THE UNIVERSITY OF MICHIGAN

Technical Report

The Engineering Assistant:
DESIGN OF A SYMBOL MANIPULATION SYSTEM

Edgar H. Sibley

CONCOMP : Research in Conversational Use of Computers
ORA Project 07449
F.H. Westerveilt, Director

supported by:

DEPARTMENT OF DEFENSE
ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTON, D.C.

CONTRACT NO. DA-49--083 0SA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1967

ABSTRACT

This paper presents the design of a symbolic mani-
pulation system from the viewpoint of a series of gquestions
on user requirements, computer speed, generality, and exten-
sibility. It then describes a working system designed for
experimentation of computer aids in engineering algebras
of various regimes, intended to be as general as possible in

application.

iii

CREDITS

Part of the work reported in this document was
made possible through the support and sponsorship extended
to the Massachusetts Institute of Technology, Electronic
Systems Laboratory, by the Manufacturing Technology Labora-
tory, RTD, Wright-Patterson Air Force Base, under Contract
No. AF-33(657)-10954, M.,I.T. Project No. DSR 9442, Part of
the work was performed in the Design Division of the Me-
chanical Engineering Department, M.I.T.

Work reported herein was also supported in part
by Project MAC, an M.I.T. research program (Office of Naval
Research Contract No. NR-4102(01)), and by the Concomp
Project, a University of Michigan research project (Contract
No. DA-49-083 OSA 3050). Both Project MAC and the Concomp
Project are supported by the Advanced Research Projects

Agency of the Department of Defense.

TABLE OF CONTENTS

Page

ABSTRACTI...B.'OOOCCOOOQOQOQOOOIOQOOB...l...!..O.. iii
CREDITS..ceceecees ceescscoessessse s S .o v
LIST OF FIGURES. .. ceeeeonescenns cheeseecsereennsne ix
1. INTRODUCTION...veeeses ceesen cre e cececnenn 1
2, SYSTEM DESIGN:.ooesss ceececsenecesvns ceeeeseons 11
2.1 System Design ConstraintS....e....eeeeees 15
2.1.1 Data Structure.....eeeeeeeeeecsnss 15
2.1.2 ©Special Delimiters.....eeeeee.. - 15
2.1.3 System Constants and Identlflers 15

2.2 Definition of Operators, Functions, and
Variables..... ceseesnas Ceseeseessenaas . 18
2.3 Input of EXpressSiOnS.cecececscesccss oo 18
2.4 Basic System PrimitivesS....eeeeesescs . 20
2,5 Input of New ProcedureS...ceceeeeesesess 20
2,6 Primitive and Procedural Application.... 24
2.7 The Command Language€....eceeeess Ceeeeann 24
2.7.1 Commands for OFV Definition...... 24
2.7.2 Commands for EXpressionS......... 27
2.7.3 Commands for Procedural Definition 28

2.7.4 Commands for Primitive and

Procedural Application........... 28
2.7.5 Commands for Display of User Data 29
2.7.6 Special System CommandS.......... 29
2.7,7 The LET Command....ceeeeeeeacescs 30
3. CONCLUSIONG::seeeesoesaoscoasssscsssscasssssss 31
REFERENCES .. cccoecseescss ceoene cecsessee cveesasee 32

vii

Figure

LIST OF FIGURES

Page
System Flow Chart........... ceseeaan oo 12
Computer-Generated Output of Expressions.. 19
Simple Procedural Examples and their
Application, with Errors.....cceeeeee... “ee 22
Simple Command Language ExampleS.......... 25

ix

1. INTRODUCTION

This article is intended primarily to describe the
design of a presently working interactive symbol manipulation
system, but the reasons for a given course of action and the
implications of it are common to the design of other languages.
The purpose of this introduction is therefore to formulate the
questions that must be asked prior to finalizing the design
of such a system, to discuss possible alternatives, and to
suggest the implication and effect of the alternatives.

At the start of any computer project, decisions are
made, These decisions are sometimes based on expediency, such
as local availability of source languages, sometimes on know-
ledge of a specific softwear scheme, and sometimes on the organi-
zation of the particular machine being used. Whatever the
reasons for them, their effect will be felt both by the de-
signers (or implementers) and users of the system. Many
people in the computing indﬁstry, however, tend to assume
that certain basic practices are Universal Laws. The system
designer should consider whether these sacred cows are neces-
sary or reasonable. Examples will be given later, but typical-
ly we have the question of fixed syntax, using predefined
precedence, excluding postfix operators, etc.

Thus some of the questions revolve around the syntax
and semantics of the symbolic language being manipulated, and
the system commands that effect manipulations, while others
center on the utilization of space and computer time, and af-
fect the way that the data and procedures are stored within
the machine. The answers to these questions must devolve on
the anticipated use and generality of the system, and it is
obvious that there will always be a spectrum of symbolic
manipulation systems, varying from the specialized, rapid,
space-limited system to the slow, space-filling, general system.
The first of these will be good for solving special one-shot

-1-

-2-

problems, while the other may be useful for more general-pur-
pose problem solving and as an experimental tool for designs
of the former. The prime intent of the system described
here falls in the latter category; it is not intended to be
a machine-economical system.

We have now, therefore, described our first de-

sign question:

I, 1s the system intended to be used for fast
"production" type operations, orn Ls At to be a general
expenimental tool?

Obviously the decision rests somewhere within a relatively
large range, and the answer to this will affect some of
the later questions.

Several considerations will affect the rigidity
of the system. These have to do with the way of storing the
data, the way of operating on the data, and the ability to
add to the system. They are characterized by the type of
data storage, the type of procedural language, the storage
of the procedural language, and the syntax and semantics of
both the command language and the symbolic language. To
illustrate this, consider the LISPl‘language, which uses
the same structure for both its data and procedures, which
allows procedures to be used as data by other procedures.

In such a system, where procedures are treated in the same
way as data, the procedures are modifiable both by the pro-
grams as well as the user. They also provide a variable
syntax and semantics of both command and symbolic language.
LISP and similar languages are therefore extremely general,
but they are relatively difficult to program by a novice.

At the other end of the scale, there are languages like
FORMAC2 which work with a fixed syntax, are relatively fast,
are not simply modified, but can easily be programmed by any-
one with FORTRAN IV capabilities.

-3

There are probably three basic ways to store data:
in sequential storage in the form of tables; in threaded
lists; and in hash-coded associations.* Because of problems
of deletion and insertion, tables of sequential storage are
seldom used for symbol manipulation. The TRAC3 language 1is
an exception to this rule. Probably the commonest method of
storage of data for symbol manipulation is in the form of
lists, e.g., LISP and SLIP4. The use of hash-coded addressing
in storage of associations, as described by Feldman5 and
others, would be somewhat clumsy for the storage of the main
symbol strings, but is very useful if it is necessary to des-
cribe some of the attributes of the various elements, e.g.,

of the operators. Thus the second question is:

IT. What 48 Zo be the prime method of stoning Zhe

input data?
With this is associated the question:

T1T. T4 usern-specified procedures are to be added,
how are they fto be stored?

and also the question:

IV, 1§ propernties of various Ltems, such as
openatons, are to be specdfied, how are they to be stored?

Obviously some of these questions will be redundant in a
system dealing with fixed syntaxs
In the Engineering Assistant, the prime decision of

maximum generality requires a non-fixed syntax, with the

* These can be looked on as partially content-addressable
storage.

ability to define new operators and modify the properties of

old operators, where necessary, by the user. Thus the formula
parser is intended to be written as a user-modifiable procedure,
which could take count of both unary and binary operators,
defined as either prefix or postfix, and in the case of

binary also as infix, Further generality is also added by
allowing the association rules of different operators to be
either from the left or from the right. This allows the parsing
of expression as either normal algebra, backward or forward
Polish, or even mixed, such as the case of predicate calculus

or integral calculus:
(¥ x[d y(x = y)])
[/ (sin x) dx]

where V¥, T , and J can be considered as prefix binary

operators, and even:
(((2(H¥2)) + (0v2)) = (2((H¥2) 0)))

where the implied operators associate to the right, etc. 1In
order to achieve this generality, the properties of separate
operators must be capable of user definition or modification
and are, in fact, stored in list form, although in this case
a hash-coding scheme may have been better.

' At this point, another important decision must be
made. This is the relation between the input string and its

internal representation, and vice versa. In other words:

Vo 1s an input statement to be retained in such a
gashion that it can bettern be displayed Zo the user in a form
identical to his Anput?

-5-

Once again, this is a question with many possible answers.
For a fast system, it may be necessary to modify the form
in such a way that it is stored or manipulated economically.
The degree of difference between the input and output of a
sentence may, however, affect the user acceptance of the
system., When the user inputs the string "2x" , he may not
object to this being modified to "2 x" , whereas he may
object to its being changed to "x*2" . The first of these
examples merely illustrates the fact that the input program
has recognized that the input string consists of two
characters and has stored them accordingly, while the second
example, having recognized this fact, has inserted a multipli-
cation symbol (*) and transformed the expression into a
canonical form where the alphabetic symbols are defined as
preceding the numbers. Admittedly this example is contrived,
but it is intended to suggest that a canonical ordering and
implications may lead to awkward user-expressions. Another
example of potential difficulty is found if the expression is
changed into Polish form by the input routine. Unless special
markers are used to delimit user-inserted parentheses, the
expression will not be retained in the output form. For
example, if the user'’s input is (a+b) + {(at+b+c), which
represents some specific groupings that the user wishers to
retain, it would be unfortunate to reprint his expression as
atb+a+b+c or, a+atb+b+c , because this removes some of the
meaning from the original input expression.

For these and many other reasons, the Engineering
Assistant is intended to retain the maximum compatibility be-
tween an input expression and its later output, with one
major difference: blanks are always assumed as delimiters
of atoms, and they are not retained internally. This means
that the number of blanks in an output string is predicated
only by the separation of the separate atoms. In future
designs of the system, this lack of generality may be deemed

sufficiently important to have the restriction removed.

-6-

The above paragraph has already shown two further
problems in generality: the delimiting of the atomic parts
of an expression, and the inplicit or explicit definition
of variables. For although it is quite normal to consider
the expression "2x" as consisting of two atoms, it is
not necessary; nor is it necessary, or even likely, that the
expression "x2" consists of two atoms. Now the atomic
elements of most languages are formed on a series of rules
of the form, "Numbers cannot appear at the beginning of
atomic variables," or, "If a non-numeric and non-alphabetic
character occurs in a word, it is assumed to be a delimiter."
It would obviously be an advantage to the user to be allowed
to define what his particular input rules were. Unfortunately
this is extremely difficult, and in the first version of the
Engineering Assistant, numbers were assumed to be separated
from other characters. The problem of variable definition
is discussed in many different ways. The arguments go from
the statement: "All parts of the input string which are not
numbers or special delimiters will be broken out as variables
(sometimes with prescribed maximum length)," through "All
single characters are considered variables, other strings
must be predefined or are considered errors," to "All
character strings which are to be considered as variables
must be predefined."

The first of these statements is typical of LISP
and the latest version of the Engineering Assistant, the
last is used by those who feel that maximum redundancy
allows for error checks, while FORTRAN and many other compilei:
fall somewhere in between. This therefore brings us to the

questions:

V. What are the delimitens, and how are the
atomic elements forimed?

and also
VIT. Anre vardiables to be degined explicitly?

The actual data representation can be either in
the form of the input string or lists. Since most formula
manipulation systems work faster on parsed expression, in-
ternal representation is normally substantially different
from external representation. The reason for this is
obvious, but may be illustrated by the following example.
If we know that x = a+b , and we have the expression
y = atb/2 , can we make the substitution? With a simple
string manipulator, it may not be obvious that this substi-
tution is impossible. But if the expression is fully parsed,
then we have (y = (a +(b/2))). There is now no match on
the string (a+b) in the above expression, and thergfore
no syntactic substitution error can be made. The question

that arises is:

VITI. How far should the Ainternal representation
differn grom a fully parsed form?

There are probably three different ways of representing an
expression in a parsed state: as a string with parentheses
inserted (as in the above expression)*, as a series of
lists and sublists; or in one of Lukasziewicz's forms. It
should be noted that the normal LISP interpretation is highly
redundant, being a fully parsed Lukasziewicz notation using

a fixed syntax, i.e., predefined prefix operators in the

form of lists and sublists, which suggests that the LISP
language has certain disadvantages when the expressions are

to be stored as normal lists.

* The use of "markers" in a string is merely a "parenthesizing"
using different symbols.

-8-

In the Engineering Assistant, the internal storage
is in the form of SLIP lists, with fully sublisted forms,
and mark ers to show whether the parentheses were inserted
by the user or by the machine during parsing. The ordering
of the operators and operands is, however, retained com-
pletely throughout the manipulations, although the lists do
not contain the actual operators and operands but pointers
to these on special lists. These special lists are necessary
in order to be able to determine rapidly whether elements
were operators or operands, and in order to use ambiguous
definitions of multiply defined operators and operands.

This latter fact will be explained later in more detail.

The whole problem of the command language, and the

manner in which procedures are written, affects the man-

machine interface. The next question is therefore:

IX., How versatile should the command Language be?
Does At contain debugging alds? Are procedures and command
Language modifiable by the usenr?

The presentation of a good human-engineered system will af-
fect its use, and hence the interface must be either extreme-
ly well designed or else user-modifiable, or both. Thus
JOSS6 is a relatively simple system, but extremely well
human-engineered, which has led to its extensive use. The
intent of the Engineering Assistant is to provide the tools
necessary to modify the command language and hence to allow
a good system to evolve; this will be described in more
detail in the next section.

Finally, the design requirements of an engineering
manipulation system have been described elsewhere,7 but they

may be summarized as follows:

1. Symbols for operators, functions, or variables do
not have unique meanings, for the same symbol or group of
symbols may be used for entirely different purposes in
different (or even the same) context, e.g., the symbol
+ in the expression A + kB + C , where A, B, and C
are matrices and k 1is a number.

2. Associated with each operator, function, or variable
is a set of properties or values, etc. Thus an operator may
be unary, have a precedence with respect to other operators,
a numerical evaluation procedure, or a special way of writing
its operands (e.g., in the case of exponentiation, the
second or "right" argument is diminished in size and elevated
above the line, and the operator symbol disappears from the
expression). Similarly, a variable may have many properties
such as its numerical value, a precision or tolerance, or a
special procedure for printing it out (e.g., in the -case of
a matrix, the numbers are arranged in the box form rather

than a long string).

These are derived from the operator-operand concept, and the

following operations or procedures are needed by the system:

(i) Many properties of the operator (and its
operand) can be best associated directly with that operator

(or operand) . *

These include such items as:

a. Descriptions of general properties
(e.g., UNARY)

b, Descriptions of transformation rules,
etc. (e.qg., SIN42x = 1 - COS+2x).

* Hence the potential use of hash coded association or
relations.

-10-

¢, Procedures, e.g., for their evaluation
if operators or procedures, or their graphic display if an

argument.

(11) The external user does not generally fully
parenthesize an expression, but it is not tractable in this
condition and should therefore be parsed for internal use.
However, this change should not be obvious to the user, un-
less he specifically requests it.

(1ii) Although the user may understand his symbols,
the computer may not have enough information to process the
expression. This does not matter until user-interaction is
needed, The computer should try to “resolve" the expression
into components that have meaning, without infuriating the
user with questions, and be satisfied with partial resolu-
tions until either the information is forthcoming, or the
user asks for aid, in which case questions must be asked to
help in resolution.

(iv) Transformation rules should be both simple
to input and to apply; they consist of the axioms or theorems
of the symbolic system. Application of these rules may in-

volve any or all of three types of conditional actions:

a. matching the rule with the expression
or part of the expression;

b. checking the relationship between the
parts to see whether the rule can be applied;

c. checking the arguments to see how they
are replaced, i.e.,there may be conditions associated with

the replacement type, etc.*

* e.g., in predicate calculus, the axiom V¥ x A(x)=>DA(t)
is applicable only if "A 1is a well-formed formula, and t
is a term free of x in A ." Thus the replacement condi-
tion is: Replace A(t) by A with all its free occurrences
of x replaced by t , but naturally none of its bound

occurrences, Then A(x) 1is replaced by A .,

-11-

(v) The "evaluation" of an expression involves
a general procedure but different methods of evaluation for
the different operators and the various regimes or uses of
these operators. The process must be recursive, and is as

follows:

a. find the "top" operator;

b. find its variables;

c. 1if the variables are "evaluated,"
apply the procedure for the operator to the variables;

d. if not, apply the entire evaluation
procedure to the sublist(s) until they are "evaluated" and

then do the procedure of (c) .

(vi) Many complex operations (macro-operators)
are made up of simple operations. These are procedures of

symbol manipulation.

2. SYSTEM DESIGN

Before embarking on lengthy descriptions of special
parts of the Engineering Assistant program, a short explana-
tion of the system will be given., As described at the end
of the last section, certain design decisions were made.

The first requirement of the system is a method of defini-
tion of the operators, functions, and variables of the user's
syntax. For this implementation, the information is arranged
in the form of SLIP lists, and the heart of the system con-
sists of the operator-, function-, and variable-definition
program, which produces, as data of the system, the operator-,
function-, and variable-lists. Figure 1 shows the overall
system flow chart; the circles denote program, i.e., non-
user-modifiable, parts of the system. The user, interacting

with the CONTROL program, may define a new operator, putting

Expression
List

Expression
Input
Program

Operator-

Procedure Operator-

Function- ‘ X \
Primitive ‘ Variable- 52??2;22—
I\ Definition ' Lists

Procedure
Definition
Program

Primitives

Procedure
List

Data In

Program > Data

oot
Data Out

Figure 1l: System Flow Chart.

-13-

new data into the operator list; in contradistinction, when
defining new properties of a previously defined opefator,
the operator definition program must quiz the list to ob-
tain its location prior to insertion of the new data. The
flow of information between this program and its list is
therefore in two directions,

The second requirement of the system is a means
of inputting an expression. Obviously, unless some special
delimiter (such as a blank) is used to break up the input
expression into its component parts, the input program must
be able to refer to the operator-, function-, and variable-
lists to make comparisons, to recognize existing symbols,
so as to reduce the expression to its atomic parts. The
expression-input program therefore uses information in the
operator-, function-, and variable-lists to break the ex-
pression into known groups of symbols; it then defines all
unrecognized groups as new variables within the system.

Since this program is basically designed for the
manipulation and evaluation of expressions, it requires a
set of primitive programs for such operations. These primitives
range from the extremely general to the highly specific. Since
these cannot be changed by the user, they are shown as "pro-
gram" in the system flow chart. However, because the primi-
tives are not sufficient (in themselves) to do complex mani-
pulations, a means is necessary for concatenating these
primitives into a "procedure." Thus a procedure consists
of a string of primitives that are executed in sequence ex-
cept when a conditional statement or a transfer statement
allows breaks or jumps in the program. Hence the procedures
are the basic programs within the system. In order to in-
put a procedure, the procedural-input program is used. This
program "compiles" the procedure into the correct form, mak-

ing error checks, and produces a procedure list.

-14-

Primitives or procedures are applied by another
special (interpretive) part of the program that draws pro-
cessing information from procedures and/or primitives and
produces either immediate answers for the user, or generates
new expressions or new information for the operator-, func-
tion-, or variable-list, or even a new procedure.

The user must also be able to interrogate any
of the lists to determine the present state of the data
(the user-defined "constants") of the system via a display
program. These "constants" are the data in the operator-,
function-, and variable-procedure and primitive lists.

The basic or meta-language of the system (the com-
mand language) will be discussed later.

The basic system is designed to allow:

1. definition of operators, functions, and
variables;

2, 1input of expressions (which the computer pro-
ceeds to break into atomic parts);

3. input of procedures made up of primitives and/
or other procedures, which are compiled into a special form;

4, application of primitives and procedures to
produce new information by manipulation or evaluation;

5. display of all user-generated information

presently available in the system.

To facilitate finding and correcting errors and violations
of command language rules, some basic debugging tools have

been built into most of the parts of the system.

-15-

2.1 System Design Constraints

The particular design constraints in this sysfem
involve the method of storing data, length of words, special-

ly defined delimiters, and system "constants."

2.1.1 Data Structure

It is quite evident from the outset that the data
of the system (defined originally to include operators,
functions, and variables, expressions and procedures) will
be constantly changing. New data must be inserted, and
old data deleted for almost every operation. The necessity
of using lists rather than blocks of storage is therefore
almost self-evident. The system flow chart (Figure 1) shows
three basic types of lists., They do not all have the same
requirements, but they can all be programmed in a slightly
modified version of SLIP, which was, indeed, the programming

tool used.

2.1.2 Special Delimiters

Delimiters are often needed to determine the scope
of an expression, and are taken for granted, or understood,
by the user. The computer, however, requires special

characters:

parentheses ()
brackets [

period .
comma
blank

carriage return D

-

(o)

-16-

Because a list is usually delimited by parentheses
() or brackets [] , these two symbols are given the
status of special delimiters. Since they are paired, they
give rise to one unfortunate problem: many users are not
careful to see that each left parenthesis has its matching
right parenthesis. The somewhat arbitrary choice of a zero
level count (i.e., using +1 for left and -1 for right
parenthesis) was adopted to delimit a listed expression, which
means that an additional closing parenthesis in the middle
of the expression may destroy information beyond the point
where zero count occurs, thus invalidating the expression.

The period (decimal point or binary point) is
commonly used to delimit whole from fractional numbers.

Were the period used also as a character (such as multiply),
it would be impossible to tell whether the string 2.3 stood
for a decimal integer, two and three-tenths, or the product
of two times three. For this reason, the period is used as

a special number delimiter, and its use inside a non-

numeric word is forbidden.

The comma is treated as a special character. It
is made into a separate word; thus a comma cannot be used
within a symbol or variable name.

Because the blank is often used in script as a
delimiter, it also was given the status of a special break
character, which does not appear in the internal representa-
tion,

The carriage return on the typewriter is a line

delimiter, and is treated in three ways by the system:

a, 1f the next line contains further information,
the carriage return is a simple delimiter;

b, 1if the next line is blank (i.e., there are two
carriage returns in succession), the expression is assumed
to have been closed, i.e., all necessary right parentheses,

etc., will be added by the computer to finish off the lists;

-17-
¢, 1f the expression has an extra right paren-
thesis, the carriage return is treated as an end to the ex-

pression,

2,1.,3 System Constants and Identifiers

Although it may seem arbitrary to differentiate
between a delimiter and a system constant, there is a basic
difference in the way that these are treated. Thus a
number, with or without a period, is treated as a special
item in the system, and is "marked" accordingly. The main
effect of this is apparent upon read-in of an equation or
expression., To conserve space and time, the equation is
completely scanned to determine its various atomic parts.,
Each operator, function, or variable is separated from the
string of characters, and the characters are replaced by
pointers to the particular list on which the element resides.
However, all numbers are left in the list itself, appropriate-
ly identified as such. Thus in the expression A+2 , A is
replaced by a pointer to A (on the variable list) and
given an identification mark of 6; + 1is replaced by a
pointer to + on the operator list, and given an identifi-
cation mark of 4; and 2 is left on the expression list, but
marked with a 1 for integer.

There is one further system constant: the "absence
of information." It is always difficult to decide which
character to use for this purpose, for the all-zero or all-
blank can be valid information. We arbitrarily decided to
use the octal number 5700570057 as the null of the
system, although almost any other non-printable set would

be acceptable,

-]18=-

2.2 Definition of Operators, Functions, and Variables

There are two principal uses of the operator-,
function-, and variable-lists (henceforth abbreviated to
OFV lists), which materially affect the form of the list.
The first use is during input of expressions; the second

is for storing the element properties.,

2.3 Input of Expressions

The simplest way to input an expression is to read
it character by character, and store it in exactly the
same way. This retains the exact form of the input, and
insures that the meaning will not be distorted. Such a
string form, however, is extremely space- and time-con-
suming and is difficult to manipulate within the computer.

If we assume no previously defined OFVs, the in~
put is constrained only by the system design constraints.
Thus, given a string of characters, each symbol is scanned
to determine whether it is one of the special delimiters or
a number., When one of these is found,it is either broken
out, or appropriate action taken (e.g., a sub-list is
formed for a left parenthesis or ended for a right, etc.).
However, user-defined operators and variables are broken
out as separate words.

There is one further feature, illustrated in Figure
2, that is of importance. If there are two operators, e.g.,
SIN and SINH, the larger operator is broken out of the ex-
pression SINH Y, giving SINH Y-instead of SIN HY. This
feature is also important if the operator SIN% denotes
exponentiation of the trigonometric function.

One further fact, which may not be obvious, is that
new variables are defined by the read-in program for all
"residues." These "residues" are interpreted temporarily as
variables. Thus *C 1is a varaible if * and C have not
previously been defined, and unless subsequent information

and editing show otherwise.

-19-

DESCRIPT@R FPR @PPERAT@PR BINARY

These Ainput statements define the operatorns and vardiables
forn Equation 1

DESCRIPT@R FPR VARIABLE TYPE

SET NEW @PERAT@R + T@ (BINARY, YES)
SET NEW @PERAT@R - T¢ (BINARY, YES)
SET NEW @PERAT@R SIN T¢ (BINARY, Ng@)
SET NEW @PERAT@R SINH T@ (BINARY, Ng@)

SET NEW VARIABLE A TO TYPE""""(TYPE,NUMBER)
® erases the previous charactehr

SET NEW VARIABLE B T@ (TYPE, NUMBER)

EQUATI@N 1
Input of Equation 1

A+B*C-F (SINC+SINHY)

SH@W EQUATI@N 1
Computen nepresentation o4 Equation 1

A+B % C-F (SINX + SINH Y)

NOTE: USER commands are distinguished by a solid line to their
left,

FIGURE 2. Computer-Generated Output of Expressions.

-20-

2.4 Basic System Primitives

The intent of the primitives is to allow as many
basic operations as possible on lists and data, and also to
give as many useful subroutines as possible to the user.
The primitives may be considered to fall into three main

categories:

1. basic computer-type primitives, such as "ad-
dition of two numbers A and B";

2. Dbasic list-type manipulations (including many
of the primitives of SLIP), such as "return the top word of
list A ";

3. operations on the various parts of the OFV
lists, such as "give the description for the Nth item of

operator A .

One further programmed item, which falls somewhere
between a primitive and the more elaborate compound primitives
or "procedures" of the next section, is the conditional. It
is of the form: IF(A, B, C, D, E, ... , Z) , where A, B, C,
etc, are expressions, and the number of arguments must be
odd. The conditional evaluates the first and subsequent odd
arguments until it finds one that is true. When it has found
one, it evaluates the next argument and returns this as its
value. If there is no match at the last pair, the final
argument is evaluated and returned as the value of the con-
ditional. Thus we have: 1f A 1is true, give B ; other-

wise if C 1is true, give D ; ... ; otherwise give 7Z .

2.5 Input of New Procedures

The definition of a new procedure is something akin
to writing a program in a special language: that of the

Engineering Assistant. This will often involve a knowledge

-21-

of the basic system primitives, some previous procedures, and
certain special control words. When a procedure has been
written (either on-line or off-line), it is read in by a
special procedural input program, which makes a substantial
number of error checks, and produces a sort of compilation
which takes up less space and is faster to manipulate than
the original BCD strings. Figure 3 gives examples of a few
extremely simple procedures. It should be noted that each
procedure is a separate list, and that the life-span of its
internal variables (the PROVARs) is therefore determined by
the limits of the list.

Several primitives are used solely in procedures.

They are:

a. GOTO which has two arguments, the first
of which must evaluate to a LABEL and
the second of which must evaluate to
a Boolean condition value.

b. RETURN This is a special control word used
as the LABEL part of the arguments
of GOTO, representing the return from
a procedure,

c. QUOTE which takes a single argument. This
argument is copied and passed on to
the next statement. As an example,
ADDONE (N) adds one to N and prints
the result. Now we can construct a
new procedure GIVEA using ADDONE and
QUOTE as follows:

(GIVEA INPUT ()

ADDONE (QUOTE (3)))
Then the procedure is to send the
value of "3" as the argument of ADDONE,

which then adds one, to get 4, and prints

out the 4. Note, however, that no matter

-22-

DEFINE (N@T INPUT(A)IF(A,F , T))
DEFINE Note the Lack of FORMAT for wonrd
(R INPUT (AB) IF (A, T, B)) position: blLanks, "tabs," and carniage
(AND INPUT(A B) IF(A,B,F)) returns are the delimitens, but
(SUMDIF INPUT(Q W) PR@VAR(E R) mulitiple blanks, etc. are treated

SET (E,ADD (Q,W)) as one.

SET (R,DIF(Q,W))
PRINT (E) PRINT(R) D@(T))

P@PPR INPUT

SUMDIF (002) (002) O0+H 001 0&l 0+1 042 000 000 O+H (002 DIF (Q , W)
) PRINT (E) PRINT (R) D@ (T)

D@ YPU WISH T¢ REPEAT INPUT

YES Computen detected errorn; there L4 no
primitive on procedure called DIF
TYPE DEFINITI@N (Subtraction 4is by use of SUB).

SUMDIF INPUT(Q W) PRPVAR(S D) SET(S,ADD(Q,W))
SET (D, SUB(Q W))
PRINT(S)
PRINT (D)
D@ (T))

The usen puts in an extra carriage return
ERRZR IN C@MMAND... by mistake here. The computer cannot
"understand" the carniage rhetunn.
D@ YPU WISH T@ REPEAT C@MMAND
NG

APPLY AND (T)

ERRZR IN C@MMAND... Computen detected errorn; AND needs two
APPLY AND (T) arguments and only one was supplied.
D@ Y@U WISH T@ REPEAT C@MMAND
YES
TYPE
PPLY AND(T,T)
ANSWER IS...
T .

APPLY N@T (T)

ANSWER IS...
F

LET SUMDIF BE GIVE THE SUM AND DIFFERENCE ¢F 1 AND 2 Use of LET %o dimprove

GIVE THE SUM AND DIFFERENCE @F 453 AND 297 FORMAT to the usexr.

750

156

ANSWER IS...

T

GIVE THE SUM AND DIFFERENCE @F 164 AND 593

757

-429

ANSWER IS...
T

Figure 3. Simple Procedural Examples and Their Application, with Errors.

-23-

how many times GIVEA is called, it
always sends 3 to ADDONE, and no change
is therefore made to its argument.

d. SPQUT This is a special type of gquote, which
takes a single argument. This argument
is passed on to the next statement. The
action of the next or some succeeding
statements may (and usually does) pro-
duce an updating of the original argu-
ment of the SPQUT. The command can be
used in many ways to store information,
e.g., it may be a method of adding new
constraints to the system, or of count-
ing the number of uses of a certain
routine. As illustration of the dif-
ference between QUOTE and SPQUT, con-
sider the routine:

GIVEB, which calls ADDONE in a similar
fashion to GIVEA, but uses SPQUT in
place of QUOTE:

(GIVEB INPUT ()

ADDONE (SPQUT (3)))

The first time, ADDONE prints out 4, but
the argument of SPQUT is now 4, and

hence the next time it will print 5, etc.

e. OPQ This is intended to be an operator guote.
It is a third category of a general class
of quote procedures, designed to point to
the BCD word used as either operators,
functions, and variables, or descriptors
and descriptions. Thus, it is used to
compile the BCD word so that it can be

referred to in a procedure.

-4~

f. DO which takes an arbitrary number of
arguments. This causes a series of
operations to be performed in sequence,
and is used principally in a conditional,
where the even arguments are themselves

not a single procedure.

2.6 Primitive and Procedural Application

Any primitive or procedure may be applied to its
arguments by means of the command APPLY followed by the name
and a list of its arguments. The technique is essentially
a special version of the well-known LISP interpreter, using
a large number of primitives, and written in MAD-compiled

machine code rather than in interpretive code itself.

2.7 The Command Language

Basically all information passes in and out of the
program through the command language. Thus all of the command
words must be considered sacrosanct. The reasons for this
are as follows: Although a command word can also be used as
the name of a procedure, there is a special command LET (to
be described later) that can be used to introduce new command
words.

Each command word will now be discussed; they will
be grouped by type to conform with the description of the
various parts of the system. Some examples of their use are

shown in Figure 4,

2,7.,1 Commands for OFV Definition

The following set of five commands deals with the
addition or deletion of operators, functions, and variables,
and their descriptions and descriptors. In general, in an
entirely new system one or more ceszcriptors must be defined,
and then some new OFVs; later it may be necessary to add des-
criptors, and consequently new descriptions, to existing
operators, etc., There are therefore two basic commands for

addition of information to OFVs:

-25-~

DESCRIPT@PR F@R PPERATPR STRANGE
VERIFY @N

@K
SET NEW @PERAT@R @ T@ (STRANGE,YES)

gK
VERIFY @FF

SET NEW PPERAT@PR = T@ (STRANGE,N@)
SHPW @PERAT@R

DESCRIPTI@NS F@PR ELEMENT @

DESCRIPT@R DESCRIPTIPN

STRANGE GENERIC @
DESCRIPTIPNS F@R ELEMENT @

DESCRIPT@R DESCRIPTIgN SPECIFIC @
STRANGE YES

DESCRIPTIPNS F@R ELEMENT = GENERIC =
DESCRIPT@R DESCRIPTI@N

STRANGE

DESCRIPTIPNS FgR ELEMENT = SPECIFIC =
DESCRIPT@R DESCRIPTIPN

STRANGE Ng

TRACE SET ADD SUB
GIVE THE SUM AND DIFFERENCE @F 231 AND 4032

ENTERING... ADD

ARGUMENTS ARE... (231) (4032)
LEAVING... ADD

VALUE IS... 4263

ENTERING... SET

ARGUMENT ARE... () (4263)
LEAVING... SET

VALUE IS... 4263

ENTERING... SUB

ARGUMENTS ARE... (231) (4032)
LEAVING... SUB

VALUE IS... -3801

ENTERING... SET

ARGUMENTS ARE... () (-3801)
LEAVING... SET

VALUE IS... -3801

4263

-3801

ANSWER IS.

T

Figure 4: Simple Command Language Examples

1§ VERIFY 9N is used, PK is given
as an end response aften execution
0f each command.

To see all present operatorns in the
system, with all thein descriptions.

This procedure 44 the example, with
LET, of Figure 3. 1t is ubsed here
to iLLustrate TRACE, which will
print the input arguments when one
of the specified procedures or
primitives 44 entened, and then
gives the value on Leaving. In this
simple procedure, there is no
"nesting," but for complicated
trhacing, the ENTERING and LEAVING
are not necessarnily in close
proximity.

-26-

A. DESCRIPTOR FOR ...
B. SET ... TO ...

This part of the command language operates on
operator, function, and variable lists, and therefore one of
the words in these five commands is either OPERATOR, FUNCTION,
or VARIABLE,

DESCRIPTOR FOR OPERATOR BINARY, (PRECEDENCE,

NUMSUB) sets two words on the descriptor dictionary, BINARY
and PRECEDENCE. The pointers to these dictionary entries
are put on the descriptor list that is strung from the header
of the OPERATOR list, and if any PRECEDENCES are to be read-
in as descriptions, the procedure NUMSUB will be used for
their input (or output), since precedences are ordered
numerically here.

As an example of definition of a new operator:

SET NEW OPERATOR + TO (BINARY, YES) (PRECEDENCE, 100) would
define a new operator + , and give it the two description YES
and 100. Note that the 100 is read in by the special procedure
NUMSUB, which was defined by the descriptor as shown in the
first example of definition of a descriptor.

There are obviously three types of deletion: the
deletion of a descriptor, deletion of a particular description,
and a deletion of an entire element. These three deletions

are of the form

C. DELETE DESCRIPTOR ... FOR ...
D, DELETE DESCRIPTION OF DESCRIPTOR ... FOR ...
E. DELETE ...

When a descriptor is deleted, all instances of its
descriptions must also be deleted or the description lists
become incorrectly ordered, and the system therefore automati-

cally performs these deletions.,

-27=
As examples:
DELETE DESCRIPTOR TYPE FOR VARIABLE
DELETE DESCRIPTOR NUMBEROFARGS FOR FUNCTION
DELETE FUNCTION BESSEL

DELETE VARIABLE Zn (TYPE, CHEMICAL)

It is thus possible to add or remove any part of

the main operator, function, and variable lists.

2.7.2 Commands for Expressions

Apart from editing, evaluation, and algebraic
manipulations of equations, which are dealt with by the pro-
cedures, the most important command is for read-in of an

expression, which is done by the command
F. EQUATION ..., RN

The expression or equation may be given a number
or the number postion may be blank. In the latter case, the
equation will be numbered sequentially with the latest number
one more than the highest to date. Two carriage returns are
necessary between the initial command line and the actual
equation read in. This is to owiate the use of a special
character symbol to change the mode of reading of the list
from command to formula-input with replacement of operators,
etc. Further equations may be given as input by adding two
carriage returns after each equation subsequent to the new
equation. These will be numbered sequentially following the
first, and the input will be considered as equations until
such time as three carriage returns are used to terminate

the command., Examples are:

5 + xb ﬁé}
3NN 5 =BAAD

EQUATION 12 % b B + D
EQUATIONS & 2

-28=

2.7.3 Commands for Procedural Definition

Two commands are specifically associated with the

definition and redefinition of procedures:

G. DEFINE(...)
H. REDEFINE(...)

These two commands take a single list containing
a procedure or a set of lists, compile the procedures, and

put them as new definitions on the procedural name list.

2.7.4 Commands for Primitive and Procedural Application

Three commands are associated with the application
of procedures and primitives; two of them are built-in debug-

ging aids. The commands are:

I. APPLY...
J. "TRACE...
K. UNTRACE. ..

APPLY causes the application of a procedure or
primitive to its arguments, and an evaluation. It is in-
voked by calling a particular primitive or procedure name
followed by its argument in the list form.

TRACE takes a set of arguments that must be
primitive or procedure names, for example, TRACE AND, OR,
and watches for their occurrence in a procedure. Whenever
these procedures (or primitives) are called during execu-
tion, a print-out will be given.

Thus by judicious use of TRACE it is possible to
debug an otherwise quite complicated program. In order to
switch-off the trace feature for AND, the user initiates

the command:

UNTRACE AND

-29-

2.7.5 Commands for Display of User Data

Although the form is different for the OFV, ex-
pression, and procedure list, the basic command for display

of the information is of the form
L. SHOW. ..

When dealing with one of the OFVs,substantial
amounts of information may be required, or only parts of it
may be needed. Thus the entire information of one of the OFVs
may be obtained by the statement SHOW O/F/V. However, to
be more selective, all the + operatorts information will be
printed out by the command SHOW OPERATOR + , while only one
operator's descriptor/descriptions will be printed out if
the unique identifier pair is added, e.g., SHOW OPERATOR +
(TYPE, CHEMICAL).

To display an expression, the command requires the
word EQUATION followed by numbers separated by commas. For
example, SHOW EQUATION 5,17 will cause output of equations
5 and 17.

2.7,6 Special System Commands

Three special system commands may be used to aid

the user in preparing and saving data:

M. READ. ..
N. VERIFY...
0. SAVE. ..

The first of these allows off-line preparation of
data. Thus it may be advisable for either a large volume of
numerical data, or for definition of long and complicated

programs, to have the ability to TYPESET and EDIT these large

-30-

files before read-in to the main program, or after having dis-
covered some previous bug in the data or program.

Thus, any time a new procedure is to be added, it
is advisable to save the system. This is done by initiating
the command SAVE NAME, which creates a file in the user's
directory called NAME SAVED. This is a copy of the system,
and will not be destroyed if some disasterous bug occurs in
the next file to be read. The file which has been prepared
off-line must be in 12-bit mode and must be stored in disk
storage under some double name such as ADMIT FILE. To
initiate read-in of this file, the command READ ADMIT FILE
will cause opening and subsequent read-in of the file.
Unless the file has some means of indicating "end of message"
(for example with a special PRINT statement), some alternative
mode may be desirable to show when a procedure has been com-
pleted. This is by means of the command VERIFY. On being
given the command VERIFY ON, the command language will reply,
OK, and give an OK after every subsequent completion of a
command. At times the talkative computer can be very tedious,
and this feature may be switched-off by the command VERIFY OFF.

2,7.7 The LET Command

The LET command allows the user the maximum ability
to define his own syntax. This feature marks the beginning
of a better user-oriented language.

The form of this command is

P. LET...BE...

and it is intended to allow definition of new commands by

the user. As an example, if he would rather use the sentence,
CHECK EQUATION 5 FOR ATOM BALANCE, instead of APPLY CHMEVL
(5), he uses the command LET CHMEVL BE CHECK EQUATION 1 FOR
ATOM BALANCE, where the order of the arguments is the "numbers"

in the LET command.

-3]1-

3, Conclusion

The system thus described has been programmed on
the Project MAC CTSS facility; details of its procedures and
versatility are discussed fully in Reference 7. A further
system is being designed, and will be implemented, probably
using TRAC3 as an intermediate language, at the Computing

Center at The University of Michigan.

REFERENCES

McCarthy, J., LISP 1.5 Programmer's Manual, M.I.T.
Press, Cambridge, Massachusetts, 1962.

Tobey, R.G., Babrow, R.J., and Ziller, S.N., "Automatic
Simplification in FORMAC," Proceedings, Fall Joint Com-
puter Conference, 1965, pp. 37-53.

Mooers, C.N., "TRAC, A Procedure-describing Language
for the Reactive Typewriter," Communications of the ACM,
March 1966, pp. 215-219.

Weizenbaum, J., "Symmetrical List Processor," Communica-
tions of the ACM, September 1963, pp. 524-536.

Feldman, J.A., Aspects of Associative Processing,
Technical Note 1965-13, M.I.T. Lincoln Laboratories,
April 1965. °

Shaw, J.C., JOSS: Experience with an Experimental Com-
puting Service for Users at Remote Typewriter Consoles,
Report No. P-3149, The Rand Corporation, Santa Monica,
California.

Sibley, Edgar H., The Computer as Symbol Manipulator
and Evaluator for Engineering, Doctoral Thesis, Depart-
ment of Mechanical Engineering, Massachusetts Institute
of Technology, February 1967.

-32-

i

