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CHAPTER I

Introduction

The singular or non-manifold points of a complex algebraic variety have subtle

local structure, and detailing their properties – even in the study of smooth varieties

– is a critical part of many investigations. For example, the seminal work [BCHM07]

proves the existence of a distinguished birational modification or canonical model for

every smooth complex projective variety (cf. [Siu06]). This model is produced via the

so-called Minimal Model Program, wherein it is essential to control the singularities

appearing in steps along the way. In this dissertation, we shall be concerned with

certain invariants of singularities on complex algebraic varieties arising naturally in

birational geometry.

To every sheaf of ideals a on a complex algebraic variety X with mild singularities,

one can associate its multiplier ideals J (X, aλ). Indexed by positive rational numbers

λ, this family forms a nested sequence of ideals. These invariants can be thought

to give a measure of the singularities of the pair (X, a), with deeper or smaller

multiplier ideals corresponding to “worse” singularities. In recent years, multiplier

ideals have found numerous applications in complex algebraic geometry and become

a fundamental tool in the subject (e.g. [Dem93], [AS95], [EL99], [Siu98], [ELS01],

[HM07], [Dem01], [Laz04]).
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The values of λ where the multiplier ideals change are known as jumping numbers.

These discrete numerical invariants were studied systematically in [ELSV04], after

appearing indirectly in [Lib83], [LV90], [Vaq92], and [Vaq94]. Jumping numbers

are known to encode both algebraic information about the ideal in question and

geometric properties of the associated closed subscheme. Our main results address

questions concerning multiplier ideals and jumping numbers on algebraic surfaces.

Multiplier ideals are automatically integrally closed (or complete) and have many

noteworthy properties. These largely stem from their use in extending well-known

vanishing statements for cohomology on smooth varieties through resolution of sin-

gularities. Thus, one might wonder: is every integrally closed ideal a multiplier

ideal? Recently, a negative answer was given by Lazarsfeld and Lee [LL07], who

found examples of integrally closed ideals on smooth varieties of dimension at least

three which cannot be realized as multiplier ideals. The landscape in dimension two,

however, is vastly different. Concurrently, [LW03] and [FJ05] have shown that every

integrally closed ideal on a smooth surface is locally a multiplier ideal. While their

proofs strongly use the theory of complete ideals specific to smooth surfaces, parts

of this theory extend to surfaces with rational singularities. Thus it is natural to ask

the following question (first posed in a slightly different form in [LLS08]):

Question I.1. Suppose X is a complex algebraic surface with rational singularities.

Locally on X, is every integrally closed ideal which is contained in J (X,OX) a

multiplier ideal?

Our first main result will address this question in the case of a surface with log

terminal singularities by extending the methods of [LW03] (see Theorem IV.3 for a

more detailed statement).
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Theorem I.2. If X is a complex algebraic surface with log terminal singularities,

then locally every integrally closed ideal is a multiplier ideal.

As the condition J (X,OX) = OX defines log terminal singularities, which are neces-

sarily rational (see Theorem III.11 or Theorem 5.22 in [KM98]), Theorem I.2 gives a

complete answer to the above question in this case. Furthermore, note that a similar

result cannot hold on a surface with “worse” singularities than log terminal (e.g. log

canonical) as the trivial ideal will then not be realized as a multiplier ideal.

Our second main result concerns the computation of jumping numbers on complex

algebraic surfaces with rational singularities. In order to find the jumping numbers

and multiplier ideals of a given ideal, one must first undertake the difficult task of

resolving singularities. Even when a resolution is readily available, however, calcu-

lating jumping numbers can be problematic. In Chapter V, we will give an algorithm

for computing jumping numbers from the numerical data of a fixed log resolution.

Theorem I.3. Suppose π : Y → X is a log resolution of an ideal sheaf a on a

complex algebraic surface X with rational singularities. Then there is an effective

procedure for calculating the jumping numbers of (X, a) using the intersection product

for divisors on Y and their orders along a.

The procedure is based upon identifying certain collections of “contributing excep-

tional divisors,” building on the work of Smith and Thompson in [ST07]. Explicit

instructions for computing the jumping numbers can be found in Section 5.5. Using

this result, we are able to provide important new examples for the continuing study

of jumping numbers, e.g. the jumping numbers of the maximal ideal at the singular

point in a Du Val (Example V.16) or toric surface singularity (Example V.17).

Perhaps the most important application of our method, however, lies in finding
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the jumping numbers of an embedded curve on a smooth surface. While progress

has been made along these lines in [Jär06], the algorithm we present is easy to use

and original in that it applies to reducible curves. Furthermore, in Chapter VI, we

show an alternative (and simpler) proof of the formula for the jumping numbers of

the germ of an analytically irreducible plane curve – the main result of [Jär06]. In

Example VI.17, two non-equisingular plane curves with the same jumping numbers

will be given as well.

We now turn to a more detailed overview of the content of the proofs of the above

theorems and the individual chapters. In Chapter II, we begin with a summary of

the formalism and properties of divisors and Q-divisors, a language which is central

to our presentation throughout the dissertation. Since integral closure of ideals and

Rees valuations play a central role in Theorem I.2 and Theorem I.3, we proceed to

give a detailed overview of the theory. While this material can also be found in

either [Laz04] or [HS06], our presentation is distinguished by an emphasis on the use

of divisors throughout.

Multiplier ideals are defined (in all dimensions) in Chapter III. We refer the reader

to [BL04] for a more complete introduction to these invariants. The standard refer-

ence for the properties of multiplier ideals is [Laz04]. However, many of the results

we will need are only proved therein when the ambient variety is smooth. As such, we

have opted here to give proofs of relevant results in a singular setting. These include

local vanishing for multiplier ideals and Skoda’s theorem. Furthermore, because a

simple proof (avoiding unnecessary use of canonical covers) does not exist in the

literature, a proof that log terminal singularities are rational will also be presented.

Following this chapter, we will focus our attention to ideals on algebraic surfaces.
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At the beginning of Chapter IV, we review the local restrictions on the minimal

syzygies of multiplier ideals detailed in [LL07] and [LLS08]. These restrictions are

the source of the examples (from [LL07]) of integrally closed ideals which are not

multiplier ideals, and it follows from Theorem I.2 that integrally closed ideals on log

terminal surfaces satisfy these restrictions. See Corollary IV.8 for a precise statement.

The remainder of Chapter IV is largely devoted to the proof of Theorem I.2. There

are several difficulties in trying to extend the techniques used in [LW03]. One must

show that successful choices can be made in the construction (specifically, the choice

of � and N in Lemma 2.2 of [LW03]). Here, it is essential that X has log terminal

singularities. Further problems arise from the failure of unique factorization to hold

for integrally closed ideals. As X is not necessarily factorial, we may no longer reduce

to the finite colength case. In addition, the crucial contradiction argument which

concludes the proof in [LW03] does not apply.

These nontrivial difficulties are overcome by using a relative numerical decomposi-

tion for divisors on a resolution over X, which will be developed during the course of

the proof (see Section 4.2.1). This simple idea grew out the use of various well-known

bases for the intersection lattice of the exceptional divisors. The relative numerical

decomposition and associated bases also appear in our use of the Zariski-Lipman

theory of complete ideals on a smooth surface in Section VI, as well as in our treat-

ment of the proximity matrix of the resolution of a unibranched plane curve germ in

Section 6.2.

The remainder of the dissertation – Chapters V and VI – concerns the afore-

mentioned algorithm for computing jumping numbers and its applications. After

reviewing rational surface singularities, the algorithm will be derived in Chapter V.
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Let us preview the original techniques and terminology used therein. Fix a log res-

olution π : Y → X of the pair (X, a) with aOY = OY (−F ) and relative canonical

divisor Kπ. With this notation, the multiplier ideal with coefficient λ ∈ Q>0 can be

defined as J (X, aλ) = π∗OY (�Kπ−λF �). Varying λ causes changes in the expression

�Kπ − λF � at certain discrete values called candidate jumping numbers, and λ is a

jumping number if J (X, aλ−�) �= J (X, aλ) for all � > 0.

Not every candidate jumping number is a jumping number (see Example V.3), and

deciding when a candidate jumping number results in a jump in the multiplier ideal is

a difficult and important question. We shall address this question and give a complete

answer when X is a complex algebraic surface with a rational singularity. Our

techniques build upon the work of Smith and Thompson in [ST07], which attempts to

identify the divisorial conditions that are essential for the computations of multiplier

ideals. Precisely, if G is a reduced subdivisor of F , we say λ ∈ Q>0 is a candidate

jumping number for G = E1 + · · · + Ek when ordEi(Kπ − λF ) is an integer for all

i = 1, . . . , k. When a candidate jumping number λ for G is a jumping number, we

say λ is contributed by G if

J (X, aλ) = π∗OY (�Kπ − λF �) �= π∗OY (�Kπ − λF �+ G).

This contribution is said to be critical if, in addition, no proper subdivisor of G

contributes λ. The content of Theorems V.8 and V.10 is summarized below, showing

how to identify the reduced exceptional divisors which critically contribute a jumping

number.

Theorem I.4. Suppose a is an ideal sheaf on a complex surface X with an isolated

rational singularity. Fix a log resolution π : Y → X with aOY = OY (−F ), and a

reduced divisor G = E1 + · · · + Ek on Y with exceptional support.
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(i) The jumping numbers λ critically contributed by G are determined by the in-

tersection numbers �Kπ − λF � · Ei, for i = 1, . . . , k.

(ii) If G critically contributes a jumping number, then it is necessarily a connected

chain of smooth rational curves. The ends of G must either intersect three other

prime divisors in the support of F , or correspond to a Rees valuation of a.

Again, we stress that these results are new and interesting even on smooth sur-

faces. As such, we will use plane curves in motivating examples throughout Chap-

ter V. In fact, we hope our methods will lead to further discoveries about the infor-

mation encoded in jumping numbers on smooth surfaces, as in the result below (see

Proposition V.18).

Proposition I.5. A complete finite colength ideal in the local ring of a smooth com-

plex surface is simple if and only if it does not have 1 as a jumping number.

Chapter VI is entirely devoted towards the calculation of the jumping numbers of

the germ of a unibranch or analytically irreducible plane curve, first given in [Jär06].

We now briefly recall this formula. Let C be a unibranch plane curve and OC the

local ring of C at the origin. The normalization of OC is a DVR, and we let ordC̄ be

its corresponding valuation. Following Zariski, let β̄0, . . . , β̄g be minimal generators

for the semigroup ordC̄(OC) and put ei = gcd(β̄0, . . . , β̄i). The jumping numbers of

a unibranch curve C are the union of the sets

Hi =

�
r + 1

ei−1
+

s + 1

β̄i
+

m

ei

���� r, s, m ∈ Z≥0 with
r + 1

ei−1
+

s + 1

β̄i
≤

1

ei

�

for i = 1, . . . , g together with Z≥0.

The use of our method in the calculation above has several advantages. For one,

it is simpler and shorter than the original calculation. More importantly, however, it
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leads to new insights into the formula. First, the above decomposition of the jumping

numbers (which appeared even in [Jär06]) is very natural from our point of view.

The following result was first announced in [Tuc08], and an independent proof (using

similar ideas) was later given by [Nai09].

Theorem I.6. The set Hi is precisely the set of jumping numbers of C (critically)

contributed by the prime exceptional divisor Eνi corresponding to the i-th star vertex

of the dual graph of the minimal log resolution of C. In particular, all of the jumping

numbers of C less than one are critically contributed by a prime exceptional divisor.

Another advantage of our calculation is that we are able to use geometric ar-

guments to simplify our computation, due in part to the following corollary of our

methods.

Theorem I.7. Two equisingular (i.e. topologically equivalent) plane curve germs

have the same jumping numbers.

From this, we are able to reduce the computation of the jumping numbers to the case

of Fermat curve ye + xb for e, b ∈ Z>0 with gcd(e, b) = 1 (which are easily computed

using ideas from toric geometry [How01]). If C1, . . . , Cg are the approximate roots

of C, then the strict transform of Ci becomes equisingular to a Fermat curve well in

advance of the creation of the divisor Eνi−1 . After recalling the relationship between

the equisingularity invariants of C and Ci, this leads to the following result.

Theorem I.8. Let C1, . . . , Cg be the approximate roots of C. Then ξ is a jumping

numbers of C (critically) contributed by Eνi−1 if and only if eνi−1ξ is a jumping

number of Ci (critically) contributed by Eνi−1. In other words, eνi−1H
Ci

i−1 = H C
i−1.

Furthermore, the jumping numbers of Ci (critically) contributed by Eνi−1 are the same

as the jumping numbers of the Fermat curve yei−1 + xβ̄i = 0.
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We conclude Chapter VI by giving a simpler version of another result from [Jär06],

showing that the jumping numbers of a unibranch curve determine its equisingularity

class. However, we also show that the converse to Theorem I.7 cannot hold in general,

as Example VI.17 gives two non-equisingular plane curves with four analytic branches

having the same jumping numbers. The construction of the example also shows that,

even in dimension two, the jumping numbers of a monomial ideal do not determine

the ideal up to reordering of the coordinates (i.e. switching x and y). It would be

interesting to know if the jumping numbers of the germ of a plane curve with multiple

branches determine the equisingularity class of each branch (see Question VI.18), as

this is certainly the case for a unibranch curve and in Example VI.17.



CHAPTER II

Integral Closure of Ideals

2.1 Divisors on Algebraic Varieties

An algebraic variety is an integral separated scheme X of finite type over a field F .

We are primarily interested in complex algebraic varieties and thus will assume F = C

hereafter unless otherwise mentioned. However, the reader should be aware that

much of the material we present is valid to varying degrees over other fields.

2.1.1 Weil and Cartier Divisors and Q-Divisors

Definition II.1. If X is a normal complex algebraic variety, the group of integral

Weil divisors or simply divisors on X is the free abelian group Div(X) on the set of

closed subvarieties of X of codimension one. More generally, a Q-divisor on X is an

element of the rational vector space DivQ(X) = Div(X)⊗Z Q.

A closed subvariety on X of codimension one is called a prime divisor, and a Q-

divisor D on X has the form D =
�

aEE where all but finitely many of the aE ∈ Q

vanish as E ranges over all of the prime divisors on X. For a fixed E, we write

ordE(D) = aE; the Q-divisor D is integral if ordE(D) ∈ Z for all E. The support of

a D is the union of the prime divisors E on X with ordE �= 0.

10
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A Q-divisor D is effective if ordE(D) ≥ 0 for all E, and we write D2 ≥ D1 when

D2 − D1 is effective. If D =
�

aEE, the integer part of D is the integral divisor

�D� =
�
�aE�E, where � � : Q → Z is the greatest integer function. The fractional

part {D} = D − �D� and round-up �D� = −�−D� of D are defined similarly.

For each prime divisor E on a normal complex variety X, the local ring OX,E at

the generic point of E is a normal Noetherian domain of dimension one or discrete

valuation ring (DVR). The fraction field of OX,E is equal to the function field C(X),

and we denote the associated valuation by ordE : C(X) \ {0}→ Z. These valuations

allow one to define the divisor div(f) of zeroes and poles of a rational function

f ∈ C(X) \ {0} by setting ordE(div(f)) = ordE(f) for all prime divisors E on X.1

The divisor of a rational function f ∈ C(X) \ {0} may be used to test the regularity

of f on an open subset U ⊆ X. Specifically, we have f ∈ C[U ] if and only if

div(f)|U ≥ 0. When U = Spec(R) is affine, this fact reduces to the algebraic

statement R =
�

P∈Spec(R)
ht(P )=1

RP .

Definition II.2. A principal divisor has the form div(f) for some f ∈ C(X) \ {0}.

A divisor C on X is a Cartier divisor if it is locally principal, i.e. for each x ∈ X

there is an open neighborhood U of x and a rational function fU ∈ C(X) \ {0} such

that C|U = divU(fU). If D is a Q-divisor, we say D is Q-Cartier if there is an integer

m such that mD is a Cartier divisor.

Note that a Cartier divisor is automatically integral, and recall that every integral

Weil divisor on a smooth variety is automatically Cartier. If U is an open subset of

1 To see that div(f) is well-defined, one must check that ordE(f) �= 0 for at most finitely many E.
To that end, suppose U = Spec(R) is an affine open subset of X. Writing f = a

b for a, b ∈ R \ {0},
we have div(f) = div(a) − div(b). The desired finiteness on U now follows immediately from the
following algebraic fact: the principal ideals �a� and �b� have only finitely many minimal prime
ideals.
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X and C is a Cartier divisor with C|U = divU(fU) for fU ∈ C(X) \ {0}, we say fU

is a local defining equation for C. In this case, fU is uniquely determined up to an

invertible regular function on U . Thus, if we consider C(X)\{0} as a constant sheaf

on X and denote by O∗
X the sheaf of invertible regular functions, a Cartier divisor

can be equivalently defined as global section of the quotient sheaf (C(X) \ {0})/O∗
X .

Associated to any integral divisor D on a normal variety X is a subsheaf OX(D)

of the constant sheaf C(X). If U ⊆ X is an open subset, the sections of OX(D) are

given by

H0(U,OX(D)) = { f ∈ C(X)
�� divU(f) + D|U ≥ 0 }.

If D is principal when restricted to an open subset U of X and D|U = divU(g)

for g ∈ C(X), then H0(U,OX(D)) = 1
g · C[U ]. Thus, for a Cartier divisor C, it is

immediate that OX(C) is an invertible sheaf. Furthermore, the first Chern class of

the associated line bundle is equal to the class determined by C in H2(X, Z).

On a normal variety X, the complement of the smooth locus U = Xreg has

codimension at least two. Thus if D is an integral divisor on X, D|U is Cartier

even when D is not. It follows that OX(D)|U = OU(D|U) is invertible and the sheaf

OX(D) has rank one. Furthermore, it is a reflexive sheaf with respect to the functor

( )∨ = HomOX ( ,OX), i.e. we have ((OX(D))∨)∨ � OX(D). This property

is particularly important in light of Proposition II.3 below, as it implies that the

sheaves OX(D) are determined by the invertible sheaves OU(D|U) on U = Xreg.

Proposition II.3. Suppose X is a normal variety and ι : U → X is the inclusion of

an open subvariety U where X \ U has codimension at least two (e.g. U = Xreg). If

N is a reflexive coherent sheaf on U , then ι∗(N ) is a reflexive coherent sheaf on X.

Conversely, if M is a reflexive coherent sheaf on X, then M |U is so on U and we



13

have ι∗(M |U) � M . In this manner, ι∗ induces an equivalence of categories between

reflexive coherent sheaves on U and reflexive coherent sheaves on X.

Two divisors D1 and D2 on a normal variety X give rise to isomorphic coherent

sheaves OX(D1) � OX(D2) if and only if they are linearly equivalent, i.e. D1 −D2

is a principal divisor. The class group of X is the group of divisors up to linear

equivalence, i.e. Div(X) modulo the subgroup of principal divisors. Though they

will appear only in passing through our investigations, class groups are classically

important objects of study in both algebraic geometry and number theory. A primary

concern, however, is the generalization of linear equivalence to Q-divisors: two Q-

divisors D1 and D2 are Q-linearly equivalent if there is an integer m such that

m(D1 −D2) is principal.

2.1.2 Functorial Operations on Divisors

In many cases, one is able to associate operations on divisors to a morphism

π : Y → X of normal varieties. First and foremost, if C is a Cartier divisor on X

whose support does not contain π(Y ), the pullback π∗(C) is a well-defined Cartier

divisor on Y . Specifically, if fU ∈ C(X) is a local defining equation for C on an

open set U , then fU ◦ π ∈ C(Y ) is a local defining equation for π∗(C) on π−1(U).

This operation is compatible with linear equivalence and also satisfies π∗OX(C) �

OX(π∗(C)), respecting the natural pullback of invertible sheaves. Pullback naturally

extends to Q-Cartier divisors by linearity: if mD is a Cartier divisor for some integer

m, then π∗(D) = 1
mπ∗(mD). The pullbacks of Q-linearly equivalent Q-Cartier Q-

divisors remain Q-linearly equivalent.

Recall that a Cartier divisor on X is very ample if it is linearly equivalent to
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a hyperplane section of some embedding of X into projective space; a Q-divisor is

ample if some positive multiple of it is very ample. More generally, the divisor A on

Y is relatively very ample for a morphism π : Y → X of normal varieties if for some

n there is a factorization

Y
ι ��

π
��

��
��

��
��

Pn ×X

pr2
�����������

X

where ι is an embedding and ι∗(OPn×X(1)) � OY (A). A Q-divisor D on Y is π-ample

if mD is relatively ample for some integer m > 0.

When η : V ��� U is a generically finite rational map of normal varieties, one can

define the pushforward to U of arbitrary divisors or Q-divisors on V . If V � ⊆ V is

the domain of definition of η, i.e. the largest open subset of V on which η is defined,

recall that V \ V � has codimension at least two in V . Consequently, every prime

divisor E on Y has nonempty intersection with V �. If W = clX(π(E ∩ V �)), set

π∗(E) =






[C(E) : C(W )] · W dim(E) = dim(W )

0 dim(E) > dim(W )

and simply extend to Div(Y ) and DivQ(Y ) linearly. If η : V → U is in fact a proper

generically finite morphism, then pushforward preserves linear or Q-linear equiva-

lence, respectively.

Recall that a (birational) model of a normal variety X is a normal variety Y to-

gether with a proper birational morphism π : Y → X. The most important instances

of pushforward of divisors we will need are those associated to a model π : Y → X

and its rational inverse π−1 : X ��� Y . A prime divisor E on Y is said to be excep-

tional for π if it is contracted to a subvariety of higher codimension, i.e. π(E) has

codimension at least two in X. More generally, the domain of definition X � of π−1
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is the largest open set over which π is an isomorphism, and Exc(π) = Y \ π−1(X �)

is called the exceptional locus of π. If E is a prime divisor on Y and W is a prime

divisor on X, the definitions of π∗(E) and π−1
∗ (W ) = (π−1)∗(W ) simplify to

π∗(E) =






π(E) π(E) is a prime divisor on X

0 E is exceptional for π

π−1
∗ (W ) = clY (π−1(W ∩X �)).

Note that, for any Q-divisor D on X, we have π∗(π−1
∗ (D)) = D. When D is also Q-

Cartier, π∗(D) − π−1
∗ (D) is exceptionally supported and π∗(π∗(D)) = D. However,

if F is a Q-divisor on Y , π−1
∗ (π∗(F )) − F is generally nonzero and exceptionally

supported.

For a model π : Y → X, all of the operations π∗, π−1
∗ , and π∗ preserve the property

of being effective. However, special care must be taken when using the rounding op-

erations � �, � �, and { } on Q-divisors defined above: both π∗ and π−1
∗ commute

with rounding operations, while π∗ in general does not. This maxim is particularly

important when computing intersection numbers with curves. Recall that, when

Z ⊆ Y is an irreducible projective curve and C is a Cartier divisor on Y , the in-

tersection number C · Z is simply degZ(OY (C)|Z). This pairing can be extended to

Q-Cartier divisors by linearity, as well as formal Z-linear or Q-linear combinations of

irreducible projective curves. We say a Q-Cartier divisor D on Y is nef2 if D ·Z ≥ 0

for all irreducible projective curves Z on X. Similarly, for a model π : Y → X, we

say D is nef if D · Z ≥ 0 for all irreducible projective curves Z on Y which are

contracted to a point by π. An easy consequence of the projection formula gives the

2The term nef was originally meant to suggest either ‘numerically effective’ or ‘numerically even-
tually free.’
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relation π∗(H) · Z = H · π∗Z, where H is any Q-Cartier Q-divisor on X and

π∗(Z) =






[C(Z) : C(π(Z))] · π(Z) π(Z) is a curve

0 π(Z) is a point
.

Because a model π : Y → X is a birational morphism, the pullback of rational

functions f ∈ C(X) �→ f ◦ π ∈ C(Y ) identifies the function fields of X and Y with

one another. In particular, the discrete valuation ordE : C(Y ) \ {0}→ Z associated

to a prime divisor E on Y gives rise to a valuation C(X) \ {0} → Z centered on

X. This valuation – somewhat abusively – will also be denoted ordE and is given

explicitly by f ∈ C(X) \ {0} �−→ ordE(f ◦ π). Valuations on C(X) \ {0} arising in

this manner are called divisorial valuations and will be central to our investigations.

If π� : Y � → X is a model dominating Y , i.e. factoring as

Y � θ ��

π� ��
��

��
��

��
Y

π
����

��
��

��

X

,

then the valuations ordE and ordθ−1
∗ (E) on C(X) \ {0} coincide. Motivated by this

equality, we will sometimes find it convenient to conflate E and θ−1
∗ (E) to eschew

overly cumbersome notation. However, special attention will be paid to avoid con-

fusion throughout.

2.2 Integral Closure of Ideals

Integral closure of ideals is an operation described in terms of certain divisorial

valuations (called Rees valuations) and will serve as an important source of intuition

when manipulating multiplier ideals later on. We begin by reviewing normalized

blowups of ideals.



17

2.2.1 Normalized Blowups of Ideal Sheaves

Lemma II.4. Suppose π : Y → X is a morphism of normal varieties and A is a

relatively ample Cartier divisor on Y . Then
�

m≥0 π∗OY (mA) is a coherent sheaf of

normal graded OX-algebras with ProjOX

�
m≥0 π∗OY (mA) � Y .

Proof. We verify normality, and refer the reader to [Har77] for the remainder. With-

out loss of generality, we may assume X is affine. Thus, we need to show the graded

domain S =
�

m≥0 Sm where Sm = H0(Y,OY (mA)) is normal. To make it easier to

keep track of the grading, we can introduce an indeterminate t and view S as the

subring

S = S0 + S1t + S2t
2 + · · · + Smtm + · · ·

of C(Y )[t]. Let S̄ be the integral closure of S in C(Y )[t]. Since C(Y )[t] is normal, it

suffices to show S = S̄.

We first show S̄ is a graded subring of C(Y )[t]. If λ ∈ C \ {0}, the substitution

t �→ λt gives a ring automorphism of C(Y )[t] preserving S. Thus, if a polynomial

s̄(t) ∈ C(Y )[t] satisfies an equation of integral dependence over S, so also does s̄(λt).

Write

s̄(t) = s̄ht
h + s̄h+1t

h+1 + · · · + s̄h+dt
h+d

for s̄h, . . . , s̄h+d ∈ C(Y ), and choose distinct constants λ0, . . . ,λd ∈ C\{0}. We have





λh
0 · · · λh+d

0

...
. . .

...

λh
d · · · λh+d

d









s̄hth

...

s̄h+dth+d




=





s̄(λ0t)

...

s̄(λdt)




.
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Now, the the leftmost matrix is invertible as its determinant is given by

λh
0 · · ·λ

h
d det





1 · · · λd
0

...
. . .

...

1 · · · λd
d




= λh

0 · · ·λ
h
d

�

0≤i<j≤d

(λj − λi) �= 0

according to the formula for the Vandermonde determinant. It follows immediately

that s̄hth, . . . , s̄h+dth+d ∈ S̄. Thus S̄ is graded, and we can write

S̄ = S̄0 + S̄1t + · · · + S̄mtm + · · ·

for some S0-submodules of C(Y ). It suffices to show S̄m = Sm.

Every s̄m ∈ S̄m \ {0} satisfies an equation of the form

(2.1) (s̄mtm)k + a1(t) · (s̄mtm)k−1 + a2(t) · (s̄mtm)k−2 + · · · + ak(t) = 0

for a1(t), . . . , ak(t) ∈ S. If ai,j ∈ Sj is the coefficient of tj in ai(t), taking the

coefficient of tmk in (2.1) gives

(2.2) s̄k
m + a1,ms̄k−1

m + a2,2ms̄k−2
m + · · · + ak,mk = 0.

Suppose, by way of contradiction, there is a prime divisor E on Y such that ordE(s̄m) <

−m ordE(A). Since ordE(ai,j) ≥ −j ordE(A), we have

ordE(ai,mis̄
k−i
m ) ≥ −mi ordE(A) + (k − i) ordE(s̄m) > k ordE(s̄m)

for i = 1, . . . , k. Hence

ordE(s̄k
m + a1,ms̄k−1

m + a2,2ms̄k−2
m + · · · + ak,mk) = k ordE(s̄m) �= ∞,

contradicting (2.2). It follows that ordE(s̄m) ≥ −m ordE(A) and hence we conclude

divY (s̄m) + mA ≥ 0 or s̄m ∈ H0(Y,OY (mA)) = Sm.
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When a ⊆ OX is a coherent sheaf of ideals on an algebraic variety (not necessarily

normal) X defining a closed subscheme Z, the Rees algebra of a is the graded sheaf

of OX-algebras
�

m≥0 am. Recall that the blowup of X along a (alternatively, the

blow-up of X along Z) is the variety Bla X = BlZ X = ProjOX

�
m≥0 am along with

its birational projection morphism to X. On Bla X, one has that the inverse ideal

sheaf aOBla X = OBla X(1) is invertible, i.e. aOBla X is a sheaf of locally principal

ideals. Furthermore, any morphism of varieties W → X such that aOW is invertible

factors uniquely through Bla X as

W ��

��
��

��
��

��
Bla X

����������

X

.

This universal property determines Bla X up to canonical isomorphism.

In the case X is affine, we shall frequently fail to distinguish between a sheaf

of ideals a ⊆ OX and its global sections a ⊆ C[X]. Choosing a set of generators

a0, . . . , aN for a ⊆ C[X], the blowup has the following description: Bla X ⊆ X × PN

is simply the graph of the rational map X ��� PN given by

x �→ [a0(x) : a1(x) : · · · : aN(x)].

In particular, it is covered by affine open patches Ui = Spec(C[X][a0
ai

, . . . , aN
ai

]) for

0 ≤ i ≤ N . It is easy to see that aOBla X is the restriction of OX×PN (1) and is thus

relatively very ample.

Even when X is a normal variety, it may happen that the blowup Bla X of an

ideal sheaf a is not normal. In this case, however, one easily arrives at a model of X

by taking the normalization of the blowup. We shall use the notation

πa : Ya = Bla X → X
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to denote the normalized blowup of X along a. As before, the ideal sheaf aOYa is

locally principal and hence (since Ya is normal) cuts out an effective Cartier divisor

Fa on the normalized blowup: equivalently, we have aOYa = OYa (−Fa). While

Ya does not generally have a simple local description as for the blowup above, it

is characterized up to canonical isomorphism by a similar universal property. If

µ : W → X is a morphism of normal varieties such that aOW = OW (−F ) is locally

principal and defines effective Cartier divisor F , there is a unique morphism θ : W →

Ya such that the diagram

W
θ ��

µ
��

��
��

��
��

Ya

πa
����

��
��

�

X

is commutative. Furthermore, in this case, θ(W ) is not contained in the support of

Fα and one has θ∗(Fa) = F .

2.2.2 Definition and Geometric Properties

Definition II.5. Suppose a is an ideal sheaf on a normal variety X. Denote by

πa : Ya → X the normalized blowup of X along a, and suppose aOYa = OYa (−Fa) cuts

out an effective Cartier divisor Fa. Then the Rees valuations of a are the divisorial

valuations ordE on C(X) \ {0} corresponding to the prime divisors E on Y in the

support of Fa, and the integral closure of a is simply the ideal sheaf ā = πa,∗OYa (−Fa).

Thus, when X is affine, we have

ā =




 f ∈ C[X]

������
ordE(f) ≥ ordE(a)

for all prime
divisors E on Yα






=




 f ∈ C[X]

������
ordE(f) ≥ ordE(a)

for all Rees
valuations ordE of a




 .
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When a = ā, we say the ideal sheaf a is integrally closed or (more classically) complete.

If τ ⊆ a is another ideal sheaf, then τ is a reduction of a if τ̄ = ā.

Proposition II.6. Let a be a nonzero ideal sheaf on a normal variety X of dimen-

sion n.

(i) If a is locally principal, then a = ā is integrally closed.

(ii) If µ : W → X is a morphism of normal varieties such that aOW �= 0 (i.e. µ(W )

is not contained in the closed subset of X determined by a), then āOW ⊆ aOW .

(iii) If π : Y → X is any model such that aOY = OY (−F ) is locally principal, then

π∗OY (−F ) = ā and aOY = āOY . In particular, if b is another ideal sheaf on

X, then b̄ = ā if and only if bOY = OY (−F ). Also, (ā) = ā.

(iv) Locally on X, a has a reduction generated by at most n elements.

Proof. Each statement is local on X, and thus we may assume without loss of gener-

ality that X is affine. For (i), simply note blowing up a locally principal ideal sheaf

has no effect, hence Ya = X and πa is the identity map. Next, suppose µ : W → X

is a morphism with aOW �= 0 whose source W is normal. Let νa : Va → W be the

normalized blowup of W along aOW with aOWa = OWa (−Ga) for a Cartier divisor

Ga on Wa. Thus, µ ◦ νa factors uniquely through the normalized blowup Yaof X

along a, so that there is a morphism θ : Va → Ya with θ∗(Fa) = Ga and a commuting

diagram

Va
θ ��

νa

��

Ya

πa

��

W µ
�� X

.

If f ∈ ā ⊆ C[X] does not vanish entirely on µ(W ), then since divYa (f ◦ πa) ≥ Fa it
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follows

ν∗a divWa (f ◦ µ) = θ∗ divYa (f ◦ πa) ≥ θ∗Fa = Ga.

This shows (ii). Using the notation in (iii), again we know there is a morphism

δ : Y → Ya such that π = πa ◦ δ and δ∗(Fa) = F . Thus, by the projection formula,

we have

π∗OY (−F ) = πa,∗(δ∗δ
∗
OYa (−Fa)) = πa,∗(−Fa) = ā.

Furthermore, from (i) and (ii), it follows

OY (−F ) = aOY ⊆ āOY ⊆ aOY = OY (−F )

and so we must have equality throughout. In particular, if b̄ = ā, we see bOY =

b̄OY = āOY = OY (−F ) and also (ā) = ā. (The converse statement is trivial.) This

shows (iii). Lastly, suppose a ⊆ C[X] is generated by a1, . . . , am ∈ C[X] so that the

invertible sheaf aOYa is globally generated by the sections a1, . . . , am. Since π−1
a ({p})

has dimension at most n − 1 for each point p ∈ X, we can find n generic C-linear

combinations of these sections which globally generate aOYα over π−1
a ({p}). If we

call τ ⊆ C[X] the ideal generated by these combinations, it follows immediately from

(iii) that τ is a reduction of a in a neighborhood of p.

Proposition II.7. Let a be an ideal sheaf on a normal affine variety X.

(i) ā =





f ∈ C[X]

��������
ordE(f) ≥ ordE(a)

for all divisorial
valuations ordE on

C(X) \ {0}





.

(ii) a is integrally closed if and only if there exists a set {ordEi}i∈I of divisorial

valuations on C(X) \ {0} and positive integers {αi}i∈I such that

a =

�
f ∈ C[X]

���� ordEi(f) ≥ αi for i ∈ I

�
.
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Proof. Since the Rees valuations of a are a subset of all of the divisorial valuations,

the containment ⊇ in (i) is clear. For the opposite inclusion, suppose f ∈ ā and

ordE : C(X) \ {0} is the divisorial valuation corresponding to a prime divisor E on a

model π : Y → X. Let θ : Y � → Y be the normalized blowup of Y along aOY and set

π� = π ◦ θ. On Y �, we have aOY � = OY �(−F �) for an effective Cartier divisor F �. If

E � = θ−1
∗ E is the strict transform of E on Y �, the divisorial valuations ordE and ordE�

agree on C(X) \ {0}. By Proposition II.6 (iii) we have f ◦ π� ∈ aOY � = OY �(−F �)

and thus

ordE(f) = ordE�(f) = ordE�(f ◦ π�) ≥ ordE�(F �) = ordE�(a) = ordE(a),

completing the proof of (i).

For (ii), one direction is immediate from the definition of integral closure. Indeed,

if a = ā, then membership in a can be verified by checking for the appropriate

order of vanishing along the Rees valuations of a (alternatively, we can also use (i)).

Conversely, suppose

a =

�
f ∈ C[X]

���� ordEi(f) ≥ αi for i ∈ I

�

for a set {ordEi}i∈I of divisorial valuations. Without loss of generality, we may

assume αi = ordEi(a) for each i ∈ I. But then from (i), it follows that ā ⊆ a, whence

ā = a.

Proposition II.8. Let X be a normal variety.

(i) If a ⊆ b are ideal sheaves on X, then ā ⊆ b̄.

(ii) The (arbitrary) intersection of integrally closed ideal sheaves on X is integrally

closed.
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(iii) Radical ideal sheaves on X are integrally closed. In particular, for any ideal

sheaf a we have a ⊆ ā ⊆
√

a.

(iv) If C is a Cartier divisor on a model π : Y → X such that π∗C is effective, then

a = π∗OY (−C) is an integrally closed ideal on X.

Proof. Without loss of generality, we may assume X is affine. Then (i) follows im-

mediately from Proposition II.7 (i) as ordE(a) ≥ ordE(b) for all divisorial valuations

ordE on C(X) \ {0}. Similarly, if {ai}i∈I is a collection of integrally closed ideals on

X, then

�
i∈I ai =





f ∈ C[X]

�������
ordE(f) ≥ αE

for all divisorial
valuations ordE on

C(X) \ {0}






where αE = min{ ordE(αi) | i ∈ I }. Thus, (ii) follows from Proposition II.7 (ii).

To see (iii), it now suffices to show that a prime ideal p ⊆ C[X] is integrally closed.

Let Z be the irreducible closed subset of X determined by p. Thus, if f ∈ C[X], we

have f ∈ p if and only if f |Z = 0. Consider the normalized blowup πp : Yp → X of X

along p with pOYp = OYp (−Fp). Since πp(Fp) = Z, we can find a prime divisor EZ

on Yp with π(EZ) = Z.3 In particular, in order for the pullback f ◦ πp of a regular

function f ∈ C[X] to vanish along EZ , it is necessary and sufficient for f to vanish

along Z itself. Thus, we have

p = { f ∈ C[X] | ordEZ (f) ≥ 1 }

is integrally closed. Lastly, if C is a Cartier divisor on a model π : Y → X such that

3Note that, when Z is not contained in the singular locus of X, the prime divisor EZ is uniquely
determined.
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π∗C is effective, it is immediate that π∗OY (−C) ⊆ OX . Thus,

π∗OY (−C) =

�
f ∈ C[X]

����� ordE(f) ≥ ordE(C) for all prime
divisors E on Y

�

is an integrally closed ideal sheaf on X.

2.2.3 Algebraic Properties and Q-Coefficients

Proposition II.9. Suppose a is an ideal sheaf on a normal variety X. Then the

normalization of the Rees algebra of a equals
�

m≥0 am =
�

m≥0 am.

Proof. The statement is local on X, and thus we may assume that X is affine. Note

that
�

m≥0 am ⊆
�

m≥0 am, and again we will introduce an indeterminate t to view

this as an inclusion of subrings of C(X)[t]. Thus, if

(2.3)
R = C[X] + at + a2t2 + · · · + amtm + · · ·

S = C[X] + a1t + a2t2 + · · · + amtm + · · ·

we need to show the normalization R̄ of R is actually equal to S. It follows from

Lemma II.4 that S is normal and hence R̄ ⊆ S: furthermore, the methods used

therein also show this is a graded inclusion of rings (as R̄ is again closed under the

action of λ ∈ C \ {0} on C(X)[t]). But then it is clear that both ProjXR̄ and

ProjXS are equal to the normalized blowup Ya of X along a, so R̄ and S must agree

in sufficiently large degree. In particular, S is a finitely generated R̄-module with the

same fraction field C(X)(t). As R̄ is normal, we must have R̄ = S as desired.

Corollary II.10. Suppose X is a normal affine variety and a ⊆ C[X] is an ideal.

(i) If f ∈ C[X], then f ∈ ā if and only if it satisfies an equation of the form

fn + a1f
n−1 + a2f

n−2 + · · · + an = 0
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where ai ∈ ai for i = 1, . . . , n. Alternatively, f ∈ ā if and only if for some

c ∈ C[X] \ {0} one has cf l ∈ al for infinitely many l ≥ 0.4

(ii) If b ⊆ C[X] is another ideal with a ⊆ b, then b ⊆ ā if and only if there is a

positive integer k such that bk+1 = abk. More generally, b ⊆ ā if and only if

there is a finitely generated faithful C[X]-module M such that bM = aM .

Proof. Using the notation from (2.3), we have for f ∈ C[X] that f ∈ ā if and only if

ft ∈ S satisfies an equation of integral dependence over R. If

(2.4) fn + a1f
n−1 + a2f

n−2 + · · · + an = 0

where ai ∈ ai for i = 1, . . . , n, then

(ft)n + (a1t)(ft)n−1 + (a2t
2)(ft)n−2 + · · · + (ant

n) = 0

is such an equation. Conversely, if (ft) satisfies an equation of integral dependence

over R of degree n, the subsequent vanishing of the coefficient of tn gives a relation

of the form (2.4). For the second characterization, if there exists a c ∈ C[X] \ {0}

with cf l ∈ al for infinitely many l ≥ 0, then

ordE(c) + l ordE(f) ≥ l ordE(a)

for infinitely many l ≥ 0 and all divisorial valuations ordE on C(X) \ {0}. It follows

that ordE(f) ≥ ordE(a) and thus f ∈ ā. For the other direction, if f ∈ ā and satisfies

(2.4), let c ∈ an \ {0}. Then for l > n we have

cf l = −(a1cf
l−1 + a2cf

l−2 + · · · + ancf
l−n)

and it follows by induction on l that cf l ∈ al for all l ≥ 0.

4In fact, the proof below shows it is equivalent to require cf l ∈ al for all l ≥ 0.
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For (ii), suppose first b ⊆ ā. Choose a set of generators b1, . . . , bm ∈ C[X] for b.

Suppose bi satisfies an equation of the form (2.4) of degree ni, so that (a + �bi�)ni ⊆

a(a + �bi�)ni−1. Let k = n1n2 · · ·nm. Now, bk+1 is generated by all of the monomials

in b1, . . . , bm of degree k + 1, and each of these monomials is divisible by bni
i for

some i. Since bni
i ∈ a(a + �bi�)ni−1, each of these monomials lies in abk and thus we

have bk+1 = abk. Note that bk is certainly a finitely generated faithful C[X]-module.

Conversely, suppose M is a finitely generated faithful C[X]-module with bM = aM .

Choose generators m1, . . . ,mn for M , and suppose f ∈ b. For each i = 1, . . . , n, we

can write

fmi = ai,1m1 + ai,2m2 + · · · + ai,nmn

for some ai,j ∈ a. Let A = (ai,j) be the associated matrix, and put m = (mj) to be

the column vector given by the generators. If n is the n × n identity matrix, we

have that (f · n − A) kills m. Multiplying by the adjoint of this matrix, it follows

that det(f · n − A) n also kills m, and thus det(f · n − A) kills M . Since M is

faithful, we must have det(f · n−A) = 0, which is an equation of the form (2.4) for

f . Thus, we conclude f ∈ ā and it follows b ⊆ ā.

Definition II.11 (Integral Closure with Q-Coefficients). Suppose a is an ideal sheaf

on a normal variety X and λ ∈ Q>0. Then one can define an ideal sheaf aλ called

the integral closure of a with coefficient λ as follows. Write λ = p
q with p, q positive

integers. On an open set U ⊆ X with f ∈ C[U ], we have f ∈ H0(U, aλ) if and

only if f q ∈ H0(U, ap). We leave it as an exercise for the reader to check that aλ is

independent of the choice of p, q and that this definition agrees with the previously

defined am for all positive integers m.

Proposition II.12. Suppose a is an ideal sheaf on a normal variety X defining
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a closed subscheme Z, λ ∈ Q>0, and πa : Ya → X is the normalized blowup of X

along a with aOYa = OYa (−Fα). Then aλ = πa,∗OYa (�−λFα�). In particular, aλ is

integrally closed. Furthermore, for all sufficiently small rational numbers � > 0, we

have aλ−� = aλ and a� =
√

a.

Proof. Write λ = p
q for p, q positive integers. Without loss of generality, we may

assume X is affine. For f ∈ C[X], we have

f q ∈ ap ⇐⇒ q ordE(f) ≥ p ordE(a) for all Rees valuations ordE of a

⇐⇒ ordE(f) ≥ �p
q ordE(a)� for all Rees valuations ordE of a

⇐⇒ ordE(f) + �−λ ordE(a)� ≥ 0 for all Rees valuations ordE of a

⇐⇒ f ∈ H0(X, πa,∗OYa (�−λFa�)).

Thus, we see that aλ = πa,∗OYa (�−λFa�). If 0 < � << 1 is sufficiently small, we have

ordE(�−�Fa�) = −1 for all Rees valuations ordE of a. In this case, we have

a� =




 f ∈ C[X]

������
ordE(f) ≥ 1

for all Rees
valuations ordE of a






=




 f ∈ C[X]

������
f |πa(E) = 0

for all Rees
valuations ordE of a






= { f ∈ C[X] | f |Z = 0} =
√

a

as claimed.



CHAPTER III

Multiplier Ideals

3.1 First Properties

3.1.1 Log Resolutions

If a is an ideal sheaf on a normal variety X (defining a closed subscheme Z), recall

that a model π : Y → X is said to be a log resolution of the pair (X, a) (or of the

pair (X, Z)) when:

(i) Y is smooth, and aOY = OY (−F ) is the locally principal ideal sheaf of an

effective Cartier divisor F ;

(ii) The prime divisors which are either exceptional or appear in the support of F

are smooth and intersect transversely.

The second condition has the following interpretation: on some neighborhood of each

point y ∈ Y there are local analytic coordinates z1, . . . , zn (centered at y) such that

any divisor appearing in (ii) and passing through y is given locally by zj = 0 for

some j. A divisor on a smooth variety whose support satisfies this condition is said

to have simple normal crossings. Note that the individual prime components of a

simple normal crossings divisor are required to be smooth and thus cannot locally

have multiple analytic branches or “self intersections.”

29
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In case X is an affine variety, one can interpret a log resolution π : Y → X of an

ideal a ⊆ C[X] as a “separating” log resolution of the divisors of general members of

a. Precisely, recall that a generic C-linear combination g = λ1g1 + λ2g2 + · · · + λkgk

of generators g1, . . . , gk is called a general element of a (with respect to this choice

of generators). If C = div(g), then π : Y → X is also a log resolution of (X, C).

Furthermore, if we write π∗(C) = F + CY where aOY = OY (−F ), then the divisor

CY is smooth (and in particular reduced). Log resolutions are “separating” in the

following sense: when g� is another element of a with C � = div(g�) and π∗(C �) =

F + C �
Y , it follows that C �

Y and CY have no irreducible components in common.

Indeed, all of these facts follow by showing that

(π∗ div(g1)− F ), (π∗ div(g2)− F ), . . . , (π∗ div(gk)− F )

generate a base-point free linear series on Y ; see Section 9.1 in [Laz04] for further

details.

Because we are working in characteristic zero, log resolutions always exist accord-

ing to a fundamental result of Hironaka [Hir64]. Yet log resolutions are far from

unique: for example, additional blowups along smooth centers will produce larger

resolutions. Any two log resolutions π : Y → X and π� : Y � → X �, however, are

always dominated by a third π�� : Y �� → X. Precisely, this means there are proper

birational morphisms θ : Y �� → Y and θ� : Y �� → Y � such that π�� = π� ◦ θ� = π ◦ θ, i.e.

Y ��

θ

����
��

��
�� θ�

��
��

��
��

��

π��

��

Y

π
��

��
��

��
��

Y �

π�����
��

��
��

X

is a commutative diagram.
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When X is smooth, one can find a log resolution which is a composition of blowups

along smooth centers. In fact, any log resolution is dominated by another of this

form. However, the process of finding a log resolution can be an extremely difficult

and complicated in practice. To give a flavor for this procedure in a case of primary

interest for the coming chapters, we sketch a proof of the existence of log resolutions

for curves on smooth projective surfaces.

Proposition III.1. If X is a smooth projective surface and C is an effective Cartier

divisor on X, then (X,OX(−C)) has a log resolution which is a composition of point

blowups.

Proof. Suppose first that C is an irreducible curve (i.e. a prime divisor) on X.

Suppose that c ∈ C is a singular point with multiplicity m > 1. Denote by pa(C) =

1 − χ(OC) the arithmetic genus of C. Consider the blowup π� : X � → X of X at c,

and let E � = π�−1(c) be the unique exceptional divisor. Thus, we have E � � P1 and

E � · E � = −1, and π�∗(C) = C � + mE where C � = π−1
∗ is the strict transform of C.

The adjunction formula tells us that

(KX + C) · C = 2pa(C)− 2.

Recall also that KX = π�∗KX + E �. Thus, we have

2pa(C)− 2 = (KX + C) · C = π�∗(KX + C) · π�∗(C)

= π�∗(KX + C) · (C � + E) = π�∗(KX + C) · C �

= (KY + C �) · C � + (m− 1)E · C �

> (KY + C �) · C � = 2pa(C �)− 2

which implies pa(C �) < pa(C). Since the arithmetic genus is at least zero and cannot

continue to drop indefinitely, blowing up the singular points of C repeatedly will

eventually result in a model on which the strict transform of C must be smooth.
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To finish the proof, we may now assume that C has smooth irreducible compo-

nents. Suppose we have distinct prime divisors C1, C2 in the support of C with

C1 · C2 > 1. Let c ∈ C1 ∩ C2 be an intersection point, and again let π� : X � → X be

the blowup of X at c with π�−1(c) = E � the exceptional divisor. Then if C �
1 and C �

2

are the strict transforms of C1 and C2, respectively, we compute

C �
1 · E

� = C �
2 · E

� = 1

C1 · C2 = π�∗(C1) · π
�∗(C2) = (C �

1 + E) · (C �
2 + E) = C �

1 · C
�
2 + 1

so again C1 · C2 > C �
1 · C

�
2. We conclude that, after a sequence of blowups, we will

have that all the components of the pullback of C will be smooth and have pairwise

intersection either zero or one. In other word, the pullback of C will be a simple

normal crossings divisor, and we have produced the desired log resolution.

3.1.2 Relative Canonical Divisors

As on a smooth variety, a normal variety X of dimension n has a well-defined

canonical sheaf. Specifically, on U = Xreg, the sheaf of regular n-forms ωU =
�n ΩU

is invertible. If ι : U → X is the natural inclusion, the canonical sheaf ωX = ι∗ωU

is a rank one invertible sheaf according to Proposition II.3. An integral Weil divisor

whose associated subsheaf of C(X) is isomorphic to ωX is called a canonical divisor,

and the associated linear equivalence class is called the canonical class. When the

canonical class is Q-Cartier, we say that X is Q-Gorenstein.

While the above approach to defining the canonical sheaf ωX of a normal variety

X may be the most natural from a geometric perspective, alternative constructions

arising algebraically or via duality theory are also important. Recall that on X we

can consider the bounded derived category Db
coh(X). Thus, the objects of Db

coh(X)
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are represented by bounded complexes of OX-modules with coherent cohomology up

to quasi-isomorphism. In other words, two complexes F � and G � of OX-modules

give rise the same object in Db
coh(X) when they are connected by a map of complexes

that induces an isomorphism on cohomology; see [Har66]. We shall denote by ω �
X a

normalized dualizing complex, and the canonical sheaf ωX can also be characterized

as the cohomology sheaf of ω �
X in degree −n. In fact, X is Cohen-Macaulay if

and only if the cohomology sheaves of ω �
X in all other degrees vanish. The use of

the formalism of derived categories and dualizing complexes in this thesis will be

confined to the background material presented in this chapter.

When π : Y → X is a model of X, we may choose a representative KX of the

canonical class on X by setting KX = π∗KY where KY is a representative of the

canonical divisor on Y . We shall always assume compatible choices of KY and KX

in this manner for a model π : Y → X without explicit mention. Suppose now

additionally that X is Q-Gorenstein, i.e. there is an integer m > 0 such that mKX

is a Cartier divisor. Then π∗KX = 1
mπ∗(mKX) is a well-defined Q-divisor on Y . By

construction, there is an exceptionally supported Q-divisor Kπ such that

KY = π∗KX + Kπ.

We refer to Kπ as the relative canonical divisor, and one checks that Kπ is inde-

pendent of the choice of canonical divisor on Y . In particular, whereas a canonical

divisor is specified only up to linear equivalence, the relative canonical divisor is a

uniquely determined Q-divisor on Y . In general, Kπ is neither integral nor effective;

however, when X and Y are smooth, Kπ is both as it is defined by the Jacobian

determinant of π.
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3.1.3 Definitions and Relation to Integral Closure

Definition III.2. Suppose X is a Q-Gorenstein normal variety and a ⊆ OX is an

ideal sheaf. The multiplier ideal of the pair (X, a) with coefficient λ ∈ Q>0 is the

ideal sheaf

J (X, aλ) = π∗OY (�Kπ − λF �)

where π : Y → X is any log resolution of (X, a). Thus, when X is affine, we have

J (X, aλ) =




 f ∈ C[X]

������
ordE(f) ≥ ordE(�λF −Kπ�)

for all prime
divisors E on Y




 .

For a more extensive introduction (in the smooth case) than will be provided

herein, we refer the reader to [BL04]. A detailed account of the properties of mul-

tiplier ideals, applications, and further references, may be found in [Laz04]. One

immediately checks that Definition III.2 is independent of the choice of log resolu-

tion.1 For the sake of completeness, we sketch the argument here. Since any two log

resolutions are dominated by a third, it suffices to verify

π�∗OY �(�Kπ� − λF �
�) = π∗OY (�Kπ − λF �)

where aOY � = OY �(F �) for another log resolution π� : Y � → X is another log resolution

admitting a morphism θ : Y � → Y and a commuting diagram

Y � θ ��

π� ��
��

��
��

��
Y

π
����

��
��

��

X

.

Because π�∗OY �(�Kπ� − λF ��) = π∗θ∗OY �(Kθ + �θ∗(Kπ − λF )�), we can simply check

1In the case of rational surface singularities, the results of this thesis are often strongest when
applied to the minimal resolution (see [Lip69]), i.e. the unique log resolution through which all
others must factor.
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that

θ∗OY �(Kθ + �D�) = OY (�D�)

for a Q-divisor D on Y such that D and θ∗(D) are both simple normal crossings

divisors. This fact reduces to an easy calculation in local analytic coordinates, and

we refer the reader to Lemma 9.2.19 of [Laz04] for a complete proof.

Multiplier ideals were first described analytically. If X is a smooth affine variety

and a = �g1, . . . , gk� ⊆ C[X], then one can check

J (X, aλ) =




 f ∈ C[X]

������
|f |2

�k
i=1 |gi|

2

is a locally integrable
function (i.e. ∈ L1

loc )




 .

Many properties which are immediate from Definition III.2 are unclear from this

perspective (e.g. independence of choice of generators, or that J (X, aλ) is a co-

herent algebraic sheaf). Nevertheless, the analytic description of multiplier ideals

is particularly important as a source of intuition. The idea is that, when g1, . . . , gk

define a subscheme Z with very bad singularities, they must vanish to high order and

consequently 1Pk
i=1 |gi|2

grows rapidly near Z. A function in the multiplier ideal must

vanish enough to control the explosion of this kernel, and for this reason deeper or

smaller multiplier ideals should be thought to correspond to “worse” singularities.

Proposition III.3. Suppose X is a Q-Gorenstein normal variety and a ⊆ OX

is an ideal sheaf. Then the multiplier ideal J (X, aλ) is integrally closed. If m is

any positive integer, then J (X, aλ) = J (X, (am)
λ
m ) = J (X, (am)

λ
m ) (in particular,



36

J (X, a) = J (X, ā)). Furthermore, if X is affine, we have2

J (X, aλ) =





f ∈ C[X]

��������
ordE(f) ≥ ordE(�λF −Kπ�)

for all divisorial
valuations ordE on

C(X) \ {0}





.

Proof. It follows from Proposition II.8 (iv) that multiplier ideals are integrally closed.

Furthermore, if π : Y → X is a log resolution of (X, a) with aOY = OY (−F ), by

Proposition II.6 (iii) we have amOY = amOY = OY (−mF ). In particular, π : Y → X

is also a log resolution of (X, am) and (X, (am)), and J (X, aλ) = J (X, (am)
λ
m ) =

J (X, (am)
λ
m ) from the definition of multiplier ideals. Lastly, if µ : X � → X is any

model, let θ : Y � → X � be a log resolution of (X �, aOX�) and set π� = µ◦θ. It is easily

seen that π� : Y � → X is a log resolution of (X, a). Since the divisorial valuation of

C(X)\{0} associated to any prime divisor E � on X � is the same as that arising from

θ−1
∗ (E �), the remaining statement is clear.

Definition III.4. Suppose X is a Q-Gorenstein normal variety and a ⊆ OX is an

ideal sheaf. If λ ∈ Q>0, we say the pair (X, aλ) has log terminal singularities if

J (X, aλ) = OX . From Proposition III.3, we see that this is equivalent to

λ ordE(a)− ordE(Kπ) < 1

for all divisorial valuations ordE on C(X) \ {0} corresponding to a prime divisor E

living on a model π : Y → X. If instead we have

λ ordE(a)− ordE(Kπ) ≤ 1

or all divisorial valuations ordE on C(X) \ {0}, we say (X, aλ) has log canonical

singularities. When the ideal under consideration is the trivial ideal, it will often be

2We remark that this characterization of multiplier ideals can be taken as the definition over a
field of positive characteristic, where log resolutions are not known to exist in dimension greater
than two.
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omitted from the notation. In this case, we set J (X) = J (X,OX) and say simply

that X is log terminal or log canonical as appropriate. If X is log terminal, the log

canonical threshold of (X, a) is

sup




 c ∈ Q>0

������
(X, ac)

is log canonical
(or log terminal)




 = sup { c ∈ Q>0 | J (X, ac) = OX }

Thus, the log canonical threshold of (X, a) is simply the infemum of the values

ordE(Kπ) + 1

ordE(a)

over all divisorial valuations ordE on C(X)\{0} which are positive along a. Note that

one could also restrict attention to only those divisorial valuations corresponding to

prime divisors on a single log resolution of (X, a). We will explore similar ideas more

fully in Chapter V.

Proposition III.5. Suppose X is a Q-Gorenstein normal variety with log terminal

singularities. If a is any ideal and λ ∈ Q>0, we have aλ ⊆ J (X, aλ).

Proof. Let π : Y → X be a log resolution of (X, a) with aOY = OY (−F ). We have

aλ = π∗OY (�−λF �) and J (X, aλ) = π∗OY (�Kπ − λF �), so it suffices to check

�Kπ − λF � ≥ �−λF �

on Y . Since X is log terminal, we have ordE(Kπ) > −1 for all prime divisors E on

Y . Thus, we have

ordE(Kπ − λF ) > −1 + ordE(−λF ) ≥ −1 + ordE(�−λF �)

and it follows that ordE(�Kπ − λF �) ≥ ordE(�−λF �) as desired.

There are many variations on the definition of a multiplier ideal. In the analytic

setting, one can associate a multiplier ideal to any plurisubharmonic function on a
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complex manifold. We mention here one algebraic variant which will be useful later

on. Consider now an effective Q-divisors ∆ on a normal Q-Gorenstein variety X.

We can find a positive integer m such that m∆ is an integral effective Weil divisor,

and if we set

J (X, ∆) = J (X, (OX(−m∆))
1
m )

follows from Proposition III.3 that our definition is independent of the choice of

integer m. When ∆ is a Q-Cartier divisor and π : Y → X is a log resolution of

(X,OX(−m∆)), we have

J (X, ∆) = π∗OY (�Kπ − π∗(∆)�) .

In fact, the next proposition shows that every multiplier ideal is given locally as the

multiplier ideal of a Q-divisor.

Proposition III.6. Suppose X is an affine Q-Gorenstein normal variety, a ⊆ C[X]

is an ideal sheaf, and λ is a positive rational number. Let k > λ be a positive

integer, and choose general elements f1, . . . , fk ∈ a (i.e. each fi is a generic C-linear

combinations of a given set of generators for a). If

∆ = λ ·
1

k
(div(f1) + div(f2) + · · · + div(fk)) ,

then J (X, aλ) = J (X, ∆). In particular, if λ < 1 and C is the divisor of a general

element of a, we have J (X, aλ) = J (X, λC).

Proof. Before beginning, we remark that the main idea is essentially contained in

the following fact: given any finite set of (divisorial) valuations, the general elements

of an ideal (with respect to any set of generators) can be chosen so that they agree

with the ideal along those valuations.
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Turning towards a more detailed argument, for each i let Ci = div(fi) and set

CY
i = π∗(Ci)− F where aOY = OY (−F ). Now, the divisors

CY
1 , CY

2 , . . . , CY
k

are all reduced (even smooth), and have no components in common with each other

or with either Kπ or F . Thus, it follows that

�Kπ − π∗∆� =
�
Kπ − (λ ·

1
k )(

�k
i=1(F + CY

i )
�

= �Kπ − λF �+
�k

i=1�−
λ
kCY

i � = �Kπ − λF �

since λ < k. It follows at once that J (X, aλ) = J (X, ∆).

Note that there is an obvious obstruction to extending the definition of multiplier

ideals to normal varieties X which are not Q-Gorenstein; namely, there is no definitive

way3 to make sense of the relative canonical divisor.4 However, if ∆ is a Q-divisor

on X such that KX + ∆ is Q-Cartier, we can still define a multiplier ideal J (X, ∆)

as π∗OY (�KY − π∗(KX + ∆)�) for a log resolution π : Y → X of (X, ∆). See Section

9.4.G of [Laz04] for further details as well as many other generalizations.

3.2 Local Vanishing and Applications

In this section, we wish to highlight some of the properties and applications of

multiplier ideals which will be important later on. A more detailed account along

with further references may be found in [Laz04].

3For surfaces, one may use numerical pullback to define the relative canonical divisor. We will
return to this point at the beginning of the next chapter.

4See [DH09] for recent developments.
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3.2.1 Local Vanishing for Multiplier Ideals

Recall that, given a sufficiently positive Cartier divisor on a smooth variety Y ,

one often has vanishing statements for the cohomology of certain invertible sheaves.

Perhaps the most famous is the vanishing theorem of Kodaira: if A is ample, then

H i(Y,OY (KY + A)) = 0 for all i > 0. An extremely powerful generalization of this

statement is given below.

Theorem III.7 (Kawamata-Viehweg Vanishing). Let Y be a smooth projective va-

riety. Suppose the Cartier divisor D on Y is Q-linearly equivalent to B + Φ, where

• B is a big and nef Q-divisor, and

• Φ is an effective divisor with simple normal crossings support satisfying �Φ� = 0.

Then H i(Y,OY (D)) = 0 for all i > 0.

The basic idea of the proof of Theorem III.7 is to use so-called “covering tricks” and

resolution of singularities to reduce to the classical statement of Kodaira vanishing

given above. We remark that Theorem III.7 has largely been the driving force behind

the widespread use of Q-divisors in birational algebraic geometry. The following two

theorems should be thought of as local variants of Theorem III.7; the first theorem

underlies many of the remarkable properties of multiplier ideals.

Theorem III.8 (Local Vanishing for Multiplier Ideals). Suppose π : Y → X is a

log resolution of the ideal sheaf a on a normal Q-Gorenstein variety X with aOY =

OY (−F ). Then Riπ∗OY (�Kπ − λF �) = 0 for all i > 0 and λ ∈ Q>0.

Theorem III.9 (Grauert-Riemenschneider Vanishing). If π : Y → X is any resolu-

tion of singularities, then Riπ∗ωY = 0 for all i > 0.
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The proofs of Theorems III.8 and III.9 proceed along a standard method of pro-

ducing local variants of global vanishing statements via the following lemma.

Lemma III.10. Suppose π : Y → X is a proper morphism of varieties, F is a

coherent sheaf on Y , and A is a sufficiently ample divisor on X. Then Riπ∗F = 0

for all i > 0 if and only if H i(Y, F ⊗OY (π∗(A))) = 0 for all i > 0.

Proof. Assume A is sufficiently ample that the coherent sheaves

(Rjπ∗F )⊗OX OX(A) = Rjπ∗(F ⊗OY OY (π∗(A))) = Rjπ∗F (π∗(A))

for j ≥ 0 are all globally generated and also satisfy H i(X, Rjπ∗F (π∗(A))) = 0 for

i > 0. Thus, we have

Rjπ∗F = 0 ⇐⇒ Rjπ∗F (π∗(A)) = 0 ⇐⇒ H0(X, Rjπ∗F (π∗(A))) = 0 .

Let I
� be a bounded below complex of injectives representing Rπ∗F (π∗(A)) in

Dcoh(X) (i.e. quasi-isomorphic to Rπ∗F (π∗(A))). If hi( ) denotes the i-the coho-

mology of a complex, it is easy to see Γ(X, hi(I � )) = hi(Γ(X, I � )) so that

H0(X, Rjπ∗F (π∗(A))) = Γ(X, hi(I � )) = hi(Γ(X, I � ))
= hi ((R(Γ(X, ) ◦Rπ∗) (F (π∗(A))))

= hi ((RΓ(Y, ) (F (π∗(A))))

= H i(Y, F (π∗(A)))

and the desired equivalence follows immediately.

Proof of Theorem III.9. The statement is local on X, and so we may assume X

is affine. Let X be a compactification of X. We claim there is a resolution of

singularities π̄ : Y → X such that π̄−1(X) = Y and π̄|Y = π. Indeed, start by taking

any compactification of Y . By taking the normalization of graph of the rational map
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induced by π, it is clear that there is a model over X which restricts to π over X.

Now one can produce π̄ : Y → X by simply resolving the singularities of this model

while preserving the smooth locus.

It now suffices to show Riπ̄∗ωY = 0 for i > 0. Suppose A is a sufficiently

ample Cartier divisor on X. Then π̄∗(A) is a big and nef, and thus we have

H i(Y,OY (KY + π∗(A))) = 0 for i > 0 by Theorem III.7. Our conclusion now follows

from Lemma III.10.

Proof of Theorem III.8. Again, the statement is local on X, and so we may begin by

assuming X is affine. Choose ∆ as in the proof of Proposition III.6, so that

�Kπ − λF � = �KY − π∗(KX + ∆)� .

Shrinking X further as necessary, we may also assume there is a positive integer m

and a rational function f ∈ C(X) \ {0} such that divX(f) = m(KX + ∆).

As before, we need to compactify X, but in a much more careful manner than

in the previous proof to preserve Q-Cartier assumptions. Fix an embedding of X in

AN , and view AN = PN \H as the complement of a hyperplane H in PN . Let X be

the normalization of the (Zariski) closure of X in PN , and let D be the pullback of H

to X. Thus, we have X ⊆ X is an open subset, D is an effective Cartier divisor on

X, and the support of D is equal to X \X. We will assume KX |X = KX (otherwise,

simply replace KX by KX |X). Put

∆̄ =
1

m
divX(f)−KX + nD

where n is a positive integer ensuring that ∆̄ is effective. Thus, ∆̄ is an effective

Q-divisor on X such that (KX − ∆̄)|X = KX + ∆ and KX + ∆̄ is Q-Cartier.
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Now, proceeding as in the proof of Theorem III.9, we can find a log resolution

π̄ : Y → X of (X, ∆̄) such that π̄−1(X) = Y and π̄|Y = π. Start by taking any

compactification of Y . Taking the normalization of graph of the rational map induced

by π, there is a model over X which restricts to π over X. Now one can produce

π̄ : Y → X by simply resolving singularities while preserving Y , which is possible as

Y is smooth and π∗(∆) has simple normal crossings.

It now suffices to show Riπ̄∗(�KY − π∗(KX + ∆̄)�) = 0 for i > 0. Suppose A is a

sufficiently ample Cartier divisor on X with (A −KX + ∆̄) also ample. Then B =

π̄∗(A−KX + ∆̄) is a big and nef, and Φ = {π̄∗(KX + ∆̄)−KY } is an effective divisor

with �Φ� = 0 and simple normal crossings support. Our conclusion now follows from

Lemma III.10 and Theorem III.7 as �KY − π̄∗(KX + ∆̄)� + π∗(A)) = KY + B + Φ

and thus H i(Y ,OY (�KY − π̄∗(KX + ∆̄)�+ π∗(A))) = 0 for i > 0.

Our goal now is to highlight a pair of applications which underscore the im-

portance of local vanishing for multiplier ideals. First, however, we need review a

definition which will be very important in Chapter V. Recall that a normal variety

X is said to have rational singularities if it satisfies any of the following equivalent

conditions:

(1.) Some (equivalently any) resolution of singularities π : Y → X satisfies Riπ∗OY =

0 for all i > 0.

(2.) X is Cohen-Macaulay, and some (equivalently any) resolution of singularities

π : Y → X satisfies π∗ωY = ωX .

(3.) For some (equivalently any) resolution of singularities π : Y → X, the natural

map OX → Rπ∗OY in Db
coh(X) has a splitting (i.e. a left inverse Rπ∗OY → OX
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in the derived category).

Let us briefly review the equivalence of these conditions. [(1.) =⇒ (3.)] Since X is

normal, we have that π∗OY = OX and thus by (1.) the natural map OX → Rπ∗OY is

an isomorphism in Db
coh(X) (i.e. a quasi-isomorphism of complexes). [(3.) =⇒ (2.)]

By assumption, we can find a composition

OX → Rπ∗OY → OX

which is an isomorphism in Db
coh(X). Applying R Hom( , ω �

X) and using Grothendieck

duality, we get that

ω
�

X ← Rπ∗ω
�

Y ← ω
�

X

is also an isomorphism in Db
coh(X). Since Riπ∗ωY = 0 for i > 0 by Grauert-

Riemenschneider Vanishing (Theorem III.9) and ω �
Y = ωY [−n], we have Rπ∗ω

�
Y =

π∗ωY [−n]. In particular, the cohomology of ω �
X is concentrated in degree −n and

thus X is Cohen-Macaulay. Furthermore, the natural inclusion π∗ωY → ωX is also

surjective and so π∗ωY = ωX . [(2.) =⇒ (1.)] Again, using Grauert-Riemenschneider

Vanishing and (2.), we see Rπ∗ω
�

Y = ω �
X in Db

coh(X). Applying R Hom( , ω �
X) and

Grothendieck duality gives Rπ∗OY = OX in Db
coh(X) yielding (1.).

3.2.2 Log Terminal Singularities are Rational and Skoda’s Theorem

In Chapter V, we will focus our attention on varieties with rational singularities in

dimension two. More specific information about surfaces with rational singularities

will be given at that time. However, more immediately, we will be concerned with

log terminal surfaces in the next chapter. Using local vanishing for multiplier ideals,

we can easily see the relationship between log terminal and rational singularities.
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Theorem III.11. Suppose (X, aλ) has log terminal singularities, where X is a Q-

Gorenstein normal variety, a ⊆ OX is an ideal sheaf, and λ ∈ Q>0. Then X must

have rational singularities.

Proof. We seek to show that X satisfies characterization (3.) of rational singularities.

Let π : Y → X be a log resolution of (X, a) with aOY = OY (−F ). Since (X, aλ) is

log terminal, we have �Kπ − λF � ≥ 0. Consider the inclusion

(3.1) OY → OY (�Kπ − λF �) .

By local vanishing for multiplier ideals, we have that

Rπ∗OY (�Kπ − λF �) = J (X, aλ) = OX

in Db
coh(X). Thus, applying Rπ∗( ) to (3.1) gives a map

Rπ∗OY → Rπ∗OY (�Kπ − λF �) = OX

in Db
coh(X) which is easily seen to split the natural inclusion of OX → Rπ∗OY .

We end this chapter with one final application of local vanishing. This result

should be thought of as a kind of periodicity statement for multiplier ideals.

Theorem III.12 (Skoda’s Theorem). Let a be an ideal sheaf on a Q-Gorenstein

normal variety X of dimension n. Suppose that, locally on X, one can always find a

reduction of a which is generated by at most k elements (in particular, we can always

take k ≤ n). Then J (X, aλ) = a · J (X, a(λ−1)) for all λ ≥ k.

Proof. We may assume that X is affine and that τ = �g1, . . . , gk� ⊆ a ⊆ C[X]

generate a reduction of a. Consider a log resolution π : Y → X with aOY = OY (−F ).
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Note that a · J (X, a(λ−1)) ⊆ J (X, aλ) since

ordE(a · J (X, a(λ−1))) = ordE(a) + ordE(J (X, a(λ−1)))

≥ ordE(F ) + ordE(�(λ− 1)F −Kπ�)

= ordE(�λF −Kπ�) .

Since τOY = OY (−F ), the line bundle OY (−F ) is globally generated by the sections

g1, . . . , gk (after identifying C(X) and C(Y )). In particular, the Koszul complex G �
determined by these sections is necessarily exact. Recall that this complex has

Gi =
�k−i �

OY (F )⊕k
�
� OY ((k − i)F )⊕(k

i)

and the maps Gi → Gi+1 are simply contraction with the section g1⊕ g2⊕ · · ·⊕ gk of

OY (−F )⊕k. When we tensor this complex by the invertible sheaf OY (�Kπ − λF �),

it remains exact and the individual terms become

OY (�Kπ − (λ− k + i)F �)⊕(k
i) .

Since Rjπ∗OY (�Kπ − (λ − k + i)F �) = 0 for j > 0 and all 0 ≤ i ≤ k by the

local vanishing theorem for multiplier ideals (Theorem III.8), it follows that the

pushforward of this tensored complex remains exact. In particular, at the k-th spot

of the complex we have that

J (X, a(λ−1))⊕k
(gj)

�� J (X, aλ) �� 0

is exact, and thus we see τ · J (X, a(λ−1)) = J (X, aλ). Since τ ⊆ a, it follows

immediately that a · J (X, a(λ−1)) = J (X, aλ) as desired.

We would be remiss not to mention the following consequence.

Corollary III.13 (Briançon-Skoda). If X is a Q-Gorenstein normal variety with

log terminal singularities, then for any ideal sheaf a we have an ⊆ a.
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Proof. Since X is log terminal, it follows from Proposition III.5 that

an ⊆ J (X, an) = a · J (X, an−1) ⊆ a .

Example III.14. Suppose n is a positive integer and f1, . . . , fn+1 ∈ C[x1, . . . , xn]

are polynomials in n variables. Then fn
1 fn

2 · · · fn
n+1 ∈ �f

n+1
1 , fn+1

2 , . . . , fn+1
n+1 �

n, since

(fn
1 fn

2 · · · fn
n+1)

n+1
∈ �fn+1

1 , fn+1
2 , . . . , fn+1

n+1 �
n(n+1) .

By Corollary III.13, it follows that fn
1 fn

2 · · · fn
n+1 ∈ �f

n+1
1 , fn+1

2 , . . . , fn+1
n+1 �. For ex-

ample, when n = 2, we have the elementary statement that f 2g2h2 ∈ �f 3, g3, h3� for

f, g, h ∈ C[x, y]. The reader is challenged to give an elementary proof.



CHAPTER IV

Integrally Closed Ideals on Log Terminal Surfaces are
Multiplier Ideals

4.1 Local Syzygies of Multiplier ideals

From this chapter onward, we shall be concerned only with local properties and

constructions. As such, we shall adhere to the following notational shift. We will

consider a scheme X = Spec(OX) where OX is the local ring at a point on a normal

complex variety. Equivalently, OX is simply a local normal domain essentially of

finite type over C. Let m be the maximal ideal of OX and set k = OX/m.

If M is an OX-module, recall that a free resolution F �
→ M is said to be min-

imal if each of the maps Fi → Fi−1 vanishes after applying the functor ( ⊗ k).

Alternatively, if we choose bases and represent Fi → Fi−1 by a matrix, that matrix

has entries in m. A minimal i-th syzygy of M is a nonzero element of the module

Syzi(M) = image(Fi → Fi−1) ⊆ Fi−1 (called the i-th syzygy module of M) which is

part of a minimal set of generators for Syzi(M). In [LL07] and [LLS08], restrictions

were found on the minimal syzygies of multiplier ideals.

Theorem IV.1. Suppose X is Q-Gorenstein of dimension d, λ ∈ Q>0, and a ⊆ OX

is an ideal.
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(i.) If OX is Cohen-Macaulay with system of parameters z1, . . . , zd, then no mini-

mal first syzygy of J (X, aλ) vanishes modulo (z1, . . . , zd)d.

(ii.) If OX is regular and i ≥ 1, then no minimal i-th syzygy of J (X, aλ) vanishes

modulo md+1−i.

We refer the reader to the original papers for the proofs of these results. Lazarsfeld

and Lee used Theorem IV.1 (ii.) to show that, when the dimension d is at least

three, smooth varieties have integrally closed ideal sheaves which cannot be realized

as multiplier ideals. In fact, consider two general homogeneous cubic equations

f, g ∈ C[x, y, z] (e.g. the defining equations of two general cubics in P2) and let

OX = C[x, y, z]�x,y,z�. One can show b = �f, g� + m7 ⊆ OX is an integrally closed

ideal, and that the Koszul syzygy gf − fg = 0 is a minimal first syzygy of b. Since

this syzygy vanishes modulo m3, it follows that b cannot be realized as a multiplier

ideal.

When X has dimension two, however, the story is very different. Concurrently,

[LW03] and [FJ05] show that every integrally closed ideal on a smooth surface is

a multiplier ideal. This lead [LLS08] to ask whether every integrally closed ideal

closed ideal on a surface with rational singularities can be realized as a multiplier

ideal. More precisely, one should ask:

Question IV.2. Consider a scheme X = SpecOX , where OX is a two-dimensional

local normal domain essentially of finite type over C. If X has a rational singularity,

is every integrally closed ideal which is contained in J (X,OX) a multiplier ideal?

The remainder of this chapter is devoted to generalizing the methods of [LW03]

and [FJ05] in order to prove the following:
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Theorem IV.3. Consider a scheme X = SpecOX , where OX is a two-dimensional

local normal domain essentially of finite type over C. Suppose X has log terminal

singularities. Then every integrally closed ideal is a multiplier ideal.

Recall from the previous chapter that log terminal singularities satisfy J (X,OX) =

OX by definition and are necessarily rational. Thus, Theorem IV.3 gives a complete

answer to the above question in this case.

4.2 Proof of Theorem IV.3

4.2.1 Relative Numerical Decomposition

Let x ∈ X be the unique closed point, and suppose f : Y → X is a projective

birational morphism such that Y is regular and f−1(x) is a simple normal crossing

divisor. Let E1, . . . , Eu be the irreducible components of f−1(x), and Λ = ⊕iZEi ⊂

Div(Y ) the lattice they generate.

The intersection pairing Div(Y ) × Λ → Z induces a negative definite Q-bilinear

form on ΛQ (see [Art66] for an elementary proof). Consequently, there is a dual basis

Ě1, . . . , Ěu for ΛQ defined by the property that

Ěi · Ej = −δij =






−1 i = j

0 i �= j
.

Recall that a divisor D ∈ DivQ(Y ) is said to be f -antinef if D · Ei ≤ 0 for all

i = 1, . . . , u. In this case, D is effective if and only if f∗D is effective (see Lemma

3.39 in [KM98]). In particular, Ě1, . . . , Ěu are effective.

If C ∈ DivQ(X), we define the numerical pullback of C to be the unique Q-divisor

f ∗C on Y such that f∗f ∗C = C and f ∗C · Ei = 0 for all i = 1, . . . , u. Note that,

when C is Cartier or even Q-Cartier, this agrees with the standard pullback of C. If
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D ∈ DivQ(Y ), we have

(4.1) D = f ∗f∗D +
�

i

(−D · Ei)Ěi.

We shall refer to this as a relative numerical decomposition for D. Note that, even

when D is integral, both f ∗f∗D and Ě1, . . . , Ěu are likely non-integral. The fact

that f ∗f∗D and Ě1, . . . , Ěu are always integral divisors when X is smooth and D

is integral is equivalent to the unique factorization of integrally closed ideals. See

[Lip69] for further discussion.

4.2.2 Antinef Closures and Global Sections

Suppose now that D� =
�

E a�EE and D�� =
�

E a��EE are f -antinef divisors,

where the sums range over the prime divisors E on Y . It is easy to check that

D� ∧D�� =
�

E min{a�E, a��E}E is also f -antinef. Further, any integral D ∈ Div(Y ) is

dominated by some integral f -antinef divisor (e.g. (f−1
∗)f∗D +M(Ě1 + · · ·+ Ěu) for

sufficiently large and divisible M). In particular, there is a unique smallest integral

f -antinef divisor D∼, called the f -antinef closure of D, such that D∼ ≥ D. One can

verify that f∗D = f∗D∼, and in addition the following important lemma holds (see

Lemma 1.2 of [LW03]). The proof also gives an effective algorithm for computing

f -antinef closures.

Lemma IV.4. For any D ∈ Div(Y ), we have f∗OY (−D) = f∗OY (−D∼).

Proof. Let sD ∈ N be the sum of the coefficients of D∼−D when written in terms of

E1, . . . , Eu. If sD = 0, then D = D∼ is f -antinef and the statement follows trivially.

Else, there is an index i such that D ·Ei > 0. As Ei ·Ej ≥ 0 for j �= i, we must have

D ≤ D + Ei ≤ D∼ = (D + Ei)
∼.
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Thus, sD+Ei = sD − 1. By induction, we may assume

f∗OY (−(D + Ei)) = f∗OY (−(D + Ei)
∼) = f∗OY (−D∼)

and it is enough to show f∗OY (−D) = f∗OY (−(D+Ei)). Consider the exact sequence

0 �� OY (−(D + Ei)) �� OY (−D) �� OEi(−D) �� 0.

Since deg(OEi(−D)) = −D ·Ei < 0, we have f∗OEi(−D) = 0; applying f∗ yields the

desired result.

4.2.3 Generic Sequences of Blowups

In the proof of Theorem IV.3, we will make use of the following auxiliary con-

struction. Suppose x(i) is a closed point of Ei with x(i) �∈ Ej for j �= i. A generic

sequence of n-blowups over x(i) is:

Y = Y0 Y1
σ1�� · · ·

σ2�� Yn−1
σn−1

�� Yn
σn��

where σ1 : Y1 → Y0 is the blowup of Y0 = Y at x1 := x(i), and σk : Yk → Yk−1 is the

blowup of Yk−1 at a generic closed point xk of (σk−1)−1(xk−1) for k = 2, . . . , n. Let

σ : Yn → Y be the composition σn ◦ · · · ◦ σ1. We will denote by E(1), . . . , E(u) the

strict transforms of E1, . . . , Eu on Yn. Also, let E(i, x(i), k), k = 1, . . . , n, be the strict

transforms of the n new σ-exceptional divisors created by the blowups σ1, . . . ,σn,

respectively.

Lemma IV.5. (a.) Let σ : Yn → Y be a generic sequence of blowups over x(i) ∈ Ei.

Then one has

Ě(i) ≤ Ě(i, x(i), 1) ≤ · · · ≤ Ě(i, x(i), n).

(b.) Suppose D ∈ Div(Yn) is an integral (f ◦ σ)-antinef divisor such that Ei is the

unique component of σ∗D containing x(i). If ordE(i) D = a0 and ordE(i,x(i),k) D =
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ak for k = 1, . . . , n, then

a0 ≤ a1 ≤ · · · ≤ an.

Further, a0 < an if and only if

�
n�

k=1

(−D · E(i, x(i), k))Ě(i, x(i), k)

�
≥ Ě(i).

Proof. If n = 1, we have

Ě(i, x(i), 1) =
�
σ∗Ěi + E(i, x(i), 1)

�
≥ σ∗Ěi = Ě(i)

D = σ∗σ∗D + (−D · E(i, x(i), 1))Ě(i, x(i), 1).

The general case of both statments follows easily by induction.

4.2.4 Numerical Log Terminal Singularities and Multiplier Ideals

Once more, suppose x ∈ X is the unique closed point and f : Y → X is a

projective birational morphism such that Y is regular and f−1(x) is a simple normal

crossing divisor. Let E1, . . . , Eu be the irreducible components of f−1(x), and let KY

be a canonical divisor on Y . Then KX := f∗KY is a canonical divisor on X. If we

write the relative canonical divisor as

Kf := KY − f ∗KX =
�

i

biEi

then X has numerically log terminal singularities if and only if bi > −1 for all

i = 1, . . . , u. In this case, as we are working over C, X is automatically Q-factorial

(see Proposition 4.11 in [KM98], as well as [DH09] for recent developments). Thus, a

numerically log terminal surface is in fact log terminal in the sense of Definition III.4.

If a ⊆ O is an ideal and f : Y → X is as above and also a log resolution of a with

aOY = OY (−G) for an effective divisor G. Thus, Ex(f)∪Supp(G) has simple normal
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crossings. In this case, we can define the (numerical) multiplier ideal of (X, a) with

coefficient λ ∈ Q>0 as

J (X, aλ) = f∗OY (�Kf − λG�).

4.2.5 Choosing a and λ

We now begin the proof of Theorem IV.3. For the remainder, assume X is log

terminal, and let I ⊆ OX be an integrally closed ideal. In this section, we construct

another ideal a ⊆ OX along with a coefficient λ ∈ Q>0; and in the following section

it will be shown that J (X, aλ) = I. Let f : Y → X a log resolution of I with

exceptional divisors E1, . . . , Eu. Suppose IOY = OY (−F 0), and write

Kf =
u�

i=1

biEi

F 0 = (f−1
∗)f∗(F

0) +
u�

i=1

aiEi.

Choose 0 < � < 1/2 such that ��(f−1
∗)f∗(F

0)� = 0 and

�(ai + 1) < 1 + bi

for i = 1, . . . , u. Note that, since X is log terminal, 1 + bi > 0 and any sufficiently

small � > 0 will do. Let ni := �
1+bi

� − (ai + 1)� ≥ 0, and ei := (−F 0 · Ei). Choose

ei distinct closed points x(i)
1 , . . . , x(i)

ei on Ei such that x(i)
j �∈ Supp

�
(f−1

∗)f∗(F
0)

�
and

x(i)
j �∈ El for l �= i. Denote by g : Z → Y the composition of ni generic blowups at

each of the points x(i)
j for j = 1, . . . , ei and i = 1, . . . , u. As in Section 4.2.3, denote by

E(1), . . . , E(u) the strict transforms of E1, . . . , Eu, and E(i, x(i)
j , 1), . . . , E(i, x(i)

j , ni)

the strict transforms of the ni exceptional divisors over x(i)
j .

Let h := f ◦ g, F = g∗(F 0), and choose an effective h-exceptional integral divisor
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A on Z such that −A is h-ample. It is easy to see that

Kg =
u�

i=1

ei�

j=1

ni�

k=1

k E(i, x(i)
j , k)

and one checks

Kg · E(i) = ei Kg · E(i, x(i)
j , k) =






0 k �= ni

−1 k = ni

.

It follows immediately that F +Kg is h-antinef. Choose µ > 0 sufficiently small that

(4.2) �(1 + �)(F + Kg + µA)−Kh� = �(1 + �)(F + Kg)−Kh�.

As −(F +Kg +µA) is h-ample, there exists N >> 0 such that G := N(F +Kg +µA)

is integral and −G is relatively globally generated.1 In other words, a := h∗OZ(−G)

is an integrally closed ideal such that aOZ = OZ(−G). Set λ = 1+�
N .

4.2.6 Conclusion of Proof

Here, we will show J (X, aλ) = I = h∗OZ(−F ). Since

J (X, aλ) = h∗OZ(�Kh − λG�) = h∗OZ(−�λG−Kh�),

by Lemma IV.4, it suffices to show F � := �λG −Kh�
∼ = F . In particular, we have

reduced to showing a purely numerical statement.

Lemma IV.6. We have F � ≤ F and h∗F � = h∗F . In addition, for i = 1, . . . , u and

j = 1, . . . , ei,

ord
E(i,x(i)

j ,ni)
(F �) = ord

E(i,x(i)
j ,ni)

(F ) = ordE(i)(F ).

1Over C, as X is log terminal, it also has rational singularities and by Theorem 12.1 of [Lip69]
it follows that −(F + Kg) is already globally generated without the addition of −A. However,
the above approach seems more elementary, and avoids unnecessary reference to these nontrivial
results.
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Proof. Since F � = �λG −Kh�
∼ and F is h-antinef (−F is relatively globally gener-

ated), it suffices to show these statements with �λG−Kh� in place of F �. By (4.2),

we have

�λG−Kh� = �(1 + �)(F + Kg)−Kh�

= F + ��(F + Kg)− g∗Kf�.

Since ��(f−1
∗)f∗F

0� = 0, it follows immediately that h∗�λG −Kh� = h∗F . For the

remaining two statements, consider the coefficients of �(F + Kg) − g∗Kf . Along

E(i), we have �ai − bi, which is less than one by choice of �. Along E(i, x(i)
j , k), we

have �(ai + k)− bi. This expression is greatest when k = ni, where our choice of ni

guarantees

0 ≤ �(ai + ni)− bi < 1.

It follows that �λG−Kh� ≤ F , with equality along E(i, x(i)
j , ni).

Lemma IV.7. For each i = 1, . . . , u,

(−F �
· E(i))Ě(i) +

ei�

j=1

ni�

k=1

(−F �
· E(i, x(i)

j , k))Ě(i, x(i)
j , k) ≥ (−F · E(i))Ě(i).

Proof. If ordE(i) F � = ordE(i) F , as F � ≤ F we have F � · E(i) ≤ F · E(i) and the

conclusion follows as Ě(i) and Ě(i, x(i)
j , k) are effective and F � is h-antinef. Otherwise,

if ordE(i) F � < ordE(i) F = ord
E(i,x(i)

j ,ni)
F �, then for each j = 1, . . . , ei we saw in

Lemma IV.5(b) that

ni�

k=1

(−F �
· E(i, x(i)

j , k))Ě(i, x(i)
j , k) ≥ Ě(i).

Summing over all j gives the desired conclusion.

We now finish the proof by showing that F � ≥ F . Using the relative numerical
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decomposition (4.1) and the previous two Lemmas, we compute

F � = h∗h∗F
� +

u�

i=1

(−F �
· E(i))Ě(i) +

u�

i=1

ei�

j=1

ni�

k=1

(−F �
· E(i, x(i)

j , k))Ě(i, x(i)
j , k)

= h∗(h∗F ) +
u�

i=1

�
(−F �

· E(i))Ě(i) +
ei�

j=1

ni�

k=1

(−F �
· E(i, x(i)

j , k))Ě(i, x(i)
j , k)

�

≥ h∗h∗F +
u�

i=1

(−F · E(i))Ě(i) = F.

This concludes the proof of Theorem IV.3.

Corollary IV.8. Consider a scheme X = SpecOX , where OX is a two-dimensional

local normal domain essentially of finite type over C. Suppose X has log terminal

singularities and z1, z2 are a system of parameters for OX . If a ⊆ OX is any integrally

closed ideal, then no minimal first syzygy of a vanishes modulo �z1, z2�
2.



CHAPTER V

Jumping Number Contribution on Algebraic Surfaces with
Rational Singularities

5.1 Multiplier Ideals on Rational Surface Singularities

Again, we will consider a scheme X = Spec(OX) where OX is the local ring at a

point on a normal complex variety of dimension two. Recall that X is said to have

a rational singularity if there exists a resolution of singularities π : Y → X such

that H1(Y,OY ) = 0. The theory of rational singularities of algebraic surfaces was

first developed by Artin in [Art66] and [Art62], and studied extensively by Lipman

in [Lip69]. We shall need various facts proved therein, and cite them without proof

as necessary.

Suppose now that π : Y → X is a log resolution of an ideal sheaf a on X with

aOY = OY (−F ). To check whether a function f ∈ OX is in J (X, aλ), one must

show for all such E that

(5.1) ordE f ≥ ordE(�λF −Kπ�).

Consider what happens as one varies λ. Increasing λ slightly does not change (5.1),

since the right side will remain the same. Thus, J (X, aλ) = J (X, aλ+�) for suf-

ficiently small � > 0. However, continuing to increase λ further will cause the

coefficient of E in �λF − Kπ� to change, precisely when ordE(�λF − Kπ�) is an
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integer. This change sometimes results in a jump in the mutliplier ideals J (X, aλ),

and motivates the following definition.

Definition V.1. We say that λ ∈ Q>0 is a candidate jumping number for a prime

divisor E appearing in F if ordE(λF −Kπ) is an integer. If G is a reduced divisor

on Y , a candidate jumping number for G is a common candidate jumping number

for the prime divisors in its support. The coefficient λ ∈ Q>0 is a jumping number if

J (X, aλ−�) �= J (X, aλ) for all � > 0. Note that the smallest jumping number is the

log canonical threshold of the pair (X, a) (cf. Definition III.4).

Since X is normal, note that condition (5.1) is trivial for ordE(�λF−Kπ�) ≤ 0. We

see explicitly that the nontrivial candidate jumping numbers for E are {
ordE Kπ+m

ordE F :

m ∈ Z>0}. The jumping numbers of (X, a) are in general strictly contained in the

union of the candidate jumping numbers of all of the prime divisors appearing in

F . In particular, they form a discrete set of invariants. Furthermore, by Skoda’s

Theorem, the jumping numbers are eventually periodic; λ > 2 is a jumping number

if and only if λ− 1 is a jumping number.

5.2 Jumping Numbers Contributed by Divisors

In order to compute the jumping numbers of (X, a) from a log resolution π : Y →

X, we must first understand the causes of the underlying jumps of the multiplier

ideals. To this end, the following definitions allow us to attribute the appearance of

a jumping number to certain reduced divisors on Y .

Definition V.2. Let G be a reduced divisor on Y whose support is contained in the

support of F . We will say G contributes a candidate jumping number λ if

J (X, aλ) � π∗OY (�Kπ − λF �+ G).
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This contribution is said to be critical if, in addition, no proper subdivisor of G

contributes λ, i.e.

J (X, aλ) = π∗OY (�Kπ − λF �+ G�)

for all divisors G� on Y such that 0 ≤ G� < G.

Note that this is an extension of Definition 5 from [ST07], where Smith and

Thompson introduced jumping number contribution for prime divisors. Further, if a

jumping number is contributed by a prime divisor E, this contribution is automati-

cally critical. It is easy to see that every jumping number is critically contributed by

some reduced divisor on Y . The following example illustrates the original motivation

for defining jumping number contribution.

Example V.3. Suppose R is the local ring at the origin in A2, and C is the germ

of the analytically irreducible curve defined by the polynomial x13 − y5 = 0. The

minimal log resolution π : Y → X of C is a sequence of six blow-ups along closed

points (there is a unique singular point on the transform of C for the first three blow-

ups, after which it takes an additional three blow-ups to ensure normal crossings).

If E1, . . . , E6 are the exceptional divisors created, one checks

π∗C = C + 5E1 + 10E2 + 13E3 + 25E4 + 39E5 + 65E6

Kπ = E1 + 2E2 + 3E3 + 6E4 + 10E5 + 17E6.

Thus, the nontrivial candidate jumping numbers of E1 are {1+m
5 : m ∈ Z>0}, whereas

those for E6 are {
17+m

65 : m ∈ Z>0}. One can compute1 that the jumping numbers

1The polynomial f(x, y) = x13−y5 is nondegenerate with respect to its Newton polyhedron, and
thus it is a theorem of Howald [How03] that the jumping numbers of f less than 1 coincide with
those of its term ideal (x13, y5). One may then use the explicit formula [How01] for the jumping
numbers of a monomial ideal to achieve the desired result. This argument is essentially repeated
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of the pair (A2, C) are precisely

�
13(r + 1) + 5(s + 1)

65
+ t

��� r, s, t ∈ Z≥0 and
13(r + 1) + 5(s + 1)

65
< 1

�
∪ Z>0.

Note that the jumping numbers less than one are all candidate jumping numbers for

E6, but for no other Ei. Thus, for any jumping number λ < 1 and sufficiently small

� > 0, we have

J (X, λC) � π∗OY (�Kπ − λπ∗C�+ E6) = J (X, (λ− �)C).

In other words, the jump in the multiplier ideal at λ is due solely to the change in

condition (5.1) along E6. According to Definition V.2, all of the jumping numbers

less than one are contributed by E6, and are not contributed by any other divisor.

In general, however, the situation is often far less transparent. Distinct prime

divisors often have common candidate jumping numbers. In some cases, as the next

example from [ST07] shows, these prime divisors may separately contribute the same

jumping number. In others, collections of these divisors may be needed to capture a

jump in the multiplier ideals.

Example V.4. Suppose R is the local ring at the origin in A2, and C is the germ

of the plane curve defined by the polynomial (x3 − y2)(x2 − y3) = 0 at the origin.

The minimal log resolution π has five exceptional divisors: E0 obtained from blowing

up the origin; E1 and E �
1 obtained by blowing up the two intersections of E0 with

the transform of the curve C (both points of tangency); and E2 (respectively E �
2)

obtained by blowing up the intersection of the three smooth curves C, E0, and E1

in Example 3.6 of [ELSV04], and discussed at greater length in Section 9.3.C of [Laz04]. Note that
since this curve is analytically irreducible, the result also follows from [Jär06] or Chapter VI. It is
also possible to use the numerical results of Section 5.4 to check this directly.
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(respectively, the three smooth curves C, E0, and E �
1). One checks

π∗C = C + 4E0 + 5(E1 + E �
1) + 10(E2 + E �

2) Kπ = E0 + 2(E1 + E �
1) + 4(E2 + E �

2)

C
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C
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→
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C
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0
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E
1

E
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'

→

E
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C
1

E
2

C
2

E
1

E
1
'

E
2
'

so that the log canonical threshold is 1
2 . Here, we have �Kπ−

1
2π

∗C� = −E0−E2−E �
2,

so that the three new conditions for membership in J (1
2C) are vanishing along

E0, E2, E �
2. However, and herein lies the problem in determining the precise cause

of the jump in the multiplier ideal, these are not independent conditions. Requiring

vanishing along any of these three divisors automatically guarantees vanishing along

the others. Thus, instead of attributing the jump to any prime divisor, it seems

natural to suggest that the collection E0 + E2 + E �
2 is responsible. According to

Definition V.2, E0 + E2 + E �
2 critically contributes 1

2 . Further, it is shown in [?] that

9
10 is a jumping number contributed by either E2 or E �

2. One may even argue there

is a sense in which the collection E2 + E �
2 is responsible for this jump. Indeed, for

sufficiently small � > 0, we have

J (X, (
9

10
− �)C) � π∗OX(�Kπ −

9

10
π∗C�+ E2)

� π∗OX(�Kπ −
9

10
π∗C�+ E2 + E �

2)

= J (X,
9

10
C).
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In this case, the jumping number 9
10 is contributed by E2 + E �

2; however, this contri-

bution is not critical as either E2 or E �
2 also contribute 9

10 .

Remark V.5. Contribution and critical contribution are somewhat subtle to formu-

late valuatively. If G = E1 + · · · + Ek critically contributes λ, one can show there

is some f ∈ R which is not in J (X, aλ) because it fails to satisfy condition (5.1)

precisely along E1, . . . , Ek, and G is a minimal collection with this property. This

depends not only on the divisorial valuations appearing in G, but all those appear-

ing in F . In particular, there is no reason to believe this is independent of the

chosen resolution. However, when X is smooth, it is possible to formulate a notion

of contribution which is model independent by considering all possible resolutions si-

multaneously. Explicitly, it is shown in [FJ04] that the dual graphs of all resolutions

fit together in a nice way to give the so-called valuative tree, and a reduced effective

divisor on Y corresponds in a natural way to a union of subtrees of the valuative

tree. Similar ideas were explored in [FJ05].

5.3 Numerical Criterion for Critical Contribution

We now begin working towards a numerical test for jumping number contribution.

The first step is to interpret contribution cohomologically.

Proposition V.6. Suppose that λ is a candidate jumping number for the reduced

divisor G. Then λ is realized as a jumping number for (X, a) contributed by G if and

only if

H0(G, (�Kπ − λF �+ G)|G) �= 0.

Furthermore, this contribution is critical if and only if we have

H0(G�, (�Kπ − λF �+ G�)|G�) = 0
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for all divisors G� on Y such that 0 ≤ G� < G.

Proof. Consider the short exact sequence

0 → OY (�Kπ − λF �) → OY (�Kπ − λF �+ G) → OG((�Kπ − λF �+ G)|G) → 0.

on Y . Pushing down to X, we arrive at

0 �� J (X, aλ) �� π∗OY (�Kπ − λF �+ G) · · ·

· · · �� π∗OG((�Kπ − λF �+ G)|G) �� R1π∗OY (�Kπ − λF �) ��

However, local vanishing for multiplier ideals guarantees R1π∗OY (�Kπ − λF �) = 0.

In particular, we see that G contributes a common candidate jumping number λ for

E1, . . . , Ek if and only if π∗OG((�Kπ−λF �+G)|G) = H0(G, (�Kπ−λF �+G)|G) �= 0.

This implies both statements of the proposition.

Corollary V.7. If G critically contributes a jumping number λ, then G is connected.

Proof. By way of contradiction, suppose we may write G = G� + G�� giving a separa-

tion, where 0 < G�, G�� < G and G�, G�� are disjoint. Then we have

H0(G, (�Kπ − λF �+ G)|G)

=

H0(G�, (�Kπ − λF �+ G�)|G�)⊕H0(G��, (�Kπ − λF �+ G��)|G��).

Thus, if G contributes a jumping number λ, either G or G� must also contribute λ.

In particular, G does not critically contribute λ.

Suppose now that G is a reduced divisor on Y with exceptional support. The

prime exceptional divisors of π are all smooth rational curves intersecting trans-

versely, and there are no loops of exceptional divisors. When X is smooth, this
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statement can be shown by induction on the number of blow-ups in π. More gen-

erally, Proposition 1 of [Art66] states that rational singularities are equivalent to

pa(Z) ≤ 0 for all effective exceptional divisors Z, where pa(Z) = 1 − χ(Z) denotes

the arithmetic genus. We therefore assume that G = E1 + · · ·+ Ek is a nodal tree of

smooth rational curves. A global section s of OG((�Kπ − λF �+ G)|G) is equivalent

to a collection of global sections sj of OEj((�Kπ − λF �+ G)|Ej
) for j = 1, . . . , k

which agree on the intersections. Indeed, this statement is easy verified for two ra-

tional curves intersecting transversely, and the general case follows by induction on

k. Since the existence of nonzero global sections on smooth rational curves is equiv-

alent to having non-negative degree, we now show critical contribution by reduced

exceptional divisors can be checked numerically. When G is prime and X is smooth,

this criterion was given in [ST07].

Theorem V.8. Denote by R the local ring at an isolated rational singularity on

a normal complex surface. Let a ⊆ R be an ideal, and π : Y → X = Spec(R) a

log resolution of (X, a) such that aOY = OY (−F ). Suppose that λ is a candidate

jumping number for the reduced divisor G with connected exceptional support.

• If G = E is prime, then λ is (critically) contributed by E to X if and only if

�Kπ − λF � · E ≥ −E · E.

• If G is reducible, then λ is critically contributed by G if and only if

�Kπ − λF � · E = −G · E

for all prime divisors E in the support of G.

Proof. Suppose first G = E is a single prime exceptional divisor. Then λ is con-

tributed by E if and only if H0(E, (�Kπ − λF �+ E)|E) �= 0. Since E ∼= P1, it is
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equivalent that this line bundle have non-negative degree, i.e. �Kπ−λF �·E ≥ −E ·E.

Thus, we assume G = E1+ · · ·+Ek is reducible. Theorem 1.7 of [Art62] concludes

that the isomorphism class of a line bundle on G is determined by the degrees of its

restrictions to E1, . . . , Ek. It follows that the numerical conditions given are suffi-

cient. They are equivalent to saying OG((�Kπ − λF �+ G)|G) restricts to the trivial

bundle on each of E1, . . . , Ek, hence must be the trivial bundle on G. In particular,

H0(G, (�Kπ − λF �+ G)|G) �= 0, and G contributes λ. To see this contribution is

critical, note that if 0 ≤ G� < G, then the degree of OG�((�Kπ − λF �+ G�)|G�)|Ei

along Ei is −Ei · (G−G�). In particular, the sections of OG�((�Kπ − λF �+ G�)|G�)

are identically zero when restricted to to any component Ei of G� which intersects

G−G�, and are constant along any other component of G�. Since G was connected,

one sees any global section must be identically zero.

Now, assume G critically contributes λ, and let s ∈ H0(G, (�Kπ − λF �+ G)|G)

be nonzero. There is some E in {E1, . . . , Ek} such that s|E is nonzero. In particular,

we see that the restriction of OG((�Kπ − λF �+ G)|G) to E has non-negative degree.

Suppose, by way of contradiction, its degree is strictly positive. Partition G − E

into its connected components, i.e. write G− E = B1 + · · · + Br where each Bi for

1 ≤ i ≤ r is the sum of all of the prime divisors in some connected component of

G − E. Since G is a nodal tree, we have that 0 < Bi ≤ G − E and Bi · E = 1 for

each i = 1, . . . , r. Furthermore, observe that the supports of B1, . . . , Br are pairwise

disjoint. Let p1, . . . , pr be the intersection points of B1, . . . , Br with E, respectively.

Re-indexing if necessary, choose a point q ∈ E \ {p2, . . . , pr} such that s(q) = 0.

We will show that G� = G−B1 contributes λ by proving

H0(G�,OG�((�Kπ − λF �+ G�)|G�) �= 0 .
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For i �= 1, we have (�Kπ − λF �+ G�)|Bi
= (�Kπ − λF �+ G)|Bi

since the supports

of B1 and Bi are disjoint. In particular, we may consider s|Bi as a global sec-

tion of OBi((�Kπ − λF �+ G�)|Bi
). Next, identify s|E with a nonzero homogeneous

polynomial on P1 of strictly positive degree. Since deg(OE (�Kπ − λF �+ G�)|E) =

deg(OE (�Kπ − λF �+ G)|E) − 1, removing one of its linear factors corresponding

to a zero at q yields a nonzero global section t of OE((�Kπ − λF �+ G�)|E). By

construction, t(pi) �= 0 if and only if s(pi) �= 0 for 2 ≤ i ≤ r. After scaling

each s|Bi to agree with t at pi, we may glue to obtain a nonzero global section

of OG�((�Kπ − λF �+ G�)|G�). But this is absurd, as it implies that G� contributes λ.

Hence, we must have that deg(OE (�Kπ − λF �+ G)|E) = 0. Furthermore, nonzero

global sections of OE (�Kπ − λF �+ G)|E never vanish. As s does not restrict to zero

along any component of G which intersects E, the same arguments apply. Using that

G is connected, the theorem now follows.

Example V.9. Suppose R is the local ring at the origin in A2, and C is the germ

of the plane curve defined by the polynomial (y − x2)(y2 − x5) = 0. The minimal

log resolution π is a sequence of four blow-ups along closed points (there is a unique

singular point on the transform of C for the first two blow-ups, after which it takes

an additional two blowups to ensure normal crossings), and is pictured below. If

E1, . . . , E4 are the exceptional divisors created, one checks

π∗C = C + 3E1 + 6E2 + 7E3 + 14E4 Kπ = E1 + 2E2 + 3E3 + 6E4

C
1

C
2

→

E
1

E
2

E
1

E
4

E
3

C
1

C
2



68

The only candidate jumping number less than one shared by both E2 and E4 is

1
2 . One now computes directly that �Kπ −

1
2π

∗C� = −E2 − E4, and Theorem V.8

now implies that E2 + E4 critically contributes the jumping number 1
2 . In Section

5.5, we will discuss how the numerical criteria in Theorem V.8 give an algorithm

for numerically computing all of the jumping numbers in such examples. However,

we postpone further discussion until after we have examined which collections of

exceptional divisors have the potential to critically contribute jumping numbers.

5.4 Geometry of Contributing Collections

If OX is the local ring at an isolated rational singularity of a normal complex

surface, and a is an ideal of OX , the Rees valuations of a have a useful numerical

description. If π : Y → X is a log resolution with aOY = OY (−F ), since aOY =

OY (−F ) is globally generated, so is OE(−F |E) for any prime exceptional divisor E.

In particular, we have F ·E ≤ 0. Lemma 21.2 of [Lip69] shows that F ·E < 0 if and

only if E corresponds to a Rees valuation of a.

In [ST07], it was shown that a prime exceptional divisor on the minimal reso-

lution of a curve on a smooth surface contributes a jumping number if and only if

it intersects at least three other components of the support of the pull-back of the

curve. The following theorem gives analogous restrictions to critically contributing

collections in our setting.

Theorem V.10. Suppose OX is the local ring at an isolated rational singularity of

a normal complex surface. Let a ⊆ OX be an ideal, and π : Y → X = Spec(OX)

a log resolution of (X, a) such that aOY = OY (−F ). If the reduced divisor G with

exceptional support critically contributes the jumping number λ to the pair (X, a),
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then G is a connected chain. The ends E of G must either:

• intersect at least three other prime divisors in the support of either F or Kπ,

or;

• correspond to a Rees valuation of a.

Furthermore, the non-ends of G can intersect only those components of the support

of F that also have λ as a candidate jumping number, and never correspond to a

Rees valuation of a.

Proof. We will use the numerical criteria for critical contribution given in Theo-

rem V.8. These are stated in terms of intersections with �Kπ − λF �, which we

manipulate into the following form

�Kπ − λF � = −�λF −Kπ� = Kπ − λF + {λF −Kπ}.

Suppose first G = E is a prime exceptional divisor, and E is not a Rees valuation of

a. Then by Theorem V.8, since E contributes λ, we have that �Kπ−λF �·E ≥ −E ·E.

Using the preceding equation and that F · E = 0, we have

{λF −Kπ} · E ≥ 2,

where we have made use of the adjunction formula

(5.2) − deg (Kπ + E)|E = − deg KE = 2

applied to E ∼= P1. Since λ is necessarily a candidate jumping number for E, it does

not appear in {λF −Kπ}, which is an effective divisor with coefficients strictly less

than one. As the divisors in Kπ and F intersect transversely, at least three of them

must intersect E in order for the above inequality to hold.
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Assume now G is reducible. Since λ is critically contributed by G, we have that

G is connected and �Kπ−λF � ·E = −G ·E for all E in the support of G. As above,

this gives

(5.3) {λF −Kπ} · E − λF · E = 2− (G− E) · E,

where we have made use of the adjunction formula (5.2) once more. Since F ·E ≤ 0

and λ is a candidate jumping number for E, the left side of equation (5.3) is non-

negative. Hence, we must have that (G − E) · E ≤ 2. As G is connected, in fact,

(G − E) · E is either 1 or 2, so G is in fact a chain. If E is an end of G so that

(G− E) · E = 1 and E does not correspond to a Rees valuation of a, then

{λF −Kπ} · E = 1.

It follows that E must intersect at least two components of F or Kπ which do not

have λ as a candidate jumping number. As it also intersects a component of G, all

of which have λ as a candidate jumping number, the desired conclusion follows. On

the other hand, if E is not an end of G so that (G− E) · E = 2, we have

{λF −Kπ} · E − λF · E = 0.

Thus, both terms on the left must vanish. In particular, F · E = 0 so E does not

correspond to a Rees valuation of E, and E can only intersect those components of

F which also have λ as a candidate jumping number.

Remark V.11. Recently, Schwede and Takagi [ST08] have made use of multiplier

submodules2 in studying rational singularities of pairs. The multiplier submodules

J (ωX , aλ) = π∗OY (�KY − λF �) are indexed by the positive rational numbers, and

2These objects were also called adjoint modules in [HS03].
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form nested sequence of submodules of the canonical module ωX . These behave in

a manner similar to multiplier ideals, and one can use them to define the rational

threshold and rational jumping numbers of the pair (X, a). Since multiplier submod-

ules satisfy the analogue of local vanishing, the same methods used above apply and

give similar results for critical contribution of rational jumping numbers.

Remark V.12. Suppose momentarily that R is the local ring at a point on a smooth

surface, and π : Y → X = Spec(R) is the minimal resolution of the divisor C on

X. In [ST07], it was shown that an exceptional divisor E which intersects three

other prime divisors in the support of π∗C contributes a jumping number less than

one. However, as the next example shows, a chain of exceptional divisors G in the

minimal resolution of a plane curve C, where the ends E of G intersect at least three

other prime divisors in the support of π∗C, may or may not critically contribute

to the jumping numbers of the embedded curve. It remains unclear if additional

geometric information would guarantee that G contributes a jumping number. A

similar situation is found in [VV], where Van Proeyen and Veys are concerned with

the poles of the topological zeta function. To determine whether or not a candidate

pole is a pole, they also rely on both geometric and numerical data.

Example V.13. Suppose C is the germ of the plane curve defined by the polynomial

(y2 − x5)(y2 − x3) = 0. It takes two blow-ups to separate the two components of C,

creating divisors E1 and E2. At this point these components are both smooth. To

ensure normal crossings, one must blow-up an additional point on the transform of

the first component, and two additional points on the second, creating divisors E3,

E4, and E5, respectively. One checks

π∗C = C + 4E1 + 7E2 + 12E3 + 8E4 + 16E5 Kπ = E1 + 2E2 + 4E3 + 3E4 + 6E5
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By the Theorem V.10, the only possible chain of length greater than one that can

contribute a jumping number is E2 + E3 + E5. However, these three divisors do not

share a common candidate jumping number less than one; hence, they cannot crit-

ically contribute any jumping number less than one. Notice the similarity between

the exceptional divisors here and those in Example V.4. Despite the fact that the

corresponding chains (E2 + E3 + E5 here, and E0 + E2 + E �
2 in Example V.4) inter-

sect their complements the same number of times, one chain contributes a jumping

number while the other does not.

Proposition V.14. Let a ⊆ OX be an ideal, and π : Y → X a log resolution of

(X, a) with aOY = OY (−F ). Consider a reduced divisor G on Y with exceptional

support, and suppose θ : Y � → Y is such that π� = π ◦ θ : Y � → Y is also a log

resolution of (X, a). Then a jumping number λ of (X, a) is critically contributed by

G if and only if it is critically contributed by the unique chain G� containing θ−1
∗ G.

Proof. Since Y is smooth, θ can be written as a composition of point blowups. Thus,

we may assume without loss of generality that θ is in fact the blowup of a single

closed point p on Y . Let E � be the exceptional divisor of θ.

A candidate jumping number fore G� is automatically a candidate jumping number

for G since θ−1
∗ G is a subdivisor of G�. If p lies on at most one component of G, then

G� = θ−1
∗ G and the converse statement is also clear. The only other possibility is

for p to be the intersection point of two components E1 and E2 of G, in which case
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G� = θ−1
∗ G + E �. Since

λθ∗F −Kπ� = θ∗(λF −Kπ)− E �

ordE�(λθ∗F −Kπ�) = ordE1(λF −Kπ) + ordE2(λF −Kπ)− 1

we conclude the candidate jumping numbers for G and G�are always the same. Note

also that, in this case,

Let us now verify the following claim: if D is a Q-divisor on Y with simple

normal crossings support disjoint from a π-exceptional divisor E, then {D} · E =

{θ∗D} · θ−1
∗ E. When p �∈ E, the statement is clear as θ is an isomorphism over a

neighborhood of E. Thus we suppose p ∈ E, let E1, . . . , Ek be the components of the

support of D which intersect E, and set pi to be the intersection point of Ei with E.

If di = ordEi D, then {D}·E = {d1}+{d2}+· · ·+{dk}. Suppose first p �= pi for any i.

Then the components of the support of θ∗D intersecting θ−1
∗ E are θ−1

∗ E1, . . . , θ−1
∗ Ek

and E �. We have that ordE(θ∗D) = ordE(D) ∈ Z, i.e. E � is not in the support

of {θ∗D}, and so the desired equality follows from ordθ−1
∗ Ei

(θ∗D) = ordEi(D) = di.

Next, assume p = p1. Then the components of the support of θ∗D intersecting

θ−1
∗ E are θ−1

∗ E2, . . . , θ−1
∗ Ek and E �. As ordE�(θ∗D) = ordE1(D) = d1, the claim now

follows.

Assume λ is a candidate jumping number for G and G�. From the claim, it follows

that {λF −Kπ} · E = {λθ∗F −Kπ�} · θ−1
∗ E for all E in G. We now argue that

(5.4) (�Kπ� − λθ∗F �+ G�) · π−1
∗ E = (�Kπ − λF �+ G) · E

for all E in G. In case p �∈ G, this follows from G� = π∗G and E � · π−1
∗ E = 0 since

Kπ� = θ∗Kπ + E � and �Kπ − λF � = Kπ − λF + {λF −Kπ}. When p ∈ G, it follows

similarly as G� = θ∗G− E �.
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The proposition now follows from Theorem V.8. When p is on at most one com-

ponent of G, (5.4) gives the equivalence of all of the necessary numerical conditions.

If p is an intersection point of two components E1 and E2 of G, one must verify in

addition �Kπ� − λθ∗F � · E � = −1. But this follows as

�Kπ� − λθ∗F � = E �
· E � + {θ∗(λF −Kπ)} · E �

and none of θ−1
∗ E1, θ−1

∗ E2, E � appear in {θ∗(λF −Kπ)} as λ is a candidate jumping

number for G�.

Corollary V.15. Suppose π : Y → X and π� : Y � → X are any two log resolutions

of (X, a). Then there is a bijection between the critically contributing collections of

exceptional divisors of on Y and Y � preserving the jumping numbers they contribute.

5.5 Jumping Number Algorithm and Computations

We now describe an algorithm for computing the jumping numbers of (X, a) from

a log resolution π : Y → X. Let F be the effective divisor F on Y such that

aOY = OY (−F ), and E1, . . . , Er the prime divisors appearing in Kπ or F .

Step 1. Compute the coefficients of the divisors Kπ =
�r

i=1 biEi and F =
�r

i=1 aiEi,

and use these to find the nontrivial candidate jumping numbers {
bi+m

ai
|m ∈ Z>0 }

for each Ei which are at most equal to two.

Step 2. Next, we must determine those Ei which correspond to Rees valuations of a.

The Ei which are not exceptional, i.e. the strict transforms of divisorial components

of the subscheme defined by a, always correspond to Rees valuations. The prime

exceptional divisors Ei corresponding to Rees valuations are characterized by the

property that Ei · F < 0. Also determine which Ei intersect at least three other Ej,

for j �= i.
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Step 3. For each candidate jumping number λ ≤ 2 appearing in the first step,

perform the following series of checks to determine if λ is realized as an actual

jumping number.

(i) If λ is a candidate jumping number for an Ei which is not exceptional and

corresponds to a Rees valuation of a, then λ is realized as a jumping num-

ber contributed by Ei. Proceed to check the next candidate jumping number.

Otherwise, continue to (ii).

(ii) Using the necessary geometric conditions from Theorem V.10, determine all

of the connected chains of prime exceptional divisors which may critically

contribute λ. Specifically, these are the connected exceptional chains G =

Ei1 + · · ·Eik such that λ is a candidate jumping number for each Eij , and the

ends of G either correspond to Rees valuations or intersect at least three other

Ei.

(iii) For each chain G from (ii), use the numerical criteria of Theorem V.8 to deter-

mine if λ is realized as a jumping number critically contributed by G. Specifi-

cally,

• If G = Ei1 is prime, then λ is (critically) contributed by Ei1 to X if and

only if

�Kπ − λF � · Ei1 ≥ −Ei1 · Ei1 .

• If G is reducible, then λ is critically contributed by G if and only if

�Kπ − λF � · Eij = −G · Eij

for each of the prime divisors Eij in the support of G.
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(iv) If we are not in the situation of (i) and λ were realized as a jumping number,

it would be critically contributed by some collection of exceptional divisors.

Indeed, the sum of all the exceptional divisors in F which share this candidate

jumping number would contribute, and a minimal contributing collection would

critically contribute. Thus, if (i) and (iii) have produced only negative answers,

we deduce that λ cannot be a jumping number.

Step 4. From above, we now know all of the jumping numbers which are at most two.

To determine the remaining jumping numbers, recall that the jumping numbers are

eventually periodic; λ > 2 is a jumping number if and only if λ− 1 is also a jumping

number. This concludes the algorithm for computing the jumping numbers of (X, a).

The remainder of this section focuses on a general scenario to which this method

applies. We begin by altering our notation slightly. Assume OX is the local ring at

a rational singularity of a complex surface which is not smooth. Let π : Y → X be

the minimal resolution of singularities of X, and m the maximal ideal of OX . Since

π is a composition of closed point blow-ups, and X is singular, it must begin with a

blow-up along this singular point. Thus, π is also a minimal log resolution of m. In

this case, the effective divisor Z cut out by the principal ideal sheaf mOY is called

the fundamental cycle of X.

The fundamental cycle of X was first introduced by Artin in [Art66], where it

was characterized numerically. We now recover this description while reproducing a

summary from [Lip94] of results found in [Lip69]. Recall that a divisor D on Y is said

to be antinef if D·E ≤ 0 for all prime exceptional divisors E on Y . By a fundamental

result of Lipman, Theorem 12.1 in [Lip69], a divisor D on Y is antinef if and only if

OY (−D) is globally generated. In particular, an antinef divisor is effective. It follows
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immediately that there is a bijective correspondence between complete ideals I ⊆ OX

such that IOY is invertible, and antinef divisors D on Y . Given a complete ideal

I ⊆ OX , the principal ideal sheaf IOY cuts out an antinef divisor D. In other words,

we have that IOY = OY (−D) where D is antinef. Conversely, if D on Y is antinef,

then π∗OY (−D) = H0(Y,OY (−D)) is a complete ideal of OX . This correspondence

is inclusion reversing, i.e. larger antinef divisors correspond to smaller ideals, and

m-primary or finite colength ideals correspond to exceptionally supported antinef

divisors. Since m is the largest finite colength ideal of OX , Z is the unique smallest

exceptionally supported antinef divisor on Y . In [Art66], it is shown that −Z · Z

is the multiplicity of OX , and −Z · Z + 1 is its embedding dimension. To compute

Z, one may proceed as follows. Start with the reduced sum of all of the prime

exceptional divisors on Y . Add an additional prime exceptional divisor E only if

the intersection of E with this sum is positive, and repeat this process with the new

sum of exceptional divisors. After finitely many iterations of this procedure, the

corresponding sum will be antinef and must necessarily be equal to Z.

Once Z has been found, in order to compute the jumping numbers of m, we first

need the relative canonical divisor Kπ. Recall3 that the restriction of the intersection

product to the exceptional locus is negative definite. Thus, to compute Kπ, it suffices

to specify its intersection with any prime exceptional divisor E. Since E ∼= P1, the

adjunction formula once more gives Kπ · E = −2 − E · E. Using the algorithm for

finding jumping numbers described above, this shows how to compute the jumping

numbers of m starting from intersection matrix of the prime exceptional divisors

on Y .

3Artin[Art66] attributes this fact to Mumford [Mum61], while Lipman [Lip69] gives credit to
Du Val.
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Example V.16 (Du Val Singularities). In Figure 5.1, we give the results of applying

the above techniques to the various types of Du Val singularities. In this case, the

relative canonical divisor of the minimal resolution is zero, and all of the prime

exceptional divisors have self-intersection −2. The dual graph corresponding to the

exceptional locus is given by one of the Dynkin diagrams of type A, D, or E. See

Section 4.3 of [Sha94] for a full description. Recall that λ > 2 is a jumping number

if and only if λ− 1 is also a jumping number.

An (n ≥ 1)
The fundamental cycle is Z = E1+· · ·+En, and both E1 and En are

Rees valuations of the maximal ideal. The log canonical threshold

1 is critically contributed by E1 + · · · + En, while all of the other

jumping numbers are contributed by either E1 or En.

Dn (n ≥ 4)
The fundamental cycle is Z = E1 + En + En−1 + 2E2 + · · ·+ 2En−2,

and E2 is the only Rees valuation of the maximal ideal. The log

canonical threshold 1
2 is critically contributed by E2 + · · · + En−2,

while all other jumping numbers are contributed by E2.

E6

The fundamental cycle is Z = E1 +2E2 +3E3 +2E4 +E5 +2E6, and

E6 is the only Rees valuation of the maximal ideal. The jumping

numbers {1
3 + Z≥0} are contributed by E3, while all other jumping

numbers {3
2 + 1

2Z≥0} are contributed by E6.

E7

The fundamental cycle is Z = 2E1+3E2+4E3+3E4+2E5+E6+2E7,

and E1 is the only Rees valuation of the maximal ideal. The jumping

numbers {1
4 + Z≥0} are contributed by E3, while all other jumping

numbers {3
2 + 1

2Z≥0} are contributed by E1.
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Figure 5.1: Jumping Numbers in Du Val Singularities

Type Dual Graph Jumping Numbers
of the Maximal Ideal

An (n ≥ 1) B
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E
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.  .  .  .

E
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E6
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3
B
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E
1

E
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E
3 E
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E
6

E
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{
1
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E7

B
3
B
3

E
1
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1
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5
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3
2 , 2, . . .}

E8

B
3
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3

E
1

E
2

E
3 E

4

E
8

E
5 E

6 E
7

{
1
6 ,

7
6 ,

3
2 , 2, . . .}
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E8

The fundamental cycle is Z = 2E1 +4E2 +6E3 +5E4 +4E5 +3E6 +

2E7 + 3E8, and E7 is the only Rees valuation of the maximal ideal.

The jumping numbers {
1
6 + Z≥0} are contributed by E3, while all

other jumping numbers {3
2 + 1

2Z≥0} are contributed by E7.

Example V.17 (Cyclic Quotient Surface Singularities). Consider the action of the

cyclic group of order n on A2 = Spec C[x, y] given by

x �→ ζnx y �→ (ζn)ky

where ζn is a primitive n-th root of unity, and n > k are relatively prime positive

integers. The quotient is a toric surface with a rational singularity. See [Ful93],

Section 2.6, for a complete discription. Let R be the local ring at the singular point,

and set X = Spec(R). Consider the Hirzebruch-Jung continued fraction

n

k
= a1 −

1

a2 −
1

...− 1
am

of n
k , with integers a1, . . . , am ≥ 2. The exceptional set of the minimal resolution

π : Y �→ X is a chain of m rational curves

.  .  .E
1

E
2

E
3

E
4

E
m-1

E
m

where Ei ·Ei = −ai for i = 1, . . . ,m. The fundamental cycle is Z = E1+· · ·+Em. To

find the candidate jumping numbers of Ei, set j0 = 1 and j1 = k+1
n . Define j2, . . . , jm

recursively by

ji+1 = aiji − ji−1.

One can check the nontrivial candidate jumping numbers of Ei are precisely {ji +

Z≥0}. Using that each ai ≥ 2 and the recursive definition, it is easy to see there is
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some 1 ≤ k1 ≤ k2 ≤ m such that we have the inequalities

j1 > j2 > · · · > jk1 jk1 = jk1+1 = · · · = jk2 jk2 < jk2+1 < · · · < jm

and j1, jm ≤ 1. These relationships allow one to progressively check the numerical

conditions given in Theorem V.8, and we find the jumping numbers of the maximal

ideal are precisely

min{j1, . . . , jm} ∪

�
�

i∈R

{ji + Z>0}

�
.

where R = {1, m} ∪ { i : ai ≥ 3 } is the set of indices of the Ei corresponding to

Rees valuations of the maximal ideal. The log canonical threshold min{j1, . . . , jm}

is critically contributed by Ejk1
+ · · ·Ejk2

, while the jumping numbers {ji + Z>0} for

i ∈ R are contributed by Ei.

5.6 Zariski-Lipman Theory of Complete Ideals on Smooth Surfaces and
a Criterion for Simplicity

Before we begin, it is first necessary to review some of the Zariski-Lipman theory

of complete ideals in two dimensional regular local rings. A good summary of this

theory can be found in the introduction to [Lip69], as well as [Jär06]. Assume now

OX is regular and local with dimension two, and π : Y → X is a smooth model of X.

Let E1, . . . , En be the prime exceptional divisors, and consider Λ = ZE1 + · · ·ZEn

the lattice they generate. We have already made use of the dual basis of Q-divisors

Ě1, . . . , Ěn defined by the property that Ěi · Ěj = −1 and Ěi · Ej = 0 for i �= j. In

our current setting, however, these are in fact integral divisors4 and give a second

Z-basis for Λ. Note that these divisors generate the semigroup of antinef divisors in

Λ. Indeed, D = ď1Ě1 + · · · + ďnĚn is antinef if and only if ďi = −D · Ei ≥ 0 for all

i = 1, . . . , n. It is not hard to see that the corresponding complete finite colength

4See Section 6.2 for an easy proof.
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ideals Pi = π∗OY (−Ěi) are simple, i.e. cannot be written nontrivially as a product

of ideals.

Suppose I = π∗OY (−D) is the complete finite colength ideal corresponding to

the antinef divisor D = ď1Ě1 + · · · + ďnĚn ∈ Λ. Then we see immediately I =

P ď1
1 · · ·P ďn

n , and this factorization is unique as Ě1, . . . , Ěn are a basis for Λ. Further,

the valuations on K corresponding to those Ei such that ďi are nonzero are precisely

the Rees valuations of I. As any complete ideal can be written uniquely as the

product of a principal ideal and a finite colength complete ideal,5 unique factorization

extends to all complete ideals of OX .

For the remainder of this section, we fix the following notation. Let OX be the

local ring at a point on a smooth complex surface, and π : Y → X the minimal

resolution of a complete finite colength ideal a ⊆ OX such that aOY = OY (−F ).

Note that the numerical criterion for critical contribution can be simplified using the

adjunction formula. A single exceptional prime divisor E contributes a candidate

jumping number λ if and only if −�λF � · E ≥ 2; a reducible chain of exceptional

divisors G with common candidate jumping number λ critically contributes λ if and

only if the ends E of G satisfy −�λF � · E = 1, and the non-ends E � of G satisfy

−�λF � · E � = 0.

Proposition V.18. A complete finite colength ideal a in the local ring of a smooth

complex surface is simple if and only if 1 is not a jumping number of (X, a).

Proof. If a is simple, then a = Pi for some i, and we have that aOY = OY (−Ěi).

Suppose, by way of contradiction, 1 is a jumping number of (X, a). We may assume

there is a reduced chain of exceptional divisors G which critically contributes 1. G

5Observe that I = (I−1)−1 · (II−1) shows how this is achieved.
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cannot be a single prime divisor E since −Ěi ·E is either 0 or 1. Thus, G is reducible

and must have two distinct ends satisfying −Ěi ·E = 1. Since this only happens for

E = Ei, 1 is not a jumping number of (X, a).

Alternatively, assume that a = P ď1
1 · · ·P ďn

n is the finite colength complete ideal

corresponding to the antinef divisor D = ď1Ě1 + · · · + ďnĚn, and a is not simple.

Suppose first there is some i such that ďi ≥ 2. In this case, −D · Ei = ďi ≥ 2 shows

that 1 is a jumping number contributed by Ei. Otherwise, we may assume ďi is 0

or 1 for each i, and at least two such are nonzero. In this case, we can find two of

them ďi1 = ďi2 = 1 such that for any Ej in the unique chain of exceptional divisors G

connecting Ei1 and Ei2 we have ďj = 0. Theorem V.10 now gives that 1 is a jumping

number of (X, a) critically contributed by G.

Remark V.19. The technique used in Corollary V.18 also shows that every chain of

exceptional divisors critically contributes a jumping number for some ideal a ⊂ OX

having π as a resolution. Indeed, if G is the chain connecting Ei1 and Ei2 , then G

critically contributes 1 to the ideal Pi1Pi2 . One can also use this method to produce

examples where many intersecting and nonintersecting chains critically contribute

the same jumping number to a given pair.



CHAPTER VI

Jumping Numbers of Analytically Irreducible Plane Curves

6.1 Multiplicity Sequence and Dual Graph

Consider the local ring O = OA2,0 at the origin in A2 and set X = Spec(O).

Throughout this chapter, we will be concerned with the germs of plane curves at the

origin. As confusion seems unlikely, we shall hereafter refer to a reduced effective

divisor C on X as simply a curve. In this case, the branches of C are simply its

irreducible components when regarded as an analytic germ. Thus, the branches can

be described algebraically in the following manner. Consider a local defining equation

f ∈ O for C as the germ of a holomorphic function, i.e. a convergent power series

in a neighborhood of the origin. Since the ring of convergent power series C{{x, y}}

is a unique factorization domain, it follows that f = f1 · f2 · · · fk can be written as

a product of irreducible convergent power series; the holomorphic germs fi give rise

to the branches of C.

Two curves C1 and C2 are said to be topologically equivalent or equisingular if

there are sufficiently small Euclidean neighborhoods U1 and U2 of the origin in A2

such that each Ci is defined on Ui and there is a homeomorphism (in the Euclidean

topology) from U1 to U2 mapping C1 onto C2. It is well-known that two curves are

equisingular if and only if there is a bijection between their branches which preserves

84
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the pairwise local intersection numbers of each. As such, one is often reduced to

consider curves with a single branch. Each branch itself is locally homeomorphic

to an open Euclidean ball in A1, and since every analytic germ with an isolated

singularity is algebraic, there is generally no harm in assuming each branch actually

comes from a curve. Thus, we are led to the following definition.

Definition VI.1. A curve C is said to be analytically irreducible or unibranch if one

of the following equivalent conditions holds:

(1.) A local defining equation f ∈ O for C remains irreducible after passing to either

(i) the ring of germs of holomorphic functions at the origin, or (ii) the formal

completion of O at its maximal ideal.

(2.) For every sufficiently small Euclidean ball B� centered at p, the set C \ {0}∩B�

is connected in the Euclidean topology.

(3.) For every smooth model π : Y → X, we have that π−1
∗ (C) ∩ π−1({0}) consists

of a single point.

Note that, in particular, (3.) implies that the exceptional curve of the blowup

of A2 at the origin intersects the strict transform of C in a single point. Thus, a

unibranch curve C has a well defined tangent direction, i.e. the tangent cone of C

at the origin consists of a single line. This fact also follows from (1.) using that the

rings in (i) and (ii) are Henselian.

Consider now the minimal log resolution π : Y → X of unibranch curve C. We

know π is a composition of point blowups, and we must begin with the blowup

X1 → X0 = X at 0. Next, assuming we have not already found a log resolution,

we are forced to blowup the unique point on the strict transform of C on X1 over 0.
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Continuing in this manner, we see π : Y → X is realized as a composition of point

blowups

π : Y = Xn → Xn−1 → · · ·→ X1 → X0 = X

where each morphism θi : Xi → Xi−1 is the blowup at a closed point pi lying over

p1 = 0. Let EXi
i be the exceptional divisor of θi for i = 1, . . . , n. For j > i, we will

denote by E
Xj

i the strict transform of EXi
i on Xj and also set Ei = EXn

i .

We refer to the multiplicities of the strict transforms of C at the pi’s as the

multiplicity sequence of C. Precisely, if πi : Xi → X is the composition of the first i

of these blowups, this is the sequence of positive integers

multp1(C) , multp2(π
−1
1,∗C) , multp3(π

−1
2,∗C) , . . . , multpn(π−1

n−1,∗C)

and will generally be written as the row vector ( a1 a2 a3 · · · an ). More gen-

erally, if D is any curve, we will refer to the sequence of nonnegative integers

multp1(D) , multp2(π
−1
1,∗D) , multp3(π

−1
2,∗D) , . . . , multpn(π−1

n−1,∗D)

as the multiplicity sequence of D along π. Thus, the multiplicity sequence of a

unibranch curve C is the same as the multiplicity sequence of C along its minimal

log resolution. It is a nontrivial result that the multiplicity sequence of C alone

determines its equisingularity class.

From the proof of Proposition III.1, we know that the multiplicity sequence of

a unibranch curve C is weakly decreasing, and also we must have an = 1. Further

investigation will detail a very rich combinatorial structure in the multiplicity se-

quence encoding a vast amount of information about the numerics of its minimal log

resolution.
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Proposition VI.2. Suppose C is an analytically irreducible curve on S through p

with multiplicity sequence ( a1 a2 a3 · · · an ) and minimal resolution π : Y → X

as above. For each 1 ≤ r < n, we have

(6.1) ar = ar+1 + ar+2 + · · · + ar+s

where s = −Er · Er − 1. Furthermore, for 1 ≤ t ≤ n− r, we have that Er intersects

Er+t if and only if t = s, and

(6.2) ar+1 = · · · = ar+s−1 ≥ ar+s .

Proof. Let s be the largest value of i for which the point pr+i lies on EXr+i−1
r , and

write θ : Xr+s → Xr−1. A simple calculation shows that the self-intersection number

of the strict transform of a smooth projective curve on a smooth surface after the

blowup of a point on the curve is one less than the original self-intersection number

of the curve. Since none of the points pr+s+1, . . . , pn lie on the strict transform of EXr
r

and EXr
r ·EXr

r = −1, it follows immediately that s = EXr+s
r ·EXr+s

r −1 = −Er ·Er−1

and also that Er intersects Er+t if and only if t = s for 1 ≤ t ≤ n− r.

Suppose first that s = 1, i.e. on Xr+1 we have that π−1
r+1,∗(C) and EXr+1

r are

disjoint. We compute

θ∗(π−1
r−1,∗C) = θ∗r+1(π

−1
r,∗C + arEXr

r )

= π−1
r+1,∗C + arEXr+1

r + (ar + ar+1)E
Xr+1
r+1 .

But then we also have EXr+1
r · θ∗(π−1

r−1,∗C) = 0, so it follows −2ar + ar + ar+1 = 0 or

ar = ar+1, as desired.

Now assume s ≥ 2. Then, for 2 ≤ i ≤ s, we have that pr+i is simply the single

intersection point of EXr+i−1

r+i−1 with EXr+i−1
r (through which π−1

r+i−1,∗C also passes).
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The calculation immediately preceding then implies

ar+1 = · · · = ar+s−1 ≥ ar+s .

Furthermore, again we have EXr+s
r and π−1

r+s,∗C are disjoint. We compute

θ∗(π−1
r−1,∗C) = (θr+s ◦ · · · ◦ θr+1)∗(π−1

r,∗C + arEXr
r )

= (θr+s ◦ · · · ◦ θr+2)∗(π
−1
r+1,∗C + arEXr+1

r + (ar + ar+1)E
Xr+1
r+1 )

=
...

= (θr+s ◦ · · · ◦ θr+j)∗(π
−1
r+j,∗C + arE

Xr+j
r + · · ·

· · · + (jar + ar+1 + ar+2 + · · · ar+j)E
Xr+j

r+j )

=
...

= π−1
r+s,∗C + arEXr+s

r + · · ·

· · · + (sar + ar+1 + ar+2 + · · · ar+s)E
Xr+s
r+s ) .

Thus, it follows from EXr+s
r · θ∗(π−1

r−1,∗C) = 0 that

(−s− 1)ar + (sar + ar+1 + ar+2 + · · · ar+s) = 0

or

ar = ar+1 + ar+2 + · · · + ar+s

as desired.

Perhaps the easiest way to visualize the geometric conclusions of Proposition VI.2

are in terms of the dual graph of the exceptional divisors of π : Y → X (also refer-

enced in the previous Chapter). Recall that this graph is constructed in the following

manner. There is a vertex •Ei of the dual graph corresponding to each exceptional

divisor E1, . . . , En of π, and two vertices corresponding to Ei and Ej are adjacent

for i �= j if and only if Ei · Ej = 1 (i.e. Ei intersects Ej nontrivially). The vertex
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corresponding to Ei the weight wi = −Ei ·Ei, denoted •
(wi)
Ei

. Additionally, it will be

convenient to include an unweighted vertex •C corresponding to the strict transform

of C on Y .

One may construct the dual graph of the minimal log resolution π : Y → X of an

analytically irreducible curve C on X by “decorating” its multiplicity sequence

( a1 a2 a3 · · · an )

as suggested by Proposition VI.2. Simply draw an arc connecting each grouping

ar = ar+1 + · · · + ar+s, and weight the leftmost entry by (s + 1)

ar

(s+1)

ar+1 ar+2 · · · ar+s .

According to the proposition, this corresponds to an edge

•Er
•Er+s

in Γπ. Furthermore, the weight of the vertex corresponding to Er is (s + 1). Thus,

after giving the vertex corresponding to En weight one, we have completely described

the weighted dual graph.

Example VI.3. Consider the analytically irreducible plane curve C parametrized

by

x = t4 y = t6 + t9

near the origin in A2. One can check that the multiplicity sequence of C is given by

( a1 a2 a3 a4 a5 a6 ) = ( 4 2 2 2 1 1 ). We now “decorate” this sequence

as described above.

4
(3)

2
(2)

2
(2)

2
(3)

1
(2)

1
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Since a1 = a2 + a3, draw an arc over these three entries in the sequence. Similarly,

draw arcs grouping a2 = a3, a3 = a4, a4 = a5 + a6, and a5 = a6. For each arc, weight

the leftmost entry by the length of its span. According to Proposition VI.2, the dual

graph of the minimal log resolution of C is shown below.

•
(3)
E1

•
(2)
E3

•
(3)
E4

•
(1)
E5

•C

•
(2)
E2

•
(2)
E4

We will return to this example repeatedly as our discussion continues.

We now proceed to further describe the relationship between the dual graph and

the multiplicity sequence of a unibranch curve C. Let ν1, . . . , νg be the indices such

that •Eν1
, . . . , •Eνg

are the star vertices of the dual graph, i.e. those whose valence 1

is at least three, and set ν0 = 1. Thus, in the previous example, we have g = 2 with

ν1 = 3 and ν2 = 5. We will use the traditional notation ei = aνi . The graph Γπ is

formed by joining together the pieces

•Eνi−1
•Eζi · · · •Eνi

...

•Eτi

where •τi is the vertex with valence one whose index τi immediately precedes νi, and

•Eζi
is the unique vertex with ζi > νi−1 such that Eζi intersects Eνi−1 nontrivially.

In the previous example, we have τ1 = 2, τ2 = 4, and ζ1 = 3, ζ2 = 5. Note that, in

general, we have νi−1 < τi < νi−1, νi−1 < ζi ≤ νi−1, and ζi �= τi.

1It is important to remember that we have included a vertex corresponding to the strict transform
of C in the dual graph when calculating the valence.
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Let us now use Proposition VI.2 to give a very simple combinatorial description

of the segment

(6.3) aνi−1 aνi−1+1 · · · aτi−1 aτi · · · aνi

of the multiplicity sequence of C. First, we have that

aνi−1 = aνi−1+1 = · · · = aτi−1 > aτi .

In fact, equality holds throughout (6.2) if and only if r + s = νi for some i. Let

ρi = aνi−1 + aνi−1+1 + · · · + aτi and β�i = ρi

ei−1
for i = 1, . . . , g. It follows immediately

from (6.2) that the entries in (6.3) are given by unwinding the Euclidean algorithm

for the integers ρi and ei−1. More precisely, if we set s0 = ρi and s1 = ei−1 and the

Euclidean algorithm gives

(s0) = r1 · (s1) + s2

(s1) = r2 · (s2) + s3

...

(sk−2) = rk−1 · (sk−1) + sk

(sk−1) = rk · (sk) + 0

then the sequence of numbers in (6.3) is precisely

s1 s1 · · · s1� �� �
r1-times

s2 s2 · · · s2� �� �
r2-times

· · · sk−1 sk−1 · · · sk−1� �� �
rk−1-times

sk sk · · · sk� �� �
rk-times

.

Note that sk = ei = gcd(ρi, ei−1). Since ρi = β�i · ei−1 and eg = 1, simply knowing

the rational numbers β�1, . . . , β
�
g is enough to reproduce the numbers ρ1, . . . , ρg and

e0, . . . , eg. One may then give the entire multiplicity sequence by “gluing” the seg-

ments as in (6.3) together along their outermost entries. Before showing how this
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works in Example VI.3, we record the combinatorial fact

(6.4) a2
νi−1

+ a2
νi−1+1 + · · · + a2

νi
= r1s2

1 + r2s2
2 + · · · + rk−1s2

k−1 + rks2
k

= (s0 − s2)s1 + (s1 − s3)s2 + · · ·

· · · + (sk−2 − sk)sk−1 + (sk−1 − 0)sk

= s0s1 = ρi · ei−1 .

Example VI.4. In Example VI.3, starting from β�2 = 5
2 written in lowest terms, we

see ρ2 = 5 and e1 = 2. Perform the Euclidean algorithm for the integers 5 and 2.

We have

(5) = 2 · (2) + 1

(2) = 2 · (1) + 0

and thus conclude that the second segment of the relevant multiplicity sequence

consists of two 2’s followed by two 1’s, i.e. 2 2 1 1 . Next, from β�1 = 3
2 again

written in lowest terms, we conclude ρ1 = 3 · 2 = 6 and e0 = 2 · 2 = 4. Perform

the Euclidean algorithm for the 6 and 4 to get the sequence 4 2 2 . Now, simply

match together the leftmost entry of the first sequence with the rightmost entry of

the second, resulting in 4 2 2 2 1 1 .

6.2 Proximity Matrix

Another way of encoding the information garnered about the multiplicity sequence

of an analytically irreducible plane curve C via Proposition VI.2 is through the

proximity matrix P (first introduced by Du Val) of its minimal log resolution π. As in

Chapter IV, we will let Λ = ZE1+· · ·ZEn be the exceptional lattice. In Section 4.2.1,

we made use of the two bases E1, . . . , En and Ě1, . . . , Ěn for ΛQ. However, we now

have access to an important third basis as well. Write E∗
i = (θn ◦ · · · θi+1)∗(E

Xi
i ) for
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each i = 1, . . . , n. Then E∗
1 , . . . , E

∗
n form an integral basis for Λ, and furthermore we

have

E∗
i · E

∗
j = −δij =






−1 i = j

0 i �= j

.

As an immediate consequence, observe in particular that the intersection product on

Λ is unimodular and thus the divisors Ě1, . . . , Ěn must form an integral lattice basis.

By definition, the proximity matrix P is simply the change of basis matrix from

the basis E1, . . . , En to E∗
1 , . . . , E

∗
n. It is easy to see that

Er = E∗
r − E∗

r+1 − · · ·− E∗
r+s

where s is as in Proposition VI.2, so that the proximity2 matrix P = (xij) has the

form

xij =






0 j > i

1 i = j

−1 j > i and pj lies on E
Xj−1

i

.

Thus, we can interpret VI.2 as saying that the multiplicity sequence is simply the

bottom row of the inverse to the proximity matrix. We will denote the rows of P−1

by X1, . . . , Xn.

The proximity matrix can be used to relate any of the aforementioned bases of Λ

to one another. Indeed, let E = (Ej), E∗ = (E∗
j ), and Ě = Ěj be the column vectors

of these bases. By definition, E = P t · E∗. Note, in particular, this implies that the

weighted incidence matrix of Γπ (without •C) is given by (Ei ·Ej) = E ·Et = −P t ·P

as E∗ · (E∗)t = − n. Now, since − n = (Ěi · Ej) = Ě · Et = Ě · (E∗)t · P , it follows

2In standard terminology, j is said to be proximate to i (alternatively, Ej is proximate to Ei)
when j > i and pj lies on E

Xj−1
i .
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that P · Ě · (E∗)t = − n as a matrix commutes with its inverse. Thus, we must have

P · Ě = E∗. Finally, we may also conclude Ě = P−1 · E∗ = P−1 · (P−1)t · E. This

last relation is quite important, as it gives

ordEj(Ěi) = ordEi(Ěj) = �Xi, Xj� = Xi · X
t
j .

This implies that the inner products of the rows of P−1 have an interpretation in

terms of valuations. Using our deductions from Section 4.2.1, for any divisor D ∈

DivQ(X) we conclude from π∗D = π−1
∗ D +

�
i(π

−1
∗ D · Ei)Ěi that

ordEj(π
∗D) =

�

i

(π−1
∗ D · Ei)�Xi, Xj� .

In particular, we have ordEi(π
∗C) = �Xi, Xn� is simply the inner product of the

multiplicity sequence of C with the i-th row of the inverse of the proximity matrix.

Calculating the i-th row of the proximity matrix is very easy when given the

multiplicity sequence. First, we know that the i-th entry of Xi is 1 and every entry

further to the right is 0. To complete the row, simply force the entries to satisfy

exactly the same relations as in (6.1) satisfied by the multiplicity sequence. Further-

more, using this line of reasoning, various relations among the Xi can be deduced.

For 1 ≤ j ≤ n, let X≤j
i denote the j-th truncation of the row vector Xi, so that

X≤j
i = ( xi,1 xi,2 · · · xi,k ) .

Consider X≤νi−1
n for some 1 ≤ i ≤ n. It is easy to see each of the relations (6.1) for

r < νi−1 satisfies r + s ≤ νi−1. In particular, X≤νi−1
n and X≤νi−1

νi−1 can be constructed

from exactly the same relations (6.1), except the former begins with rightmost entry

ei−1 while the latter has rightmost entry 1. Thus, it follows that

(6.5) X≤νi−1
n = ei−1X

≤νi−1
νi−1

.
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Similar considerations show

(6.6)

Xτi = ( X≤νi−1
νi−1� �� �

νi−1 entries

1 1 · · · 1
� �� �
(τi−νi−1)−times

0 0 · · · 0
� �� �
(n−τi)−times

)

Xζi = ( sX≤νi−1
νi−1� �� �

νi−1 entries

1 1 · · · 1
� �� �

s−times

0 0 · · · 0
� �� �
(n−ζi)−times

)

where we conventionally set ν0 = 1 and let s = ζi − νi−1 = −Eνi−1 · Eνi−1 − 1.

Let us point out one other important piece of information about Xi. It is easy to

see that Kπ = E∗
1 + · · · + E∗

n. Thus, if Σ = ( 1 1 · · · 1 ) is the all one’s vector,

we have Kπ = Σ ·E∗ = Σ · (P−1)t ·E. In other words, ordEi(Kπ) is simply the sum of

the entries of Xi. Note that we have now shown how to calculate π∗C and Kπ, and

are thus in a position to get at the candidate jumping numbers for each Ei starting

from the multiplicity sequence.

Example VI.5. In Example VI.3, let us first calculate X5. First, we know x5,5 = 1

and x5,6 = 0. Since a4 = a5 + a6, we impose the condition x5,4 = x5,5 + x5,6 =

1 + 0 = 1. Now, a2 = a3 = a4, so we also get x5,2 = x5,3 = x5,4 = 1. Lastly, we see

x5,1 = x5,2 + x5,3 = 1 + 1 = 2. Thus, we have X5 = ( 2 1 1 1 1 0 ). One can

also verify

P−1 =





1 0 0 0 0 0

1 1 0 0 0 0

2 1 1 0 0 0

2 1 1 1 0 0

2 1 1 1 1 0

4 2 2 2 1 1





P =





1 0 0 0 0 0

−1 1 0 0 0 0

−1 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 −1 −1 1





π∗C = π−1
∗ C + 4E1 + 6E2 + 12E3 + 14E4 + 15E5 + 30E6
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Kπ = E1 + 2E2 + 4E3 + 5E4 + 6E5 + 12E6

We are now ready to prove the first ingredient in the computation of the jumping

numbers of a unibranch curve C.

Theorem VI.6. Every jumping number of a unibranch curve C is critically con-

tributed by a prime divisor on its minimal resolution.

Proof. Suppose, by way of contradiction, there is a jumping number ξ < 1 for the

pair (X, C) which is not contributed by a prime divisor on its minimal log resolution

π : Y → X. Then we must have that ξ is critically contributed by a reduced chain of

exceptional divisors Ei1 +Ei2 + · · ·+Eik where i1 < i2 < · · · < ik. By Theorem V.10,

we may assume i1 = νi−1 and i2 = ζi for some 1 < i ≤ g. Let Ea and Eb be the

two exceptional divisors intersecting Eνi−1 nontrivially with a �= b and a, b < νi−1, so

that (up to switching a and b)

(6.7) · · · •Ea
•Eνi−1

•Eζi · · ·

•Eb

...

appears in the dual graph. If s = −Eνi−1 · Eνi−1 − 1, we have from (6.5) and (6.6)

along with Proposition VI.2 that

(6.8) ordEνi−1
(π∗C) = �Xνi−1 , Xn�

= ei−1�Xνi−1 , Xνi−1�

ordEζi
(π∗C)) = �Xζi , Xn�

= sei−1�Xνi−1 , Xνi−1�+ aνi−1+1 + aνi−1+2 + · · · + aζi

= sei−1�Xνi−1 , Xνi−1�+ ei−1 .
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In particular, we conclude gcd(ordEνi−1
(π∗C), ordEζi

(π∗C)) = ei−1.

Since ξ must be a common candidate jumping number for both Eνi−1 and Eζi ,

we must have ordEνi−1
(π∗C) · ξ ∈ Z and ordEζi

(π∗C) · ξ ∈ Z and thus necessarily

gcd(ordEνi−1
(π∗C), ordEζi

(π∗C))·ξ = ei−1ξ ∈ Z. According to Theorem V.8, we must

have

(6.9) − �ξπ∗C� · Eνi−1 = {ξπ∗C} · Eνi−1 = 1 .

Since a, b ≤ νi−1, it follows from (6.5) once more that

(6.10)
ordEa(π

∗C) = �Xa, Xn� = ei−1�Xa, Xνi−1�

ordEb
(π∗C) = �Xb, Xn� = ei−1�Xb, Xνi−1�

are both divisible by ei−1. Thus, the exceptionally supported Q-divisor {ξπ∗C}

does not have any of Ea, Eb, Eνi−1 , Eζi in its support. But then we must conclude

{ξπ∗C} · Eνi−1 = 0, contradicting (6.9).

6.3 Minimal Semigroup Generators, Characteristic Exponents, and Ap-
proximate Roots

We now wish to introduce some valuation theoretic invariants associated to the

unibranch curve C. Consider a local defining equation f ∈ O for C. The ring

OC = O/�f� is a one dimensional local domain whose normalization OC is also a one

dimensional local domain, and hence a DVR. Let ordC̄ : Frac(OC) \ {0}→ Z be the

corresponding valuation. Thus, for any f � ∈ O not divisible by f and defining a curve

C �, it is easy to see ordC̄(f �+ �f�) = dimC(O/�f, f ��) is the local intersection number

of C and C �. In particular, if π−1
∗ C � is disjoint from π−1

∗ C, we have ordC̄(f � + �f�) =

ordEn(π∗C) = ordEn(f �).

The set Γ = ordC̄(OC \ {0}) forms an additive (sub)semigroup of Z≥0. Since

ordC̄(Frac(OC) \ {0}) is surjective, it is easy to see that Γ contains all sufficiently
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large positive integers. One can choose a minimal set of generators β̄0, . . . , β̄g for

Γ inductively as follows. First, let β̄0 be the smallest nonzero integer in Γ. Now,

assuming β̄0, . . . , β̄i have been defined, simply let β̄i+1 be the smallest integer in Γ

but not in the additive semigroup generated by β̄0, . . . , β̄i. The invariants Γ or even

β̄0, . . . , β̄g can be shown to be equivalent to the multiplicity sequence, and hence

depend only on and completely determine the equisingularity class of C.

In order to review the precise formulae relating β̄0, . . . , β̄g and the multiplicity

sequence of C, however, we first need to recall another set of invariants associated

to a parametrization of C. After a suitable change of coordinates, we may assume a

local defining equation f ∈ O for C is in Weierstrass normal form

f = ye0 + A1(x)ye0−1 + · · · + Ae0(x) ∈ C((x))[y]

where e0 = mult0(C) and each Ai(x) ∈ C((x)) has order at least i in x. Since the

field of Puiseux series C((x1/n : n > 0)) is the algebraic closure of C((x)), it follows

that y can be written as a Puiseux series in x on the curve C. In fact, this can be

done explicitly starting from f : the Newton-Puiseux algorithm can be used to write

y as a power series in x1/e0 on C. In other words, we arrive at a parametrization

(setting t = x1/e0) of the form

(6.11) x = te0 y =
�

i≥0

αit
i .

Following Zariski, we can inductively define invariants β1, . . . , βg called the char-

acteristic exponents based on which terms appear in the power series for y above. Let

β1 be the smallest positive integer such that αβ1 �= 0. Assuming now β1, . . . , βi have

been defined, set βi+1 to be the smallest positive integer with αβi+1 �= 0 such that

βi+1 is not in the additive semigroup generated by e0, β1, . . . , βi (just in case such a
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βi+1 exists). Our use of the index g here is consistent with our previous notation –

one can show the algorithm stops after producing the same number of invariants as

there are stars in the dual graph of the minimal log resolution of C.

The invariants e0, β1, . . . , βg again uniquely determine the equisingularity class of

C. This follows from the following relations between the β1, . . . , βg and previously

defined invariants

ei = gcd(e0, β1, . . . , βi) β1 = ρ1 = e0β�1

βi = ρi − ei−1 + βi−1 = (β�i − 1)ei−1 + βi−1 for i ≥ 2 .

As none of our technical arguments rely on these relations, we refer the reader to

[Zariski’s Book] for a proof of these facts. We can rewrite the power series for y in

(6.11) as

y = αβ1t
β1 +

�
0<j≤h1

αβ1+je1t
β1+je1 + αβ2t

β2 +
�

0<j≤h2

αβ2+je2t
β2+je2 + · · ·

· · · + αβgt
βg +

∞�
j=1

αβg+jtβg+j

where hi = �
βi+1−βi

ei
�. For each i = 1, . . . , g, let Ck be the curve given by the

parametrization

x = te0

y = αβ1t
β1 +

�
0<j≤h1

αβ1+je1t
β1+je1 + αβ2t

β2 +
�

0<j≤h2

αβ2+je2t
β2+je2 + · · ·

· · · + αβk−1
tβi−1 +

∞�
j=1

αβk−1+jtβk−1+j .

The reader should be forewarned that the parametrization for Ck given above is not

primitive; the greatest common divisor of every power of t which appears is ek−1 > 1.

We will refer to Ck as a k-th approximate root of C, as the k-th approximate root fk

of f gives a local defining equation for Ck.
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The approximate roots of C will be very useful in our forthcoming calculations.

However, the only truly essential facts we will need about Ci are the following:

(a.) For each i = 1, . . . , g, we have β̄i = ordC̄(fi) = ordEn(π∗Ci).

(b.) The strict transform π−1
∗ Ck is smooth and satisfies π−1

∗ Ck · Ej =






1 j = τk

0 j �= τk

.

One can interpret (b.) in the following way: Ck behaves as if it were a general

element of the simple finite colength ideal π∗OY (−Ěτk
). Thus, we have that π∗Ck =

π−1
∗ Ck +Ěτk

; furthermore, while π is necessarily a log resolution of Ck, the truncation

πνk−1
: Xνk−1

→ X is in fact the minimal log resolution of Ck. The reader who is

unfamiliar with the many different invariants we have introduced in this section could

simply hereafter regard the equation

β̄i = ordEn(π∗Ci) = ordEn(Ěτi) = �Xτi , Xn�

as the definition of the semigroup invariants, where Ci is a general element of Pτi .

Let us now show other two formulae characterizing the minimal semigroup gen-

erators. Both are based upon the observation using (6.6) that

β̄i = �Xτi , Xn� = �Xνi−1 , Xn�+ aνi−1+1 + aνi−1+2 + · · · + aτi

= �Xνi−1 , Xn�+ ρi − ei−1

for i = 1, . . . , g. First, we claim

(6.12) β̄i =
ei

ei−1
ordEνi

(π∗C) .

Indeed, using (6.4) and (6.5) we have

ei−1β̄i = ei−1(�Xνi−1 , Xn�+ ρi − ei−1) = �X≤νi−1
n , Xn�+ ei−1ρi − a2

νi−1

= �X≤νi−1
n , Xn�+ (a2

νi−1
+ · · · + a2

νi
)− a2

νi−1

= �X≤νi
n , Xn� = ei�Xνi , Xn� = ei ordEνi

(π∗C)
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as desired. Second, we can use this to give a recursive formula for the semigroup

generators in terms of β�1, . . . , β
�
g. We have for i = 2, . . . , g that

(6.13)

β̄i = ordEνi−1
(π∗C) + ρi − ei−1

= ei−2

ei−1
β̄i−1 + ρi − ei−1

= ei−2

ei−1
β̄i−1 + ei−1(β�i − 1) .

Note that this equation also gives the relationship between the minimal semigroup

generators and the characteristic exponents, namely

β0 = β̄0 = e0 = a1 β1 = β̄1 = ρ1 = β�1e0

βi − βi−1 = β̄i −
ei−2

ei−1
β̄i−1 = ei−1(β�i − 1) = ρi − ei−1 for i ≥ 2.

One can relate the many invariants of Ck to those of C, and to distinguish them

from one other we will adorn the former with a superscript Ck. The relations all stem

from the fact that Xτk
is the multiplicity sequence of Ck along π, and also that X≤νk−1

νk−1

is the multiplicity sequence of Ck (along its minimal resolution πνk−1
: Xνk−1

→ X).

Thus, we have gCk = k − 1 and from X≤νk−1
n = eνk−1

X≤νk−1
νk−1 it follows easily that

e0 = eνk−1
eCk
0 eνi = eνk−1

eCk
νi

ρi = eνk−1
ρCk

i β�i = β�Ck
i

β0 = eνk−1
βCk

0 βi = eνk−1
βCk

i β̄0 = eνk−1
β̄Ck

0 β̄i = eνk−1
β̄Ck

i

for i = 1, . . . , k − 1.

In light of Theorem VI.6, to compute the jumping numbers of a unibranch curve

C it suffices to compute the sets Hi of jumping numbers (critically) contributed by

each Eνi for i = 1, . . . , g. Thus, following the above notation, H
Ci

i−1 denotes the

set of jumping numbers of Ci (critically) contributed by E
Xνi−1
νi−1 on the minimal log

resolution πνi−1 : Xνi−1 → X of Ci. By Proposition V.14, these are the same as the

jumping numbers of Ci critically contributed by Eνi−1 .
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Theorem VI.7. Suppose C is a unibranch curve with approximate roots C1, . . . , Cg.

Then for each i = 2, . . . , g, ξ ∈ Q>0 is a jumping number of C (critically) contributed

by Eνi−1 if and only if eνi−1ξ is a jumping number of Ci (critically) contributed by

Eνi−1. In other words, Hi−1 = eνi−1H
Ci

i−1.

Proof. First off, note that

ordEνi−1
(π∗C) = eνi−1 ordEνi−1

(π∗Ci) = eνi−1 ord
E

Xνi−1
νi−1

(π∗νi−1
Ci) ,

and thus ξ is a candidate jumping numbers for C along Eνi−1 if and only if eνi−1ξ

is a candidate jumping number for Ci along Eνi−1 (equivalently E
Xνi−1
νi−1 ). Now, we

know ξ is a jumping number for C critically contributed by Eνi−1 if and only if

−�ξπ∗C� ·Eνi−1 = {ξπ∗C} ·Eνi−1 ≥ 2, and similarly for the jumping numbers of Ci.

We will use notation from the proof of Theorem VI.6. Let Ea and Eb be the two

exceptional divisors intersecting Eνi−1 nontrivially with a �= b and a, b < νi−1, so that

(up to switching a and b) the arrangement in (6.7) appears in the dual graph. Now,

for every candidate jumping number ξ for C along Eνi−1 , we have

{ξπ∗C} · Eνi−1 = {ξ ordEa(π
∗C)} + {ξ ordEb

(π∗C)} + {ξ ordEζi
(π∗C)} .

We see from (6.8) that {ξ ordζi(π
∗C)} = {eνi−1ξ} and from (6.10)

{ξ ordEa(π
∗C)} = {eνi−1ξ ordEa(π

∗Ci)} = {eνi−1ξ ord
E

Xνi−1
a

(π∗νi−1
Ci)}

{ξ ordEb
(π∗C)} = {eνi−1ξ ordEb

(π∗Ci)} = {eνi−1ξ ord
E

Xνi−1
b

(π∗νi−1
Ci)} .

Since the arrangement

· · · •
E

Xνi−1
a

•
E

Xνi−1
νi−1

•Ci

•
E

Xνi−1
b

...
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appears in the dual graph to the minimal log resolution πνi−1 : Xνi−1 → X of Ci, and

thus

{eνi−1ξπ
∗
νi−1

Ci} · E
Xνi−1
νi−1 = {eνi−1ξ ord

E
Xνi−1
a

(π∗νi−1
Ci)}

+ {eνi−1ξ ord
E

Xνi−1
b

(π∗νi−1
Ci)}

+ {eνi−1ξ ordπ−1
νi−1,∗Ci

(π∗νi−1
Ci)}

= {ξπ∗C} · Eνi−1

and the desired conclusion now follows.

6.4 Computation of the Jumping Numbers of a Branch

Using Theorems VI.6 and VI.7, in order to calculate the jumping numbers of a

unibranch curve C, it suffices to find those jumping numbers (critically) contributed

by Eνg . To that end, let us first consider the case where g = 1. According to the

following theorem, this reduces to the case of the Fermat curve ye + xb for relatively

prime positive integers e and b.

Theorem VI.8. The jumping numbers of the germs of a plane curve depend only

on its equisingularity class.

Proof. This follows immediately from Theorem V.8, since the numerical data of the

minimal log resolutions of two equisingular plane curves are the same [cite Brieskorn].

Note that we have already seen this fact explicitly in the case of equisingular uni-

branch curves.

Corollary VI.9. Suppose the dual graph to the minimal resolution of a unibranch

curve C has a single star vertex, i.e. g = 1. Then the jumping numbers of C are

�
r + 1

e0
+

s + 1

β̄1
+ m

���� r, s, m ∈ Z≥0 with
r + 1

e0
+

s + 1

β̄1
≤ 1

�



104

and all of the jumping numbers less than one are (critically) contributed by Eν1.

Proof. If g = 1, the C is equisingular to the Fermat curve ye0 + xβ̄1 . Now, one can

easily calculate the jumping numbers using toric methods. See [Laz04].

To calculate the jumping numbers of a unibranch curve with g ≥ 2, we will need

the following generalizations of Theorem VI.8 and Corollary VI.9. This will allow us

to reduce the computation in general to the case of a Fermat curve.

Lemma VI.10. Suppose C and C � are two equisingular unibranch curves and L1

and L2 are smooth curves transverse to each other and C, C �. For a positive integers

l1 and l2, consider the effective divisors D = l1L1+l2L2+C and D� = l1L1+l2L2+C �.

Then the jumping numbers of D (critically) contributed by EC
νg

on the minimal log

resolution of C coincide with the jumping numbers of D� (critically) contributed by

EC�
νg

on the minimal log resolution of C �.

Proof. Again, it suffices to note that

ordEC
νg

(πC,∗D) = ordEC�
νg

(πC�,∗D�)

so the relevant candidate jumping numbers coincide, and also verify that

{λπC,∗D} · EC
νg

= {λπC�,∗D�
} · EC�

νg

for each of these candidate jumping numbers λ. These follow immediately as the

numerical data of the given resolutions of both divisors are identical.

Lemma VI.11. The jumping numbers of a unibranch curve C (critically) contributed

by En are the same as the jumping numbers of the germ of π∗j−1C at pj contributed

by En for all j ≤ n.
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Proof. If θ = θn ◦ · · · ◦ θj : Y → Xn, then θ is the minimal log resolution of the germs

of π−1
j−1,∗C or π∗j−1C at pj. Again, it suffices to note that

ordEn(π∗C) = ordEn(θ∗(π∗j−1C))

so the relevant candidate jumping numbers coincide, and also verify that

{λπ∗C} · En = {λθ∗(π∗j−1C)} · En

for each of these candidate jumping numbers. But we have π = θ ◦ πj−1, and

furthermore it is easy to see λπ∗C is determined in a neighborhood of En by the

divisor π∗j−1C.

Lemma VI.12. Suppose e, b ∈ Z>0 and d ∈ Z≥0 with gcd(e, b) = 1 and e < b.

Consider the unibranch curves C = div(ye + xb+de) and C � = div(ye + xb−e). Let

D = div(x(d+1)e(ye + xb−e)). Then the jumping numbers of D (critically) contributed

by EC�
ν1

on the minimal resolution of C � coincide with those jumping numbers of C

(critically) contributed by EC
ν1

on the minimal resolution of C.

Proof. By working explicitly in coordinates, it is easy to check that after the first

(d + 1) blowups in the minimal resolution of the Fermat curve C, the corresponding

germ π∗d+1C at the singular point pd+2 on the strict transform of C has the form

given by D. The statement now follows from Lemma VI.11.

Theorem VI.13. The jumping numbers of a unibranch curve C (critically) con-

tributed by Eνg are precisely

�
r + 1

eg−1
+

s + 1

β̄g
+ m

���� r, s, m ∈ Z≥0 with
r + 1

eg−1
+

s + 1

β̄g
≤ 1

�
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Proof. By Lemma VI.11, Eνg (critically) contributes the same jumping numbers to

both C and the germ of π∗νg−1−1C at pνg−1 . Let Ea and Eb be the two exceptional divi-

sors intersecting Eνi−1 nontrivially with a �= b and a, b < νi−1, so that (up to switching

a and b) the arrangement (6.7) appears in the dual graph. Now, π∗νg−1−1C has three

components passing through pνg−1 , namely E
Xνg−1−1

a , E
Xνg−1−1

b , and π−1
νg−1−1,∗C. They

are transverse to one another and the first two are smooth.

BRIEF ARTICLE

THE AUTHOR

pνg−1

E
Xνg−1−1

a

π−1
νg−1−1,∗C

E
Xνg−1−1

b

1

Let C � denote the germ of π−1
νg−1−1,∗C at pνg−1 . Then C � is unibranch with multiplicity

sequence

( aνg−1 aνg−1+1 aνg−1+2 · · · aνg )

and thus we have gC�
= 1 with eC�

0 = aνg−1 = eg−1 and β̄C�
1 = ρg. By Lemma VI.10, we

may assume C � is the Fermat curve yeg−1+xρg in some choice of coordinates. Consider

now what happens when we blowup pνg−1 . In local coordinates around pνg−1+1, the

germ of θ−1
νg−1,∗C

� has the form yeg−1 + xρg−eg−1 and the exceptional divisor E
Xνg−1
νg−1 is

defined by x.

BRIEF ARTICLE

THE AUTHOR

pνg−1+1

E
Xνg−1
νg−1

π−1
νg−1,∗C

1
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Thus, since ordEνg−1
(π∗C) = eg−2

eg−1
β̄g−1, the germ of π∗νg−1

C at pνg−1+1 is locally given

in these coordinates by x
eg−2
eg−1

β̄g−1(yeg−1 + xρg−eg−1). As eg−1 divides β̄g−1,
eg−2

eg−1
β̄g−1 is

divisible by eg−1, and it follows from Lemma VI.12 that jumping numbers (critically)

contributed to C by Eνg are the same as the jumping numbers of the germ of the

fermat curve yeg−1 +xβ̄g since β̄g = ρg−eg−1+
eg−2

eg−1
β̄g−1. This completes the proof.

Theorem VI.14. The jumping numbers of a unibranch curve C are the union of

the sets

Hi =

�
r + 1

ei−1
+

s + 1

β̄i
+

m

ei

���� r, s, m ∈ Z≥0 with
r + 1

ei−1
+

s + 1

β̄i
≤

1

ei

�

for i = 1, . . . , g together with Z≥0. The set Hi is precisely the jumping numbers

(critically) contributed by the exceptional divisor Eνi corresponding to the i-th star

vertex of the dual graph of the minimal log resolution of C.

Proof. The theorem now follows immediately from Theorems VI.6, VI.7, and VI.13.

6.5 Jumping Numbers as Equisingularity Invariants

Lemma VI.15. Suppose (e, b) and (e�, b�) are pairs of relatively prime positive inte-

gers with e < b and e� < b�. If e+b
e�b� = e�+b�

eb , then e = e� and b = b�.

Proof. We have eb(e� + b�) = e�b�(e + b). Since e and b are relatively prime to e + b,

it follows that eb divides e�b�. By symmetry, it follows that eb = e�b�. This, in turn,

implies e + b = e� + b�. Thus,

e +
e�b�

e
= e� + b�

e2
− e(e� + b�) + e�b� = 0

(e− e�)(e− b�) = 0 .



108

Hence, we must have e = e� from order considerations, and it follows that b = b� as

well.

Theorem VI.16. The jumping numbers of a unibranch curve C determine its equi-

singularity class.

Proof. Consider the sets Hi of jumping numbers detailed in Theorem VI.14. Since

gcd(ei−1, β̄i) = ei, it follows that every jumping number in Hi can be written with

denominator ei−1β̄i

ei
= ei

ei−1

ei

β̄i

ei
. Furthermore, the smallest element ξi of Hi can be

written as

ξi =
ei−1

ei
+ β̄i

ei

ei
ei−1

ei

β̄i

ei

in lowest terms, where ei−1

ei
and β̄i

ei
are relatively prime positive integers.

Let us now argue that one can pick out ξ1, . . . , ξg from the set of all of the jumping

numbers. Using (6.13), we have β̄i > ei−2

ei−1
β̄i−1 for i ≥ 2. Thus, if we write the jumping

numbers of C in lowest terms, the largest denominator which appears is eg−1β̄g (recall

eg = 1). Additionally, any jumping number in lowest terms having this denominator

must be in Hg, and the smallest such jumping number is ξg. Proceeding inductively,

suppose we have identified ξi for some i ≥ 2. The largest denominator which appears

among the jumping numbers of C less than ξi written in lowest terms is ei−2β̄i−1

ei−1
, and

the smallest jumping number with this denominator is ξi−1

Finally, let us show how to recover β̄0, . . . , β̄g from ξ1, . . . , ξg. Now,

ξg =
eg−1 + β̄g

eg−1β̄g

where eg−1 < β̄g are relatively prime integers. By Lemma VI.15, this allows us to

recover eg−1 and β̄g. Proceeding inductively, assume we know ei−1 and β̄i for some
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i ≥ 2. Then

ei−1ξi−1 =

ei−2

ei−1
+ β̄i−1

ei−1

ei−2

ei−1

β̄i−1

ei−1

and again using Lemma VI.15, we can recover ei−2

ei−1
and β̄i−1

ei−1
. Multiplying by ei−1

gives ei−2 and β̄i−1.

Example VI.17. Consider the monomial ideals

a1 = �x2, y5
� · �x2, y3

� · �x4, y3
� · �x7, y2

�

a2 = �x2, y5
� · �x3, y2

� · �x3, y4
� · �x7, y2

�

in O. It is easy to see that the the jumping numbers of a1 and a2 coincide from the

symmetry in their Newton polytopes.

It follows that a general element3 C1 of a1 and C2 of a2 have the same jumping

numbers. However, it is easy to see that C1 and C2 are not equisingular. Each of these

curves has four branches, and there is a unique bijection between the branches which

preserves their multiplicity sequences. However, this bijection does not preserve the

pairwise local intersection numbers of the branches, so C1 and C2 are topologically

distinct. The situation is pictured schematically in the diagram below.

E1

E2

E1

C

C

C

C′
C′

C′E′
2

E′
3

E3

1

3In fact, one may take

C1 = div
�
(y5

− x2)(y3
− x2)(y3

− x4)(y2
− x7)

�

C2 = div
�
(y5

− x2)(x3
− y2)(x3

− y4)(y2
− x7)

�
.
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Thus, as shown by the above example, the jumping numbers of a plane curve do

not determine its equisingularity class when the curve has more than one branch.

However, motivated by the example above and the case of a single branch, we con-

clude by asking:

Question VI.18. Do the jumping numbers of the germ of a plane curve determine

the equisingularity classes of its branches?
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