1999) or full 3D depth-dependent models that 

account for the rheological coupling between different lithospheric layers. 

 

2.8 Discussion and Conclusions  

Determining the stresses required to balance topography and density variations 

with the integrated lithostatic stress method provides an eloquent procedure for studying 

the lithosphere under the assumption of full mechanical coupling.  Indeed, numerous 
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studies have successfully used the integrated lithostatic stress approximation to gain 

insight into first-order lithospheric processes.  Using this method to model the 

lithospheric stress field for a wide range of mantle density structures, model base depths 

and lateral stress boundary conditions, however, demonstrates the large variability in 

calculated stress patterns and especially magnitudes, depending on the assumed 

parameters.  For the commonly assumed 100 km base depth the density structure of the 

mantle lithosphere has a minor impact on global stress magnitudes and orientations.  

Increasing or decreasing the global model base depth to account for deep continental 

roots, thin lithosphere or sharp variations in lithospheric strength strongly modifies global 

and regional stress patterns as the relative contributions of topography and mantle density 

structure vary.  Modeling a specific region in part removes the complication of variable 

lithospheric thickness, although the lateral stress boundary conditions imposed on the 

region exert a first-order control on the regional stress patterns. 

Overall, the composition of the deep lithosphere, dynamic support vs. isostatic 

support of topography and the role of lateral and vertical variations in rheology in 

modifying stress distributions stand out as the largest unresolved issues and variables.  Of 

these issues, the role of density structure and lithospheric rheology is certainly the most 

important in the context of the integrated lithostatic stress approximation, although the 

strength of the lithosphere remains actively debated (Kohlstedt et al.1995; Jackson 2002; 

Burov & Diamont 2006; Regenauer-Leib et al. 2006; Hartz & Podloadchikov 2008; 

Thatcher & Pollitz 2008; Burgmann and Dresen 2008).  Solving for the full three 

dimensional lithospheric stress field with depth-dependent strength variations self-

consistently determines the extent of mechanical coupling between shallow and deep 
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lithospheric regions, and removes the need to choose a single base depth that may not 

properly capture the dynamics of a given region.  The effect of variable lithospheric 

strength on stress distributions has in fact been extensively studied (e.g. Kusznir & Bott 

1977; Bott & Kusznir 1979; Liu et al. 2000; Regenauer-Leib et al. 2006), although, again 

the rheological structure of the lithosphere remains highly debated.  As demonstrated by 

Beaumont et al. (2004), regions such as the Tibet-Himalayan orogen that potentially 

experience channel flow (e.g. Royden et al. 1997, Clark and Royden 2000) may contain 

multiple layers that are weakly coupled and exhibit different deformation patterns and 

rates.  Aside from the debate of different proposed lithospheric rheological structures, it 

is clear that first-order variations in lithospheric strength (i.e. weak lower crust, strength 

contrast across crust-mantle boundary, etc) can lead to stress and deformation patterns 

that strongly deviate from the solutions obtained by depth-independent calculations.  

Incorporating lateral variations in lithospheric strength across tectonic provinces 

potentially defined by elastic thickness data (Bechtel et al. 1990; Lowry & Smith 1995, 

Lowry et al. 2000, in North America for example) will also help determine the length-

scales over which stresses transmit and the validity of regional boundary conditions. 

Our results show that the integrated lithostatic stress approximation does not 

capture the depth-dependence of the lithospheric stress field related to strength variations 

and the effects of realistic variations in lithospheric thickness.  The above has major 

implications for interpreting the origins of the observed stress and deformation patterns.  

The issue of a depth-dependent stress field is particularly important for studies that assess 

the relative contribution of basal shear, plate boundary forces and topography and density 

variations to the lithospheric stress field on a global (Steinberger et al; 2001; Lithgow-
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Bertelloni & Guynn 2004; Ghosh et al. 2008), plate (Humphreys & Coblentz 2007) or 

regional (Flesch et al. 2007) scale.   As pointed out by Steinberger et al. (2001), 

variations in lithospheric strength are likely to reduce the stress magnitudes related to 

basal shear between the top and bottom of the lithosphere.  For certain rheological 

structures, coupling between the mantle lithosphere and upper crust may be significantly 

restricted as demonstrated by multiple studies (Pysklewec et al. 2002, Beaumont et al. 

2004).  Combined with rheological controls on the depth-dependence of stresses related 

to topography and density variations, it seems likely that the relative contribution of these 

different sources of stress may vary strongly as a function of depth.  If this is indeed the 

case, it is essential for future studies to focus on the effects of 3D density and rheology 

variations in controlling stress distributions within the lithosphere.  

The future, however is bright because of more extensive and more detailed in situ 

pictures of lithospheric structure from seismology. Large scale deployments such as 

USArray and observational networks such as NIRIES and EPOS enabled by ORFEUS 

(Observatories and Research Facilities for European Seismology) are already producing 

substantial advances in our knowledge of the continental lithosphere. Coupled with state-

of-the-art thermodynamic methods for determining geophysically active and observable 

properties such as density from seismic velocity (Stixrude & Lithgow-Bertelloni 2005) 

we are not far from having the information necessary to study the effects of 3D variations 

in density and rheology on Earth’s surface deformation. 
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Figure 2.1:  Schematic diagram illustrating the concepts of base depth for simplified 
lithospheric structures.  Left: three lithospheric columns of varying thickness floating in a 
liquid mantle.  All three columns are isostatically compensated at line C.  Lines A and B 
mark the base of columns one and two and represent potential choices for integration 
depths.  Right: Hypothetical pressure vs. depth profiles with superimposed base depths.  
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Figure 2.2:  Global Lithospheric Structure.  The crustal data is taken from the Crust 2.0 
model, which includes elevation and bathymetry (a) and the thickness and density of ice, 
sediment and crust (c-d) layers.  Displayed crustal thickness and density values are 
averages of the upper, middle and lower crust layers.  The depleted mantle thickness (b) 
is taken from the TDL model of de Koker et al. (2005). 
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Figure 2.3: Variations in global mean outward stress and the principal stresses balancing 
these variations for a 100 km base depth.  Regions with large negative outward pressures 
often correspond with topographically high regions and are characterized by extensional 
principal stresses (white bars, compression ~ black bars).  Mean outward stress and stress 
patterns are shown for models with isostatically adjusted (a) and TDL (b) mantle density 
structures. 
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Figure 2.4:  Isostatically adjusted (a-c-e) and TDL (b-d-f) mantle densities for model base 
depths of 100 (a-b) km, 175 km (c-d) and 250 km (e-f).  The density in the isostatically 
compensated models remains constant throughout the thickness of the mantle portion of 
each column.  The TDL mantle densities are the thickness-weighted average of the 
depleted and undepleted mantle densities in each column. 
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Figure 2.5:  Mean outward stress variations and resulting principal stresses for a 175 km 
model base depth and isostatically adjusted (a) or TDL (b) mantle density structures. 
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Figure 2.6:  Mean outward stress variations and resulting principal stresses for a 250 km 
model base depth and isostatically adjusted (a) or TDL (b) mantle density structures. 
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Figure 2.7:  Mean outward stress variations and resulting compressional principal stresses 
for a TDL mantle density structure and a 100 km (a) or 50 km (b) model base depth.  The 
reference values subtracted from the mean outward stresss are 1482 MPa (a) and 678 
MPa (b). 
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Figure 2.8: Global (a), plate (b) or regional (c) mean outward stress variations and 
resulting principal stresses for a 100 km model base depth and TDL mantle density 
structure.  The global model (a) contains no lateral stress boundary conditions.  Mean 
outward stress values are assigned the same value as the reference column outside of  
(15oN-85oN-170oW-10oW) for the plate model (b) and (25oN-55oN-135oW-25oW) for the 
regional model (c).  
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Figure 2.9: Mean outward stress and resulting principal stresses for a TDL mantle density 
structure, regional stress boundary conditions (25oN-55oN-135oW-25oW) and 100 km (a), 
50 km (b) and 25 km (c) model base depths.  The reference mean outward stress values 
for each model are 1482 MPa (a), 678 MPa (b) and 286 MPa (c). 
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Figure 2.10:  Western U.S. principal stresses and most extensional principal stress 
magnitude for a TDL mantle density structure, regional stress boundary conditions 
(25oN-55oN-135oW-25oW) and 100 km (a), 50 km (b) and 25 km (c) model base depths. 
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Figure 2.11:  Density structure of two simplified lithospheric columns (left).  The moho 
depth and crustal density are constant, while a 2 km elevation difference exists between 
the two columns.  The mantle density in the topographically lower column (reference 
column) is 3300 kg m-3 and the mantle density of the topographically high column is 
adjusted to enforce isostatic compensation at 100 km depth.  The arrows represent the 
total mean outward stress of each column, when the base depth is placed at the 
compensation depth.  Moving the base depth to the moho (right) implies a horizontal 
stress gradient with depth, as the mean outward stress differences between the two 
columns varies above and below the base depth. 
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Figure 2.12:  State of stress in the topographically high column illustrated in Figure 2.11.  
The state of stress is defined as the difference in mean outward stress between the 
topographically high and reference column.  When the model base depth is placed above 
the compensation depth, distinct states of horizontal stress state exist above the base 
depth and between the base depth and isostatic compensation depth.  The state of stress in 
any part of the topographically high column is extensional regardless of where the model 
base depth is placed. 
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CHAPTER III 

 

The Contribution of Dynamic Topography to the Lithospheric Stress Field 

 

3.1 Abstract 

Surface topography supported by convective flow generates lithospheric stress 

patterns distinct from those balancing isostatically compensated topography and density 

variations.  Here, we explore the contribution of dynamic topography to global stress 

patterns associated with the lithosphere’s observed topography and density structure.  

Dynamic topography is determined through isostatic analysis of lithospheric structure or 

modeling of density-driven mantle flow.  Lithospheric stress patterns balancing lateral 

gradients in gravitational potential energy exhibit globally averaged magnitude changes 

of 3-10 MPa when dynamic topography is removed from observed topography.  These 

globally averaged changes in stress magnitude are only moderately sensitive to both 

mantle density structure and orders of magnitude variations in the lithosphere-

asthenosphere contrast.  On a regional basis, however, changes in stress magnitude often 

depend strongly on the assumed model of dynamic topography, although stress patterns 

in regions of prolonged subduction exhibit a strong dependence on dynamic topography 

regardless of the lithosphere-asthenosphere viscosity contrast.  We also find that the 

magnitude of lithospheric membrane stresses generated by instantaneous dynamic uplift 

are comparable to the magnitude of stresses associated with variations in topography and 
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density, if the lithosphere exhibits significant elastic strength on the time scales over 

which dynamic topography is developed.  The results presented here highlight the need to 

carefully assess the contribution of dynamic topography to regional stress patterns and 

consider the effects of variable lithospheric rheology. 

 

3.2 Introduction 

From the seminal works of Artyushkov (1973) to our recent detailed study of the 

influence of lithospheric structure on stresses (Chapter II, Naliboff et al., to be submitted) 

it is evident that topography at short and long wavelengths can have a dominant influence 

on the state of stress of the lithosphere, yet our understanding is hampered by incomplete 

knowledge of the origin of topography at a variety of length-scales.  Far from solving the 

problem, new observations in our age of satellite altimetry have revealed our ignorance. 

What then determines Earth’s topography and bathymetry?  

 Topography and bathymetry on Earth are an expression of the force balance 

acting on its free surface.  This balance has an isostatic and a dynamic component on 

length scales exceeding the flexural strength of the lithosphere (~300 km, Watts 2001). 

The isostatic contribution arises from lateral variations in the density structure of the 

lithosphere and sub-lithospheric mantle, discussed at length in Chapter II, while the 

dynamic contribution is the displacement of Earth's surface in response to mantle flow.  

At long wavelengths, dynamic topography is the most important contributor to Earth’s 

topography and it is the largest component of geoid anomalies (Ricard et al. 2006) as 

established in classic studies of the geoid (Richards & Hager 1984). Dynamic topography 

is important in continental (Lithgow-Bertelloni & Silver 1998; Daradich et al., 2003; 
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Gurnis et al. 2000; Conrad & Gurnis 2003) and oceanic regions (Cazenave & Thoraval 

1994; Conrad et al. 2004) and can explain the anomalous depths of large sedimentary 

basins (Pysklywec & Mitrovica1999).  Dynamic topography may cause tilting of entire 

continents (Mitrovica et al. 1989; Gurnis 1990, Sandiford 2007; DiCaprio et al. 2009) and 

influence the shape of the ocean surface via its effect on the geoid.  The connection to 

continental flooding is immediate: as continents migrate over mantle upwellings (regions 

of positive dynamic topography) and downwellings (negative dynamic topography) the 

large vertical motions can lead to the emergence and submergence of entire regions 

(Figure 2) (Gurnis 1993; Lithgow-Bertelloni & Gurnis 1997).  Indeed, time variations in 

dynamic topography can explain much of the Phanerozoic flooding record (Gurnis 1993). 

More recently, measures of dynamic topography have been used to constrain mantle 

dynamical models of inundation of North America (Liu et al. 2008; Spasojevic et al. 

2008, 2009) and reconcile stratigraphically derived sea level curves (Miller et al. 2005), 

with sea level curves derived from changing mid-ocean ridge volume (Müller et al. 

2008).  

 Of interest to us is that the presence of dynamic topography at long and short-

wavelength may have a strong influence on the state of stress in areas of long-lived 

subduction such as Southeast Asia (Lithgow-Bertelloni & Guynn, 2004).  By deflecting 

the Earth’s surface, dynamic topography can give rise to regions of compression (over 

downwarps) and of extension (over uplifted regions) both by changing the gravitational 

potential and by the long-wavelength bending of the lithosphere (Lithgow-Bertelloni & 

Guynn, 2004).  Because mantle flow gives rise to both radial and horizontal stresses that 

act on the bottom lithosphere, previous work on the effects of mantle flow on the state of 
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stress of either an elastic or viscous lithosphere had included the effects of dynamic 

topography (Bai et al. 1992; Steinberger et al. 2001).  Its critical role however, was most 

emphasized in the study of Lithgow-Bertelloni & Guynn (2004), which realized that for 

an elastic shell, the presence of dynamic topography is determinant for the stress regime 

induced in the lithosphere by coupling with the mantle.  Moreover, in areas of prolonged 

subduction such as SE Asia the coherency and azimuth of the compressive stress as seen 

by the World Stress Map (WSM) can only be reproduced by the stress response of the 

lithosphere to the dynamic topography predicted by mantle flow models for this region. 

This response is not altered dramatically by the presence of a low viscosity 

asthenosphere, as we expect normal stresses to be effectively transmitted across 

rheological boundaries (Chapter IV, Naliboff et al. 2009, in press).  Therefore, areas of 

strong dynamic topography may also exhibit the strongest coupling between the 

lithosphere and mantle.  As Earth’s topography includes a dynamic component, studies of 

lithospheric sources of stress must account for dynamic topography (Steinberger et al. 

2001; Lithgow-Bertelloni & Guynn 2004; Ghosh et al. 2009; Chapter II, Naliboff et al., 

submitted). 

 Yet despite the advances presented by these studies, the efforts cannot be 

considered definitive for two reasons: 1) while it is difficult to constrain uniquely from 

observations, indications are that observed dynamic topography on Earth has smaller 

amplitude than that predicted by mantle flow models (Colin & Fleitout 1990; Le Stunff & 

Ricard 1995; Wheeler & White 2000; Mooney & Vidale 2003; Winterbourne et al. 2009); 

2) no study to date has presented a comprehensive quantitative analysis of the changes in 
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lithospheric stress magnitudes and patterns generated by dynamic topography as a 

function of the parameters that control it (mantle density and viscosity heterogeneity).  

 Indeed, mantle flow models commonly predict amplitudes of dynamic topography 

to be on the order of 1500 m, which is larger than expected given current estimates of the 

isostatic contribution (Colin & Fleitout 1990; Thoraval et al. 1995; Le Stunff & Ricard 

1995; Panasyuk and Hager 2000a).  Unequivocal signals of “observed” dynamic 

topography, measured as observed topography less the expected isostatic contribution, 

are rare and seemingly nonexistent at the expected amplitudes at regions of mantle 

downwelling (Wheeler & White, 2000; Winterbourne et al., 2009).  At the global scale 

“observed” dynamic topography is problematic because removing the isostatic 

contribution depends on detailed knowledge of lithospheric structure. 

 A variety of studies have attempted to explain these discrepancies, exploring the 

effects of lateral viscosity variations in the mantle (Cadek & Fleitout 2003), barriers to 

flow at 660 km depth (Thoraval et al. 1995), the presence or absence of plates (Thoraval 

& Richards 1997), pressure-induced crystal phase transformations in the olivine 

component of the mantle (Thoraval et al. 1995; Christensen 1998; Steinberger 2007) and 

small scale convection under oceanic plates (Winterbourne et al. 2009).  However, none 

have provided a satisfying resolution to the mismatch between observed and modeled 

global dynamic topography.  It must always be remembered that the predicted amplitudes 

of the dynamic topography are what give rise to the excellent fits to observed geoid 

anomalies (Ricard et al. 1993; Forte & Mitrovica 2004). 

 The goal of this study is hence twofold.  First, to comprehensively examine the 

sensitivity of global stress patterns and magnitudes to the presence of long- and medium-
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wavelength dynamic topography using a wide array of dynamic topography predictions.  

These predictions are derived using a mantle flow model where dynamic topography is a 

function of mantle density and viscosity structure, or from a new complete model of 

lithospheric structure and the associated isostatic contribution to topography.  Second, 

use the computed stress models to place an additional constraint on the likely amplitude 

of dynamic topography and set the stage for an examination of plate-mantle coupling due 

to viscosity heterogeneity in the mantle (Chapter III). 

 

3.3 Theory and Methods 

Dynamic topography is the deflection by radial stresses of any surface across 

which there is an inherent bulk compositional density difference, such as the crust-

air(water) interface at the surface of our planet or the core-mantle boundary.  The 

deflection redistributes mass (substituting air or water for rock in uplifted areas and vice 

versa in subsiding regions) affecting Earth’s gravitational potential.  Because dynamic 

topography is a result of Earth’s viscous flow, the time-scales over which it is established 

(once the driving force is in place) is governed by the viscosity of the mantle and it is 

comparable to the time-scales of post-glacial rebound (10-100,000 years).  Generally, the 

transient effects are ignored and we only consider the dynamic topography in the viscous 

limit.  However, depending on load wavelength, elastic effects may be important for the 

total uplift and the evolution of the uplift (Barletta & Sabadini 2006).  

 The amplitude of the dynamic deflection is hdyn=-!rr/"#g, where !rr is the radial 

stress component produced by flow in the mantle, "# is the density contrast between 

crust-air or crust-water and g is the gravitational acceleration.  The stress response of the 
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lithosphere to dynamic topography can be illustrated by the simple carton in Figure 3.1 

below.  The radial stresses that give rise to dynamic topography produces two types of 

stresses: membrane stresses !MEM due to stretching of the lithosphere and gravitational 

stresses due to the topographic gradient.  If we consider then the total topography (htot) 

and its stress response we can write in the terminology of Chapter II: 

! 

" tot r( ) =" ILS
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( 

) 
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where the different contributions to the stress ! are functions of the radial gradient in "  

(the integrated lithostatic stress from equation 2.4 in Chapter II) for both the isostatic 

(hiso)and dynamic (hdyn) contributions to topography.  It becomes clear from this equation 

that removing the dynamic component of the topography to examine the effects of 

lithospheric sources alone must be done carefully.  The effects of dynamic topography on 

stress field patterns related to " can be examined by studying the effects of the radial 

stresses themselves (Lithgow-Bertelloni & Guynn 2004) or by subtracting different 

predictions and estimates of dynamic topography from a reference lithospheric structure 

(Ghosh et al. 2009).  Here we take the latter approach. 

To quantify the effects of dynamic topography on lithospheric stress patterns we 

perform four independent steps.  The first three steps involve calculating dynamically 

supported surface topography, adjusting a reference lithospheric structure to remove the 

estimated dynamic topography and calculating the stress patterns associated with each 

lithospheric structure.  The difference between the stress patterns associated with each 

lithospheric structure quantifies the effects of dynamic topography on the lithospheric 

stress field associated with variations in topography and density.  We then separately 
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consider the membrane stresses generated by instantaneous dynamic displacement of the 

lithosphere.   

 

3.4 Dynamic and Residual Topography 

To calculate the magnitude of dynamically supported surface topography we 

either compute it directly from mantle flow or use a model of residual topography, which 

we describe below.  To calculate radial stresses at the base of the lithosphere, we solve 

for instantaneous viscous flow induced by mantle density heterogeneity.  Viscous flow is 

calculated by solving the equations of conservation of mass and momentum for an 

incompressible Newtonian fluid via propagator matrices (Hager & O’Connell 1981) up to 

spherical harmonic degree 20 (!~2000 km).  The density contrast between the surface (air 

~ 0 kg m-3, water 1020 kg m-3) and lithosphere used to compute the dynamic deflection 

(hdyn) is determined using the crustal density values from Crust 2.0 (Bassin et al. 2000) 

and a fixed mantle density of 3300 kg m-3.    

 We use two different models of mantle density heterogeneity, one derived from 

subduction history (Lithgow-Bertelloni & Richards 1998), which has proven very 

successful at predicting geoid anomalies (Ricard et al. 1993) and plate driving forces 

(Lithgow-Bertelloni & Richards 1998) and the shear wave velocity tomography of 

Ritsema et al. (2004, s20rtsb).  For the latter, seismic velocity is converted to density 

assuming that all heterogeneity is thermal in origin and using a constant velocity-density 

scaling factor of 0.15 g cm-3 km-1 s (Stixrude & Lithgow-Bertelloni 2007).  Hence, for the 

seismic model  the upper 325 km are excluded because we expect velocities at these 



! "#!

depths to be affected by lithospheric compositional variations, particularly under 

continents. 

The viscosity structure is layered (radially symmetric) and consists of four distinct 

layers (lithosphere 0-120 km, asthenosphere 120 – 220 km, upper mantle 220 – 660 km, 

lower mantle 660 – 2900 km).  The lithosphere and upper mantle are 10 and 50 times as 

viscous than the reference upper mantle viscosity, while the asthenospheric viscosity 

ranges from 1 to 1000 times less viscous than the upper mantle.  The low viscosity of the 

lithospheric layer reflects the fact that the lithosphere is mobile and represents an 

approximate average over regions of high and very low viscosity.  Varying the 

asthenospheric viscosity by 3 orders of magnitude impacts the amplitude of dynamic 

topography (Figure 3.2), but variations in the lower mantle viscosity within reasonable 

constraints (e.g. Mitrovica & Forte 2004) have relatively little impact on estimates of 

density-driven dynamic topography (e.g. Lithgow-Bertelloni & Richards 1998; Gurnis et 

al. 2000).  This is not surprising as the dynamic topography kernels at all spherical 

harmonic degrees peak strongly in the upper mantle and decay quickly in the lower 

mantle (Hager & Richards 1989; Simmons et al. 2009).  Lateral variations in 

asthenospheric thickness associated with different tectonic provinces have also been 

shown to have a negligible impact on radial traction magnitudes associated with density-

driven flow (Gurnis et al. 2000; Chapter IV, Naliboff et al. 2009).  

 Numerous previous studies have similarly studied dynamic topography from flow 

induced by seismic heterogeneity at global (e.g. Steinberger 2006) and regional (Gurnis 

et al., 2000; Conrad et al. 2004; Moucha et al. 2008) scales, including the only 

unequivocal signal of dynamic topography (Lithgow-Bertelloni & Silver 1998).  Because 



! "#!

dynamic topography kernels have greater sensitivity in the upper mantle, the dynamic 

topography signals from s20rtsb miss part of the signal arising from heterogeneity in the 

upper 300 km of the mantle, which may be important (e.g. Simmons et al. 2006; 

Simmons et al. 2009), although likely at length-scales much shorter than the flow 

analyzed here.  We do not include the plate-driven convective flow to dynamic 

topography, due its strong dependence on absolute mantle viscosity (e.g. Cadek and 

Fleitout 2003; Conrad et al. 2007).  In addition, imposing piece-wise continuous velocity 

boundary conditions on a viscous fluid leads to stress singularities, which give rise to 

artificially large stresses (and larger dynamic topography when plates move fast).  This 

could be overcome by a complete knowledge of plate boundary rheology.   

Nonetheless, the presence of very shallow mantle heterogeneity and contributions 

from plate flow in slow moving plates such as the Northern Atlantic may reconcile 

estimates of residual topography (observed dynamic topography) from lithospheric 

structure and dynamic topography from mantle flow models (Winterbourne et al. 2009).  

Because our focus is on the largest length-scales of the flow (> 2000 km) we expect that 

neither the absence of heterogeneity at the shallowest depths, nor the absence of plates 

will significantly affect the results shown here.  

At the other end we consider a new estimate of global residual topography as 

“observed” dynamic topography (De Koker et al. 2005) derived from a 2ox2o lithospheric 

density model (hereby referred to with the acronym TDL).  Crustal thickness and density 

is taken from Crust 2.0 (Bassin et al. 2000) and mantle densities are calculated using the 

thermodynamic approach of Stixrude & Lithgow-Bertelloni (2005), which determines 

equilibrium properties for a specified temperature, pressure and composition.  The mantle 
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is divided into chemically depleted (harzburgite) and undepleted (lherzolite) layers, 

whose thickness and temperature varies according to the tectonic provinces in Crust 2.0.  

Specific details regarding the composition, temperature and thickness of the mantle were 

provided in Chapter II, section 2.4.2.2.  The lithospheric model extends to 350 km depth, 

where the globally averaged pressure matches PREM.  Global residual topography is 

determined by subtracting predicted isostatic topography (relative to a specified reference 

column) from observed topography, which gives the magnitude of non-isostatic (residual) 

surface topography, i.e. “observed” dynamic topography.  

The inherent uncertainty associated with different estimates of lithospheric 

density structure often results in highly variable estimates of global residual topography 

(Forte et al. 1993; Le Stunff & Ricard 1995; Panasyuk & Hager 2000a, Kaban et al. 

2003; Steinberger 2007).  The different assumptions used in each study make it difficult 

to compare absolute magnitudes of residual topography, and it is beyond the scope of this 

study to analyze the origins of those differences. However, the TDL model made some 

considerable advances by treating the petrological origin of the mantle lithosphere and 

computing its physical properties (particularly density) with a self-consistent 

thermodynamic method for the first time.  At length-scales shorter than 1000 km, careful 

regional analysis is often required to detect significant non-isostatic topographic signals, 

which would otherwise go undetected (Lowry et al. 2000; Artemieva 2007; Crosby and 

McKenzie 2009; Winterbourne et al. 2009).   

For the long wavelengths of interest here ( > 2000 km) our study should place 

some additional constraints on the likely magnitude of residual topography and illustrate 
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how stress patterns change when both deep and shallow sources of dynamic displacement 

are taken into account compared to the density-driven flow models. 

 

3.5 Lithospheric Structure and Stress Patterns 

We consider two sets of lithospheric structures for which stress patterns are 

calculated.  The first set contains observed topography and crustal structure from Crust 

2.0 (Bassin et al. 2000).  The mantle densities are either adjusted to enforce isostatic 

compensation or taken from the TDL model.  The thickness of the mantle lithosphere is 

the distance between the Moho and uniform global base depth.  This set of lithospheric 

structures reflects the hypothesis that all topography reflects lithospheric processes and is 

not dynamically supported.  The second set of lithospheric structures removes the 

calculated dynamic or residual topography from surface topography.  For the case of 

dynamic topography, the mantle density structure is readjusted to enforce isostatic 

compensation at the selected base depth.  For the case of residual topography, the 

thermodynamically determined mantle densities are unchanged.    

 Lithospheric stress patterns associated with variations in topography and density 

are computed with the assumption that the lithosphere behaves in a vertically coherent 

manner.  Following this assumption, the lithostatic pressure is integrated over the 

thickness of each 2ox2o column from the specified global base depth.  Dividing the 

integrated pressure by the global base depth gives the mean outward stress of each 

lithospheric column.  Stresses balancing variations in mean outward stress are computed 

via the finite element method following the procedure of Lithgow-Bertelloni & Guynn 

(2004), which is outlined in detail in Chapter II.  This procedure assumes a uniform 
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elastic rheology for the lithosphere, with a fixed Young’s modulus of 1011 Pa and a 

Poisson’s ratio of 0.3.  The lithosphere consists of 100 km thick 2ox2o continuum shell 

elements and is underlain by a second layer of elements with a low Young’s modulus 

(106 Pa) and pinned basal nodes.  The large strength contrast between the upper and lower 

element layers prevents the pinned basal nodes from modifying stresses patterns in the 

upper layer.   A second type of model considers the membrane stresses generated by 

dynamic topography.  In these models the upper (lithospheric) layer of elements are 

radially displaced according to the magnitude of dynamic topography.  The resulting 

stresses in each element are isotropic (pure extension or compression) and depend only 

on the magnitude of radial displacement and the Young’s modulus of the upper layer, 

which varies between 1011 and 1010 Pa.  The magnitude of the membrane stresses is 

compared to the magnitude of stresses resulting from variations in lithospheric 

topography and density. 

 

3.6 Results 

Patterns of dynamic topography determined from density-driven mantle flow 

(Figure 3.2) depend almost entirely on the specified density heterogeneity and are 

affected minimally by the viscosity contrast across the lithosphere-asthenosphere 

boundary.  This is what we expect, as the global low viscosity channel does not alter the 

pattern of flow only the ability of stresses to transmit effectively across the rheological 

boundary. Mantle densities determined from the seismic velocity model (Figure 3.2, left 

panel) generate dynamic topography lows and highs, respectively, along subduction 

zones and in regions associated with hotspot volcanism (i.e., Iceland, Central Pacific, 
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Eastern Africa) and large scale upwellings.  Mantle densities determined from a history 

of slab subduction (Figure 3.2, right panel) generate strong dynamic lows over 

subduction zones and more distributed dynamics highs near mid-ocean regions that 

reflect counter flow from slab downwellings.  The amplitudes of dynamic topography are 

larger for the subduction model, because slabs represent the largest source of buoyancy in 

the mantle and this amplitude is not captured in the highly damped shear wave 

tomographic models, which also tend not to properly image slabs in the upper mantle. 

Systematically decreasing the lithosphere-asthenosphere viscosity contrast from 10 

(Figure 3.2, top row) to 10000 (Figure 3.2, bottom row) decreases the coupling between 

the convecting mantle and lithosphere, although the resulting decrease in dynamic 

topography is comparatively minor compared to the change in viscosity, a factor of ~0.6 

when the contrast is 10000.  Physically we expect that rheological boundaries will affect 

shear stresses more than radial stresses, which should still effectively transmit across 

them (Chapter IV, Naliboff et al. 2009, in press). This also implies that decoupling the 

lithosphere entirely from the mantle is not possible for lithosphere-asthenosphere 

viscosity contrasts within the range of geophysical observation and in line with previous 

results concerning the role of the mantle in driving plate motions (Lithgow-Bertelloni & 

Richards 1995). 

 Estimated residual topography from the TDL lithospheric structure contains many 

similar features to the convection driven dynamic topography patterns, with prominent 

residual topography along certain subduction boundaries, the central Pacific, Iceland, and 

Eastern Africa (Figure 3.3).  Notably, the magnitude of residual topography in Eastern 

Africa is approximately a factor of 2 higher than for the convection driven model (Figure 
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3.2, top left panel).  The residual topography model also contains multiple regions with 

strong amplitudes of positive (Antarctica, Tibet, Eastern Atlantic, Northernmost North 

America plate) and negative (Western Europe, Eastern North America) residual 

topography not present in either convection driven dynamic topography model.  This 

reflects either uncertainty in the specified lithospheric structure or dynamic displacement 

driven by unaccounted for shallow heterogeneity.  

On a regional basis, changes in stress patterns strongly depend on the magnitude 

of dynamic or residual topography.  The removal of up to 2 km of dynamic subsidence in 

Southeast Asia (Figure 3.2, model SLB1000) generates strong extension throughout 

Indonesia and reduces compressional magnitudes associated with the elevated Tibetan 

Plateau (Figure 3.4).   In Eastern Africa, removing up to 0.75 km of dynamic uplift has 

comparatively little impact on the stress patterns associated with the highest regions of 

uplift (Figure 3.5), although adjacent regions in the North Atlantic and India Ocean 

exhibit noticeable changes in stress patterns.   In contrast, removing the calculated 

residual topography effectively eliminates the large topographic relief in Southern and 

Eastern Africa, and as a consequence significantly changes the stress patterns throughout 

Continental Africa and the Western Indian Ocean (Figure 3.6).  The difference between 

the African stress patterns within dynamic or residual topography removed indicates that 

shallow upper mantle or deep lithospheric processes contribute significantly to the high 

elevation and extensional tectonics of Eastern Africa, as discussed by Zoback (1992) in 

relation to the world stress map. 

On a global scale, we assess the effects of removing dynamic or residual 

topography by computing globally averaged changes in stress magnitude (Table 3.1).  
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The changes in stress magnitude generated by removing dynamic topography from the 

lithospheric structure is computed at each element between corresponding pairs of most 

extensional or most compressional principal stress values.  The mean stress change of the 

two principal stress values is then averaged globally, which we find gives average 

changes in stress magnitude ranging between ~ 3-10 MPa.  The higher changes in 

average stress magnitude correspond to models with larger amplitudes of dynamic 

topography.   

The percentage of any given model (global histogram distribution) that has a 

specific percentage change in stress magnitude (Figure 3.7) illustrates this variability 

within each model.  Peaks in the global distribution are centered over stress magnitude 

changes of 1 MPa for both dynamic and residual topography models (Figure 3.7, left 

panel).  Notably, these peak values only account for 9-13% of the total model and the 

global distribution systematically decreases from the peak values (1 MPa) to higher 

changes in stress magnitude.  The global distribution peak of the s20rtsb dynamic 

topography model is noticeably higher than the TDL and SLB models, which reflects the 

smaller dynamic topography amplitudes generated from the seismic velocity based 

model.  Increasing the lithosphere-asthenosphere viscosity contrast decreases the 

magnitude of dynamic topography, thereby increasing height of the global distribution 

peak (Figure 3.6, right panel), although the character of the curve only changes 

dramatically at a contrast of 10000.  In other words, decreasing the lithosphere-

asthenosphere viscosity contrast increases the influence of dynamic topography on global 

lithospheric stress magnitudes, as shown in Table 1, because the radial stresses are 

transmitted more effectively when the viscosity contrast is lower 
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The magnitude of membrane stresses generated by instantaneous radial 

displacement depends directly on both the magnitude of displacement and the strength of 

the lithosphere (Figure 3.8).  For a Young’s modulus of 1011, isotropic stress magnitudes 

(extensional or compressional) are on the order of 10’s of MPa.  Decreasing the Young’s 

modulus by an order of magnitude results in a proportional decrease in the stress 

magnitudes, due to the choice of a linearly elastic rheology and because we specify the 

amount of displacement.  As lithospheric stress magnitudes related to variations in 

topography and density are on the order of 10’s of MPa, membrane stresses associated 

with dynamic uplift may control regional stress patterns if the magnitude of dynamic 

uplift is large.  

 

3.7 Discussion and Conclusions 

 The results presented here demonstrate that the sensitivity of the lithospheric 

stress field to different estimates of dynamic topography largely depends on both the 

length-scale and specific region one considers.  In Southeast Asia, prolonged subduction 

still promotes strong regional compression even with the presence of a 10000x viscosity 

jump across the lithosphere-asthenosphere boundary.  In Eastern and Southern Africa, 

however, removing dynamic topography related to density-driven mantle flow with a 

much a stronger asthenosphere generates only minimal changes in regional stress 

patterns, while removing residual topography roughly a factor of 2 larger produces 

significant changes in regional stress patterns.  In contrast, globally averaged changes in 

stress magnitude fall consistently between 3-10 Ma and are fairly insensitive to both 

mantle viscosity and density structure.   
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These findings illustrate a number of key points.  First, it is clear that even for 

very large lithosphere-asthenosphere viscosity contrasts, stress patterns in regions 

associated with prolonged subduction will still be strongly coupled to radial mantle flow.  

Placing firm constraints on the stress patterns associated with dynamic topography, 

however, must be done very carefully as the example of Eastern and Southern Africa 

clearly demonstrates how different dynamic topography estimates can either have little 

effect or control regional dynamics.  Considering this sensitivity, future calibrations of 

the contribution of dynamic topography to regional stress patterns should be done in 

regions where high resolution estimates of lithospheric structure are available.  The 

topographically high and actively extending Western US may serve as an ideal location 

to perform such calibrations, as active uplift related to upper mantle processes may 

support some areas of high topography (e.g. Lowry et al. 2000) and the availability of 

new seismic (USArray) and gravity (GRACE and GOCE) data is likely to significantly 

improve estimates of lithospheric density structure.  The neighboring Colorado Plateau 

may also serve as an ideal location based on the recent proposal of large-scale mantle 

flow contributing to its anomalous topography (Moucha et al. 2008, 2009). 

As discussed in Chapter II, future models of lithospheric stress patterns related to 

variations in topography and density must transition from depth-independent to three-

dimensional in order to account for the effects of variable lithospheric rheology on 

controlling stress distributions.  Indeed, strongly depth-dependent rheological profiles are 

likely to generate strongly depth-dependent lithospheric responses to dynamic 

topography, as illustrated by recent convection models examining the interaction of 

mantle plumes with the lithosphere (Burov & Guillou-Frottier 2005; Burov & Cloetingh 
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2009).  Again, the Western US appears to be an ideal location to test the sensitivity of 

stress patterns to dynamic topography, based on extensive previous work examining 

regional variations in elastic thickness and the associated implications for lithospheric 

strength (Lowry and Smith 1994; 1995; Lowry et al. 2000). 
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Figure 3.1:  Modified from Lithgow-Bertelloni and Guynn (2004). Radial tractions are 
opposed by gravity; the balance between these two forces yields a dynamic topography 
hdyn, which produces membrane stresses due to stretching and gravitational stresses due 
to the topographic gradient.  
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Figure 3.2:  Dynamic topography produced by density-driven mantle flow.  Mantle 
density structure is derived from a seismic velocity (‘RTS’, left panels) or subduction 
history model (‘SLB’, right panels).  The lithosphere-asthenosphere viscosity contrast 
ranges from 10-10,000x and is indicated next to the mantle density model acronym 
(RTS10: seismic velocity model, 10x viscosity contrast across lithosphere-asthenosphere 
boundary). 
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Figure 3.3: Residual topography determined from the TDL lithospheric structure model 
and expanded to spherical harmonic degree 12.  The residual topography represents the 
difference between the predicted isostatic surface topography relative to a reference 
column and the observed topography.   
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Figure 3.4:  Elevation, bathymetry and the associated lithospheric stress patterns in 
Southeast Asia.  Elevation and bathymetry represent observed topography (left 
panel,’NDT’ ~ no dynamic topography) and observed topography minus calculated 
dynamic topography (right panel).  The subtracted dynamic topography is derived from a 
convection model with a 1000x viscosity contrast across the lithosphere-asthenosphere 
boundary and subduction history (SLB) based mantle density model.  White and black 
bars, respectively, represent extensional and compressional principal stresses. 
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Figure 3.5: Elevation, bathymetry and the associated lithospheric stress patterns in Africa.  
Elevation and bathymetry represent observed topography (left panel,’NDT’ ~ no dynamic 
topography) and observed topography minus calculated dynamic topography (right 
panel).  The subtracted dynamic topography is derived from a convection model with a 
10x viscosity contrast across the lithosphere-asthenosphere boundary and seismic 
velocity (RTS) based mantle density model.  
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Figure 3.6:  Same as figure 3.5, except residual topography (TDL) is removed from 
observed topography (right panel). 
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Figure 3.7: Global histogram distribution of changes in principal stress magnitudes.  The 
change in principal stress magnitude is defined as (abs(SPCOref – SPCOdyn)) + 
abs(SPEXref – SPEXdyn) )/2. SPref and SPdyn, respectively, are the principal stress 
magnitudes tied to lithospheric structures without or with dynamic topography removed.  
SPEX and SPCO, respectively, refer to the most extensional and compressional principal 
stresses.  The global distribution illustrates the percentage of each model that contains a 
specific change in stress magnitude.  Left panel: global distributions associated with 
subduction history (SLB), seismic velocity (RTS) and lithospheric structure (TDL) based 
dynamic topography estimates.  The lithosphere-asthenosphere viscosity contrast is 100x 
for both convection based dynamic topography estimates (SLB, RTS). Right panel: 
global distributions associated with seismic velocity (RTS) based dynamic topography 
estimates and a range of lithosphere-asthenosphere (LAB) viscosity contrasts.  
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Figure 3.8:  Absolute stress magnitudes (isotropic extension or compression) due 
instantaneous radial displacement.  Stress magnitudes are plotted as a function of 
dynamic topography (magnitude of radial displacement) and Young’s modulus (1010 – 
1011 MPa). 
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Table 3.1.  Globally averaged changes in stress magnitude between models tied to 
lithospheric structures without or with dynamic topography removed.  TDL refers to the 
model of residual topography, while RTS and SLB, respectively, refer to seismic or 
subduction history based estimates of mantle density structure.  The lithosphere-
asthenosphere contrast is indicated by the number following RTS or SLB. 
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CHAPTER IV 

 

Modification of the Lithospheric Stress Field by Lateral Variations in Plate-Mantle 
Coupling 

 

4.1 Abstract 

The presence of deeply penetrating continental roots may locally increase the 

magnitude of basal shear tractions by up to a factor of 4 compared to a layered viscosity 

structure. Here we examine how these increases in mantle-lithosphere coupling influence 

stress patterns in the overlying elastic lithosphere.  By coupling a mantle flow model to a 

model for the elastic lithosphere, we show that the amplification of mantle tractions 

beneath cratons increases elastic stress magnitudes by at most a factor of only 1.5 in a 

pattern not correlated to local basal traction changes. This disconnect is explained by both 

the integration of basal tractions over plate-scale wavelengths and the effective 

transmission of stress within a homogenous elastic lithosphere, which makes elastic stress 

patterns sensitive to regionally-averaged changes in basal tractions, but not local 

variations.  Our results highlight the importance of regional variations in lithospheric 

strength, which could allow stress patterns to more closely match regional changes in 

basal shear.   

 

4.2 Introduction                                                                                                                         
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The relationship between mantle flow and the lithospheric stress field depends 

strongly on the rheological structure of the convecting mantle, asthenosphere and 

overlying lithosphere.  Previous work has demonstrated that the presence of a laterally-

varying viscosity structure in mantle flow models significantly enhances mantle-

lithosphere coupling beneath deeply penetrating continental roots (Zhong 2001; Conrad 

& Lithgow-Bertelloni 2006; Becker 2006) as thicker lithosphere comes into closer 

contact with deeper and more viscous mantle.  In the case of flow driven by mantle 

density variations, the magnitude of shear tractions at the base of deep continental roots 

increase by a factor of 2-5 when laterally-varying and layered viscosity structures are 

compared (Conrad & Lithgow-Bertelloni 2006).  Here, we look at how increases in shear 

tractions acting at the base of plates affect the stress field in the elastic lithosphere for a 

range of continental structures and different combinations of mantle flow fields driven by 

mantle density heterogeneity and plate motions.   

 

4.3 Combined Modeling of Viscous Flow and Elastic Deformation 

Because it is not yet possible to compute both mantle flow and lithospheric 

deformation within a single calculation at the global scale, we first calculate viscous 

shear stresses acting on the base of the lithosphere using a global flow model (Conrad & 

Lithgow-Bertelloni 2006; Conrad et al. 2007) and then separately calculate the 

lithospheric response to these basal tractions (Bai et al. 1992; Bird 1998; Steinberger et 

al. 2001; Lithgow-Bertelloni & Guynn 2004; Ghosh et al. 2008) using a model for the 

elastic lithosphere (Lithgow-Bertelloni & Guynn 2004).  First, we compute the viscous 

flow field driven by density variations or surface plate motions for a given viscosity 
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structure and extract the horizontal and radial tractions that these flows exert on the base 

of the lithosphere. These tractions are in turn applied to the base of an elastic lithospheric 

model.  This lithospheric model assumes a vertically and horizontally homogenous 

lithosphere in order is to isolate the relative effects of lateral variations in the depth of the 

lithosphere-asthenosphere boundary on lithospheric stresses. 

 

4.3.1 Viscous Flow 

We compute global viscous flow using the finite element code CitcomS (Zhong et 

al. 2000; Tan et al. 2006) with details as described in Conrad et al. (2007).  To resolve 

basal tractions, we use horizontal and vertical resolutions of 105 and 17 km, respectively, 

in the lithospheric and asthenospheric layers, and 100 km vertical resolution in the lower 

mantle.  Flow is driven by internal density heterogeneity below 325 km (density-driven) 

determined from seismic tomography (Ritsema et al. 2004) (0.15 g cm-3 km-1 s (Karato & 

Karki 2001) velocity to density conversion) or NUVEL-1A surface plate motions (plate-

driven) (DeMets et al. 1994).  As in numerous previous studies the upper 325 km of the 

seismic model are excluded because they are partially affected by lithospheric 

compositional variations.   For a Newtonian rheology we may add the density- and plate-

driven flow fields to give the net tractions acting at the base of the lithosphere (e.g. 

Lithgow-Bertelloni & Guynn 2004; Conrad et al. 2007), which are responsible for surface 

deformation.  However, for the purpose of illustration we show the individual 

contributions of plate- and density-driven flow models separately.  While density-driven 

flow tractions do not depend on the absolute mantle viscosity, plate-driven flow tractions 

depend on both imposed plate motion rates and the absolute mantle viscosity Conrad et 
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al. (2007).  As a result, scaling the magnitude of plate-driven tractions in effect adjusts 

the assumed absolute mantle viscosity (i.e., the choice of µum in Figure 4.1b).  Due to the 

uncertainty associated with the absolute upper mantle viscosity, we examine cases where 

plate-driven tractions assume an absolute upper mantle viscosity of 1021 Pa s, or a value 

half as large (i.e., scaled by 0.5), which Conrad et al. (2007) found provided the best fit to 

anisotropy observations.   

Following our previous work we compare, for each flow model, a layered 

(radially symmetric) and a series of laterally-varying lithospheric viscosity structures 

(Figure 4.1b).  For the layered case, the lithosphere, asthenosphere and lower mantle are 

30, 0.1 and 50 times as viscous as the upper mantle, respectively.  The lithospheric 

thickness is set to 50 km or 100 km, and the asthenosphere extends from the lithospheric 

base to 300 km.  In models driven by surface plate motions, asthenospheric viscosities are 

assigned to points within 300 km of plate boundaries in order to dampen artificially high 

stress magnitudes associated with a singularity arising from the piecewise velocity 

boundary condition.  Models with laterally-varying viscosity structures assign an error 

function profile above 300 km using a length scale consistent with half-space cooling for 

oceanic regions (with a maximum thickness of 100 km corresponding to seafloor older 

than ~80 Ma) and the maximum depth of the 1.5% Sv anomaly isosurface from the Gung 

et al. (2003) velocity model for continental regions (Figure 4.1a).  The resulting 

temperature profile is converted to a viscosity structure using a temperature-dependent 

Arrhenius model with an activation energy of 200 kJ mol-1.   Assigning different 

maximum (Hmax) and minimum (Hmin) continental lithospheric thicknesses modifies the 

viscosity structure (Figure 4.1b) and consequently changes traction magnitudes at the 
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base of the lithosphere.  Horizontal and radial tractions are extracted at the base of the 

lithosphere, defined by the viscosity contour 

! 

µ = µum , as indicated by the point along each 

curve in Figure 4.1b. 

4.3.2 Elastic Deformation 

The elastic lithosphere's response to radial and horizontal basal tractions is 

computed using the finite element code ABAQUS v6.6 (Hibbitt & Sorenson 2005) for a 

3D linearly elastic spherical shell (Lithgow-Bertelloni & Guynn 2004).  The elastic shell 

is composed of two layers, each consisting of a single layer of 8 node continuum shell 

elements (for all models) with a horizontal resolution of 110 km.  The upper and lower 

layers are, respectively, 50 km and 100 km thick.  Stress magnitudes scale inversely with 

the elastic layer thickness at these flow wavelengths.  The Young's moduli of the upper 

and lower layers are 1011 Pa and 106 Pa, respectively, while Poisson's ratio remains fixed 

at 0.3 for both layers.  The bottom nodes of the basal layer are pinned to prevent 

translation of the model.  The low Young's modulus of the basal layer prevents stresses 

associated with the pinned basal nodes from affecting stresses in the stiffer upper element 

layer, where stresses are analyzed based on the applied loads. 

We compute the response of the elastic lithosphere to the radial tractions by 

separately computing the membrane stresses associated with dynamic topographic 

deflection and the gravitational sliding effect (gravitational potential energy) from the 

uplift and subsidence caused by the topography (Lithgow-Bertelloni & Guynn 2004).   

Dynamic deflections are given by 

! 

" r /(#$g), where 

! 

" r  is the radial stress at the base of 

the lithospheric mantle, 

! 

"#  is the density contrast between the lithosphere (3200 kg m-3) 

and surface (air ~ 0 kg m-3, water 1020 kg m-3) and g is the gravitational acceleration.  
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Combining the elastic stresses related to basal shear, dynamic topography deflections and 

gravitational sliding give the total elastic stress response to the basal tractions.  

 

4.4 Results 

4.4.1 Laterally-Varying vs. Layered Viscosity 

Horizontal tractions on base of the lithosphere (density- + 0.5*plate-driven) for a 

layered viscosity structure (50 km thick lithosphere) and the resulting elastic stresses 

exhibit long-wavelength patterns (Figure 4.1c and 4.1d) similar to those shown in 

previous work.  Elastic stress magnitudes reflect integration of the basal horizontal 

tractions over plate-scale wavelengths and as a result are on average ~1-2 orders of 

magnitude higher than basal traction magnitudes.  This is not surprising, as an 

examination of Love's thin shell equations reveals that the magnitude of stress resultants 

should be higher than applied tractions by a factor proportional to the ratio of the shell 

thickness to the radius of the sphere.  Replacing the layered viscosity structure with a 

laterally-varying viscosity (Hmax = 250 km, Hmin = 50 km) magnifies the tractions in 

regions with deeply penetrating continental roots by up to a factor of 5 (Figure 4.1e) 

compared to the layered case.  This is because the mantle tractions are transmitted more 

effectively to the overlying lithosphere if the asthenosphere is thin (Cooper & Conrad 

2009).  Variations greater than a factor of 5 only occur in regions with near zero traction 

magnitudes for the layered case.  In contrast, changes in elastic stress magnitudes show 

little correlation with increases in the horizontal traction magnitude beneath thick 

continental lithosphere, and on average only change by a factor between 0.8 and 1.5 

(Figure 4.1f).  Although not shown, only minor variations in the orientation of the most 
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compressive principal stress direction occur, as changes in the lithospheric viscosity 

structure strongly affect the magnitude but not direction of basal shear (Conrad & 

Lithgow-Bertelloni 2006).  The stress regimes, which are largely controlled by radial 

traction patterns (e.g. Lithgow-Bertelloni & Guynn 2004), also show insignificant 

variations because radial tractions are largely insensitive to viscosity structure (Figure 

4.2a). 

 

4.4.2 Plate-Driven vs. Density-Driven Flow 

Global averages of the ratio of basal tractions (Figure 4.2a) with and without 

laterally-varying viscosity for given lithospheric thicknesses (Hmax = 250 km, Hmin = 50 

km) show how increases in basal tractions with increasing lithospheric thickness vary for 

different combinations of density- and plate-driven flow.  Flow driven by only density 

variations shows the smallest increase of the average horizontal traction magnitude ratios 

with increasing lithospheric thickness. This is due to the decrease in flow speed as 

coupling increases beneath thickened lithosphere for density-driven flow, while models 

that impose plate motions lack such a feedback mechanism because the strain rate is 

specified.  Traction magnitude ratios increase as the component of plate-driven flow 

increases relative to the density-driven flow component (red through dark blue lines, 

Figure 4.2a).  By contrast, average ratios of the elastic principal stress magnitude remain 

roughly constant between 1.0 and 1.25 (Figure 4.2b), with the exception of pure plate-

driven flow.  This difference between patterns of basal tractions and elastic principal 

stresses reflects the integration of the basal tractions over plate-scale distances and 

effective transmission of stresses across these distances within a homogenous elastic 
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lithosphere.  As a result, the stress magnitude ratio for the elastic lithosphere represents 

an average of the basal traction ratios across plate-scale distances.  Ratios of radial 

tractions (density-driven flow only) and the resulting elastic stresses show essentially no 

variation between layered and laterally-varying viscosity models (green lines, Figure 

4.2a-b) because normal stresses are effectively transmitted across rheological boundaries, 

while shear stresses are not.   

 

4.4.3 Continental Lithospheric Thickness 

Varying the maximum and minimum thickness of the continental lithosphere 

illustrates relations between global peaks in basal traction ratios (Figure 4.2c) and the 

associated elastic stress magnitude ratios (Figures 4.2d).  For example, as the minimum 

thickness of the continental lithosphere increases from 50 km to 100 km (orange and red 

vs. light blue and dark blue curves, Figure 4.2c-d), peaks in the distribution of both the 

basal horizontal tractions (Figure 4.2c) and the corresponding elastic stresses (Figure 

4.2d) shift from ratio values of ~ 1.2 for 50 km to 1.3-1.4 for 100 km.  For tractions, we 

have shown above that this amplification is due to the deeper average penetration of the 

lithosphere for thicker lithosphere.  Significantly, this amplification occurs even when the 

continental thickness is fixed (orange and light blue curves) and equal to the lithospheric 

thickness in the layered viscosity model.  For these cases, the tractions are amplified for 

the smoothly-varying viscosity structures (light red and yellow curves, Figure 4.1b) 

because these profiles reach the asthenospheric viscosity at a greater depth than the 

layered case (dark red curve, Figure 4.1b).  In other words, the laterally-varying viscosity 

model has a higher "effective" lithospheric thickness than the corresponding layered case, 
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which amplifies the tractions that mantle flow exerts on it. This amplified average 

traction magnitude is reflected in the average elastic stress magnitude. 

A restricted distribution of possible continental lithosphere thicknesses causes the 

peaks of the traction magnitude ratios to become higher and more laterally-restricted 

(orange and light blue curves compared to the red and dark blue curves, Figure 4.2c), 

reflecting the lithosphere thickness distribution that governs the traction magnitudes. 

However, the amplification of peaks for the elastic lithosphere stress distribution (Figure 

4.2d) is not as large as it is for tractions (Figure 4.2c). This is because elastic stress 

magnitudes reflect an integration and subsequent homogenization of the basal tractions, 

which tends to narrow and amplify the magnitude of the peak in the distribution of 

lithospheric stress ratios.  Indeed, for any given continental structure, the peak of the 

elastic stress curve (Figure 4.2d) is higher and narrower than the corresponding peak of 

the traction ratio curve (Figure 4.2c) due to the integration, transmission and resulting 

homogenization of the elastic stresses over large distances.  Thus, the magnitude 

distribution of elastic stresses primarily reflects the average tractions applied to the 

lithosphere, rather than the variability in these tractions. 

 

4.5 Discussion and Conclusions 

This study shows that amplification of lithosphere-mantle coupling beneath 

deeply penetrating continental roots is not accompanied by an equivalent amplification of 

stresses within the elastic lithosphere above continental roots, and produces no significant 

changes in stress regimes or orientations.  Instead, the integration of basal tractions and 

transmission of elastic stresses across large distances in the homogenous elastic 



! "#$!

lithosphere spreads any stress amplification over a wider area.  Changes in elastic stress 

magnitudes centered over thick cratonic roots reflect both amplification of basal shear 

tractions beneath the thick roots, as well as changes in basal tractions over much thinner 

lithosphere, which constitute a much larger percentage of the model. Comparisons with 

stress observations (Lithgow-Bertelloni & Guynn 2004) are unlikely to change 

significantly if variable plate-mantle coupling beneath thick continental lithosphere is 

taken into account. 

We note that the asthenospheric layer in all our models is only a factor of 10 less 

viscous than the upper mantle, smaller than some current estimates  (e.g. Mitrovica & 

Forte 2004).  Reducing the viscosity of the asthenosphere more than one order of 

magnitude would reduce the amplitude of plate-mantle coupling at deep continental roots 

slightly (Conrad & Lithgow-Bertelloni 2006), yielding a small decrease in lithospheric 

stresses and deformation, when averaged globally.  Larger lithosphere-asthenosphere 

viscosity contrasts are thus not likely to affect the observed relationship between changes 

in basal tractions and elastic stresses in any particular location.  Large (> 102) viscosity 

contrasts between the lithosphere and asthenosphere, however, may play an important 

role in plate boundary regions where Ghosh et al. (2008) found that lithosphere-

asthenosphere viscosity contrasts of three orders of magnitude or greater provided the 

best fit to observed strain rate data. 

The minor changes in elastic stresses induced by more significant enhancements 

of mantle-lithosphere coupling at deep continental roots could change significantly if 

lateral variations in lithospheric strength prevented transmission of stresses across 

tectonic provinces.  Previous work has shown that cratonic lithosphere can be effectively 



! "#$!

shielded from mantle-related stresses if it is bordered by weaker tectonic provinces that 

decouple the cratonic lithosphere from external stresses (Lenardic et al. 2000, 2003).  If 

in fact lateral changes in mechanical strength prevented transmission of stresses across 

some tectonic provinces, the lithosphere above thick continental roots would be much 

more sensitive to changes in mantle-lithosphere coupling because the elastic stress field 

would reflect only the stresses at the base of the thick roots.  Modeling of the Australian 

continent (Dyksterhuis et al. 2005) and plate boundary regions (Ghosh et al. 2008) 

demonstrated that lateral changes in lithospheric strength can indeed have a large effect 

on stress patterns in vertically homogenous models.  Thus, future studies should 

incorporate these variations where possible in order to accurately determine the length-

scales over which basal stresses are integrated and transmitted.  Similarly, vertical 

changes in the strength of the lithosphere (e.g. Kohlstedt 1995) may play a strong role in 

decoupling basal shear from the upper parts of the lithosphere, as horizontal shear is 

transmitted much less effectively than radial stresses across rheological boundaries.  

Lithospheric models containing lateral and vertical variations in rheology and thickness 

are likely required to properly asses the relationship between mantle flow and 

lithospheric stress patterns.  In that event, observations of stress and deformation patterns 

may provide new constraints on mantle viscosity structure and strength variations 

between lithospheric provinces, which are otherwise difficult to constrain (e.g. Paulson et 

al. 2007). 
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Figure 4.1: Lithospheric thickness determined with a half-space cooling model for 
oceanic lithosphere and from the 1.5% Sv contour (anomaly isosurface) from Gung et al. 
(2003) for continental lithosphere (a).  Depth versus log of the viscosity divided by the 
reference upper mantle viscosity (µum) for layered and temperature-dependent viscosity 
structures (b).  The maximum viscosity cutoff is set to 103*µum and the dots in (b) 
indicate the depth at which basal tractions were measured for lithosphere of a given 
viscosity profile.  Orientation and magnitude of horizontal tractions measured at the base 
of the lithosphere for a layered viscosity structure (c) and the resulting most compressive 
elastic principal stress directions and magnitudes (d).  The horizontal basal tractions are 
extracted from combined density- and plate-driven*0.5 flow fields.  In the elastic models 
compressive stresses are defined as negative.  Ratio of the magnitude of horizontal basal 
tractions (e) and related elastic most compressive principal stress (f) between layered and 
laterally-varying (temperature-dependent) viscosity structures.  The laterally-varying 
viscosity model contains minimum and maximum continental lithospheric thickness 
values of, respectively, 50 km and 250 km. 
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Figure 4.2: Ratio (laterally-varying/layered viscosity) of horizontal (

! 

" h ) and radial (

! 

" r ) 
basal tractions magnitudes (a) and the most compressive elastic principal stress 
magnitudes (b) as a function of lithospheric thickness.  Curves are shown for plate-driven 
flow, density-driven flow and combinations of density- and plate-driven flow.  The 
layered viscosity thickness is 50 km and the laterally-varying viscosity models contain 
minimum and maximum continental lithospheric thickness values of, respectively, 50 km 
and 250 km.   Regions where the elastic stress magnitude is less than 3% of the maximum 
value are not included in order to eliminate the influence of high ratio values associated 
with low absolute stress magnitudes.  Percentage of a model with a given ratio (laterally-
varying/layered viscosity) for (c) net horizontal basal tractions (Density- + 0.5*Plate-
Driven) and (d) associated elastic lithosphere stresses (including the stresses generated by 
radial basal tractions, although tests show that the inclusion of radial tractions does not 
affect the percentage distributions significantly).  Legend symbols describe the 
continental lithospheric structure associated with each percentage-ratio curve: 
LV_Hmin_Hmax ~ laterally-varying viscosity (LV), minimum continental lithospheric 
thickness (Hmin) (note that when Hmin=Hmax the continental thickness is constant but the 
oceanic thickness is not), maximum continental lithospheric thickness (Hmax); LAY_H ~ 
layered viscosity (LAY) and lithospheric thickness (H).  
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CHAPTER V 

 

Conclusions 

 

At the onset, the primary goal of this thesis was to reexamine the forces acting on 

and within the lithosphere in order to provide better constraints on the processes 

controlling the total lithospheric stress field.  The motivation for this reexamination was 

largely based on the results of Lithgow-Bertelloni & Guynn (2004), who found large 

discrepancies between observed (Zoback 1992) and predicted global stress patterns in 

many regions.  Lithgow-Bertelloni & Guynn (2004) largely attributed the discrepancies 

to 1) oversimplification of the lithosphere’s density structure and isostatic state, 2) 

enhanced plate-mantle coupling at the base of thick continental roots and 3) the 

assumption of strong mechanical coupling throughout the entire lithosphere.  While 

maintaining the assumption of mechanical coherence throughout the thickness of the 

lithosphere (i.e. thin elastic shell), Chapters II/III and IV, respectively, explored the 

effects variable lithospheric structure and enhanced plate-mantle coupling beneath thick 

continental roots on global stress patterns.   

The results from Chapter II reveal that lithospheric thickness, composition and 

isostatic state strongly influence stress patterns related to gradients in integrated 

lithostatic pressure.  As lithospheric thickness varies significantly across tectonic 

provinces, the required assumption of a uniform base depth brings into question whether 
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the integrated lithostatic pressure method is appropriate for determining stress patterns in 

the lithosphere.  Although this method is also used to examine the influence of dynamic 

topography on lithospheric stress patterns (Chapter III), the results clearly demonstrate 

that on a regional basis stress patterns are highly sensitive to the amplitude of dynamic 

topography.  On a global basis, however, changes in stress magnitude when dynamic 

topography is subtracted from surface topography are relatively consistent for different 

estimates of dynamic topography, with orders of magnitude variation in the lithosphere-

asthenosphere viscosity contrast having a relatively moderate influence.  This indicates 

that no reasonable variation in the viscosity of the asthenosphere or lithosphere will 

reduce the presence of dynamic topography enough to remove its influence, which is 

logical as the radial component of stress is efficiently transmitted across rheological 

boundaries.  Last, we demonstrate that when long-wavelength basal shear patterns are 

applied to a homogenous elastic lithosphere, increases in plate-mantle coupling beneath 

thick continental roots do not produce an associated large increases in local stress 

magnitudes, but rather regionally distributed changes in stress magnitude (Chapter IV). 

  The common theme that emerges from the results of each chapter is the critical 

importance of transitioning from depth-independent models to models incorporating both 

lateral and vertical variations in lithospheric rheology.  The results presented in this 

thesis, particularly those in Chapters II and IV, strongly suggest that this transition to 3D 

models with variable lithospheric rheology is necessary in order to calibrate how different 

sources of stress contribute to the total lithospheric stress field.  Indeed, previous work 

has shown how using even simplified first-order depth-dependent material properties 

leads to stress distributions that deviate from the solutions obtained by depth-independent 
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studies (Kusznir and Bott 1977; Bott and Kusznir 1979 ; Liu et al. 2000).  Considering 

the strong dependence of the depth-independent stress field on the assumed lithospheric 

density structure and thickness (Chapter II), incorporating such first-order variations in 

lithospheric strength (i.e. asthenosphere vs. lithosphere, mantle vs. crustal lithosphere) 

will allow a self-consistent determination of how stresses are distributed between regions 

with large variations in lithospheric structure.  Likewise, first-order variations in both 

vertical and lateral strength are likely to strongly control how the lithosphere responds to 

enhanced plate-mantle coupling beneath thick continental roots, which for long-

wavelength loads and a homogenous elastic lithosphere is a regionally distributed 

response rather than enhanced local deformation (Chapter IV; Naliboff et al. 2009).  

Although controversial (e.g. Jackson 2002; Burov & Diamont 2006; Regenauer-Leib et 

al. 2006; Hartz & Podloadchikov 2008; Thatcher & Pollitz 2008; Burgmann and Dresen 

2008), more complicated strength profiles can lead to strongly depth-dependent 

deformation (Pysklewec et al. 2002; Beaumont et al. 2004; for example), in which case 

the results from depth-independent models will no longer have any significant meaning.

 Although the primary conclusion of this thesis is that depth-independent models 

of lithospheric stress are not suitable for determining the origins of the lithospheric stress 

field, it is important to note that counter arguments do exist for coherent deformation 

through the lithosphere.  In particular, observations of seismic anisotropy have been used 

to argue for vertically coherent deformation through the Australian lithosphere (Simons 

et al. 2003) and between the crust and mantle in Tibet (Holt 2000; Flesch et al. 2005).  

These findings for Tibet are seemingly at odds with observations of lower crustal flow 

(e.g. Royden et al. 1997, Clark and Royden 2000), which suggest that significant 
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variations in lithospheric strength occur as a function depth.  Notably, observations of 

seismic anisotropy provide no information regarding the magnitude of stress, but rather 

provide information regarding the alignment of olivine crystal axis, which is inferred to 

coincide with the orientation of maximum strain.  Perhaps a strongly-depth dependent 

stress field may in fact be compatible with correlations between surface deformation and 

anisotropy in the lithospheric mantle, or alternatively the seismic anisotropy observations 

simply reflect rheological processes that are not relevant at tectonic time scales.  Future 

work should focus on regions where high-resolution estimates of lithospheric structure 

are available.   

In particular, the Western United States may serve as an ideal laboratory to test 

how regional depth-independent stress patterns (e.g. Jones et al. 1996; Flesch et al. 2000) 

compare with models of 3D lithospheric deformation.  Although the crustal structure of 

the Western US is comparatively well known, recent high-resolution seismic (USArray) 

and gravity (GRACE) data is likely to significantly improve estimates of both 

lithospheric thickness (e.g. Li et al. 2007) and strength (e.g. Lowry et al. 1994, 1995, 

2000).  Thus, future studies of the Western US may provide the unique opportunity to 

both understand how rheology controls the distribution of stress within the lithosphere 

and calibrate the relative contribution of lithostatic pressure variations, plate boundary 

forces and mantle flow to the total lithospheric stress field. 
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APPENDIX A 

 

Numerical Method and Validation 

 

The numerical methods used in Chapters II-IV closely follow the methods 

outlined in Lithgow-Bertelloni & Guynn (2004).  The model geometry is defined as a 

spherical shell, whose thickness (10’s – 100’s of km) and circumference (~ 40,030 km) 

matches the geometry of the solid earth’s uppermost boundary layer.  The spherical shell 

is discretized into sub-domains (Figure A.1) defined by 8-node equal area elements 

(Figure A.2), whose length on each side is either 2o (~ 220 km) or 1o (~ 110 km).  

Radially, the shell is divided into two element layers (Figure A.2), where the 

mechanically strong (Young’s modulus - 1011 Pa) upper element layer represents the 

lithosphere and the mechanically weak (Young’s modulus – 106 Pa) lower element layer 

acts to prevent the pinned basal nodes from affecting stresses patterns in the upper layer.  

Although a thin (1 km) element layer is depicted in Figure A.2 between the upper and 

lower element layers, this layer was not used utilized in this thesis due to expanded 

element capabilities in the selected finite element solver.  The thickness of the lower 

element layer is fixed at 100 km, while the thickness of the upper layer varies between 

chapters according to different estimates of lithospheric thickness and structure. Loads 

are applied directly to the upper element layer (Figure A.2) and all analyzed stress 

patterns are extracted from this layer.   
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Throughout the thesis, all results are obtained using continuum shell elements 

although using continuum elements provides nearly identical solutions.  Stress and 

deformation patterns are calculated using the commercial finite element package 

ABAQUS (Hibbit & Sorenson 2002).  Although Lithgow-Bertelloni & Guynn (2004) 

performed extensive validation of the numerical setup, we provide further numerical 

validation here by comparing calculated stress patterns to the analytical solution of a 

pressure vessel.  In the pressure vessel scenario, a uniform radial load is applied to the 

base an elastic shell, which results in outward expansion of the shell.  The resulting stress 

patterns in the expanded shell are dominated by ‘hoop stresses’, or stresses acting parallel 

to the plane of the shell.  Inherently, the radial stresses are significantly smaller than the 

in-plane stresses and decrease linearly from the base of the shell, where the stress is equal 

to the applied pressure, to the free surface where the radial stress is zero.  The in-plane 

stress magnitudes within the shell are equal to (P*r)/(2*t), where P is the radial basal 

pressure, r is the spherical radius and t is the shell thickness.  For a basal pressure of 106 

Pa, a radius of 6271000 meters and a shell thickness of 100000 meters, the in-plane stress 

magnitudes within the pressure vessel are 31.355 MPa.  Applying the radial basal 

pressure of 1 MPa to the base of the upper element layer with a horizontal element 

resolution of 2o gives in-plane stress values between 31 and 32 MPa, which closely 

matches the analytical solution for the pressure vessel.  
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Figure A.1:  Illustration of 2ox2o global mesh from Lithgow-Bertelloni & Guynn (2004, 
Figure 4).  Global mesh is shown from the perspective of a polar view (a), intersection of 
the prime meridian and equator (b) and map view including continents and plate-
boundary regions (c). 
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Figure A.2:  Illustration of numerical model element geometry and applied loads from 
Lithgow-Bertelloni & Guynn (2004, Figure 5).  Note that in this thesis the middle thin 
shell element layer is not included as mantle tractions are applied directly to the base of 
the upper element layer. 
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