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CHAPTER 1 

 OLFACTORY CILIA: LINKING SENSORY CILIA FUNCTION AND 
HUMAN DISEASE 

 

SUMMARY 

The olfactory system gives us an awareness of our immediate environment by 

allowing us to detect volatile airborne stimuli. The components necessary for detection of 

these odorants are compartmentalized in the cilia of olfactory sensory neurons.  Cilia are 

microtubule-based organelles, which can be found projecting from the surface of almost 

any mammalian cell, and are critical for proper olfactory function.  Mislocalization of 

ciliary proteins and/or the loss of cilia cause impaired olfactory function, which is now 

recognized as a clinical manifestation of a broad class of human diseases, termed 

ciliopathies.  Future work investigating the mechanisms of olfactory cilia function will 

provide us important new information regarding the pathogenesis of human sensory 

perception diseases. 

                                                
Chapter 1 published as Jenkins, P.M., McEwen, D.P., and Martens, J.R. (2009). Olfactory cilia: linking 
sensory cilia function and human disease. Chem Senses 34, 451-64.  For copyright release, please see 
Appendix I. 
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INTRODUCTION 

Inhalation of odorants across the surface of the olfactory epithelium (OE) initiates 

the olfactory signaling cascade, which involves the binding of odorants to receptors 

localized on the cilia of olfactory sensory neurons (OSNs).  In the well-described 

canonical pathway, activated odorant receptors (ORs) act through a stimulatory G 

protein-coupled mechanism to activate adenylyl cyclase type III (ACIII) and increase the 

ciliary concentration of cAMP.  Olfactory cyclic nucleotide-gated (CNG) channels open 

in response to cAMP binding and allow the depolarization of the OSN that is further 

amplified by the Ca+2-activated Cl- channel.  All of these components necessary for 

odorant detection are enriched in olfactory cilia, and perturbation in the localization of 

these components or in the cilia themselves causes impaired olfactory function.  Despite 

this critical ciliary compartmentalization, there is a relative paucity of information 

regarding membrane transport to this microtubule-based organelle.  The revelation that 

most neuronal cells types possess a cilium, a unique cellular compartment whose function 

remains obscure, has stimulated interest in the segregation of proteins and the functional 

specialization of these membrane subdomains.  One cell type where the ciliary function is 

well-described is the OSN.  In this chapter, I will focus on olfactory cilia including 

structure and function, developmental formation and relation to human disease. 
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ANATOMY OF THE OLFACTORY EPITHELIUM 

The main OE is a stratified epithelium composed of several cell types (Figure 

1.1A).  Supporting cells, termed sustentacular cells, contain many microvilli on their 

apical surface and have been shown to play a role in water-balance, regulation of mucous 

ion composition (along with the Bowman’s glands), drug metabolism, and purinergic 

modulation of odor sensitivity [1-4]; however their precise function remains unknown.  

In addition to sustentacular cells, there are also five other distinct microvillous cell types 

in the OE that are found in much lower abundance.  These cells, while sharing the 

common feature of microvilli, are distinct in their morphological characteristics and 

distribution [5-8].  A population of olfactory stem cells, termed basal cells, lies 

immediately superficial to the basal lamina and is responsible for the generation of new 

cells within the OE.  The basal cell layer is composed of two types of cells: the globose 

basal cell (GBC) and the horizontal basal cell (HBC) (For review see [9]).   

The OSN is the main sensory cell, which contains the elements of the olfactory 

sensory cascade (Figure 1.1B).  OSNs are bipolar neurons with long axons projecting 

through the bony cribriform plate into the olfactory bulb, and relatively short dendrites 

terminating in a specialized ending termed a dendritic knob (Figure 1.1B).  The dendritic 

knob contains multiple basal bodies from which the olfactory cilia project into the 

mucous of the OE [10-11] (Figure 1.1A-B).   

OLFACTORY CILIA STRUCTURE 

Cilia are nearly ubiquitous organelles that can be found projecting from the 

surface of most mammalian cell types (Reviewed in [12]).  These cilia are generally 
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divided into classes based on their axonemal structure and motility.  The structural 

component of the cilium, the axoneme, is most often composed of 9 doublets of 

microtubules arranged symmetrically around a central core.  Cilia which contain a pair of 

microtubules within the central core are said to be in the (9+2) configuration, whereas 

those that lack the central pair contain the (9+0) configuration.  Historically, cilia of the 

(9+2) configuration have been termed motile, whereas those of the (9+0) configuration 

have been termed non-motile or primary cilia.  Motile (9+2) cilia (and their longer 

cousins, flagella) utilize structures called dynein arms along with the energy from ATP 

hydrolysis to generate movement, and play important roles in fluid flow, sexual 

reproduction, and airway clearance.  In the nasal mucosa, respiratory cilia are (9+2) 

motile and can be easily distinguished by their rhythmic movement.  Non-motile (9+0) 

cilia are commonly found as single primary cilia that help regulate cell-cycle progression, 

oncogenesis, and renal function.  However, these ultrastructural classifications are not 

always steadfast.  For example, rare motile (9+0) cilia can be found in the embryonic 

node where they function in the development of proper left-right asymmetry in the body 

[13].  Non-motile (9+2) cilia can be found in sensory organs [14-15].  Another prominent 

ciliated cell type in the nasal mucosa is the OSN.  Although these cells possess cilia that 

have the (9+2) microtubule configuration normally found in motile cilia, they lack the 

dynein arms necessary for movement, and are thus rendered immotile [14].  Interestingly, 

some non-mammalian vertebrates, such as goldfish and frogs [16-17], display motile 

olfactory cilia, which have an axoneme resembling that of respiratory cilia in their 

proximal segments and are suggested to play a role in odorant clearance [18-19].   
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Axoneme 

Much of the current knowledge about the structure of olfactory cilia can be 

credited to early electron microscopy studies [11, 16, 20-21].  These reports demonstrated 

that the mammalian olfactory cilium is approximately 50-60 microns in length and is 

divided into two distinct sections termed the proximal and distal segments.  The thicker 

proximal segment projects 2-3 microns from the basal body in a (9+2) configuration with 

a thickness of around 300 nanometers [22].  The distal segment projects the remaining 

~50 microns and dwindles down to an axonemal configuration of 1-4 singlet 

microtubules, most commonly consisting of a pair of singlet microtubules (Figure 1.1C) 

[22].  The distal segments of the olfactory cilia are oriented parallel to the epithelial 

surface.  Because there are numerous cilia (10-30) per cell and because of the large 

distance they project from the dendritic knob there is substantial overlap of cilia from 

different OSNs [22].  This intertwined mat of cilia increases the sensory surface of the 

OE by over 40 times thus increasing our ability to detect odorants [23]. 

The ciliary axoneme is composed of long strands of α and β tubulin dimers, 

which form the structural backbone for the cilium (reviewed in [24-25]).  These 

microtubules provide the roadway for molecular motors, such as kinesins and dyneins, to 

transport cargo into and out of the cilium.  Olfactory ciliary axonemes are oriented with 

the plus end located in the distal tip of the cilium (Figure 1.1C), which means that plus 

end-directed motors carry cargo to the tip of the cilium, while minus end-directed motors 

are responsible for the return of cargo (reviewed in [24-25]).   
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Recently a number of post-translational modifications of tubulin have been 

discovered to play functional roles in the regulation of cargo transport (reviewed in [26]).  

Many modifications to tubulin have been found on the ciliary axoneme, including 

acetylation (α), polyglutamylation (α + β), polyglycylation (α + β), and detyrosination 

(α).  While all of these modifications have been detected in olfactory cilia, their precise 

functional relevance is poorly understood [27-28].  However, a recent study found that 

zebrafish lacking an enzyme responsible for polyglutamylation exhibited a loss of 

olfactory cilia [27], indicating a role for post-translational tubulin modifications in 

assembly or maintenance of olfactory cilia.  It is unclear if these modifications are 

uniform along the length of the ciliary axoneme.  

In addition to changes in the axoneme structure, there is evidence for 

heterogeneity in protein content along the length of the cilium.  The proximal and distal 

cilia segments may represent distinct subcellular compartments.  During development, 

signaling proteins appear to localize differentially between these two regions.  In newly-

formed cilia, the olfactory signaling proteins are more evenly distributed between the 

proximal and distal segments.  In mature cilia the signaling molecules, such as Gαolf, 

ACIII, and CNG channel, appear to preferentially localize to the long distal segment 

where the odorant presumably first makes contact with the OSN [22, 29-30].  This 

clustering of signaling molecules at the site of odorant exposure may increase the 

efficiency of odorant-stimulated signaling.  
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Lipid Composition 

The microtubule-based axoneme is encased by the lipid bilayer in the form of a 

membrane sheath, which, given the importance of lipids in cellular signaling, most 

certainly plays a critical role in olfactory signaling.  The canonical olfactory signaling 

pathway includes several peripheral and transmembrane proteins; therefore, there likely 

exists a dynamic reciprocity between odorant signaling proteins and membrane lipids in 

olfactory cilia such that perturbation of membrane lipids can affect olfactory signaling.   

Recently, there is growing evidence for the role of lipid membrane microdomains, 

enriched in cholesterol and sphingolipids, in the organization of olfactory signaling 

proteins [31-33].  In OE, Schreiber and colleagues [32] demonstrated that the G protein 

and adenylyl cyclase isoforms involved in odorant signaling associate with lipid rafts.  

They also reported that Golf and ACIII interact with the cholesterol binding protein, 

caveolin, and that disruption of the caveolin interaction inhibits odorant-induced cAMP 

production in OSNs.  Additionally, the recently identified stomatin-related olfactory 

(SRO) protein [33-34]  has been shown to associate with lipid rafts in olfactory cilia and 

bind both caveolin and ACIII.  Importantly, anti-SRO antibodies stimulated cAMP 

production in fractionated cilia membranes suggesting that rafts and/or a 

caveolin/lipid/protein complex regulate odorant signaling [33].  However, the study of 

lipid rafts and membrane organization in cilia and membranes in general has been 

hampered by the lack of quantitative biophysical approaches.  Nevertheless, early 

ultrastructural data from the Menco laboratory comparing olfactory cilia membranes to 

that of respiratory cilia led them to conclude that that the outer leaflet membranes of 
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olfactory cilia are thicker than inner leaflets [17].  This is consistent with a potential 

enrichment of sphingolipids that are localized almost exclusively to the outer leaflet [35].  

The enrichment of certain lipids is further supported by work in invertebrates that has 

shown that the ciliary membrane of Paramecium is highly enriched with sphingolipids 

[36].  These investigators later showed that ciliary membrane excitability in the same 

invertebrate model was sensitive to sterol composition [37].  Others have reported that 

there is an enrichment of cholesterol in the ciliary shaft, but not the necklace region, of 

epithelial cilia that extends during ciliogenesis [38].  Surprisingly however, there is 

virtually no information regarding the precise lipid composition of this important 

membrane structure in the olfactory system.  

Ciliary Necklace 

One clearly delineated microdomain of the ciliary membrane can be found where 

the lipid membrane sheath meets the dendritic knob.  This membrane specialization is 

termed the “ciliary necklace” and likely represents the transition zone between the 

cytoplasm and the ciliary compartment.  This highly ordered domain is marked by a 

spiraling array of membrane particles [39-41], which connect to the basal body just below 

the ciliary axoneme [42].  While most cilia types possess a ciliary necklace, olfactory 

cilia typically have more strands per cilium than their respiratory counterparts, although 

the physiological relevance of this is unknown [41].  The formation of the ciliary 

necklace precedes ciliogenesis as a patch of membrane, and in malformed cilia there are 

still necklace-like structures [41, 43].  Interestingly, some ciliary transport proteins have 

been found to be localized at the ciliary necklace indicating that it may serve as a cargo 
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docking site connecting the ciliary shaft to the protein complexes at the base of the cilium  

[44]. 

Basal Body 

The basal body is a modified centriole that migrates to the plasma membrane 

prior to ciliogenesis (Figure 1.3).  The basal bodies are duplicated en masse in the cell 

body of the OSN before they migrate to the dendritic knob (Figure 1.3A) [11, 28, 45-46].  

Basal bodies, like the ciliary axoneme, are composed of nine sets of microtubules 

arranged in a radial symmetry (Figure 1.1C).  However, basal bodies are composed of 

polymers of triplet microtubules rather than the doublet microtubules seen in the 

axoneme.  The basal body serves as the microtubule organizing center (MTOC) in the 

dendritic knob with the axonemal tubules projecting from the basal body, such that the 

plus ends orient toward the distal tip of the cilium [47].   

In addition to serving as MTOCs for the ciliary axoneme, the basal bodies are 

associated with electron-dense satellite particles that appear to also be MTOCs [47].  

These organizing centers serve as nucleation sites for microtubules that project from the 

dendritic knob back through the dendrite towards the cell body [48].  Some of the 

MTOCs are connected to the basal body through a sheath of material that surrounds the 

basal body and thickens at its proximal end.  The basal bodies and sheath are connected 

to the plasma membrane through 9 struts which correspond to the electron-dense endings 

which anchor to the plasma membrane (Figure 1.1C) [41]. 
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Ciliary Rootlet 

The ciliary rootlet is a cytoskeletal feature found projecting from the basal body 

in many ciliated cells and believed to participate in anchoring of cilium [49].  Although 

the structural components of the ciliary rootlet are beginning to be elucidated [50], still 

very little is known about its function.  It seems unclear if olfactory cilia possess a rootlet  

[51-53]; however OSNs have been shown to express components of the ciliary rootlet in 

a localization consistent with the dendritic knob/basal body region [53-54].  More work is 

necessary to definitively demonstrate the presence or absence of an olfactory ciliary 

rootlet.   

Ciliogenesis 

The olfactory placode first appears in the mouse at embryonic day 9 (E9) post-

fertilization [10-11, 20-21, 28, 55].  At E10, the olfactory placode invaginates and forms 

the olfactory pit which is composed primarily of two cell types: a population that is 

electron dense (proliferative basal cells) and those that appear light (differentiated OSNs) 

[10-11, 20-21, 55].  At E11, the dendrites begin to form and extend toward the apical 

surface.  Also, the olfactory pit deepens and forms recesses which will eventually become 

the olfactory turbinates [10-11, 20-21, 55].  During this time, the primary site of OSN 

growth and maturation is the deep recesses of the olfactory pit [10-11, 20-21, 55].  

By E11, several morphological changes occur in OSNs, representing the initial 

stages of ciliogenesis.  First, in the perinuclear region of these neurons, numerous 

microtubules and microfilaments form and extend vertically toward the apical surface 

[11, 20, 56].  Second, the distal end of the dendrite now extends into the lumen of the 
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nasal cavity, where it begins to swell and form the dendritic knob (Figure 1.3B-C) [11, 

20, 56].  Finally, and perhaps most importantly, centriole duplication occurs and groups 

of centrioles accumulate in the perinuclear region of the neuron (Figure 1.3A) [11, 20, 

56]. 

By E12, the rate of OSN proliferation increases, and these OSNs begin to develop 

well-formed dendrites and dendritic knobs filled with mitochondria, small coated 

vesicles, and numerous microtubules [11, 20, 56].  The microtubules in the dendritic 

knob are arranged in two distinct populations; one is arranged concentrically around the 

periphery of the knob while the other is arranged longitudinally and extends deep into the 

dendrite [11, 20, 56].  In addition, the centrioles that were duplicated at E11 begin to 

migrate to the dendritic knob and eventually disperse singly around the knob periphery 

where they associate with the plasma membrane (Figure 1.3C).  Ciliogenesis commences 

when a single, primary cilium of approximately 1 µm extends into the nasal cavity [11, 

20, 28, 56].  As new cilia form, their microtubule-based axoneme elongates and the basal 

body, formed by the migrating centrioles, matures and is anchored at the plasma 

membrane (Figure 1.3C-D) [10-11, 28, 45-46].  By E13 or E14, multiple cilia up to 2 µm 

in length can be seen extending from a single dendritic knob (Figure 1.3D).  Over the 

next several days, olfactory cilia continue to elongate and can reach up to 60 µm prior to 

birth.  Intraflagellar transport (IFT), which will be discussed in more detail below, plays a 

key role in the transport of cargo responsible for the growth and maintenance of cilia [24-

25].  In some species, the cilia will continue to grow and can reach up to 200 µm in 

length [16, 20, 57].  The multitudes of overlapping OSN cilia create a meshwork across 
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the surface of the OE, thus increasing the surface area of the OE up to 40 times and 

enhancing the sensitivity of odorant detection [17, 20]. 

In addition to ciliogenesis, the proper delivery of ciliary signaling proteins is 

essential for normal olfactory function.  Most of the work examining developmental 

expression of olfactory signaling molecules has probed for mRNA expression using 

either RT-PCR, northern blot, or in situ hybridization analysis [28, 58-61].  Interestingly, 

there appears to be a differential temporal expression of the components necessary for 

odor detection.  ORs, of which a subset begin to be expressed at E11, appear to be the 

first member of the signaling cascade to be expressed as determined by both mRNA and 

protein expression [28, 59-60].  This expression occurs prior to ciliogenesis, and thus the 

OR protein localizes in high density at the dendritic knob [28].  Surprisingly, this 

expression appears to be limited to a subset of ORs. For example, mOR256-17 and V1, 

two of the earliest detectable ORS, begin to express at E11 [28, 59-60], while mOR5, 

mOR14, mOR18-2, mOR37, mOR111-5, mOR124, and mOR171-24 begin to express 

around E12 [60-61].  Eventually the diversity of expression continues to increase during 

development thus allowing the expression of hundreds of ORs [58-60].  The 

physiological relevance of this temporal expression pattern remains unclear.   

The downstream components of the olfactory signaling cascade appear to be 

expressed later in embryonic development.  ACIII expression is first detected around 

E15, while Golf and the CNG channel expression initiates at E16 and E19, respectively 

[58].  It is assumed that odor detection cannot occur until all proteins are present in 

olfactory cilia, thus the relevance of this temporal expression pattern remains unknown.   
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The protein expression of one specific OR, mOR256-17, has been used to track 

ciliogenesis [60]. As mentioned above, ORs begin their expression prior to the initiation 

of ciliogenesis.  mOR256-17 accumulates at the dendritic knob in high density at this 

stage.  Only after the cilia form and elongate (~E11) can the OR be properly localized 

initially to the knob and at the very proximal portions of the cilia.  Once the cilia reach 2 

µm or longer (~E12-13), mOR256-17 migrates almost exclusively to OSN cilia [60].  

Interestingly, this work indicates that, at least in the case of mOR256-17, the protein can 

localize to the dendritic knob independent of any signal from the cilium. 

INTRAFLAGELLAR TRANSPORT (IFT) 

Cargo transport in cilia occurs through an evolutionarily-conserved process 

termed intraflagellar transport (IFT), which was first discovered in the laboratory of Joel 

Rosenbaum in Chlamydomonas [62].  Since cilia lack the necessary components for 

protein synthesis and no obvious vesicular structures have been observed within the 

cilium, cargo must be synthesized in the cell and carried into the cilia through IFT, which 

involves movement along microtubules by molecular motors in complex with transport 

molecules, called IFT particles (reviewed in [24-25, 63]).  Since the basic mechanisms of 

IFT are widely conserved not only between cilia types, but also often between species, 

we presume that these mechanisms studied in invertebrates are also acting in mammalian 

olfactory cilia.  

IFT involves bidirectional transport into and out of the cilium by molecular 

motors that utilize the energy from ATP hydrolysis to generate processive movement.  

The transport of cargo out of the cilium back into the cell is accomplished via the 
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cytoplasmic dynein motor [64], whereas anterograde transport towards the distal, plus-

end of the cilium microtubules has been shown to involve kinesin motors [65] (Figure 

1.1D).  Work in Caenorhabditis elegans has shown that the formation and maintenance 

of the chemosensory ciliary axoneme and the delivery of cargo is accomplished through 

coordination of two anterograde kinesin motors: the heterotrimeric kinesin-II motor and 

the homodimeric OSM-3 [66].  The mammalian kinesin-II motor, consisting of KIF3a, 

KIF3b, and the accessory protein, KAP3, has also been found to be necessary for 

ciliogenesis (Figure 1.1D) [67]. However, differences are beginning to be recognized 

between specialized cilia types in invertebrates and mammals [68-69]. Expression of a 

dominant-negative KIF17, the mammalian homolog of OSM-3, impaired ciliary 

trafficking of the olfactory CNG channel, however it had no effect on cilia length as 

predicted by work in C. elegans [68-69].  Future studies are necessary to determine if 

these motors are also responsible for cargo transport in mammalian olfactory cilia.  

Interestingly, OSM-3 operates on singlet microtubules of the distal segments of C. 

elegans cilia [69].  Since olfactory cilia have such prominent distal segments and several 

signaling proteins, including the CNG channel, are found to be enriched in the distal 

segment, it seems likely that KIF17 is also functioning on distal segments in the 

mammalian olfactory cilium.  Nevertheless, the differences in kinesin-2 motor 

coordination between the cilia of C. elegans and mammals highlight the need to further 

explore the mechanisms of IFT in mammalian olfactory cilia. 

Using electron microscopy, IFT particles can be seen as electron-dense regions 

consisting of motors and IFT complexes found along the olfactory ciliary axoneme [16].  
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It is known that IFT motors associate with two distinct complexes of transport proteins 

called IFT proteins, which are named according to their molecular weight.  These two 

complexes comprise 17 highly-conserved proteins, termed complex A and complex B 

[70].  Complex A consists of IFT144, 140, 139, 122, and possibly 43, while complex B 

consists of IFT 172, 88, 81, 80, 74/72, 57/55, 52, 46, 27, and 20.  Defects in either 

complex can impair IFT and cause a host of human diseases (reviewed in [71]).    A 

recent report demonstrated that mutation of the locus encoding the zebrafish homolog of 

IFT88 caused a loss of cilia from OSNs [72].  While the function of IFT proteins in many 

cases remains elusive, some IFT proteins have been shown to share significant homology 

with Golgi-localized clathrin trafficking machinery [73].  Interestingly, the clathrin AP-1 

μ adaptor, UNC-101, has been shown to be responsible for the localization of ORs to the 

cilia of C. elegans [74].  In most cases, however, the precise role of the IFT complexes in 

mammalian olfactory cilia transport remains undefined. 

Recent work in C. elegans suggests that there is a dynamic reciprocity between 

ciliary signaling and IFT-mediated ciliary structure maintenance.  Mukhopadhyay et al. 

have shown that the loss of activation of the sensory signaling cascade modulates the 

structure of the AWB neuron modified sensory cilia [75]. This sensory signaling-

dependent remodeling was shown to be dependent on kinesin-II as well as Bardet-Biedl 

Syndrome (BBS) proteins [75]. This is similar to a previous study showing that structure 

of AWC neuron cilia is also linked to sensory function [76].  While gross structural 

changes have been reported in mice deprived of odorant stimulation by naris occlusion 

[77], it would be interesting to examine ultrastructural changes in cilia architecture due to 
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loss of olfactory cues.  Regardless, this suggests a potential feedback interaction between 

the IFT proteins involved in ciliary assembly and maintenance and those involved in 

odorant-induced signaling. 

While we have learned a great deal about IFT from invertebrate models, the 

olfactory systems of invertebrates may not be homologous with those found in 

vertebrates [78].  Additionally, critical differences are beginning to be recognized even 

between cilia types within an organism.  Therefore it is critical that we continue to 

elucidate the function of vertebrate, and specifically mammalian, olfactory cilia. 

Regulation of Ciliary Protein Entry   

Common to all organisms is the fact that only a subset of cellular proteins is able 

to gain access to the cilium,  since it contains a protein population distinct from the 

extraciliary compartment [79]. It is widely believed that there must be a barrier to 

diffusion that restricts entry into the cilium. This selective gate is thought to occur at the 

basal body through interactions with a large complex of proteins (Figure 1.1D) [24-25]. 

One family of proteins that has been shown to be involved in the regulation of ciliary 

transport is the BBS family of proteins.  Bardet-Biedl Syndrome is a pleiotropic 

ciliopathy that include phenotypes such as retinal degeneration, polydactyly, obesity, 

anosmia, and others (discussed in more detail below).  There are 12 known BBS proteins 

(BBS1-12), which encode proteins involved in different stages of cilia transport.  While 

there are a variety of ciliary phenotypes associated with defects in BBS proteins, loss of 

function of BBS1 and BBS4 caused impaired olfactory function [80-81].  Interestingly, 
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mice null for BBS1 or BBS4 may exhibit defects in olfactory cilia maintenance or 

assembly, although the mechanism for this defect remains unknown [80-81].  

Mutation of the cilia/centrosomal protein CEP290 has been implicated in the 

specific mislocalization of olfactory G proteins [82].  Importantly, mutation in CEP290 

did not globally alter cilia structure and all other olfactory signaling molecules tested 

were localized normally, indicating that in olfactory cilia, regulation of cargo entry is 

distinct for different proteins.  Interestingly, CEP290 was recently shown to interact with 

the centriolar satellite protein PCM-1 in a retinal epithelial cell line [83].  PCM-1 has 

been shown to interact with BBS4 [84] and is dependent on the presence of BBS4 for 

proper ciliary localization [81].  Together, these reports represent the beginning of the 

discovery of the mechanisms of basal body/cilia function in the OSN, though much work 

remains to further elucidate this process. 

Recently, the intracellular trafficking protein, phosphofurin acidic cluster sorting 

protein 1 (PACS-1) has been shown to localize to the base of human respiratory cilia and 

control the localization of nephrocystin 1 to the transition zone of respiratory cilia [85].  

While PACS-1 has been shown to interact with acidic cluster-containing ion channels 

such as polycystin-2/TRPP2, TRPV4, and CLC-7 [81, 86], no direct role has been 

demonstrated in the control of ciliary localization of ion channels. Recent unpublished 

work from the Martens laboratory has found that this protein localizes to the dendritic 

knob of OSNs and is necessary for the localization of the olfactory CNG channel, but not 

ACIII, to olfactory cilia (Unpublished work, Martens laboratory).  Interestingly, this 

mechanism is dependent on phosphorylation of PACS-1 and CNGB1b by CK2, thus 
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providing a mechanism for the subunit-dependent trafficking of the olfactory CNG 

channel [68].  Phosphorylation-dependent trafficking of olfactory signaling proteins may 

represent a mechanism for the tuning of the olfactory response.  Another report 

demonstrated that ORs interact with β-arrestin in a phosphorylation-dependent manner, 

and that this interaction may be responsible for trafficking of ORs out of the cilium upon 

prolonged exposure to odorant [87].  Despite these reports, very little is known regarding 

the dynamic trafficking of proteins into and out of olfactory cilia either under normal 

conditions or in response to stimuli.   

 Growing interest in ciliary protein trafficking has led to the identification of 

amino acid sequences necessary for entry of cargo into cilia.  For example, the “RVxP” 

motif originally identified in polycystin-2 [88], was found to be necessary for the ciliary 

delivery of the olfactory CNG channel [68].  Interestingly, a recent report demonstrated 

that the homologous “xVxP” motif in rhodopsin interacts with the small GTPase Arf4 

and regulates trafficking of a ciliary targeting complex from the trans-Golgi network 

[89].  Additionally, several ORs were recently found to contain another ciliary targeting 

motif consisting of  (AX[S/A]XQ) which was sufficient to drive ciliary localization of 

non-ciliary receptors [90].  The precise mechanisms by which these motifs control ciliary 

localization remain unknown.  Interestingly, only a subset of ciliary proteins expresses 

these motifs indicating that there are multiple potential ciliary targeting motifs that most 

likely act through distinct ciliary entry mechanisms.  

Due to the lack of rough endoplasmic reticulum, the dendritic knob is not a site 

for protein synthesis.  This suggests that ciliary cargo must be synthesized in the soma 
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and transported down the length of the dendrite in order to gain access to the cilium.  

Therefore, a loss of somatodendritic trafficking of ciliary cargo could also cause ciliary 

dysfunction. For example, in C. elegans, mutation in the membrane protein ODR-4 

causes a mislocalization of a subset of chemosensory receptors [91].  Because of the 

localization of ODR-4 to intracellular membranes within the soma, the authors conclude 

that this mislocalization could be due to a loss of ODR-4-mediated OR folding, sorting, 

or transport from the soma.  Although this mechanism has yet to be seen in mammalian 

OSNs, given the difficulty expressing ORs in heterologous systems, it seems likely that 

mammalian OSNs possess a similar set of proteins necessary for proper OR transport.   

Dynamics of Protein Movement within Olfactory Cilia 

Although we are beginning to understand some of the mechanisms of ciliary 

cargo entry, we have virtually no information regarding the dynamics of cargo movement 

once inside the cilium.  One might expect that members of signaling cascades, 

specifically transmembrane proteins, would move relatively slowly within the cilium and 

display long half-lives in order to increase the efficiency of the signaling cascade.  

Indeed, in fluorescence recovery after photobleaching experiments, the olfactory CNG 

channel moved within the cilium at a rate consistent with slow diffusion (t1/2 of recovery 

~ 10 minutes) in a model system [68].  However, in C. elegans the TRPV channel OSM-

9 moves along the ciliary membrane at rates comparable to IFT (~1-2 microns per 

second) [92].  One potential reason for the rapid movement of cargo in cilia would be the 

recycling of damaged signaling proteins, however at this point the dynamics of protein 

movement within olfactory cilia remains relatively unexplored. 



20 
 

Fate of Mistargeted Ciliary Cargo 

As discussed earlier, the basal body serves as the nucleation site for the ciliary 

axoneme and appears to serve as a scaffold for a complex of proteins that regulate entry 

of cargo into the cilium.  In addition to these functions, it appears that the basal body also 

acts as a site of organization of proteolytic machinery.  For example, it has been shown 

that proteolytic enzymes are enriched around the centrosome [93]. Recently, another 

group demonstrated that disruption of basal body function by suppression of BBS4 

impairs proteasome function [94].  This basal body/proteasome complex may serve to 

degrade improperly folded or mistrafficked ciliary cargo.  For example, mice null for 

CNGB1b demonstrate very low levels of the remaining CNG subunits [95].  However, 

when these mice are treated with a proteasome inhibitor, the remaining channel subunits 

can be readily detected at the dendritic knob suggesting that the knob is serving as the site 

of proteolytic degradation.  

CILIARY GENOMICS AND PROTEOMICS 

Cilia contain a set of proteins distinct from the remainder of the cell [79]. In 

addition, the components necessary for odorant detection are all highly localized to cilia 

(Figure 1.2).  Although we understand the function of a handful of these proteins, 

emerging areas of research are yielding new insights into other cilia-related genes and 

novel proteins that may be involved in olfactory signaling or ciliary structure and 

maintenance [54].  Recent advances in technology have vastly improved our ability to use 

bioinformatics as a tool to identify novel genes involved in various cellular processes, 

such as cilia formation and function. Hundreds of genes present in numerous ciliated 
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species have recently been identified to be important in cilia-related functions [54, 73, 

96-100].   

Although it is believed that cilia are widely conserved between cilia types, it is 

now becoming clear that differences exist both between species and between cilia types 

within one organism.  Only a few studies have concentrated on identifying ciliary genes 

in mammals, with only a few focusing on olfactory cilia [54, 101-106].  Using genomics 

and proteomics, these studies have identified over 100 cilia-related genes of known and 

unknown function in OSNs [54, 101, 105-106].  These studies represent a solid starting 

point for the elucidation of the ciliary proteome; however, improved cilia purification 

methods should facilitate further study.  Nevertheless, the challenge remains to 

demonstrate the function and physiological relevance of these ciliary proteins, especially 

in relation to human ciliopathies. 

OLFACTORY CILIA AND HUMAN DISEASE 

While the olfactory system is necessary for detecting odors and crucial for our 

sense of taste, it also plays important roles in our quality of life, health, and safety.  

Dysosmia (impaired sense of smell) or anosmia (loss of ability to smell) can prevent us 

from detecting signs of danger such as smoke or spoiled food, and also can lead to 

medical problems such as weight gain and poor nutrition [107]. Impaired olfactory 

function is estimated to affect 3-6 million Americans and over 50% of those over the age 

of 65 [108-109], however this may be a gross underestimate given that olfactory 

dysfunction frequently goes unreported [109].  While the leading causes of smell 

disorders in patients are injury due to head trauma, upper respiratory tract infections, and 
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chronic rhinosinusitis, in at least 20% of cases the underlying etiology remains unknown 

[110].  Olfactory dysfunction due to genetic mutations or neurodegenerative disorders 

affecting cilia is becoming increasingly recognized and better studied.   

Olfactory Ciliopathies 

One of the first documented cases of a human patient with anosmia presumably 

due to ciliary defects was in 1975 [111-112].  A biopsy from this patient, who suffered 

from congenital anosmia, revealed that, while the global architecture of the epithelium 

appeared normal, his OSNs were devoid of cilia, the cause of which is unknown [111].  It 

has only been within the past 5 years that patients with deficits in olfaction due to ciliary 

defects have been clearly identified [80-82].  In these cases, the olfactory deficits were 

shown two occur in two different pleiotropic diseases, Bardet-Biedl syndrome (BBS) and 

Leber congenital amaurosis (LCA).   

BBS is highly pleiotropic with patients exhibiting mental disabilities, obesity, 

retinal degeneration, polycystic kidneys, hypertension, and hypercholesterolemia, which 

together may lead to premature death [113-116].  The varied effects are dependent upon 

mutations in one of 12 members of the BBS gene family, with the most severe mutations 

occurring in either BBS1 or BBS10 [116-120].  Several BBS proteins, BBS1-8, have 

been characterized as basal body proteins that are thought to regulate protein entry into 

the cilium [116].  Human mutations in two BBS proteins, BBS1 and BBS4, and genetic 

deletion of BBS1, BBS2, or BBS4 in mice resulted in severely impaired olfactory 

function [80-81, 121-122].  However, mutations in the BBS proteins do not seem to share 

a common underlying mechanism of olfactory dysfunction.  For example, patients with 



23 
 

mutations in BBS1 are anosmic, most likely due to a loss of olfactory cilia, as the cilia 

are absent in the BBS1 null mouse model [80-81].  In the BBS2 null mouse, the status of 

olfactory cilia has not been examined, but both renal and retinal cilia are able to assemble 

[122].  Finally, in two different studies, patients with mutations in BBS4 exhibited 

decreased olfaction or anosmia [80-81].  The divergent phenotypes observed with 

mutation or loss of specific BBS proteins highlight the complex regulation of ciliogenesis 

as well as the assembly and maintenance of the axoneme.  This is also true when 

comparing different ciliated cells from a single BBS null animal. For example, mice 

deficient in BBS4 have a diminished cilia layer in the OE which causes an almost 

complete loss of electroolfactogram response [81].  Similarly sperm from these null mice 

completely lack flagella [121].  However, these mice are still capable of ciliogenesis 

[121]. Renal epithelial cells from these animals possess cilia but demonstrate altered 

timing for axoneme extension [123], which may allow the age-dependent development of 

polycystic kidneys [124].  These results demonstrate the sensitivity of different cell types 

to alterations on BBS function and suggest that the manifestation of disease may reflect 

the extent to which complete elaboration of normal cilia is essential for a wildtype 

phenotype 

A second example of a ciliary defect leading to olfactory impairment is a recent 

study investigating olfactory function in patients with Leber congenital amaurosis (LCA) 

[82].  LCA, first discovered by Theodor Leber almost 140 years ago [125], is a congenital 

retinal dystrophy accounting for more than 5% of inherited retinopathies [126].   LCA 

can occur due to mutations in several proteins of varying function, from retinoid 
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metabolism and phototransduction to cell-cycle progression [126].  Recent reports have 

also shown that LCA can be caused by mutations in the centrosomal/basal body protein, 

CEP290 [127-128]. Olfactory function was tested in the original LCA patient population 

with mutations in CEP290 using the Brief Smell Identification Test (B-SIT) [82].  For all 

patients tested, mutations in CEP290 resulted in severely impaired olfactory function 

despite a self-described normal sense of smell [82].  Using a mouse model, it was 

determined that the olfactory impairment was due to a mislocalization of the olfactory G-

protein rendering the signaling pathway non-functional, despite cilia remaining intact 

[82].  Together, these studies suggest that olfactory dysfunction due to ciliary defects can 

occur by two separate mechanisms; 1) a complete loss of olfactory cilia, and 2) a defect 

in protein trafficking leading to a loss in olfactory signaling.  

Although it is now clear that olfactory dysfunction is a clinical manifestation of a 

subset of ciliopathies, there appears to be a selective penetrance of phenotypes between 

different cilia in the body.  For example, hypomorphic mutation in CEP290 causes 

anosmia and early-onset retinal degeneration without a renal phenotype [82, 129].  In 

addition, KIF17 is not essential for renal cilia maintenance, however is necessary for the 

maintenance of the rod outer segment, which is an extension of the modified connecting 

cilium [68, 130].  Despite the varying penetrance of ciliopathies, the assessment of 

olfactory function represents an attractive tool for pregenetic screening due to the low 

cost and minimally invasive nature of the procedure.  In addition, screening for olfactory 

dysfunction may lead to the discovery of previously undescribed ciliary diseases. Finally, 

the finding that loss of olfactory cilia or perturbation in ciliary protein localization can 
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represent the underlying cause of olfactory dysfunction highlights the necessity for 

further elucidation of the mechanisms and molecular machinery necessary for ciliary 

transport in OSNs. 

The OSN as a Site for Pathogen Entry 

The mammalian olfactory system is unique in that it is the only region of the 

central nervous system that is directly exposed to the external environment [131-132].  It 

is estimated that the exposed surface of the OE, comprising the dendritic knob plus cilia, 

is around 23 cm2 [131-132].  Together, this makes the OE a unique and vulnerable target 

for the entry of pathogens directly into the brain.  Even though the OE is partially 

protected by the presence of the nasal mucous as well as high levels of metabolizing 

enzymes, such as cytochrome P450s, evidence exists that pathogens can enter the brain 

through the OE [131, 133-134]. In early 20th century, it was shown that viruses could 

enter the monkey brain and that this was prevented by lesioning either the OE, the axon 

tracts, or the olfactory bulb [131, 135-137].  One of the major debilitating viruses shown 

to enter the brain via the OE was the poliomyelitus virus [135-137]. Today, the list of 

viruses able to infect the OE has expanded and includes some major viruses, such as 

adenovirus, herpes simplex, hepatitis, influenza A, and rabies, as well as many others 

[131].  A subset of these pathogens may enter exclusively through OSNs and specifically 

the cilia.  For example, the olfactory cilia from a patient with sporadic Creutzfeldt-Jakob 

disease were positive for protease-resistant prion protein [138].  Following death, a 

neuropathological examination revealed nerve loss and gliosis in cerebral cortex, 

striatum, and cerebellum, suggesting that the olfactory cilia served as a site for pathogen 
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entry [138].  Therefore, the OE, specifically the OSN cilia, is likely a major target for 

pathogenic transmission of xenobiotics directly into the brain. 

CONCLUSIONS 

Olfactory dysfunction in the general population is frequent, affecting at least 2.5 

million people in the U.S. alone. In at least 20% of the cases the etiology of the 

chemosensory disturbance cannot be identified.  Recent evidence demonstrates that 

olfactory dysfunction is a clinical manifestation of an emerging class of human genetic 

disorders, termed ciliopathies, which involve defects in ciliary assembly and/or protein 

transport.  Given the plasticity of the olfactory system and its regenerative properties, 

olfactory sensory neurons (OSNs) undergo a continual process of ciliogenesis and protein 

transport that is critical for olfactory function.  Intrinsic mechanisms are present in OSNs 

that direct cell surface localization and selective ciliary compartmentalization of olfactory 

transduction proteins.  Remarkably, the mechanisms and molecular machinery necessary 

for ciliary transport in OSNs are poorly understood.  Future work in this area will afford 

new insights into the regulation of sensory perception while emphasizing that olfactory 

dysfunction represents an important clinical manifestation of ciliary disease.   
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Figure 1.1  Anatomy of the Olfactory Epithelium and Olfactory Sensory Neuron 

(A) Side view of a scanning electron micrograph at 1,030 x magnification from mouse 
OE.  Mouse OE was dissected, fixed in glutaraldehyde, and processed for scanning 
electron microscopy as previously described [82].  Scanning electron micrographs were 
captured using an Amray 1910FE field emission scanning electron microscope at 5 kV.  
Images were recorded digitally with Semicaps software.  Layers of the OE are labeled in 
white.  Cilia layer marked by bracket.  Sus. Cells = sustentacular cells.  Scale bar 
represents 10 µm.  (Image generously provided by Wanda Layman and Dr. Donna 
Martin, Department of Human Genetics, University of Michigan).  (B) Cartoon 
representation of a single OSN.  Boxed region of interest at base of cilium shown at 
higher magnification in panel C.  (C) Cartoon representation of olfactory cilium and 
associated organelles. Cross sections of axonemal configuration from distal segment 
(top), proximal segment (middle), and basal body (bottom) shown on right.  Solidi (//) 
mark transition from proximal to distal segments.  MTOC = Microtubule Organizing 
Center. Break indicates transition from thick proximal segment to thin distal segment. + 
indicates plus end of microtubules.  (D) Cartoon representation of the ciliary and basal 
body components involved in olfactory ciliary transport.  Anterograde motors move 
cargo to the distal tip of the cilium.  Heterotrimeric kinesin II is composed of KIF3a, 
KIF3b and KAP3 while KIF17 comprises a homodimer.  The retrograde motor, 
cytoplasmic dynein 1b moves cargo back out of the cilium.  IFT complexes are shown as 
grey circles. 
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Figure 1.2  Localization of Olfactory Signaling Proteins to Cilia 

Immunocytochemistry for olfactory signaling proteins was performed on 14 mm-thick 
sections of frozen mouse OE as described previously [82].  Acetylated α tubulin is a 
marker for the cilia layer.  The odorant receptor mOR28 (top middle, antibody courtesy 
of Dr. Richard Axel) is localized throughout the OSN including the cilia, which can be 
more easily visualized in an en face section (top right).  The olfactory G protein Gαolf 
(bottom left), adenylyl cyclase III (bottom middle), and CNG channel CNGA2 subunit 
(bottom right) are all enriched in the cilia layer.  NC = nasal cavity, OE = olfactory 
epithelium.  Scale bars represent 10 µm for all images except en face mOR28 (bar 
represents 5 µm) 
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Figure 1.3  Steps of Ciliogenesis in the Olfactory Sensory Neuron 

(A) In a developing OSN (at approximately E10 – E11) centrioles are duplicated en 
masse from the mother/daughter centrioles in the cell body before migrating along the 
developing dendrite towards the eventual dendritic knob (B).  (C) In the dendritic knob 
(at approximately E12-E14), centrioles are converted to basal bodies and anchored to the 
plasma membrane, and ciliogenesis begins as the ciliary axonemes extend from the basal 
body and elongate the cilia into the mucous layer where odorant transduction occurs 
(D)    Interestingly, one single primary cilium of approximately 1 µm in length forms 
before the appearance of the remaining cilia. 
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CHAPTER 2 

CILIARY TARGETING OF OLFACTORY CNG CHANNELS 
REQUIRES THE CNGB1B SUBUNIT AND THE KINESIN-2 MOTOR 

PROTEIN, KIF17 

 

SUMMARY 

Non-motile cilia on olfactory sensory neurons (OSNs) compartmentalize 

signaling molecules, including odorant receptors and cyclic nucleotide-gated (CNG) 

channels, allowing for efficient, spatially confined responses to sensory stimuli [139-

141].  Little is known about the mechanisms of the ciliary targeting of olfactory CNG 

channels, composed of three subunits: CNGA2 CNGA4 and CNGB1b [142].  Recent 

reports suggest that subunit composition of the retinal CNG channel influences 

localization leading to disease [143-144]. However, the mechanistic role of subunits in 

properly targeting native olfactory CNG channels remains unclear. 

                                                
Chapter 2 is published as Jenkins, P.M., Hurd, T.W., Zhang, L., McEwen, D.P., Brown, R.L., Margolis, B., 
Verhey, K.J., and Martens, J.R. (2006). Ciliary targeting of olfactory CNG channels requires the CNGB1b 
subunit and the kinesin-2 motor protein, KIF17. Curr Biol 16, 1211-1216.  For copyright release, please see 
Appendix I.  I would like to acknowledge the Benjamin Margolis laboratory and Toby Hurd for providing 
reagents, critical review of the manuscript, and for the data shown in Figure 2.8A.  Also I would like to 
thank the Kristen Verhey laboratory for providing the KIF17 plasmids and for review of the manuscript.  
Finally I would like to acknowledge the Jeffrey Martens laboratory including Dyke McEwen for the data 
shown in panels F and G of Figure 2.8 and Lian Zhang for the preparation of the CNG channel mutant 
constructs. 
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Here we show that heteromeric assembly with CNGB1b, containing a critical 

carboxy-terminal motif (RVxP), is required for ciliary trafficking of olfactory CNG 

channels. Movement of proteins within the cilia is governed by intraflagellar transport 

(IFT), a process that facilitates bi-directional movement of cargo along microtubules [24-

25]. Work in C. elegans has established that heterotrimeric and homodimeric kinesin-2 

family members play a critical role in anterograde transport [66, 69, 145].  In mammalian 

systems, the heterotrimeric KIF3a/KIF3b/KAP-3 complex plays a clear role in IFT; 

however, no role has been established for KIF17, the mammalian homolog of OSM-3 

[146].  Here we demonstrate that KIF17 is required for olfactory CNG channel targeting, 

providing novel insights into mechanisms of mammalian ciliary transport.   

RESULTS 

To investigate the role of subunit composition in ciliary targeting of olfactory 

CNG channels, we expressed yellow fluorescent protein (YFP)-tagged CNGA2 in Madin 

Darby canine kidney (MDCK) cells. These cells contain a non-motile primary cilium 

extending from their apical surface and are an established heterologous system for the 

study of mammalian ciliary transport. When expressed alone, CNGA2-YFP was 

restricted to the cytoplasm, and failed to co-localize with acetylated tubulin (0/30 cells), 

which labels stabilized microtubules including the ciliary axoneme (Figure 2.1A, top). 

Coexpression of CNGA2-YFP with CNGA4 did not result in any detectable ciliary 

localization (0/20 cells) (Figure 2.1A, middle), but rather colocalization of the proteins in 

the cytoplasm (Figure 2.2).  Surprisingly, co-expression of CNGA2-YFP with CNGB1b 

resulted in the targeting of channel protein to primary cilia where the YFP signal co-
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localized with both acetylated tubulin (30/30 cells) (Figure 2.1A, bottom) and CNGB1b-

3xFlag (Figure 2.2) in a punctate pattern along the entire length of the cilia (Figure 2.3).  

When expressed alone, both CNGA4 and CNGB1b were confined to the cytoplasm, 

consistent with reports that these subunits do not efficiently form tetramers capable of 

cell surface expression  [147] (Figure 2.2).   

Amino acid sequence comparison revealed a potential ciliary targeting motif 

(RVSP; amino acids 821 - 824) in the carboxy-terminus of CNGB1b (Figure 2.11A). The 

RVxP motif has been implicated in the ciliary localization of another membrane protein, 

polycystin-2 [88], and is absent from both the CNGA2 and CNGA4 subunits (Figure 

2.11A).  Mutation of positions R821, V822, and P824 to alanines (AASA mutant) 

resulted in the loss of ciliary targeting of CNGA2-YFP (Figure 2.11B, C), although this 

mutant CNGB1b subunit was still able to assemble with CNGA2 as determined by co-

immunoprecipitation (Figure 2.5).  In contrast, alanine substitution at position S823 had 

no effect on CNGA2 localization to cilia, suggesting a specific requirement for the RVxP 

motif (Figure 2.11D).  Indeed, single alanine substitutions of positions R821, V822, or 

P824 led to a statistically significant decrease in ciliary targeting (Figure 2.6).  These data 

are consistent with previous reports describing alanine substitutions of a putative flagellar 

targeting motif [148].  Notably, insertion of the RVSP motif 26 amino acids from the C-

terminus of CNGA2 was not sufficient to confer targeting of CNGA2 to the primary cilia 

(Figure 2.11E).  Together these data show that heteromeric assembly with CNGB1b is 

necessary, but not sufficient for targeting of olfactory CNG channels to cilia.  
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Having defined the subunit requirements for olfactory CNG channel targeting to 

cilia, we next sought to identify the motors responsible for transporting this cargo. 

Consistent with microtubule-based transport, destabilization of microtubule organization 

by demecolcine treatment resulted in a loss of cilia and accumulation of CNG channels at 

the basal body in MDCK cells (Figure 2.7). To test whether the main IFT anterograde 

motor kinesin-II plays a role in targeting of CNG channels, MDCK cells were transfected 

with a dominant-negative kinesin-II construct (KIF3aDN) that lacks the motor domain 

[149].  As predicted, expression of KIF3aDN resulted in a complete loss of cilia, 

consistent with its role in ciliary assembly and maintenance (Figure 2.7) [67, 150].  

Another kinesin family member, KIFC3, has been implicated in transport of cargo to the 

minus-end of the microtubules at the apical surface of MDCK cells [151].  Interestingly, 

expression of a dominant-negative KIFC3 construct, did not affect targeting of CNG 

channels to the cilia (Figure 2.7).  Together these results demonstrate that although the 

primary machinery for anterograde IFT previously characterized in invertebrates also 

participates in mammalian ciliary transport, the trafficking of CNG channels to cilia may 

occur through a novel mechanism.   

A second kinesin-2 enzyme, the homodimeric OSM-3 kinesin, has been shown to 

transport IFT cargoes together with the heterotrimeric kinesin-2 (KLP20/KLP11/KAP-1) 

complex in C. elegans [25].  A role for the mammalian homolog of OSM-3, KIF17, in 

IFT has not been determined. Rather, KIF17 was proposed to have a brain-specific 

function in dendritic transport [146].  We show that KIF17 is endogenously expressed in 

MDCK cell cilia (Figure 2.8A) as well as in the ciliary layer of the olfactory epithelium 
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(Figure 2.8B), with a staining pattern indistinguishable from the ciliary-enriched type-III 

adenylyl cyclase (ACIII) [152] (Figure 2.9).  Furthermore, KIF17 was 

coimmunoprecipitated with CNGA2 antibodies, demonstrating that endogenous CNG 

channels and KIF17 are part of a complex in native rat olfactory epithelium (Figure 2.8F, 

G).  To test whether KIF17 plays a role in ciliary transport of CNG channels, MDCK 

cells were transfected with a dominant-negative KIF17 construct (KIF17DN). Expression 

of KIF17DN inhibited ciliary transport of CNG channels (CNGA2-YFP + CNGB1b) as 

no YFP fluorescence signal was detected in the cilia (Figure 2.8C) in any of the cells 

examined (0/11; Figure 2.8D).  Mislocalization was specific for ciliary proteins as 

localization of apical and basolateral proteins were unaffected (Figure 2.10).  In addition, 

expression of full-length KIF17 did not alter CNG channel targeting to cilia (data not 

shown).  Interestingly, unlike KIF3aDN, expression of KIF17DN did not change the 

average length of primary cilia (p=0.7564 one-way ANOVA), indicating that these two 

motors may be functionally specialized in mammalian cilia (Figure 2.8E).    

A major technical obstacle to the real-time study of protein movement in living 

cilia has been the successful expression of fluorescent-tagged proteins in vertebrate cilia. 

The ciliary targeting of the YFP-CNGA2 / CNGB1b complex provided a model to 

monitor movement of membrane proteins in MDCK cell primary cilia and permitted the 

first measurements of CNG channel mobility.  We used fluorescence recovery after 

photobleaching (FRAP) to measure CNG channel dynamics in the ciliary compartment.  

For these experiments, CNGA2 channels were tagged with citrine, a photostable variant 

of YFP [153].  A 3-5 square micron region, in the middle of cilia lying horizontal in a 
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single confocal Z-plane was bleached (Figure 2.11A).   Fluorescence within the bleached 

region was normalized to account for both prebleach intensity and photobleaching of the 

sample during recovery.  Single exponential fit of the averaged data revealed that nearly 

75% of the fluorescent signal recovers with a time constant of approximately 600 sec. 

(Figure 2.11B). The fact that 25% of the channel is immobile or of limited mobility 

would have been predicted based on its role as a transmembrane signaling protein [154].  

Recovery of fluorescent channel signal in the cell body was nearly four times more rapid 

(Figure 2.12), illustrating the differences in ciliary and cellular trafficking.  Fluorescence 

recovery in the cilia occurred from both sides of the bleached region (Figure 2.12). As a 

chemosensory signaling protein, the vast majority of ciliary CNG channel is likely 

localized within the plasma membrane.  Technical limitations hinder the ability to resolve 

the combination of lateral diffusion within the plasma membrane and recovery due to 

IFT.  The recovery timecourse in our experiments, therefore, most likely reflects 

membrane diffusion of a large population of channels that masks the minority of CNG 

protein undergoing IFT.  This is supported by the fact that CNG channel recovery in cilia 

occurred slower than predicted for IFT (rates of 1-2 µm/sec). Of note, a similar time 

constant of recovery on the order of hundreds of seconds was recently reported for the 

lipid raft-associated Kv2.1 channel [155].  As CNGA2 targets to lipid raft microdomains 

[31], perhaps raft association confines the channel to a restricted diffusional 

microdomain.    
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DISCUSSION 

Our studies demonstrate that heteromeric assembly with CNGB1b is needed for 

localization of olfactory CNG channels to cilia in MDCK cells. An RVxP motif 

conserved across species (including human) is necessary, but not sufficient, for ciliary 

targeting; however, its position within the CNGB1b sequence can vary.  These results 

demonstrate a mechanistic role of CNGB1b subunits in proper ciliary targeting of 

olfactory CNG channels, and suggest a delegation of functional responsibilities among 

subunits.  

Our results constitute the first demonstration of a role for KIF17 in mammalian 

ciliary transport.  This kinesin-2 motor is not brain-specific [146], but rather is present in 

both MDCK cell cilia and OSNs.  In vertebrate sensory cilia the Kif3a complex and 

KIF17 likely have partially redundant yet functionally distinct roles in IFT since the 

KIF3aDN resulted in a complete loss of cilia whereas the KIF17DN did not change 

average cilia length.  This work provides strong support for the idea that OSM-3/KIF17 is 

an “accessory” IFT motor whose cilia-specific functions can cooperate with, yet 

functionally complement, the “canonical” Kif3a IFT motor [66, 69, 145].  Future 

experiments are required to determine whether KIF17 is important for the transport of 

other ciliary proteins or if this motor functions primarily on singlet microtubules at the 

distal segments. Interestingly, a recent report shows that a majority of olfactory CNG 

channels are localized to the distal segments of frog olfactory cilia [29].  The possibility 

remains that the Kif3a complex also contributes to ciliary targeting of CNG channels 

since expression of the KIF3aDN led to a complete loss of cilia.  In addition, our work 



37 
 

also does not exclude the role of additional uncharacterized motors such as a mammalian 

homolog to the recently described KLP-6 in C. elegans  [156].   

 

EXPERIMENTAL PROCEDURES 

Antibodies 

Mouse anti-acetylated tubulin (used at 1:1000), polyclonal anti-Flag (1:1000), and mouse 

anti-FLAG M2 (1:1000) were obtained from Sigma-Aldrich (St. Louis, MO). Polyclonal 

rabbit anti-KIF17 was purchased from Abcam Inc. (Cambridge, MA). Polyclonal rabbit 

anti-adenylyl cyclase type III was from Santu Cruz Biotechnologies (Santa Cruz, CA). 

Mouse anti-NaK ATPase was obtained from Research Diagnostics Inc. (Concord, MA) 

and used at a 1:1000 dilution. Mouse anti-gp135 was used at a dilution of 1:1000. Mouse 

anti-CNGA2 (1:200) was a gift from Dr. U. Benjamin Kaupp.  Goat-anti-mouse IgG 

labeled with Alexa 594, Alexa 647, or Bodipy FL, and Goat-anti-rabbit IgG labeled with 

Alexa 594 were obtained from Molecular Probes (Eugene, OR) and used at 1:1000. 

Olfactory Epithelium Preparation 

Briefly, Balb/C mice were decapitated at postnatal day 5, and the heads were sliced into 

300μm coronal sections in ice-cold, slushy rat Ringer’s solution (containing in mM: 140 

NaCl, 5 KCl, 1 MgCl2, 2 CaCl2, 10 HEPES, and 10 glucose) using a Leica Microsystems 

VT 1000S Microtome (Bannockburn, IL). Sections were embedded in Tissue-Tek O.C.T. 

from Electron Microscopy Sciences (Hatfield, PA) and frozen on dry ice. Embedded 

sections were further sliced into 20μm sections on a Leica Microsystems CM1850 
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cryostat, and thaw mounted onto slides.  Slides were air dried for 10 minutes, and fixed 

with 4% paraformaldehyde for 20 minutes at RT.  Sections were permeabilized in PBS 

containing 0.1% Triton-X and 2% NGS for 2 hours.  Tissue was incubated overnight at 

RT in a humidified chamber with primary polyclonal anti-KIF17 or anti-adenylyl cyclase 

type III antibodies diluted 1:1000 in PBS containing 2% NGS. Slides were rinsed 3 X 10’ 

with PBS and incubated with 1:1000 Goat-anti-Rabbit IgG Alexa 594 for 2 hours at RT. 

After a final rinse (3 X 5 min in PBS), slides were dried for 5 min, and mounted using 

Prolong Gold. 

 

For co-immunoprecipitation experiments 250g male Sprague-Dawley rats were deeply 

anesthetized using overdose of pentobarbital injected intraperitoneally and decapitated 

quickly.  Skin was removed and head was bisected sagitally at the midline while 

immersed in ice cold rat Ringer’s solution (containing in mM: 140 NaCl, 5 KCl, 1 

MgCl2, 2 CaCl2, 10 HEPES, and 10 glucose).  Exposed OE was dissected out, peeled 

from turbinates using forceps, and placed in Ringer’s plus complete protease inhibitors 

(Roche Diagnostics, Indianapolis, IN) on ice.  Tissue was then transferred to lysis buffer 

for coimmunoprecipitation. 

Mutagenesis 

The PCR primer pairs were used to synthesize a DNA fragment encoding the last 26 

amino acids of CNGB1b (including RVSP) such that two BamH1 restriction site were 

introduced at both 5’ and 3’ ends. The DNA fragments were ligated into the BamHI sites 

immediately upstream of the RVSP motif and downstream of the stop codon of CNGB1b. 
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In addition the RVSP motif was mutated to AASA or RVAP. The primer sequences were 

as follows: Forward (AASA) 5’-CCG CCG GAG CCT TCA GTG AGG ATC GCT GCG 

AGT GCA GGC CCT GAT CCC GGG GAA CAG-3’ , Reverse (AASA) 5-CTG TTC 

CCC GGG ATC AGG GCC TGC ACT CGC AGC GAT CCT CAC TGA AGG CTC 

CGG CGG-3’, Forward (RVAP) 5’-GAT CCG TGT GGC TCC AGG CCC TGA TCC 

CGG GGA ACA GAC ACT ATC GGT GGA GAT GCT GGA AGA GAA GAA GGA 

GGA GGT GGA GTA GAG-3’ and Reverse (RVAP) 5’-GAT CCT CTA CTC CAC 

CTC CTC CTT CTT CTC TTC CAG CAT CTC CAC CGA TAG TGT CTG TTC CCC 

GGG ATC AGG GCC TGG AGC CAC ACG-3’.  Wild-type CNGB1b-3xFlag was 

digested with BamHI and then ligated using the BamHI-digested PCR fragments from 

above.  For the generation of CNGA2-RVSP the primer pair was designed to insert the 

RVSP motif between position 649 and 652 of CNGA2-Citrine. The Quick Change Site-

Directed Mutagenesis kit from Stratagene (La Jolla, CA) was used to generate the 

mutation using the primers indicated below.  RVSP insert primer forward 5’-CAC AGT 

GCT AGA GAC CAA GAT GCG TGT GAG TCC AAA ACA GAA CCA TGA GGA 

TG-3’;  RVSP insert primer reverse 5’-CAT CCT CAT GGT TCT GTT TTG GAC TCA 

CAC GCA TCT TGG TCT CTA GCA CTG TG-3’;  AVSP insert primer forward 5’-

GAT CGC TGT GAG TCC AGG CCC TGA TCC CGG GGA ACA GAC ACT ATC 

ATC GGT GGA GAT GCT GGA AGA GAA GAA GGA GGA GGT GGA GTA GCG-

3’; AVSP insert primer reverse 5’-GAT CCT CTA CTC CAC CTC CTC CTT CTT CTC 

TTC CAG CAT CTC CAC CGA TAG TGT CTG TTC CCC GGG ATC AGG GCC 

TGG ACT CAC AGC-3’; RASP insert primer forward 5’-GAT CCG TGC GAG TCC 



40 
 

AGG CCC TGA TCC CGG GGA ACA GAC ACT ATC ATC GGT GGA GAT GCT 

GGA AGA GAA GAA GGA GGA GGT GGA GTA GCG-3’; RASP insert primer 

reverse 5’-GAT CCT CTA CTC CAC CTC CTC CTT CTT CTC TTC CAG CAT CTC 

CAC CGA TAG TGT CTG TTC CCC GGG ATC AGG GCC TGG ACT CGC ACG-3’; 

RVSA insert primer forward 5’-GAT CCG TGT GAG TGC AGG CCC TGA TCC CGG 

GGA ACA GAC ACT ATC ATC GGT GGA GAT GCT GGA AGA GAA GAA GGA 

GGA GGT GGA GTA GCG-3’; RVSA insert primer reverse 5’-GAT CCT CTA CTC 

CAC CTC CTC CTT CTT CTC TTC CAG CAT CTC CAC CGA TAG TGT CTG TTC 

CCC GGG ATC AGG GCC TGC ACT CAC ACG-3’ 

Immunoprecipitation 

HEK-293 cells were washed twice with potassium-free PBS, scraped, and collected by 

centrifugation at 1,000 x g for 4 min.  The pellet was resuspended  in solubilization buffer 

(150mM NaCl, 50mM Tris, pH 7.4, 5mM EDTA, 1% TritonX-100, 0.02% NaN3, 

250mM of NEM, and protease inhibitors; 1 ml per 60 mm dish) for 10 min at RT. After 

solubilization, the cells were spun at 4 °C at 10,000 x g for 20 min.  The supernatant was 

collected and pre-cleared by treatment with 75 µl of protein-A Sepharose beads for 1 h 

with gentle mixing. The beads were then removed by centrifugation at 10,000 x g for 

1 min at 4 °C, and the sample was incubated for 3 hours with either anti-GFP or anti-

FLAG antibodies (1:500 dilution) and 100 µl of protein A-sepharose beads at 4 °C with 

gently mixing. The beads were removed by centrifugation at 10,000 x g for 1 min at 4 °C, 

and washed twice with solubilization buffer for 5 minutes. An equal volume of 2X SDS 

gel loading buffer was added to elute proteins, and the sample was heated at 100 °C for 2 
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minutes. The beads were removed by centrifugation at maximum speed for 1 minute. 

Immunoprecipitation samples (~60 µl) were loaded on a 4-12% Bis-Tris acrylamide gel 

(Invitrogen). After electrophoretic transfer to nitrocellulose, the membrane was incubated 

with either anti-FLAG or anti-GFP (1:2000, 1:5000 dilutions, respectively). Bound 

primary polyclonal antibody was detected with a 1:5000 dilution of horseradish 

peroxidase-conjugated goat anti-rabbit IgG (Zymed, San Francisco, CA), and visualized 

using the Renaissance Western blot chemiluminescence reagent according to the 

manufacturer's protocol (PerkinElmer Life Sciences, Wellesley, MA).  Images were 

captured using the EpiChemi3 Darkroom (UVP Inc., Upland, CA). 

 

Olfactory epithelium was prepared as described in Olfactory Epithelium Preparation, and 

homogenized in lysis buffer (10 mM Tris/Cl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% 

Nonidet-P40).  Following homogenization, lysates were solubilized for 1 hr on ice and 

then centrifuged at 2000 x g for 5 min to remove insoluble material.  Lysates were then 

in cubated  with 2  μg  of either non-immune mouse serum (Sigma) or an anti-CNGA2 

antibody conjugated to protein-G agarose beads (Sigma) on a rocker overnight at 4 C.  

Beads were washed three times with wash buffer (10 mM Tris/Cl pH 7.5, 150 mM NaCl, 

1 mM EDTA, 0.1% Nonidet P-40) and resuspended in SDS sample buffer.  Samples were 

run on a NuPAGE 4-12% Bis-Tris gel (Invitrogen) and transferred onto nitrocellulose 

membranes (Whatman).  Immunoblots were then probed with a polyclonal anti-Kif17 

primary antibody (1:1000; Abcam), followed by an anti-rabbit HRP-conjugated 

secondary antibody (1:5000; Zymed).  Signal was detected using Western Lightning 
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chemiluminescence detection reagent (PerkinElmer Life Sciences, Inc., Boston, MA).  

Blots were stripped and reprobed with an anti-CNGA2 primary antibody (1:200).  All 

blots were exposed for 15 min using a UVP BioImaging System (UVP, Inc., Upland, 

CA). 

 

Cell culture, transfection, and immunocytochemistry 

MDCKII cells were grown in DMEM containing 10% Fetal Bovine Serum and 1% 

Pen/Strep/Glutamine. Cells were kept at 37ºC in a humidified 5% CO2 environment, and 

passaged weekly at 1:40. For experiments, cells were trypsinized and plated at high 

density in low Ca2+ media (S-MEM) containing 5% dialyzed FBS and 1% pen/strep on 

6.5 mm diameter Transwell filter supports (0.4 µm pore size; Corning Costar, Acton, 

MA). After 4 hours, cells were fed with normal DMEM growth medium.  Cells were fed 

every second day and allowed to grow for 5-7 days post-confluence before transfection. 

 

For introduction of DNA, cells were rinsed three times with serum-free Opti-MEM and 

transfected  u sin g  Lip ofectamin e and  PLUS reag ent. Briefly, 0 .5  μg  of each DNA was 

added to 150 μl of Opti-MEM. Six μl of PLUS reagent was added, mixed, and incubated 

for 15 minutes.  In a separate tube, 6 μl of Lipofectamine reagent was added to 150 μl of 

Opti-MEM.  After 15 minute incubation, the PLUS and the Lipofectamine mixtures were 

combined and allowed to incubate for an additional 15 minutes. This transfection cocktail 

was diluted with 1 ml of Opti-MEM and added to Transwells.  Transfection was allowed 



43 
 

to proceed for 5 hours; then media was aspirated and replaced with normal growth media.  

Cells were allowed to incubate for 48 hours post-transfection. 

  

For immunocytochemistry, Transwells were rinsed with PBS and fixed for 7 minutes in 

4% paraformaldehyde. After 3x10 minute rinses in PBS, cells were incubated for 10 

minutes in PBS containing 0.1% Triton-X100 and 2% normal goat serum (NGS). Cells 

were then incubated for 1 hour at RT in PBS containing 2% NGS and the appropriate 

dilutions of primary antibodies.  Cells were then rinsed 3x10 minutes in PBS, reblocked 

for 10 minutes in PBS containing 2% NGS, and incubated for 1 hour in the dark with 

secondary antibodies diluted in PBS containing 2% NGS. After a final 3x 10 minute rinse 

in PBS, cells were mounted on slides using Prolong Gold AntiFade Reagent (Molecular 

Probes, Eugene, OR).  

Confocal Imaging 

Images of transfected cells displaying fluorescent signals were acquired on an Olympus 

Fluoview 500 confocal microscope using a 100×1.35 N.A. oil objective. Exposure times 

were adjusted so that the maximal pixel intensities were at least half saturation. Images 

were obtained by taking a series of stacks every 0.5 μm through the cell (generally 3-5 

µm) and combining the images into a composite stack.  To minimize effects of 

overexpression on CNGA2-YFP localization, only cells with low to mid levels of 

expressed protein were analyzed. Whereas the entire confocal stack containing sections 

through the whole cell were used to generate images for display, fluorescence intensity 

analysis and colocalization were measured in images generated only from focal planes 
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containing cilia. Contrast and brightness of composite images were further optimized 

using Adobe Photoshop CS version 8.0 (Adobe Systems Inc., San Jose, CA) on an 

Optiplex GX280 PC (Dell Inc., Round Rock, TX). Images were analyzed using ImageJ 

software (NIH, Bethesda, MA), and statistics were performed using Prism software from 

Graphpad Prism Software (San Diego, CA). 

 

Quantification of Ciliary Targeting 

Confocal stacks were analyzed using ImageJ software (NIH, Bethesda, MA).  Signal 

from acetylated tubulin was used to mark cilia, and those confocal planes containing 

acetylated tubulin signal were collapsed into a 2-dimensional projection creating the 

ciliary 2-dimensional projection.  In addition, the planes not containing tubulin signal 

were collapsed to create the non-ciliary 2-dimensional projection.  A region of interest 

(ROI) was drawn around the cilium in the ciliary 2-dimensional projection of acetylated 

tubulin signal and then the same ROI was placed on the collapsed ciliary projection from 

the CNGA2-Citrine signal.  Fluorescence was measured as arbitrary units per square 

micron.  A ROI was drawn around the cell from the collapsed non-ciliary projection and 

CNG channel signal was quantified.  In order to monitor ciliary enrichment of the CNG 

channel, the signal from the cilium was normalized to the signal from the cytoplasm and 

expressed as the ratio of ciliary pixel density to non-ciliary pixel density.  Ratios were 

compared using the Student’s two-tailed t test on Graphpad Prism Software (San Diego, 

CA). 
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Fluorescence Recovery After Photobleaching (FRAP) 

Forty-eight hours after transfection, Transwell filters carrying cells were excised and 

inverted onto #1 round glass coverslips, covered with PBS, and inserted into a live-cell 

imaging Quick Change chamber with a heated base from Warner Instruments (Hamden, 

CT). 10 prebleach images were acquired at a resolution of 512x512 pixels at 3% laser 

intensity before bleaching a region of approximately 3-5 square microns at 100% laser 

intensity for 15 seconds.  Recovery was measured by obtaining 512x512 images at 3% 

laser intensity every 5 seconds for indicated times.  A single focal plane of 0.5-1 micron 

Z-resolution was imaged using a large confocal aperture to minimize effect of drift. 

Recovery of bleached region was background subtracted and normalized to both the 

initial region intensity relative to whole cell intensity and for photobleaching of sample 

during recovery. Total photobleaching of sample was generally less than 15% over entire 

period of recovery.  Recovery kinetics were determined using a single exponential fit of 

the average data:    y= A(1e (-τ*t)) + c, wh ere A is amplitu d e, t is time,  τ is the time 

constant, and c is the constant representing the relative fluorescence immediately post-

bleach. 

Kinesin Constructs 

Dominant-negative kinesin motors were generated such that they contained the cargo-

binding domain and a portion of the alpha-helical coiled-coil domain, however they 

lacked the remaining coiled domain and the kinesin motor domain.  For KIF3aDN the 

construct encoded amino acids 525-702, the KIFC3DN construct was generated using 

amino acids 1-375, and the KIF17DN construct consisted of amino acids 801-1028. 
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Citrine-tagged KIF17 construct was created by subcloning full length Kif17 into the BglII 

and XbaI sites of pmCit-C1 by PCR using primers with appropriate restriction enzyme 

sites 
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Figure 2.1  Ciliary Enrichment of CNGA2 Requires CNGB1b, but Not CNGA4.    

(A) Representative images of MDCK cells transfected with CNGA2-YFP alone (top), 
CNGA2-YFP + CNGA4-3xFlag (middle), or CNGA2-YFP + CNGB1b-3xFlag (bottom). 
YFP fluorescence is shown at left (green) and immunostaining for acetylated tubulin is 
shown at center (red). Merged (right) signals from YFP and acetylated tubulin; yellow 
indicates colocalization. Bar represents 10 μm.   
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Figure 2.2  CNGB1b Colocalizes with CNGA2 in MDCK Cell Primary Cilia.  

Representative images of MDCK cells grown on Transwell filters for 7-8 days post-
confluence and transfected with (A) CNGA2-YFP + CNGB1b-3xFlag or (B) CNGA2-
YFP + CNGA4-3xFlag. Cells were fixed, permeabilized, and immunostained 48 hours 
post-transfection with anti-acetylated tubulin antibodies (red). Merge of YFP and 
acetylated tubulin (Alexa 594) signal, shown in yellow, indicates colocalization. (C, D) 
Representative images of MDCK cells transfected with either (C) CNGA4-3xFlag and 
soluble CFP or (D) CNGB1b-3xFlag and soluble CFP. Cells were fixed, permeabilized, 
and immunostained 48 hours post-transfection with mouse anti-acetylated tubulin 
antibodies (red, center) and rabbit anti-Flag antibodies (green, left). Merge of acetylated 
tubulin (Alexa 594) and flag (Bodipy FL) signal shown on right. Bar represents 10 µm.  
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Figure 2.3  The CNG Channel is Evenly Distributed Along the Length of the Cilia. 

  (A) Representative image of MDCK cell transfected with CNGA2-Citrine (Green) and 
CNGB1b-3xFlag. Arrowhead marks base of cilium and arrows mark fluorescent puncta. 
Scale bar represents 10μm. (B) Fluorescence intensity plot of image from panel B. 
Arrowhead and arrows correspond to exact positions marked panel B. (C) Plot of 
normalized fractional cilia length versus average fluorescence intensity in arbitrary units 
(a.u.) for both channel signal (blue) and acetylated tubulin (orange) in cells expressing 
CNGA2-Citrine and CNGB1b-3xFlag. (n=10). Dotted line marks the beginning of cilia 
as determined by intensity of acetylated tubulin signal.  
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Figure 2.4 A Carboxyl-Terminal Motif in CNGB1b is Necessary, but Not Sufficient 
for Ciliary Trafficking of CNG Channels.   

 (A) Sequence alignment of final 30 carboxyl-terminal amino acids of wild-type CNGA2, 
CNGA4, CNGB1b, and mutant constructs.    Alignment of the RVxP motif in CNG 
channel constructs is outlined in the red box. Amino acid substitutions and insertions are 
shown in bold. (B) Plot of normalized fractional cilia length versus average fluorescence 
intensity in arbitrary units (a.u.) for both channel signal (blue) and acetylated tubulin 
(orange) in cells expressing CNGA2-Citrine and CNGB1b-AASA-3xFlag (n=3).  Dotted 
line marks the beginning of cilia as determined by concentrated acetylated tubulin signal.  
Values are mean ± SEM. (C) Representative image of MDCK cell transfected with 
CNGA2-Citrine (green, left), + CNGB1b-AASA-3xFlag mutant and immunostained with 
anti-acetylated tubulin (red, center) shown with merged image (right). Bar represents 
10μm. (D) Representative image of MDCK cell transfected with CNGA2-RVSP-Citrine.   
Acetylated tubulin shown in (red).  Scale bar represents 10μm. (E) Representative image 
of MDCK cell, transfected with CNGA2- Citrine (green) and CNGB1b-RVAP-3xFlag.  
Acetylated tubulin shown in (red). Merged image shown on right with yellow indicating 
colocalization. Scale bar represents 10μm. 



51 
 

 
 

Figure 2.5  Mutant CNGB1b, as well as Wild-type CNGB1b and CNGA4 Co-
assemble with CNGA2 

MDCKII cells were transfected with CNGA2-Citrine and either CNGB1b-3xFlag, 
CNGB1b-AASA-3xFlag mutant, or CNGA4-3xFlag as indicated in Materials and 
Methods. (A) Immunoprecipitation with rabbit polyclonal anti-Flag antibody and 
immunoblotting with rabbit polyclonal anti-GFP. 5% detergent extract of transfected 
cells for each sample was used as starting material (lanes 1, 3, and 5) while the remaining 
95% was split and immunoprecipitated with either rabbit anti-Flag (lanes 2, 4, and 6) or 
rabbit IgG (lane 7). (B) Immunoprecipitation with rabbit polyclonal anti-GFP antibody 
and immunoblotting with rabbit polyclonal anti-Flag. 10% of each sample was used as 
starting material (lanes 1 and 3) while the remaining 90% was immunoprecipitated with 
either rabbit anti-GFP (lanes 2 and 4) or rabbit IgG (lane 5). Apparent molecular weight 
markers are shown on the right. 
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Figure 2.6  Effects of Single Alanine Mutations in the RVxP Motif of CNGB1b.  

 (A) Quantification of relative mean pixel intensities of the cilia versus the cytoplasm of 
MDCK cells transiently transfected with CNGA2-Citrine and CNGB1b mutants.  Signal 
from acetylated tubulin was used to generate a ciliary region of interest (ROI) 
representing the cilium.  Pixels were then quantified in the ciliary ROI using ImageJ 
software.  In addition, a ROI was drawn representing the non-ciliary portion of the cell 
and also quantified.  Results are expressed as the ratio of mean fluorescence intensity in 
the cilia versus cytoplasm.  Mutation of R821, V822, and P824 to alanine in the 
CNGB1b-AASA mutant led to a loss of ciliary enrichment of the CNG channel.  Alanine 
substitution of S823, however, had no significant effect on CNG channel ciliary 
targeting.  Additionally each of the single substitutions of R821, V822, and P824 led to a 
statistically significant decrease in ciliary trafficking of the channel, however no single 
point mutation had as dramatic effect as seen in the CNGB1b-AASA mutant.  Statistics 
were performed using the Student’s two-tailed t test (n=5-8 for each group). 
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Figure 2.7  Effects of Demecolcine and Expression of Dominant-negative KIF 
Constructs on CNGA2 Localization.  

(A) Demecolcine treatment removes the primary cilium from MDCK cells and channel 
accumulates at the basal body. Representative images of MDCK cells grown on 
Transwell filters for 7-8 days post-confluence and transfected with CNGA2-YFP + 
CNGB1b-3xFlag. Demecolcine (1 μg ml-1) was added to cells 24 hours after transfection. 
Cells were fixed, permeabilized, and immunostained 48 hours post-transfection with anti-
acetylated tubulin antibodies (red). Merge of YFP and acetylated Tubulin (Alexa 647) 
signal, shown in yellow, indicates colocalization. Bar represents 10 μm.  (B) Expression 
of KIFC3 (1-375) dominant-negative does not affect localization of CNGA2+CNGB1b to 
the primary cilia of MDCK cells. Representative image of MDCK cell, transfected with 
CNGA2-Citrine, CNGB1b-3xFlag, and KIFC3-DN. Arrows mark base of cilia. Signal 
shown from CNGA2-citrine fluorescence (green), acetylated tubulin immunostaining 
(red), and merged image.  Bar represents 10μm. (C) Fluorescence intensity plot of image 
from panel A. Arrow corresponds to exact position marked in panel A. Orange represents 
signal from acetylated tubulin staining and blue represents CNGA2-citrine fluorescence. 
(D) Expression of KIF3a (525-702) dominant-negative abolishes primary cilia of MDCK 
cells. Representative image of MDCK cell, transfected with CNGA2-Citrine, CNGB1b-
3xFlag, and KIF3aDN. Arrows mark basal body. Signal shown from CNGA2-citrine 
fluorescence (green), acetylated tubulin immunostaining (red), and merge.  Bar represents 
10μm. 
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Figure 2.8  KIF17 is Endogenously Expressed in both MDCK Cells and OSNs and 
Mediates Ciliary Enrichment of the CNG Channel.   

(A) MDCK cells stained with anti-KIF17 (green) and anti-acetylated tubulin (red).  
Merged images shown with DAPI (blue). Bar represents 10μm. (B)  Mouse OE stained 
with rabbit polyclonal anti-KIF17 antibodies (red).  Olfactory epithelium (OE), nasal 
cavity (NC). Bar represents 50 μm.  (C) Representative image of MDCK cell, transfected 
with CNGA2-Citrine, CNGB1b-3xFlag, and myc-KIF17DN (801-1028). Arrowhead 
marks base of cilium. Signal shown from CNGA2-citrine fluorescence (left, green), 
acetylated tubulin immunostaining (center, red), and merge (right).  Bar represents 10μm. 
(D) Plot of normalized fractional cilia length versus average fluorescence intensity in 
arbitrary units (a.u.) for both channel signal (blue) and acetylated tubulin (orange) from 
MDCK cells  expressing CNGA2-Citrine, CNGB1b-3xFlag, and myc-KIF17DN  (n=11).  
Dotted line marks the beginning of cilia as determined by concentrated acetylated tubulin 
signal.  Values are mean ± SEM. (E) Average length of analyzed cilia from MDCK cells 
transfected with CNGA2-Citrine, B1b-3xFlag, and either no KIF17 (white, n=14), 
KIF17DN (black, n=10), or KIF17 full length (gray, n=5) constructs. KIF17DN had no 
statistically significant effect on cilia length (p=0.7551). Values are mean ± SEM.  (F) 
KIF17 immunoprecipitates with CNGA2 in native rat olfactory epithelium.  Lane 1 
represents immunoprecipitation with nonspecific IgG as a negative control.  Lane 2 
shows immunoprecipitation with anti-CNGA2 antibodies (1:200), while Lane 3 is the 
starting material from rat olfactory epithelium.  Blots were probed with anti-KIF17 
(1:1000).  Arrow indicates band for Kif17 with an approximate molecular weight of 170 
kD.  (G) Blot was stripped and reprobed with anti-CNGA2 antibodies (1:200).  Arrows 
indicate bands for CNGA2 non-glycosylated (75 kD) and glycosylated form (90-150 kD). 
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Figure 2.9  AC III is Enriched in the Ciliary Layer of the Olfactory Epithelium.   

(A) 20 μm coronal section of p5 Balb/C mouse olfactory epithelium stained with rabbit 
polyclonal anti-adenylyl cyclase III antibody and goat-anti-mouse Alexa 594 (red).  
Olfactory epithelium (OE), nasal cavity (NC). Bar represents 50 μm.   
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Figure 2.10  Expression of KIF17DN (801-1028) Does Not Affect Cell Polarity.   

 
Representative images of MDCKII cells transfected with KIF17DN (801-1028) and 
soluble eYFP. (A) Signal shown from eYFP fluorescence as a marker of transfection 
(green), NaK ATPase immunostaining (red) marking the basolateral membrane, along 
with merged image containing nuclear staining with DAPI (blue). (B) X-Z view of cells 
in panel A (C) Signal shown from eYFP fluorescence as a marker of transfection (green), 
gp135 immunostaining (red) marking the apical membrane, along with merged image 
containing nuclear staining with DAPI (blue). (D) X-Z view of cells in panel C. Bar 
represents 10 μm for panels A, C. 
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Figure 2.11  A Significant Fraction of CNG Channels is Mobile in the Primary Cilia of 
Madin-Darby Canine Kidney Cells.   

(A) Selected images from a confocal FRAP experiment at 25ºC in living MDCK cells 
transfected with CNGA2-Citrine and CNGB1b-3xFlag  showing  fluorescence signal 
from CNGA2-citrine in cilia prebleach, immediately post-bleach (t = 0 s), and after 
recovery (t = 600 s).  Box represents area of photobleach (dimensions of box). Bar 
represents 5μm. (B) Average recovery after photobleach for CNGA2-Citrine signal from 
the cilia of MDCK cells. Data shown are mean ± SE, n = 5 cells).  The solid line through 
the data is a single-exponential fit to the average data.  Fit parameters: mobile fraction = 
0.734±0.07, τ = 628.4 s, and R2=0.952.  Values are mean ± SEM. 
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Figure 2.12  Recovery of CNGA2-Citrine after Photobleaching in MDCK Cells.   

(A) Average recovery for CNGA2-Citrine signal from the cytoplasm of MDCK cells at 
25ºC (n=5 cells).   Fit parameters: mobile fraction = 0.736±0.07, τ = 159.3 s R2=0.942 
(B) Selected images from a confocal FRAP experiment at 25ºC in live MDCK cells 
transfected with CNGA2-Citrine and CNGB1b-3xFlag showing  fluorescence signal from 
CNGA2-citrine in the cytoplasm prebleach, immediately post-bleach (t = 0 s), and 
recovery (t = 200 s).  Box represents area of photobleach (dimensions of box). Bar 
represents 10μm. (C) Selected images at indicated times showing dynamics of 
fluorescence recovery in cilia from live MDCK cells at 29ºC expressing CNGA2-Citrine 
and CNGB1b-3xFlag.  Images were background subtracted and color inverted to improve 
visibility.  Box represents area of photobleach. Bar represents 2μm, “+” represents plus 
end of microtubules (distal tip of cilium), and “–” represents minus end of microtubules 
(towards cytoplasm).



59 
 

CHAPTER 3 

 PACS-1 MEDIATES PHOSPHORYLATION-DEPENDENT CILIARY 
TRAFFICKING OF THE CNG CHANNEL IN OLFACTORY SENSORY 

NEURONS 

 
 

SUMMARY 

Impaired ciliary protein transport in olfactory sensory neurons (OSNs) leads to 

anosmia, and is a newly recognized clinical manifestation of a class of human disorders 

called ciliopathies.  Surprisingly little is known regarding the mechanisms controlling 

trafficking to this unique neuronal compartment.  Here, we show a novel role for 

phosphofurin acidic cluster sorting protein 1 (PACS-1) in the ciliary trafficking of the 

olfactory CNG channel.  PACS-1 is an intracellular sorting protein that mediates its 

effects through the binding of acidic clusters on cargo protein.  This interaction is 

dependent on CK2 phosphorylation of both PACS-1 and its cargo.  We show that 

CNGB1b contains two putative PACS-1 binding sites, which are phosphorylated by CK2.  

Additionally, we show that PACS-1 is expressed in OSNs and interacts in complex with 

the CNG channel.  Inhibition of CK2 in native OSNs causes a loss of CNG channel from 

cilia and subsequent olfactory dysfunction, while adenoviral expression of mutant PACS-

1 causes similar mislocalization.  These results provide a mechanism for the subunit-

                                                
Chapter 3 is published as Jenkins, P.M., Zhang, L., Thomas, G., and Martens, J.R. (2009). PACS-1 
mediates phosphorylation-dependent ciliary trafficking of the cyclic-nucleotide-gated channel in olfactory 
sensory neurons. J Neurosci 29, 10541-10551.  For copyright release, please see Appendix I.  I would like 
to thank Gary Thomas for providing the PACS-1 plasmids and for review of the manuscript.  Finally I 
would like to acknowledge the Jeffrey Martens laboratory, especially Lian Zhang for the preparation of 
various CNG channel mutant and PACS-1 constructs. 
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dependent ciliary trafficking of the CNG channel and offer further insight into the 

mechanisms of ciliary transport.  

INTRODUCTION 

The cilium is a microtubule-based organelle that can project from the surface of 

nearly any mammalian cell. Defects in cilia structure and function have been implicated 

in a growing number of human diseases involving multiple organ systems [157-159]. In 

the brain, many neurons and glia have been shown to possess primary cilia; however, 

their precise function remains obscure [160]. The olfactory system is one neuronal 

system that is critically dependent on the proper function of cilia. OSNs are unique in that 

cilia project from multiple basal bodies in the bulbous tip of their apical dendrite and 

make contact with the external environment [161]. Olfactory cilia act to 

compartmentalize signaling molecules, thereby allowing rapid and efficient activation of 

the signaling cascade.  

Since cilia lack the machinery for protein synthesis, proteins must be produced in 

the cell and transported into the cilium via an evolutionarily-conserved process called 

intraflagellar transport (IFT) [24-25].  Entry into the cilium is regulated by a complex of 

proteins at the basal body which acts to restrict access to the cilium [24-25].  Alterations 

in the localization of ciliary proteins have been shown to underlie a number of human 

diseases including olfactory dysfunction, polycystic kidney disease, retinal degeneration, 

and primary ciliary dyskinesia [81-82, 95, 157, 159, 162].  Despite advances in the 

understanding of cilia formation and function, we still know little about the mechanisms 

regulating protein entry into the ciliary compartment.   

All of the necessary components of the olfactory signal transduction cascade are 

enriched in cilia, including odorant receptors, the stimulatory G-protein (Golf), adenylyl 

cyclase III (ACIII), and the olfactory cyclic-nucleotide-gated channel [141].  The 

olfactory CNG channel is a non-selective cation channel comprising 3 channel-forming 

subunits (CNGA2, CNGA4 and CNGB1b).  Activation of the channel allows the initial 

depolarization of the OSN, and mislocalization of the CNG channel from cilia has been 

implicated in diseases, including anosmia and retinal degeneration [95, 144].  Previously, 
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we have shown that the CNGB1b subunit is necessary for ciliary localization of the 

olfactory CNG channel [68]; however, the mechanism of this subunit-dependent ciliary 

trafficking remained unknown.   

 Recently, the intracellular trafficking protein, phosphofurin acidic cluster sorting 

protein 1 (PACS-1) has been shown to localize to the base of human respiratory cilia and 

control the localization of nephrocystin 1 to the transition zone of respiratory cilia [85].  

While PACS-1 has been shown to interact with acidic cluster-containing ion channels 

such as polycystin-2/TRPP2, TRPV4, and CLC-7 [81, 86], no direct role has been 

demonstrated in the control of ciliary localization of ion channels or other neuronal cargo. 

 Here, we have examined the subunit-dependent ciliary trafficking mechanisms of 

the olfactory CNG channel.  We found that PACS-1 interacts with the CNGB1b subunit 

and is required for the control of its ciliary localization.  Additionally, we found that CK2 

phosphorylation of PACS-1 and of residues on two distinct CNGB1b amino terminal 

sites is necessary for this ciliary localization.  These results represent the first report of a 

role for PACS-1 in the ciliary localization of membrane proteins, and also highlight a 

novel mechanism for the control of subcellular localization of neuronal cargo.  

RESULTS 

PACS-1 is expressed in Olfactory Sensory Neurons 

 To address the question of whether PACS-1 regulates ciliary trafficking of the 

olfactory CNG channel, we first examined expression of PACS-1 in native olfactory 

tissue.  Using in situ hybridization performed with an anti-sense PACS-1 riboprobe on 

coronal sections from multiple mice, we found that PACS-1 mRNA, indicated by a dark 

purple precipitate, is present along the dorsal roof of the nasal cavity in a region 

corresponding to the OSN layer (Figure 3.1A, C).  Using a control, sense riboprobe, we 

detected minimal reactivity (Figure 3.1B, D).  These results clearly demonstrate the 

cellular distribution of PACS-1 mRNA in the olfactory epithelium and suggest that OSNs 

have the capacity to generate PACS-1 protein.  
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To determine if PACS-1 protein is expressed in OE, we performed Western blot 

analysis of native olfactory tissue homogenate.  Using antibodies directed against 

PACS-1, we detected the presence of an immunoreactive band corresponding to the 

molecular weight of PACS-1 (~120 kDa) in adult mouse OE (Figure 3.1E lane 3).  The 

specificity of this signal was confirmed in that we detected a band of similar molecular 

weight (Figure 3.1E lane 2) using lysates from HEK-293 cells transiently transfected with 

hemagglutinin (HA)-tagged PACS-1 but not untransfected HEK-293 cells (Figure 3.1E, 

lane 1).  Using antibodies against the HA epitope, we verified that the 120 kDa band in 

lane 2 corresponds to PACS-1 (data not shown).   

Since the OE comprises multiple cell types including OSNs, sustentacular cells 

and basal cells, we examined protein localization at the level of the OSN by 

immunostaining coronal sections of mouse OE.  Single confocal planes of sections 

coimmunostained with antibodies against PACS-1 and γ tubulin demonstrated the 

presence of PACS-1 protein in the OSN (Figure 3.1F, G).  Interestingly, PACS-1 

localized to the dendritic knob, where it colocalized with the basal body marker, γ 

tubulin, but was undetectable in olfactory cilia. Together, these results demonstrate that 

PACS-1 is expressed in OSNs and localizes to the dendritic knob, where it may act as 

part of the basal body protein complex to regulate ciliary transport of the CNG channel. 

The CNGB1b Subunit can Interact with PACS-1 and Serve as a Substrate for CK2 

Phosphorylation  

 Previously, we have shown that the CNGB1b subunit is necessary for ciliary 

targeting of the olfactory CNG channel [68]; however, the mechanism of this regulation 

remained unknown.  The intracellular sorting protein PACS-1 interacts with its cargo 

through phosphorylated serines or threonines contained in a cluster of acidic residues on 

the cargo protein to control its subcellular localization. Interestingly, using amino acid 

sequence analysis of the 3 olfactory CNG channel subunits, we identified two highly 

conserved acidic clusters in the amino terminus of the CNGB1b subunit which contain 

putative CK2 consensus phosphorylation sites (Figure 3.2A).  In contrast, no consensus 

PACS-1 binding sites were identified in CNGA2 or CNGA4.   
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To examine interactions between PACS-1 and CNGB1b we used 

immunoprecipitation experiments from both transfected cells and native olfactory tissue. 

Immunoprecipitations of CNGB1b from HEK293 cells transiently transfected with 

CNGB1b-3xFlag and HA-PACS-1 demonstrated an in vitro interaction that was 

confirmed using the reverse immunoprecipitation (Figure 3.2B).  Importantly, we 

observed an interaction between the endogenous CNG channel and PACS-1 in native 

mouse olfactory epithelium, while negative control antibodies showed no detectable 

immunoprecipitation (Figure 3.2C).  Taken together these results indicate that CNGB1b 

and PACS-1 can interact in complex both in vitro and in vivo.  

We next tested if the CNGB1b subunit could serve as a substrate for CK2 

phosphorylation.  In vitro kinase reactions were performed on immunoprecipitated 

protein (CNGA2, CNGA4, CNGB1b, or PACS-1) from transiently-transfected HEK293 

cells using recombinant CK2 and [γ-32P] ATP.  As predicted from the sequence analysis, 

we found that CNGB1b serves as a substrate for CK2 (Figure 3.2D), while PACS-1 was 

also phosphorylated by CK2 as previously described [163].  In contrast, despite efficient 

immunoprecipitation (Figure 3.3), neither CNGA2 nor CNGA4 were phosphorylated 

(Figure 3.2D), demonstrating a subunit-specificity for CK2 phosphorylation. 

Finally, we used alanine substitution to determine if the putative CK2 sites at 

serines 132 and 208 within CNGB1b are capable of being phosphorylated by the enzyme.   

For these experiments, we created three mutant forms of CNGB1b (S132A, S208A, and 

S132A/S208A double mutant) and performed in vitro kinase reactions on 

immunoprecipitated proteins. Despite equal immunoprecipitation, the CNGB1b 

S132A/S208A mutant exhibited a significant decrease (~35%) in phosphorylation by 

CK2 compared to wild-type (Figure 3.2D).  Mutation of either serine alone (S132A or 

S208A) caused an intermediate decrease in phosphorylation (data not shown).  These 

results demonstrate that CK2 is capable of phosphorylating S132 and S208 located within 

acidic clusters on CNGB1b, which may serve to regulate CNGB1b ciliary trafficking. 
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Mutation of the CK2 Phosphorylation Sites on CNGB1b Inhibits Ciliary Delivery of 

the CNG Channel 

  Since mutation of CK2 phosphorylation sites within PACS-1 cargo has been 

shown to impair intracellular trafficking [164], we tested CNG channel trafficking using 

phosphorylation-deficient CNGB1b mutants. Previously, we have demonstrated that 

ciliated MDCK cells represent a suitable model to study ciliary trafficking of olfactory 

signaling proteins [68]. Confocal images of individual cells clearly show that mutation of 

both putative CK2 sites (S132A + S208A double mutant) caused a dramatic loss of 

CNGB1b and its heteromeric partner CNGA2-mCitrine from the cilia of MDCK cells 

(Figure 3.4A-B, 3.8).  Importantly, averaged data from multiple cells indicate an almost 

complete absence of CNG channel ciliary localization in the presence of the CNGB1b 

double mutant (Figure 3.4C, D).  Mutation of either S132 or S208 alone caused an 

intermediate decrease in ciliary trafficking of the channel (Figure 3.6).  Together these 

data indicate that, while either CK2 site is sufficient for ciliary trafficking, both sites are 

necessary for ciliary enrichment of the CNG channel. 

Loss of PACS-1 Function Impairs CNG Channel Ciliary Transport 

 To ascertain a functional role for PACS-1 in the ciliary targeting of the olfactory 

CNG channel we generated retroviral stable MDCK cells expressing either wild-type 

PACS-1 or the dominant-negative, non-phosphorylatable PACS-1 S278A mutant. It is 

thought that phosphorylation of an autoregulatory domain of PACS-1 at serine 278 

causes the protein to unfold, allowing the binding and subsequent trafficking of cargo 

protein. This phosphorylation-dependent function is inhibited by mutation of S278 to 

alanine [163].  Expression of CNGA2-mCitrine and CNGB1b in PACS-1 S278A stable 

MDCK cells resulted in impaired ciliary localization, whereas in cells stably 

overexpressing wild-type PACS-1 the channel localized to cilia as expected (Figure 

3.7A-B, 3.8).  As an additional control, MDCK cells stably expressing the phosphomimic 

form of PACS-1 (PACS-1 S278D) demonstrated normal ciliary localization of the CNG 

channel (data not shown).  These data indicate that loss of the autoregulatory 

phosphorylation site on PACS-1 inhibits ciliary trafficking of the CNG channel. 
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 One limitation of using the non-phosphorylatable mutant PACS-1 is that its 

overexpression may sequester trafficking partners within the cell, leading to non-specific 

effects.  To overcome this limitation, we utilized retrovirally-delivered short hairpin RNA 

(shRNA) in MDCK cells to silence PACS-1 expression.  MDCK cells express 

endogenous PACS-1 which was efficiently silenced using a 21 nucleotide sequence 

directed against PACS-1 (human 1345-1365) while a validated negative control shRNA 

had no effect on PACS-1 protein levels (Figure 3.9).  In MDCK cells stably expressing 

PACS-1 shRNA, we failed to detect localization of CNGA2-mCitrine to cilia in the 

presence of CNGB1b, whereas, in cells stably expressing negative control shRNA, we 

found normal ciliary localization of the CNG channel (Figure 3.7C-D).  Interestingly, 

mutation or shRNA-mediated suppression of PACS-1 had no effect on cilia length or 

gross morphology (Figure 3.9).  These results, together with the results from the non-

phosphorylatable mutant PACS-1, indicate that diminished PACS-1 function, either by 

mutation of the autoregulatory domain or loss of protein, leads to impaired ciliary 

trafficking of the olfactory CNG channel.   

Inhibition of CK2 Alters CNG Channel Localization  

Pharmacological inhibition of CK2 enzymatic activity has been shown to impair 

PACS-1 activity [163-165].  To directly examine the CK2 phosphorylation dependence 

of ciliary trafficking of the olfactory CNG channel we transfected MDCK cells with both 

CNGA2-mCitrine and CNGB1b, allowed 48 hours for channel to reach cilia, and then 

treated cells with the cell-permeant, selective CK2 inhibitor, 4,5,6,7-Tetrabromotriazole 

(TBB).  Inhibition of CK2 for 4 hours with 20 µM TBB led to a loss of CNG channel 

from the cilia of MDCK cells (Figure 3.10A). Mislocalized channel formed bright puncta 

at the base of the cilium, which can be seen more clearly in an X-Z projection (Figure 

3.10B).  Consistent with the effects of phosphodeficient PACS-1 shown above, treatment 

of MDCK cells with 20 µM TBB for 4 hours had no effect on average cilia length (Figure 

3.11). Together, these indicate that the processes necessary for maintenance of cilia 

length are not dependent on CK2 phosphorylation.  
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CK2 Phosphorylation is Necessary for the Ciliary Localization of CNG Channel  In 
Vivo and Proper Olfactory Function 

Our results indicate an important role for PACS-1 and CK2 phosphorylation in 

the ciliary trafficking of ectopically-expressed CNG channels in vitro. We next tested the 

hypothesis that these mechanisms were operating in native olfactory tissue and were 

necessary for proper olfactory function.  To this end, the selective CK2 inhibitor TBB 

was delivered directly to the olfactory epithelium using intranasal injections into adult 

CD1 mice.  Using this method, we found that the area of greatest exposure to the 

inhibitor were regions of the ventral OE, especially turbinates III and IV. This was 

confirmed using the fluorescent tracer, carboxyfluorescein diacetate, succinimidyl ester 

(data not shown). Fluorescence immunohistochemistry on fixed tissue was used to 

examine the subcellular distribution of CNG channels. Coronal sections from mice 

injected with control solution (0.1% DMSO) exhibited normal CNG channel enrichment 

in cilia, as indicated by colocalization with the ciliary marker, acetylated α tubulin 

(Figure 3.10C).  Sections from mice injected with 20 µM TBB followed by 4 hours of 

recovery demonstrated a dramatic loss of CNG channel from the cilia layer and a lower 

level of total CNG channel protein in the olfactory epithelium (Figure 3.10D).  This loss 

of channel protein is consistent with previous work demonstrating that mislocalized CNG 

channel out of the cilia is degraded in OSNs [95].  These results demonstrate that the 

ciliary trafficking of the CNG channel in native olfactory tissue is dependent on CK2 

phosphorylation. 

Mislocalization of olfactory signaling proteins from cilia leads to olfactory 

dysfunction [82, 95].  To assess the effect of CK2 inhibition on olfactory function we 

measured the odor-evoked electrical response in OSNs using electroolfactogram (EOG) 

recordings from the surface of mouse OE.  The head was split sagitally at the midline to 

expose the olfactory turbinates.  Solutions (Ringer’s buffer control or Ringer’s plus 20 

µM TBB) were applied directly to either turbinate and evoked potentials in response to 

the odorant amyl acetate were measured every 5 minutes from two recording electrodes 

placed on opposite sides of the OE (See diagram in Figure 3.12).  In paired recordings 
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from 5 mice, inhibition of CK2 with TBB caused a significant and almost complete loss 

of the response to amyl acetate within 25 minutes. Treatment with control solution caused 

only a slight decrease (Figure 3.12A, B) consistent with rundown of the odor-evoked 

signal [166].  To confirm that the mechanism for the loss of EOG response was due to an 

alteration in the ciliary localization of the CNG channel, we treated mouse OE with TBB 

or control solution for 25 minutes in the same manner as performed for EOG recordings.  

Medial surfaces of the olfactory turbinates, which correspond to regions of the OE that 

would have been exposed to drug, demonstrated a dramatic decrease in ciliary 

localization of the CNG channel compared to control (Figure 3.12C).  After only 25 

minutes, mislocalized channel protein appeared to accumulate on microtubule tracks of 

the dendrite indicating a possible retrograde trafficking of the channel in response to CK2 

inhibition.  Interestingly, ACIII ciliary localization was unaffected by the 25 minute CK2 

inhibition (Figure 3.11). These data demonstrate that inhibition of CK2 causes a selective 

mislocalization of olfactory CNG channels from cilia and subsequent olfactory 

dysfunction.    

Adenoviral Expression of Non-Phosphorylatable PACS-1 in Native OSNs Impairs 

Ciliary Localization of the Endogenous CNG Channel  

 Since inhibition of CK2 in native OSNs causes a selective mislocalization of the 

CNG channel from cilia, we examined if this effect included inhibition of PACS-1 

function.  Mice were infected intranasally with adenovirus carrying either non-

phosphorylatable PACS-1 S278A IRES GFP or GFP alone.  Infection of OSNs 

with adenovirus carrying the non-phosphorylatable form of PACS-1 (S278A) caused a 

mislocalization of the endogenous ciliary CNG channel, but no detectable change in the 

cilia layer as indicated by acetylated α tubulin staining (Figure 3.13A, top).  Expression 

of PACS-1 S278A, however, had no effect on ciliary ACIII localization, consistent with 

the specificity measured by pharmacological inhibition of CK2 (Figure 3.13A, bottom).  

A surprising result was the malformation of the dendrite in OSN infected with the 

functionally-impaired S278A mutant.  In these neurons, marked by GFP, there was an 

obvious swelling of the knob and thickening of the dendritic shaft compared to controls 
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(Figure 3.13A, B), however these cells were localized deep within the OMP-positive cell 

body layer as would be expected for mature OSNs (Figure 3.14).  This unanticipated 

result suggests that, although we observe no accumulation of CNG channel, inhibition of 

PACS-1-mediated trafficking may cause the accumulation of other dendritic or ciliary 

cargo.   

DISCUSSION 

 The results of these studies define a mechanism for the subunit-dependent ciliary 

trafficking of the olfactory CNG channel.  The intracellular sorting protein, PACS-1, is 

expressed in OSNs and localizes to the dendritic knob, which is the site of protein entry 

and exit from olfactory cilia. We discovered that PACS-1 binds to the CNGB1b subunit 

and controls its proper ciliary localization. This mechanism is dependent on CK2 

phosphorylation at sites on both PACS-1 and two distinct sites on the amino terminus of 

the CNGB1b subunit.  Importantly, this work provides new insight into the requirements 

for the ciliary trafficking of polytopic membrane proteins and demonstrates for the first 

time a functional role for PACS-1 in neurons. 

 This is the first report for the direct mechanistic role of PACS-1 in the ciliary 

trafficking of membrane proteins. Previously, a role for PACS-1 in the localization of 

nephrocystin to the ciliary base/transition zone in epithelial cells was reported [85].  This 

work relied solely on the expression of non-phosphorylatable dominant-negative 

constructs to implicate PACS-1 in the localization. However, overexpression of this 

mutant protein may lead to non-specific effects through the sequestration of important 

binding partners. To overcome this limitation, we confirmed our dominant-negative 

results using shRNA-mediated gene silencing of PACS-1 to confirm its role in the ciliary 

localization of the olfactory CNG channel.   

Although never directly addressed, there are other reports that are consistent with 

a role for PACS-1 in the trafficking of olfactory cargo.  Some PACS-1 binding partners, 

such as the AP-1 adaptor complex, have been shown to be necessary for proper PACS-1-

mediated trafficking through the budding of clathrin-coated vesicles from the trans-Golgi 

network [167].  Interestingly, components of the Golgi-localized clathrin trafficking 
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machinery as well as members of IFT complex, which participate in ciliary transport, 

share significant homology [73]. In addition, the clathrin AP-1 µ adaptor UNC-101 has 

been shown to be responsible for the localization of odorant receptors to the cilia of C. 

elegans [74]. These peripherally-related reports may suggest that PACS-1 participates in 

a common transport pathway for all olfactory ciliary proteins. Our results in native 

olfactory tissue, however, indicate that the requirement of CK2 phosphorylation does not 

apply to all olfactory signaling proteins.  

There has been controversy in the role of CK2 in the regulation of the subcellular 

localization of other ciliary ion channels.  For example, recent work reports that 

inhibition of CK2, despite altering the subcellular localization of the TRP-channel 

polycystin-2, had no effect on ciliary expression in MDCK cells [168].  In contrast, other 

work in C. elegans, demonstrated that a non-phosphorylatable mutant of polycystin-2 

localizes to cilia whereas the phosphomimetic form of the protein fails to traffic to cilia  

[169].  Additionally, work in zebrafish demonstrated that deletion of a region of 

polycystin-2 corresponding to an acidic cluster with a CK2 phosphorylation site causes 

mislocalization of polycystin-2 to the apical cell membrane [170]. These findings may 

highlight differences in trafficking pathways for polycystin-2 and the CNG channel or 

differences between model systems.  Interestingly, polycystin-2 and the CNGB1b subunit 

share a common “RVxP” trafficking motif, and mutation of this motif causes 

mislocalization of both proteins from cilia [68, 88]. 

 The dynamics of intraciliary movement and the time for entry and exit from the 

cilia compartment is an area of intense interest.  Very little is known regarding the 

residence time of proteins, including ion channels, within the ciliary membrane.  Our 

results demonstrate that inhibition of CK2 causes a near-complete loss of CNG channel 

from the cilia of OSNs in ~25 minutes. Additionally, as shown in Figure 3.12, upon 

inhibition of CK2, the CNG channel displays an increased localization along the 

microtubule tracks of the dendrites.  This rapid loss of channel from cilia can result from 

inhibiting entry or accelerating exit of channels from the ciliary compartment. This 

disruption of the steady-state channel localization implies a bidirectional movement of 

channel protein on a time scale shorter than 25 minutes.  Qin et al. previously 
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demonstrated that the C. elegans TRPV channels OSM-9 and OCR-2 move 

bidirectionally along the ciliary axoneme at rates comparable to IFT (~1 µm/sec) [92].  If 

this applies to movement into and out of the cilium, it suggests a very short residence 

time for individual channels within the cilia. Our previous work demonstrated that the 

rate of olfactory CNG channel movement within MDCK cell cilia is on the order of 

diffusion with a τ of ~10 minutes [68], which predicts a greater latency for the channel.  

Therefore, we cannot exclude the possibility of an active cargo retrieval process initiated 

upon CK2 inhibition. The failure to detect PACS-1 in the cilia of OSNs (Fig. 3.1), 

however, suggests that PACS-1 is not the protein responsible for this potential 

scavenging mechanism. Ultimately, elucidation of the dynamics of protein movement 

into and out of the cilium will require advanced imaging techniques with the appropriate 

temporal and spatial resolution. 

In summary, our results demonstrate that PACS-1 and CK2 are important players 

in the regulation of the localization of select olfactory cilia cargo.  Chronic inhibition of 

PACS-1 function using dominant-negative constructs or shRNA-mediated gene silencing 

impairs the steady-state ciliary localization of the olfactory CNG channel in MDCK cells.  

Interestingly, expression of non-phosphorylatable PACS-1 in native OSNs, in addition to 

causing mislocalization of ciliary CNG channel, also leads to a dramatic thickening of the 

dendrite and flattening of the dendritic knob.  These results may implicate PACS-1 in the 

trafficking of other dendritic or ciliary cargo.  Interestingly, however, expression of this 

dominant-negative PACS-1 did not alter localization of ACIII, suggesting that PACS-1 

controls the subcellular localization of only a subset of neuronal cargo. In contrast to the 

long-term, steady-state effects seen with dominant-negative expression, pharmacological 

inhibition of CK2 phosphorylation causes an acute and rapid mislocalization of the CNG 

channel, while also not affecting other members of the olfactory signaling cascade.  Since 

activation of the CNG channel in cilia serves as the trigger for action potential generation 

in the OSN, CK2 phosphorylation-dependent trafficking may represent a novel 

mechanism for the fine tuning of responses to sensory stimuli.  In addition to these 

physiological implications, our results clearly link PACS-1 to the subunit-dependent 
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ciliary localization of the olfactory CNG channel and highlight a novel role for PACS-1 

in the regulation of subcellular protein trafficking in neurons. 

EXPERIMENTAL PROCEDURES 

Antibodies 

Monoclonal anti-acetylated tubulin (1:1000) and anti-flag M2 antibodies (1 µg for 

immunoprecipitation) were from Sigma-Aldrich.  Monoclonal anti-PACS-1 (1:500) 

antibodies were from BD Biosciences.  Polyclonal anti-CNGA2 (1:200) antibodies were 

from Alomone Labs.  Polyclonal anti-HA (1:500 for immunostaining, 1 µg for 

Immunoprecipitation) antibodies were from Santa Cruz Biotechnology.  AlexaFluor-

conjugated secondary antibodies (1:1000) were from Invitrogen. 

Cell culture  

Madin Darby Canine Kidney (MDCK) cells were cultured, transfected and prepared as 

described previously [68].  Briefly, MDCK cells were grown for 7 days post-confluence 

on Transwell filter supports (Corning Costar) and transfected with 0.5 µg per DNA 

construct and Lipofectamine plus reagent (Invitrogen) according to manufacturer’s 

protocol.  HEK293 cells were cultured in DMEM containing 10% fetal bovine serum, 

100 units/mL penicillin, and 100 µg/mL streptomycin at 37°C and 5% CO2.  For 

immunoprecipitation, HEK293 cells were plated on 100 mm dishes at 50% confluence 

and transfected with 1 µg cDNA and 3 µL Lipofectamine 2000 (Invitrogen) according to 

manufacturer’s protocol.  CNGB1b serine to alanine mutations were performed using 

QuikChange Site-Directed Mutagenesis Kit purchased from Stratagene (La Jolla, CA) 

according to manufacturer’s protocol. 

Adenovirus Preparation 

PACS-1 S278A IRES eGFP was cloned into the adenoviral shuttle plasmid, pDC315, and 

adenovirus was prepared using the Admax Adenoviral Preparation Kit (Microbix 

Biosystems) according to manufacturer’s protocol.  Adenovirus was amplified by 
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infection of HEK293 cells in 150 cm2 flasks which were harvested at approximately 50% 

cytopathic effect and virus was purified using the Adeno-X Maxi Prep Kit (Clontech) 

according to manufacturer’s protocol.  Virus was dialyzed into a solution of 2.5% 

glycerol, 25mM NaCl, and 20 mM Tris-HCl pH8.0 and stored at -80°C until use.  Viral 

titer was calculated using an adenoviral plaque assay according to Adeno-X Maxi Prep 

Kit instructions. 

Intranasal injection 

All animals were handled according to the guidelines for animal care at the University of 

Michigan. Adult CD1 mice (2-5 months) were anesthetized by intraperitoneal injection 

with 100 mg/kg ketamine and 5 mg/kg xylazine.  Animals were placed on their backs and 

PE10 tubing was inserted into the right nostril to a depth of 7 mm.  Adenoviral solutions 

were delivered in a total volume of 50µL of sterile 0.9% saline mixed with 0.02% fast 

green dye at a rate of 4 µL per minute (2.5 × 108 pfu for PACS-1 S278A IRES eGFP 

adenovirus; 1 × 109 pfu for eGFP adenovirus) for three consecutive days.  Drug delivery 

was performed in a total volume of 25 µL of sterile 0.9% saline mixed with 0.02% fast 

green dye at a rate of 4 µL per minute (± 20 μM CK2 inhibitor, 4,5,6,7-

Tetrabromotriazole (TBB).  Animals were allowed 30 minutes to recover from anesthesia 

on their backs before being returned to their home cage.  Mice infected with virus were 

allowed 4 days for expression of ectopic protein.  Those injected with CK2 inhibitor were 

allowed 4 hours of recovery. 

Tissue preparation 

For immunostaining, adult CD1 mice (2-5 months) were deeply anesthetized and 

sacrificed by cardiac perfusion with 50 mL PBS followed by 50 mL 4% 

paraformaldehyde (PF) at a rate of 10 mL per minute.  Olfactory epithelium was removed 

and post-fixed in 4% PF for 1 hour at 4°C, cryoprotected in 30% sucrose overnight at 

4°C, and embedded in OCT compound (Tissuetek).  Cryostat sections were sliced at a 

thickness of 20 µm and allowed to dry onto Superfrost Plus slides (Fisher Scientific) for 

20 minutes at room temperature. 
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Immunostaining 

Olfactory epithelium sections were permeabilized in PBS containing 0.3% Triton X-100 

and 2% goat serum for 20 minutes at room temperature.  MDCK cells were fixed for 7 

minutes with 4% PF, permeabilized for 10 minutes in PBS containing 0.1% Triton X-

100, and blocked in PBS with 2% goat serum for at least 10 minutes.  Samples were 

incubated in primary antibodies diluted in 2% goat serum PBS for 1 hour at room 

temperature and washed three times for 2 minutes in PBS (anti-CNGA2 antibody 

incubation was overnight at 4°C in humidified chamber).  Samples were incubated in 

fluorescently-conjugated secondary antibodies diluted in 2% goat serum/PBS for 1 hour, 

washed 3 times for 2 minutes in PBS, and mounted using Prolong Gold anti-fade reagent 

(Invitrogen). 

Confocal Imaging 

Confocal imaging was performed as described previously [68].  Images of transfected 

cells displaying fluorescent signals were acquired on an Olympus Fluoview 500 confocal 

microscope with a 60 × 1.40 N.A. or 100 × 1.35 N.A. oil objective. Exposure times were 

adjusted so that the maximal pixel intensities were at least half saturation. Images were 

obtained by taking a series of stacks every 0.5 µm through the cell (generally 3–5 µm) 

and combining the images into a composite stack.  For MDCK cell experiments, while 

the entire confocal stack containing sections through the whole cell was used to generate 

images for display, fluorescence intensity analysis and colocalization were measured in 

images generated only from focal planes containing cilia (Figure 3.8). For adenoviral OE 

experiments, in order to minimize contribution of ciliary protein localization from 

uninfected OSNs, we used compressed Z stacks corresponding only to the thickness of 

the infected OSN. Images were analyzed with ImageJ software (NIH, Bethesda, MD), 

and statistics were performed with Prism 5 software from Graphpad Prism Software (San 

Diego, CA).  Adjustments of contrast and brightness were performed using Adobe 

Photoshop 9.0 (San Jose, CA).  
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In situ hybridization 

In situ hybridization was performed on mounted coronal sections of p1.5 CD1 mouse 

head using an 800bp digoxigenin-labeled, anti-sense PACS-1 riboprobe or the control, 

sense probe, with a hybridization temperature of 65°C as described previously [171].  800 

nucleotides of cDNA corresponding to the 3’ coding sequence of PACS-1 were amplified 

by polymerase chain reaction using mouse brain cDNA (Generous gift of Dr. Donna 

Martin, University of Michigan) and cloned into pGem-T Easy.  Probes were generated 

using digoxigenin-labeling kit (Roche Applied Science) according to manufacturer’s 

protocol and detected using alkaline phosphatase-conjugated anti-digoxigenin antibodies 

with 5-Bromo-4-Chloro-3'-Indolyphosphate p-Toluidine Salt and Nitro-Blue Tetrazolium 

Chloride. 

Immunoprecipitations 

Protein G agarose beads were preincubated with antibodies for 2-4 hours on a nutator at 

4°C in immunoprecipitation (IP) buffer containing: 20 mM Tris–HCl, pH 7.5, 1% Triton 

X-100, 25 mM NaF, 12.5 mM Na4P2O7, 0.1 mM EDTA, 100 mM NaCl, 2 mM Na3VO4 

and protease inhibitors with 1% Triton X-100.   24 hours post-transfection, HEK293 cells 

were lysed on ice for 30 minutes in 500µL IP buffer.  After douncing, cells were 

centrifuged at 1,000×g for 5 minutes and supernatant was incubated overnight at 4°C 

with antibody-conjugated beads.  5% of supernatant was used for starting material.  

Beads were washed three times for 5 minutes with IP buffer with 1% Triton X-100 and 

once with IP buffer without Triton X-100.  Supernatant was either analyzed by SDS-

PAGE as described previously [68], or used for in vitro kinase reactions. 

In vitro kinase reactions 

Kinase reactions were performed essentially as described previously [172].  Briefly, 

immunoprecipates bound to beads were incubated with recombinant CK2 (New England 

Biolabs) in the presence of 10 µCi/mL [γ−32P] ATP and 200 µM MgATP for 30 minutes 

at 30°C according to manufacturer’s protocol.  Samples were processed by SDS-PAGE 
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and gels were exposed to phosphorimager screen for one hour and read on a Typhoon 

Variable Mode Imager (GE Healthcare). 

RNAi and retrovirus 

Short-hairpin RNA for PACS-1 (5'- sense GAT GAC AGC TTG ACT GAA ACA loop 

TTC AAG AGA anti-sense TGT TTC AGT CAA GCT GTC ATC -3') or Clontech 

negative control shRNA sequence was cloned into pSiren RetroQ (Clontech) and 

retrovirus was generated according to manufacturer’s protocol.  Stable MDCK cell lines 

were created by infection with shRNA retrovirus followed by selection using 5µg/mL 

Puromycin.    

Electroolfactograms 

Summated potentials from mouse olfactory epithelium (OE) were recorded essentially as 

described previously [82].  Briefly, adult mice were euthanized by carbon dioxide 

inhalation and the head was bisected laterally at the midline.  Solutions were added for 5 

minutes directly to the epithelial surface (Ringer’s or Ringer’s + 20 µM TBB).  

Recording electrodes were placed on either side of the head in the region of turbinate II 

or IIb and electrical responses to odorant (amyl acetate at 10 mM) perfused across the OE 

in the vapor phase in a stream of humidified oxygen were recorded.  We analyzed data 

with Clampfit (Molecular Devices) and determined peak heights from prepulse baseline. 
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Figure 3.1  PACS-1 is Expressed in OSNs.   

(A-D) In situ hybridizations performed on coronal sections from p1.5 CD1 mice were 
probed with digoxigenin-labeled antisense riboprobes for PACS-1 (A,C) or control, sense 
probes (B, D).  PACS-1 mRNA is present in OSNs as indicated by dark purple precipitate 
(panel C).  Line denotes transition from olfactory epithelium (top) to respiratory 
epithelium (bottom).  Boxes in panels A and B represent regions of interest shown at 
higher magnification in panels C and D, respectively. (E) Western blot results from 
lysates of (1) untransfected HEK293 cells, (2) HEK293 cells expressing human PACS-1 
with HA tag, or (3) p18 mouse olfactory epithelium.  Molecular weight markers are 
indicated on the left in kDa. (F) Immunostaining of coronal sections from adult CD1 
mouse OE demonstrates PACS-1 (red) is expressed in OSNs where it is enriched at the 
dendritic knob as indicated by colocalization with gamma tubulin (green).  Merged image 
shown on bottom. Bars represent 10 µm. (G) Higher magnification image from boxed 
region of interest in panel F, bottom, demonstrating colocalization of PACS-1 and 
gamma tubulin. 
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Figure 3.2  CNGB1b Contains Acidic Clusters, Interacts with PACS-1, and can Serve 
as a Substrate for CK2.   

(A) Amino acid sequence alignment of the CNGB1b subunit from Homo sapiens, Mus 
musculus, Rattus norvegicus, Bos taurus, and Danio rerio.  Acidic clusters marked by 
underline and putative CK2 phosphorylation sites marked by red rectangle. (B) 
Immunoprecipitation experiments from HEK293 cells cotransfected with HA-PACS-1 
and CNGB1b-3xFlag.  Immunoprecipitations were performed with either rabbit anti-Flag 
(left) or rabbit anti-HA (right) and blots were probed with rabbit anti-HA (left) or mouse 
anti-Flag M2 (right).  Arrows mark PACS-1 (left) and CNGB1b (right). Arrowheads 
represent heavy and light IgG.  Lys. = lysates   IP = Immunoprecipitation. (C) 
Immunoprecipitation experiment from adult CD1 mouse olfactory epithelial lysates.  
Immunoprecipitations of endogenous protein were performed either with anti-CNGA2 or 
negative control, anti-HA antibodies.  Blot was probed with anti-PACS-1 antibodies.  
Arrow marks PACS-1 protein at approximately 120 kDa.  SM = 10% starting material. 
(D) (Top) Autoradiograph from in vitro kinase reaction performed on 
immunoprecipitated proteins (CNGA2, CNGA4, CNGB1b, or PACS-1) in the presence 
(+) or absence (-) of recombinant CK2.  Autophosphorylated CK2 bands marked with 
arrowheads.  Arrow marks approximate molecular weight of PACS-1 and CNGB1b. 
(Bottom left) Model depicting predicted CK2-mediated phosphorylation of both PACS-1 
and CNGB1b, but not CNGB1b S132A/S208A.  (Bottom right) Quantification of CK2-
mediated phosphorylation of CNGB1b (white) or CNGB1b S132A/S208A (black). Data 
are shown as Mean ± SEM. (CNGB1b S132A/S208A 66.44 ± 1.958% compared to 
CNGB1b wild-type. n=3 experiments, p<0.0001 unpaired t test). 
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Figure 3.3 Immunoprecipitation of CNGA2, CNGA4, and CNGB1b prior to in vitro CK2 
kinase reaction. 

Western blot results from immunoprecipitation experiments from HEK293 cells 
transfected with CNGA2-3xFlag, CNGA4-3xFlag, CNGB1b3xFlag, or HA-PACS-1. 
Samples containing immunoprecipitates bound to beads were split, and half was used for 
the in vitro kinase reaction in Figure 3.2D.  Arrowheads mark proteins of interest.  
Immunoprecipitations were performed with polyclonal anti-Flag (CNGA2, CNGA4, and 
CNGB1b) or polyclonal anti-HA (PACS-1) antibodies. 
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Figure 3.4  Mutation of CK2 Phosphorylation Sites on the N-terminus of CNGB1b 
Impairs Ciliary Trafficking of the CNG Channel. 

Representative confocal images of MDCK cells transfected with CNGA2-mCitrine and 
(A) CNGB1b-3xFlag or (B) CNGB1b S132A, S208A-3xFlag.  Citrine signal is on left 
(green).  Flag immunostaining for CNGB1b is in middle (grayscale).  Merged image with 
staining for acetylated α tubulin (red) is on right.  Bar represents 10 µm.  Average data 
from multiple cells (n=6-7) shown for (C) CNGB1b wild-type or (D) CNGB1b S132A, 
S208A.  Data were apportioned into bins of 1/10th of normalized cilia length.  Acetylated 
tubulin signal shown in red, CNGA2-mCitrine fluorescence shown in green, and anti-
Flag immunostaining signal shown in blue (arbitrary fluorescent units).  
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Figure 3.5 Alteration of PACS-1 Function Causes Impaired Ciliary Localization of the 
Complete CNG Channel Heterotetramer 

Representative collapsed confocal images from MDCK cells shown in Figure 3.4 (A) and 
Figure 3.7 (B). (A) Representative confocal images of MDCK cells transfected with 
CNGA2-mCitrine and CNGB1b-3xFlag or CNGB1b S132A, S208A-3xFlag.  Citrine 
signal is on left (green).  Flag immunostaining for CNGB1b is in middle (grayscale).  
Merged image shown with for acetylated α tubulin (red) is on right. (B) Representative 
confocal images of MDCK cells transfected with CNGA2-mCitrine and CNGB1b-3xFlag 
stably-expressing either PACS-1 WT, PACS-1 S278A, PACS-1 shRNA, or negative 
control shRNA.  Signal from CNGA2-mCitrine is shown on the left (green) and 
acetylated tubulin is in the middle (red). Merged image on the right. (C) Representative 
confocal images of MDCK cells transfected with CNGA2-mCitrine, CNGA4-myc, and 
CNGB1b-3xFlag stably-expressing either PACS-1 WT or PACS-1 S278A.  Signal from 
CNGA2-mCitrine is shown on the left (green), immunostaining for CNB1b-3x flag is 
shown 2nd from the left (grayscale), immunostaining for CNGA4-myc flag is shown 3rd 
from the left (cyan) and acetylated tubulin signal is on the right (red).  (D) Representative 
confocal images of MDCK cells transfected with CNGA2-mCitrine, and CNGB1b-
3xFlag stably-expressing either PACS-1 shRNA (top) or negative control shRNA (N.C. 
shRNA, bottom).  Signal from CNGA2-mCitrine is shown on the left (green), 
immunostaining for CNB1b-3x flag is shown 2nd from the left (grayscale), acetylated 
tubulin signal marking the ciliary axoneme is 3rd from the left (red), and the merged 
image is on the right.  All bars represent 10 µm. 
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Figure 3.6 Mutation of Either S132 or S208 Leads to Diminished Ciliary Trafficking of 
the CNG Channel 

Representative confocal images of MDCK cells transfected with CNGA2-mCitrine and 
(top images) CNGB1b S132A-3xFlag or (bottom images) CNGB1b S208A-3xFlag.  
Citrine signal is on left (green).  Flag immunostaining for CNGB1b is in middle 
(grayscale).  Merged image with staining for acetylated α tubulin (red) is on right.  Bar 
represents 10 µm.  Average data from multiple cells (n=6-7) shown for (bottom left) 
CNGB1b S132A or (bottom right) CNGB1b S208A.  Data were apportioned into bins of 
1/10th of normalized cilia length.  Acetylated tubulin signal shown in red, CNGA2-
mCitrine fluorescence shown in green, and anti-Flag immunostaining signal shown in 
blue (arbitrary fluorescent units).   
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Figure 3.7  PACS-1 Regulates Ciliary Trafficking of the Olfactory CNG Channel. 

CNGA2-mCitrine and CNGB1b-3xFlag were transfected into MDCK stable cell lines 
expressing (A) wild-type PACS-1, (B) PACS-1 S278A non-phosphorylatable mutant, (C) 
shRNA directed against PACS-1, or (D) negative control shRNA.  Signal from CNGA2-
mCitrine is shown on the left (green) and acetylated tubulin signal marking the ciliary 
axoneme is in the middle (red), with the merged image on the right.  Bars represent 10 
µm.  Average data from multiple cells (n=9-11 for each condition) shown on far right.  
Data were apportioned into bins of 1/10th of normalized cilia length.  Acetylated tubulin 
signal shown in red and CNGA2-mCitrine fluorescence shown in green (arbitrary 
fluorescent units).   
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Figure 3.8 Retrovirally-Delivered shRNA Effectively Silences PACS-1 Expression but 
Does Not Affect Cilia Length 

(A) Western blot results from lysates prepared from uninfected MDCK cells (Uninf.), 
MDCK cells stably-expressing negative control shRNA (N.C. shRNA), or MDCK cells 
stably expressing shRNA directed against PACS-1 (PACS-1 shRNA).  (Top) Blot probed 
for PACS-1 indicates loss of expression in PACS-1 shRNA stable MDCK cells. (Bottom) 
Loading control blot for actin demonstrates equal loading of protein.  Markers for 
approximate molecular weight (kDa) are shown on left. (B) Average cilia length of filter-
grown MDCK cells stably-expressing Negative Control shRNA, PACS-1 shRNA, PACS-
1 S278A, versus uninfected MDCK cells.  Data are represented as mean ± SEM. No 
statistical significance was detected (n=15 for each condition; One-way ANOVA 
p=0.9998). 
 
 



84 
 

 

Figure 3.9  Inhibition of CK2 Activity Causes a Loss of CNG Channel Localization to 
Cilia in MDCK Cells and Olfactory Sensory Neurons. 

(A,B) MDCK cells were transfected with CNGA2-mCitrine and CNGB1b-3xFlag and 
allowed time for ciliary delivery followed by 4 hours of treatment with 20 µM of the 
CK2 inhibitor, TBB. (A) Compressed confocal image of a MDCK cell with CNGA2-
mCitrine fluorescence shown in green and acetylated tubulin staining marking cilia 
shown in red.  Bar represents 10 µm. (B) X-Z projection of the cell from panel A 
demonstrating concentration of CNG channel at base of cilium.  (C) Average cilia length 
of filter-grown MDCK cells treated with 0.01% DMSO vehicle (empty bar, 5.323 ± 
0.552 n=33) or 20 µM TBB (filled bar, 5.230 ± 0.329 n=33). p=0.885, unpaired t test. 
Data are represented as mean ± SEM. (C, D) Representative compressed confocal stacks 
of coronal sections from OE from intranasally-injected CD1 mice. Confocal images of 
OE from adult CD1 mice treated with (A) DMSO vehicle or (B) 20 µM TBB for four 
hours.  Signals shown are CNGA2 immunostaining (green, left), and acetylated tubulin 
immunostaining (red, middle).  Merged images shown on right.  Bars represent 10 µm.   
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Figure 3.10 Cilia Length and ACIII Ciliary Localization are Unaffected by CK2 
Inhibition. 

(A) Average cilia length of filter-grown MDCK cells treated with 0.01% DMSO vehicle 
(empty bar, 5.323 ± 0.552 n=33) or 20 µM TBB (filled bar, 5.230 ± 0.329 n=33). 
p=0.885, unpaired t test. Data are represented as mean ± SEM. (B) Representative images 
taken from the medial surface of the olfactory turbinates exposed to either Ringer’s 
control (top) or 20 µM TBB (bottom) for 25 minutes.  Sections were coimmunostained 
with antibodies against ACIII (left, green) and acetylated α tubulin (middle, red).  
Merged images shown on right.  Bars represent 10 µm.   
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Figure 3.11  Inhibition of CK2 Alters the Ciliary Localization of Olfactory Signaling 
Proteins. CK2 Inhibition Impairs Olfactory Function. 

(A) Representative traces from paired EOG recordings from turbinate II or IIb in 
response to amyl acetate.  Mice were prepared as indicated in Materials and Methods and 
two electrodes were placed on the surface of the OE on opposite sides of the head.  OE 
was treated with Ringer’s solution control (left) or Ringer’s plus 20 µM TBB (right) for 5 
minutes and then EOG responses were recorded every 5 minutes.  Representative traces 
are shown at 5 and 25 minutes for both treatments.  Scale bars represent 0.5 mV and 2 
seconds.  (B) Average data demonstrate a rapid loss of EOG response from the TBB-
treated OE (n=5) (* p < 0.05; paired t-test).  Responses were normalized to the first trace 
taken at 5 minutes after treatment.  Arrow indicates time of drug delivery. (C) 
Representative images taken from the medial surface of the olfactory turbinates exposed 
to either Ringer’s control (top) or 20 µM TBB (bottom) for 25 minutes.  Sections were 
coimmunostained with antibodies against CNGA2 (left, green) and acetylated α tubulin 
(middle, red).  Merged images shown on right.  Bars represent 10 µm.  Arrows mark 
dendritic tracks with concentrated CNGA2 signal. Brackets denote cilia layer. 
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Figure 3.12  Expression of Mutant PACS-1 in Native OSNs Causes Mislocalization of 
the CNG Channel, but not ACIII. 

Representative collapsed confocal images of coronal sections of OE from adenovirally-
infected mice.  (A) (top) Immunostaining of a PACS-1 S278A IRES GFP-infected OSN 
(green) with antibodies against CNGA2 (red) and acetylated α tubulin (blue) 
demonstrates a loss of ciliary CNG channel from the infected OSN (white arrowhead) 
with no change in the cilia layer.  (bottom) Immunostaining of a PACS-1 S278A IRES 
GFP-infected OSN (green) with antibodies against ACIII (red) and acetylated α tubulin 
(blue) demonstrates no detectable change in ciliary ACIII or the cilia layer from the 
infected OSN. (B) Immunostaining of a GFP-infected OSN (green) with antibodies 
against CNGA2 (red) and acetylated α tubulin (blue) demonstrates no detectable change 
in ciliary CNG channel or the cilia layer from the infected OSN.  For all conditions, 
merged image shown on right (Merge), white circles mark dendritic knobs, and bars 
represent 10 µm.    
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Figure 3.13 Adenovirally-Infected Cells with Altered Morphology are Mature OSNs  

Representative collapsed confocal images of a coronal section of OE from adenovirally-
infected mouse.  A PACS-1 S278A IRES GFP-infected OSN (green, top left) can be 
visualized deep in the layer of OSNs as determined by overlay with a differential 
interference contrast image (top right).  This localization can be confirmed by 
immunostaining and colocalization with antibodies against the ciliary marker, acetylated 
α tubulin (blue, bottom left) and the marker of mature OSNs, olfactory marker protein 
(OMP) (red, bottom right).  Bar represents 20 µm. 
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Figure 3.14 Ciliary Localization of ACIII-GFP is Unaffected by Alterations in PACS-1 
Function 

Representative confocal images of wild-type MDCK cells (top) or MDCK cells stably-
expressing either negative control shRNA, PACS-1 shRNA, or PACS-1 S278A 
transfected with ACIII-GFP.  Signal from ACIII-GFP is shown on the left (green) and 
acetylated tubulin signal marking the ciliary axoneme is in the middle (red), with the 
merged image on the right. Bars represent 10 µm.
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CHAPTER 4 

CONCLUSION 

INTRODUCTION 

 Through the work of this thesis, we have established that heteromeric assembly 

with the CNGB1b subunit of the olfactory CNG channel is necessary for delivery of the 

channel to cilia of OSNs, where it functions as a major target of the olfactory signaling 

cascade.  In addition, we determined that a carboxyl-terminal RVxP motif is necessary, 

but not sufficient, for this ciliary targeting (see summary in Illustration 4.1).  After our 

work demonstrating the necessity of CNGB1b for olfactory CNG channel ciliary 

localization, it was confirmed that mice lacking the CNGB1b subunit exhibited a loss of 

ciliary CNG channel [95].  However, the mechanism for this subunit-dependent 

trafficking remained unknown.   

We showed that CNGB1b associates with the intracellular trafficking protein 

PACS-1, and that proper function of PACS-1 is necessary for CNG channel ciliary 

localization.   Since PACS-1 binds cargo on clusters of acidic amino acids containing 

CK2 phosphorylation sites, we identified two amino terminal PACS-1 binding sites on 

CNGB1b and show that mutation of these sites impaired ciliary targeting (Illustration 
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4.1).  Importantly, we were able to validate these results from our model cell culture 

system in native OSNs. 

Finally, we demonstrated a role for the kinesin motor, KIF17, in the ciliary 

localization of the CNG channel. Work in invertebrates has previously shown that 

heterotrimeric kinesin 2 and homodimeric Osm3 (invertebrate homolog of KIF17) 

function in IFT.  Here we show for the first time that KIF17, initially thought to be a 

brain-specific molecular motor, functions outside of the central nervous system and plays 

a role in the transport of ciliary cargo.  In addition to my work, KIF17 has also been 

found to function in cargo transport in photoreceptors where loss of KIF17 function leads 

to photoreceptor degradation [130], and has also been found in the placenta [173]. 

These findings are significant since they represent the first demonstration of a role 

for KIF17 in mammalian ciliary transport.  Additionally, they show a CNGB1b-

dependent trafficking of the olfactory CNG channel suggesting a delegation of functional 

responsibilities among CNG channel subunits.  These reports also define the mechanism 

for this subunit-dependent trafficking and give us some idea of the stability of membrane 

proteins once inserted in the ciliary compartment.  Finally, this work elucidates some of 

the processes controlling entry of cargo into the ciliary compartment, which may give us 

some insight into mechanisms of human disease. 

 

CILIARY TARGETING MOTIFS 

 As described in Chapter 2, we found a carboxyl-terminal RVxP amino acid motif 

on CNGB1b that was necessary, but not sufficient, for delivery of the channel to cilia.  
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This motif was originally identified as a ciliary targeting motif in the TRP channel, 

polycystin-2 [88].  Interestingly, as opposed to our studies, Geng et al. found that this 

motif was both necessary and sufficient for ciliary trafficking.  This may represent a 

difference between the cell lines used (MDCK cells versus LLC-PK1 cells) or the cargos 

in which the motif was inserted (CNGA2 versus transferrin receptor).  Recently, it was 

shown that a similar ciliary trafficking motif found in rhopodsin (xVxP) binds to the 

small GTPase, Arf4 [89, 174].  Interference with the GTPase activity of Arf4 caused a 

mislocalization of rhodopsin from the outer segments of transgenic mice.  It would be 

interesting to determine if the RVxP motif found in CNGB1b is also responsible for 

channel trafficking via the actions of Arf4. Finally, a stretch of amino acids on the 

intracellular carboxyl-terminal tail of polycystin 1 was found to be necessary for its 

ciliary localization [175].  Although the exact sequence necessary for this trafficking was 

not examined further, this stretch does contain an xVxP motif on the distal end of its 

carboxyl terminus.   

 In addition to xVxP, several other ciliary targeting motifs have been identified.  

For example, a recent study showed that several ciliary G protein-coupled receptors 

contain a loosely-conserved AX[S/A]XQ motif in their 3rd intracellular loop and that this 

sequence is necessary and sufficient for ciliary trafficking of receptors in IMCD-3 cells.  

Another group found that the ciliary localization of the small protein cystin is dependent 

on an AxEGG motif [176].  Finally, we and others have found that the PACS-1 binding 

motif, consisting of acidic amino acid clusters containing phosphorylatable serine or 

threonine residues, is necessary for ciliary transport [85, 177].   
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From these reports it is clear that, although several different trafficking sequences 

have been identified, there is not a unique, ubiquitous ciliary trafficking motif.  In fact, 

amino acid sequence analysis of known ciliary proteins fails to yield a conserved ciliary 

targeting sequence.  For example, the AX[S/A]XQ motif, found by Berbari et al,. exists 

only in a few of the over 350 predicted odorant receptors found in humans.  How are the 

other ORs entering cilia? Do they still utilize the same cellular machinery despite the lack 

of this trafficking motif?  Future work to identify the interacting partners of these ciliary 

targeting signals will allow us to determine the exclusivity of the interactions between 

motors and cargos. 

One interesting idea is that kinesin motors interact with their cargo indirectly 

through intermediate partners such as scaffolding proteins.  For example, kinesin 1 

interacts with ApoER2 through the intermediate JNK-interacting proteins (JIPs) which 

serve as cellular scaffolds [178].  In addition, KIF17 was shown to interact with the 

NMDA receptor through members of the LIN complex [146].  It is interesting to 

speculate that these different targeting motifs serve to allow interaction of members of 

the signaling cascade with each other through a scaffolding protein.   

The preformation of signaling proteins as a complex, before entry into the cilium, 

may allow a more efficient organization of the signaling cascades.  After all, the olfactory 

signaling cascade involves the coordination of a multitude of signaling proteins within a 

tiny subcellular compartment with millisecond temporal precision.  Since OSNs are 

constantly regenerating, this targeting process recurs multiple times, which highlights the 

need for a rapid and efficient process.  Virtually no information is known regarding the 
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timing of signaling complex assembly.  In addition, most mutations to known ciliary 

transport proteins cause a loss of the cilium itself.  This confounds the analysis of the 

function of the remaining ciliary transport proteins.  However, recently we have 

uncovered a mutation that impairs transport of some, but not all, of the members of the 

olfactory signaling cascade.  Hypomorphic mutations in CEP290 cause a mislocalization 

of the olfactory G proteins, without affecting ACIII, the CNG channel, or the ORs.  In 

addition, work presented in this thesis shows that inhibition of PACS-1 function impairs 

CNG channel ciliary localization without affecting ACIII.  These results could mean two 

possibilities regarding the timing of signal complex formation: members of the signaling 

cascade are transported into the cilium independently and then interact as part of a 

complex or they form a complex before entry into the cilium with no requirements for the 

presence of the entire signaling cascade.  Future work will allow us to differentiate 

between these possibilities and perhaps identify the adaptor proteins that allow 

interaction of olfactory ciliary cargo with their respective kinesin motors. 

DIFFERENCES BETWEEN CILIA TYPES 

It has been suggested that cilia and flagella are conserved organelles both between 

species and within a single organism.  Much of this has been based on the high level of 

homology of ciliary genes between species as well as the broad range of phenotypes seen 

with mutations of ciliary genes.  Early work on ciliopathies identified numerous cilia-

related phenotypes that seemed to be shared (e.g. polycystic kidneys, retinal 

degeneration, situs inversus, hydrocephaly, infertility, anosmia).  However, recent work 

has highlighted differences in ciliated systems.  For example, OSM-3 has been clearly 



95 
 

shown to play a role in maintenance of cilia length in C. elegans; however, inhibition of 

the mammalian homolog of OSM-3, KIF17, had no effect on cilia length [68-69].  LCA 

patients with hypomorphic mutations in CEP290 exhibit anosmia and early-onset retinal 

degeneration without a renal phenotype [82, 129], indicating variable requirements for 

CEP290 in normal cilia function.  Mice lacking BBS4 have been shown to be deficient in 

sperm flagellum formation, but not in the formation of other cilia types within the same 

animal [121].  Despite the existence of proteins that are required for all cilia types (e.g. 

KIF3a), we are now beginning to find proteins that are only necessary for a subset of 

ciliated/flagellated cells. 

One reason for the divergent phenotypes seen between ciliated cells upon 

mutation/loss of cilia-related proteins is the dependence of these systems on different 

signaling cascades.  For example, mutation of a protein that specifically alters CNG 

channel ciliary transport would be predicted to affect retina and OE, but not other 

systems that do not rely on the CNG channel for signaling.  This is demonstrated by the 

case of hypomorphic CEP290 mutations, which affect ciliary G protein localization in the 

OE and interactions with RPGR in the retina.  However, the renal cilia signaling cascade 

(including polycystin 1 and 2) is likely unaffected since mice with these mutations lack 

an apparent renal phenotype.  The specificity of the trafficking defect is likely due, at 

least in part, to interactions with adaptor proteins and scaffolds at the ciliary transition 

zone. 

It is becoming clear that that the divergent phenotypes seen with mutations in 

various ciliary proteins is due, at least in part, to differences in the cargo that is affected 
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by the mutation.  One pleiotropic ciliopathy with a wide range of phenotypes is Bardet-

Biedl syndrome.  Mutations in the core members of the BBS complex cause a range of 

symptoms including polycystic kidneys, retinal degeneration, polydactyly, and olfactory 

dysfunction.  Often, mutation of BBS proteins causes a loss, or at least a time-dependent 

degradation, of cilia.  However, sperm flagella formation is critically-dependent on 

proper BBS protein function [121].  The loss of cilia in these systems has hindered 

elucidation of BBS protein function in ciliary transport.  However, a recent study using 

C. reinhardtii was able to purify members of the core BBS complex (BBS1/2/4/5/7/8/9) 

and examine the dysfunction resulting from mutations in these proteins [179].  Mutants 

for BBS1, 4 and 7 are able to assemble full-length flagella, but are unable to perform 

phototaxis indicating a defect in signaling in these flagella.  Interestingly, the BBS4 

mutants still exhibit normal IFT suggesting that BBS4 may be necessary to link some 

signaling proteins to IFT machinery.  Indeed, a subset of putative signaling proteins, 

including phospholipase D and a serine/threonines kinase, were found to be accumulated 

in flagella from these mutants.  It was also found in this study that mutants for BBS1 had 

a dramatic loss of BBS4 protein, which supports the previous finding that BBS1 is a core 

interacting protein for the BBSome [180].  Therefore, a loss of function of certain BBS 

proteins can affect the localization of specific ciliary proteins, which may help to explain 

the divergent phenotypes seen in different ciliopathies.   

Many ciliary proteins, such as the BBS and IFT proteins, form complexes that are 

transported along the ciliary axoneme and are responsible for interactions with ciliary 

cargo.  However, as previously described, mutations or loss of these proteins affect 
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subsets of ciliary cargo.  It is likely that these proteins have several cytoplasmic faces 

responsible for interacting with multiple ciliary cargos.  Thus, mutation in one cargo 

interaction site may not affect transport of other cargo, whereas mutation of a site 

necessary for interaction with the entire IFT complex may interfere with transport of a 

larger number of proteins.  The idea that BBS is caused by mutations in any member of 

the BBSome and that mutations at different sites within a single BBS protein may affect 

different cargos could explain the various phenotypes seen within the BBS patient 

population.  Future work to identify the exact function of ciliary transport proteins, such 

as the IFT or BBS complexes, will allow further insight into the mechanisms contributing 

to the diverse phenotypes seen with different ciliopathies. 

BASAL BODY/ TRANSITION ZONE PROTEIN COMPLEX 

 A major site for the regulation of cargo entry into the cilium is the basal 

body/transition zone.  The basal body is a modified centriole from which the ciliary 

microtubules project.  The transition zone is a region between the triplet microtubules of 

the basal body and the double microtubules of the ciliary axoneme.  A complex of 

proteins exists at the transition zone that acts as a docking site for cargo and IFT proteins 

and serves to restrict access to the cilium.  For instance, even overexpression of small 

non-ciliary proteins such as GFP will not force aberrant entry of this protein into the 

ciliary compartment.  Specific interactions of the members of this protein complex with 

ciliary cargo likely mediate the differential trafficking phenotypes seen with loss or 

mutation of complex proteins. 
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 Although some of the members of the basal body “gate” complex have been 

identified, very little is known about how these proteins function or what other potential 

partners also localize to this critical region.  It has been shown that some members of the 

nephrocystin family are localized to the ciliary base in several cell types, including 

respiratory cells and OSNs [82, 85].  Members of the BBS family of proteins are often 

found at the base of cilia; however their localization in OSNs remains virtually 

unexplored, with only one report localizing BBS4 to the “ciliated border” of the OE [84].  

One member of the nephrocystin family, CEP290, is also found in the dendritic knob 

[82].  Finally, PACS-1 is highly localized in the dendritic knob.  These proteins most 

likely represent only a fraction of the constituents of the basal body/transition zone 

complex.  In addition, due to the complex nature of the dendritic knob, high-resolution 

microscopy, such as immunogold localization, is necessary to pinpoint the exact location 

of these proteins with respect to the basal body and transition zone. 

 While the exact function and structural components of the ciliary “gate” remain 

poorly understood, there are some striking similarities between this barrier and the 

nuclear pore complex.  For example, some members of the IFT complex share homology 

with the COPI vesicle proteins, which are structurally similar to components of the 

nuclear pore complex [181].  Transport through the nuclear pore is regulated by RAN 

GTPase, which interacts with cargo containing nuclear localization signals.  Interestingly, 

work done in collaboration with the Kristen Verhey laboratory has found that the ciliary 

motor KIF17 contains an amino acid sequence similar to a nuclear localization signal, 

which is necessary for entry into the cilium.  Interestingly, the fragment containing this 
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sequence is also able to enter the nucleus, presumably thought the nuclear pore complex.  

In addition to these findings, the Retinitis Pigmentosa G-protein Regulator protein, which 

also functions as a guanine nucleotide exchange factor, has been found at or near the 

transition zone in several cell types [182].  It will be interesting to see if there are further 

similarities between the nuclear pore complex and the molecular gate at the ciliary 

transition zone. 

ROLE OF KIF17 IN CILIA TRANSPORT 

 While we demonstrated that KIF17 is essential for ciliary localization of the 

olfactory CNG channel, the exact role KIF17 is playing in this pathway remains unclear.  

KIF17 was found along the ciliary axoneme in MDCK cells and in the ciliated border of 

the OE, which would suggest that KIF17 is functioning in IFT like its invertebrate 

homolog Osm3.  However, IFT occurs at a relatively fast rate, on the order of 1-2 

microns/sec.  Analysis of CNG channel mobility in MDCK primary cilia showed an 

extremely long time of recovery, with a time constant over 10 minutes.  This indicates 

that it is unlikely that KIF17 is actively moving the CNG channel within the cilium.   

 If KIF17 is not actively transporting the channel along the ciliary axoneme, how 

is it controlling the channel’s ciliary localization?  One explanation could be that KIF17 

is responsible for the transport across the transition zone.  There is evidence of a vesicular 

pool near the basal body, however the site of vesicle fusion where transmembrane 

proteins like the CNG channel are inserted remains poorly understood.  Perhaps ciliary 

transmembrane proteins are transported on vesicles by cellular kinesin and myosin 
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molecular motors, inserted into the plasma membrane, and then transported across the 

transition zone by KIF17.   

 Another possibility is that KIF17 does not participate in IFT or in moving proteins 

across the transition zone, but rather delivers cargo-containing vesicles to the site of 

fusion at the base of the cilium.  In this case, one would expect that inhibition of KIF17 

function, as is found with the use of a KIF17DN would still impair ciliary localization of 

its cargo.  Interestingly, KIF17 has been shown to be involved in a direct transport of 

NMDA receptor-containing vesicles from the ER to Golgi outposts in the dendrites of 

hippocampal neurons [183].  Also, work on nephrocystin ciliary trafficking found areas 

of the Golgi marker, Golgin97, at the ciliary base in respiratory epithelial cells [85].  

Perhaps KIF17 is involved in the transport of the CNG channel through the secretory 

pathway by directing trafficking from the ER to Golgi protein-rich regions at the base of 

the cilium.  Future work is necessary to differentiate between these possibilities. 

FUNCTIONAL COOPERATION OF MAMMALIAN CILIARY KINESIN MOTORS 

 Most of the early advances in the understanding of cilia biology came from the 

use of invertebrate systems.  In fact, the discovery of IFT was made in the laboratory of 

Joel Rosenbaum using the biflagellate green alga Chlamydomonas [62].  It was found in 

C. elegans that there were two molecular motors responsible for building cilia: 

heterotrimeric kinesin II and homodimeric Osm3 [184].  These two motors function in a 

coordinated manner to build the cilium, with kinesin II building the 4 µm-long 

microtubule doublets extending from the basal body, and  Osm3 forming the 2.5 µm-long 

distal microtubule singlets [66].  Interestingly, we found no effect on average cilia length 
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when KIF17 function was inhibited in MDCK cell primary cilia [68].  This apparent 

difference between invertebrate and mammalian cilia could arise from a functional 

specialization of duties for the two ciliary kinesin motors, where kinesin II is responsible 

for the assembly and maintenance of cilia while KIF17 is important for the delivery of 

signaling proteins into the ciliary compartment.  However, it is also important to note 

that, in C. elegans, Osm3 is required for building the distal segments of cilia, which are 

composed of singlet microtubules.  Transmission electron microscopy experiments 

performed in our laboratory failed to detect the existence of a singlet microtubule “distal 

segment” in MDCK primary cilia, leaving open the possibility that KIF17 does play some 

role in maintenance of cilia length at least in the case of cilia with singlet microtubule 

extensions.  Interestingly, mammalian olfactory cilia axonemes contain extremely long 

singlet microtubule extensions which extend over 50 microns.  It would be interesting to 

perform experiments examining the role of KIF17 in ciliary transport in native OE by 

examining OSN structure in the presence of the KIF17DN or in a KIF17-null 

background. 

SUMMARY   

 In summary, the work of this thesis has shown that heteromeric assembly with the 

CNGB1b subunit of the olfactory CNG channel is necessary for ciliary trafficking in 

OSNs, where it functions as a major target of the olfactory signaling cascade.  We 

demonstrated that a carboxyl-terminal RVxP motif is necessary, but not sufficient, for 

this ciliary targeting (see summary in Illustration 4.1).  We were able to define the 

mechanism for subunit-dependent CNG channel trafficking by demonstrating that 
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CNGB1b associates with the intracellular trafficking protein PACS-1, and showing that 

PACS-1 function is necessary for CNG channel ciliary localization.  In addition, we have 

shown a role for the kinesin motor, KIF17, in the ciliary localization of the CNG channel: 

the first report of KIF17 participating in mammalian ciliary transport.  Importantly, we 

were able to confirm much of this work by examining mechanisms of ciliary transport in 

native OSNs. 

 Additional experiments are necessary to further elucidate the mechanisms of 

mammalian ciliary transport.  Hopefully the work of this thesis will provide a starting 

point for studies of cilia trafficking in OSNs, and will allow the further expansion of our 

thinking regarding the mechanisms a cell utilizes to control subcellular localization of 

signaling proteins.  I am glad that I was able to contribute to this exciting and rapidly 

expanding field of cilia biology. 
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Illustration 4.1 Model of Requirements for Olfactory CNG Channel Ciliary Localization 

The olfactory CNG channel comprises 3 subunits: CNGA2 (red), CNGA4 (yellow) and 
CNGB1b (blue).  CNGB1b contains two amino-terminal PACS-1 binding sites (yellow 
stars) which can be phosphorylated by CK2.   In addition, CNGB1b contains a carboxy-
terminal RVxP motif, which is necessary, but not sufficient for CNG channel ciliary 
localization.  The CNG channel is transported into cilia through the actions of the 
homodimeric kinesin motor, KIF17 (green).  PACS-1, which is also phosphorylated by 
CK2, localizes to the basal body-containing dendritic knob and controls ciliary 
localization of the CNG channel in OSNs (shown in orange).
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APPENDIX I 

COPYRIGHT RELEASES 

 
• Jenkins, P.M., McEwen, D.P., and Martens, J.R. (2009). Olfactory cilia: linking 

sensory cilia function and human disease. Chem Senses 34, 451-64. 
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channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17. 
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