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SUMMARY

Integral equations for the flow in a conical hypersonic nozzle with a thick
boundary layer have been formulated and some approximate solutions of these
equations have been studied. A method developed by Burke3 for calculating
boundary layer thickness using empirical correlations has been extended to a
relatively broad range of stagnation conditions and has been used to compute

the effect of boundary layer development upon hypersonic nozzle flow.
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NOMENCLATURE

At throat area
A geometric area
geom
A effective area
eff
a atom mass fraction
CP specific heat at constant pressure
c, skin friction coefficient
) boundary layer thickness
o* displacement thickness
62 momentum thickness
63 energy thickness
5% 5% - 5*2/2R
— 2
?Z 62 ) 22/ 2R
63 63 - 63 /2R
A thermal boundary layer thickness
€ stagnation internal energy per unit mass
e; initial internal energy per unit mass
*
50,
H 6*/6 9
Hi incompressible value of 6*/5 5
6 useful core angle
uc
9W nozzle wall angle
haw adiabatic recovery enthalpy
h0 stagnation enthalpy
h enthalpy
h AO atom heat of formation per unit mass
Le Lewis number
M Mach number
m mass flow
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NOMENCLATURE (continued)

il viscosity
kinematic viscosity

p pressure

Pr Prandtl number

q heat flux

Qc arc chamber volume
R nozzle radius
Re

Reynolds' number

r radius

ry throat radius

p density

St Stanton number

T temperature

TO stagnation temperature

T shear stress

u velocity

u, free stream velocity

\4 radial velocity in conical flow
X distance from nozzle throat
y distance from wall

w viscosity index

Y ratio of specific heats

Subscripts and Superscripts

aw adiabatic recovery
e free stream or core
R reference value

uc useful core

w wall

()* quantities evaluated at the Eckert reference temperature
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I. INTRODUCTION

In supersonic wind tunnels the boundary layers on the walls of the test section
are quite thin and so have only a small effect upon the test section flow. On the
other hand in hypersonic tunnels for M > 4 the boundary layer occupies an appre-

2

ciable portion of the test section, 1 and then the performance of a wind tunnel
depends strongly upon the boundary layer behavior. In the present work the effect
of the boundary layer upon the test section conditions in a hypersonic wind tunnel

with a nozzle of fixed geometry is investigated.

In supersonic wind tunnels with fixed test section to throat area ratio the test
section Mach number is constant and the pressure and temperature are directly
proportional to the stagnation chamber pressure and temperature. The effect of
the boundary layer on the test section flow is essentially of second order1 and is
taken into account by adding the boundary layer displacement thickness to the
perfect fluid nozzle contour. Even if this thickness is off by a factor of 2 the

effect upon the nozzle flow will be extremely small.

In hypersonic tunnels on the cther hand the test section Mach number varies

appreciably with stagnation conditions even when the nozzle geometry is fixed,

and of course the relation between test section temperature and pressure and stag-
nation conditions is considerably more complex than in the supersonic case. This
drastic change in behavior comes about because, at the high stagnation enthalpies
needed to produce hypersonic flow, variations in the molecular weight and specific
heat of the test gas during the expansion appreciably affect the flow, and because
at these high Mach numbers and temperatures the boundary layer may occupy

50% or more of the test section area. Both of these effects are quite sensitive to

the stagnation pressure and enthalpy.

In the design of hypersonic nozzles4 the contour of the inviscid core of the
nozzle can be calculated using the method of characteristics. The boundary layer

displacement thickness is then added to the core in order to determine the
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hypersonic nozzle contour. The situation is quite different if the variation of test
section conditions with stagnation conditions is to be determined for a fixed geom-
etry nozzle. Then because of the preponderance of the boundary layer, and because
of the interaction between the boundary layer and the core, the inviscid and boundary
layer flows must be computed simultaneously. Thus just as in the case of external
hypersonic ﬂows5 there is a strong interaction between the viscous boundary layer

and the external inviscid flow.

The computation of hyper sonic nozzle flow thus poses many difficulties. The
simple analytic formulae which apply to supersonic isentropic nozzle flows are no
longer applicable, and to compute the flow in the inviscid core it becomes neces-

sary to use either gas tables6x 19 or charts?027 or to employ empirical formu-

13628-35 for the properties of the gas in question. Further there is the question
of whether or not the gases in the core are in chemical equilibrium or whether the
flow is frozen. 36-45 Usually there is equilibrium until some point beyond the noz-

zle throat where then over a fairly short region freezing cccurs.

Finally in computing nozzle flow it is necessary to determine the thickness
of the boundary layer. The stagnation densities under consideration in the pres-
ent report are sufficiently high that, at least from the discussion of Enkenhus, 4
it appears reasonable to assume that the boundary layer will be turbulent through=
out, A laminar boundary layer comes under consideration only in the case of low
density tunnels. Boundary layer thicknesses have been calculated by either inte-
grating the VonKarman boundary layer integral equations starting at the throat

9

-0l or by using empirical formulas to
1,3,52, 53

and contrinuing to the test section
compute the boundary layer thickness at the test section directly.
Because of a lack of a detailed understanding of turbulerce either method of deter-

mining the boundary layer thickness is inherently empirical.

In the work below the integral equations for the combined core and turbulent
boundary layer flow in a conical hypersonic nozzle are derived. Assumptions

and empirical relations required to solve these integral equations are discussed,
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however, an exact solution of these equations is beyond the scope of the present
study. Finally, empirical boundary layer thickness correlations have been used
to compute the effect of boundary layer development upon the performance of a

specific nozzle over a wide range of stagnation conditions.

II. FLOW IN THE HYPERSONIC NOZZLE

A. Formulation of Integral Equations for Nozzle Flow

The problem at hand is the simultaneous solution of the conservation equa-
tions in both the inviscid core and the boundary layer of the tunnel nozzle.
Schlichting54 and Atkinson and Golds’tein55 have calculated the simultaneous de-
velopment of the incompressible boundary layer and the core flow in a diffuser,
and in the inlet section of a pipe. Burke3 appears to be the only one to have made
a similar calculation for the flow in a hypersonic nozzle. Following Schlichting
the conservation equations will be simultaneously formulated for both the core

and boundary layer flows.

In the present case the boundary layer thickness is of the same order as the
radius of the nozzle, consequently the effect of transverse curvature, which has
been discussed by Durand and Potter, o6 and Michel, 48 must be taken into account.
The coordinate system used in the present case is the same as that used in Ref-
erences 48 and 56 and is shown in Figure 1. The analyéis will be restricted to

a concical expansion nozzle.

The flow is divided into a useful inviscid core and a boundary layer of thick-
ness 6. The mass flow will be computed across the surface S = constant in the
boundary layer and the adjoining spherical cap of radius RC in the inviscid core.
If Ve is the component of the core velocity normal to the spherical cap, then the

mass flow m is given by



6
uc

)
m = [ 21 rpu dy + J peVe' 27 Rc2 sin 6 d6 (1)
0 0

In general the velocity distribution within the core must be computed by the meth-
od of characteristics. The flow through an inviscid conical nozzle will be of a
source type, and it will be assumed that even with a boundary layer the core flow
behaves as a source flow so that Py and Ve in Equation 1 are constant. There

e qe s .. . 3
are some indications that this is not too unreasonable an assumption to make.

As in References 48 and 56 the displacement thickness is defined by the

relation
o* 0
j 27 rp u, dy = J 2m r(peue - pu) dy (2)
0 0

Here Uy the velocity at the edge of the boundary layer, is

u = Ve cos (HW - Quc) (3)

and since

r=R-ycos6?W (4)

it follows from Equation 2 that

RO * -9*—2005 6 . (5)
2 w

)
J 21 r(peue - pu) dy = 2 peVe cos (GW - Guc)
0

Combining Equations 4 and 5 with 1 the following expression is obtained for m



2
. 2 )
m = 27rpeVe [RC (1 - cos Quc) + |RS - 5~ cos Qw) cos (QW - euc)
S 6
- |Ro* - —5- cos QW cos(@w-euc) . (6)

In Appendix A it is shown that to a very close approximation Equation 6 can be

replaced by the much simpler approximate expression

2

m = ﬂpeVe (R - 6%) (7)

provided that QW << 1, This generally is the case; for example, in the Univer-
sity Hot Shot Tunnel HW = 17.5° and the error introduced by using Equation 7 is of
the order of 1% assuming 6*/R ~ 0. 25 and §/6* ~ 2.

In formulating the momentum equation it will be assumed at the outset that
QW << 1 so that the velocity distribution across the nozzle will be approximately
as shown in Figure 2. In view of the calculation of mass flow above, this assump-
tion appears reasonable. Assuming that the pressure remains constant across
the boundary layer application of conservation of momentum to a control volume

of length dx (see Figure 2) yields the equation

R

d 2 2

x [J 27 pu rdr] =-7R%dp - 7 27Rdx . (8)
0

For the case Qw << 1 the relation between r and y becomes

r=R-y (9)

and Equation 5 defining the displacement thickness 8* becomes

1- pu)dr (10)




where the subscript e refers to the isentropic core flow. It is in the present case

expedient to carry the integration in Equation 10 from the tunnel axis to the wall

rather than only across the boundary layer. Since it is assumed that there is a

uniform core this change from Equation 5 will not affect the results.

Again as in References 48 and 56 a momentum thickness &

2
relation
62 )
2rr(p u 2) dy = JZN rp(u u - u2) dy
ee e L
0 0

Changing variables and extending the integral on the right side of Equation 11

across the entire nozzle there results the relation

2 R
62 — pu u,r
Gz'aﬁ*"’fjpu (1- ) gdr
0 e e e

After some simple algebraic manipulation it is possible to show that

R 2
2 2 — '2—< R 2
J pu rdr——peue Réz— Rpeue ) +—§—peue
0
so that the momentum Equation 8 becomes
d 25— d 2— d [R? 2o R%ap
= 2z *) o & (2 LI o)
dx (peue R 62) T & (Rpeue 6%) ax | 2 Pele 2 dx | RTw

From Equation 7 for the conservation of mass it follows that

d 2
I (peueR ).

DO =t

da ) -
dx(peueRG)_

Combining Equations 14 and 15 the momentum equation becomes

dd, —{ﬁ+zd“e 1 %, 1dRJ R [dp e

C
f
= % T &, & TR&x|C2t )
e e 2peue
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is defined by the

(11)

(12)

(13)

(14)
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If the core flow is isentropic, which implies either frozen or equilibrium flow,
then

dp due
dx = " PeYe ax (17)
so that Equation 16 becomes
ds . - du ¢
2 —|H+ 2 e d f
ax 0 {“‘“‘ue & P ax AR =g (18)

where H = ﬁ/é—zo Thus, with an isentropic core the integral momentum equation
for the entire nozzle reduces to the same form as the boundary layer momentum
integral equation. This result is identical with that of Schlichting48 for the incom-
pressible flow in an axially symmetric diffuser. It should be observed that since
the flow in question is turbulent, the fluid velocities used in formulating Equations
18 and 7 are average values. The effect of transverse curvature enters through
the fact that Equation 18 is in terms of the quantities 6, and H rather than in terms

5* 2
, 6%and H = —
2 5,

If hO is total average enthalpy then application of conservation of energy to

of the usual parameters &

the control volume in Figure 2 yields.

R
d _
a—;{J' 2 rpuhodr] =21 wa, (19)
0

where qW is the heat flux per unit area from the wall to the fluid. Definition of

an energy thickness 63 by
03 A
J 2 rpeuehoedy = J' 21 rpu (hO - hoe) (20)
0 0

as is also done in Shapiro, o7 leads to the relation



@ =

R
63 =5 [
0

In Equation 20 A is the thickness of the thermal boundary layer. Using Equation 21

-1 dr . (21)
Pele oe

and the continuity equation, and assuming an adiabatic core flow so that hOe remains

constant. Equation 19 can be recast into the form

d

3 —d
= (In peueR) =

a
W
= 0%

3 (22)
e e oe

Equation 22, which is valid for the entire nozzle, has the same form as the bound-

ary layer energy integral equation given by Shapiro. o1

B. Discussion of the Nozzle Integral Equations

Determination of the nozzle flow now requires simultaneous solution of Equa-
tions 7, 18, and 22 for the conservation of mass, momentum and energy in order
to determine the displacement and momentum thicknesses §* and 62° Equations
18 and 22 are closely related to the conventional boundary layer integral equations;
however, while Uy the external velocity, is usually known the nozzle problem is
complicated by the fact that the variation of u, is itself dependent upon the solution

of Equations 18 and 22 for u, must satisfy Equation 7 for the conservation of mass.

Methods of solving the turbulent boundary layer integral equations are discussed
in References 1, 46, 48, 49, 51, 57, and 58. Because the relation between the tur-
bulent transport of momentum and energy and the average fluid velocity is not yet
understood, all of these methods require a number of empirical assumptions,

which are discussed below.

A key assumption in many boundary layer studies is that the velocity profilé
at any point in the boundary layer can be described by a universal relation of the

form

=%%0 (23)




This assumption is verified experimentally for fully developed incompressible
pipe flow and for the incompressible turbulent boundary layer on a flat plate. It
is found that boundary layer and pipe velocity profiles are well represented by

the relation58

Bl

(24)

u
u

y
0

e

where n varies from approximately 5-12 with increasing Reynolds number. A
universal logarithmic velocity profile valid over a wide range of Reynolds num-
ber also can be derived starting from the Prandtl mixing length hypothesis or from
the VonKarman similarity hypothesis. o8 Because of its greater simplicity, the
power law profile of Equation 24 has been used in most investigations. The fact
that Equation 24 is equally valid for flat plate and pipe flows means that this rela-
tion is unaffected by the transverse curvature of axisymmetric nozzle boundary

layers.

Even though Equation 24 is strictly valid only for pipe or flat plate incompres-
sible flows, many investigators have used this velocity profile in the study of
compressible turbulent boundary layers with a favorable pressure gradient. 1,4,48, 57
An alternative assumption is based on the application of the Stewartson Transfor-
mation to the turbulent boundary layer momentum integral equations. In that case
Cohen63 and Reshotko and Tucker49 have assumed that the velocity profile satis-
fies Equation 24 in the transformed variables. The validity of this approach is
in part supported by Spence”s64 study of boundary layer data. Most boundary
layer studies make the assumption that favorable pressure gradients do not have

a major effect upon the boundary layer velocity distribution.

In incompressible flow the momentum and displacement thicknesses can be
determined as a function of the boundary layer thickness 6 once the velocity pro-
file is known. In compressible boundary layers, on the other hand, a knowledge

of the density and therefore the enthalpy variation is also required. Thus the



energy and momentum equations are coupled and must be solved simultaneously.
One approach to this problem which eliminates the need to directly solve the en-
ergy equation is to use the Crocco relation
h -h
O -

o w _u
h -h u
oe W e

(25)

between the total enthalpy and velocity variation across the boundary layer. The
Crocco relation is strictly valid only when free stream and wall properties are
constant and when the laminar Prandtl number is equal to one. 61 Equation 25
implies that thermal and velocity boundary layer thicknesses are equal. Even

when free stream pressure is variable and when Pr # 1 the Crocco relation has

been used in the modified form4’ 46, 65
u u
h = hW + (haw - hW) 1—1— - (haw - he) 1—1— ’ (253.)
e e
where the recovery enthalpy, haw’ is given by
h =h+P 3w -n). (26)
aw e r oe e

Burke52 has advanced the argument, similar to that given by Lees60 for laminar
flow, that for h w/ haw << 1 the effects of favorable pressure gradients upon
boundary layer behavior will be small so that then it is not unreasonable to ex-

tend the use of the Crocco relation.

An alternative approach, which was used by Bartz, 4T is to actually solve

the energy integral equation. Thus Bartz assumed a power law of the form
y
A) (27)

for the total temperature variation across the boundary layer, where A is the

thickness of the thermal boundary layer. Clearly Equation 27 is closely related

-10-



to the Crocco relation. In order to solve the energy Equation 22 a relation between
the wall heat flux and other boundary layer parameters is required. For this pur-

pose Bartz used the modified Reynolds analogy.

] cf/2

W
11 0. 46

St= o -h )"
Pr

(28)

A

o

e e aw

for the case in which thermal and velocity boundary layer thickness are not equal.
Even when the Crocco relation is used it still is necessary to use some form of the
Reynolds analogy to compute wall heat transfer. Other authorss’ 59 have found
that the incompressible form of the Reynolds analogy with a correction factor to

account for diffusion effects remains valid so that

St = ; Pr-z/3 l:l + (Lez/3 -1) (______Iiae - iw)) hAOJ’ (29)
aw w

Equation 29 is based on the assumption that air may be approximated as a binary

mixture of atoms and molecules. « is the mass fraction of atoms, h AO is the

heat of formation per unit mass of atoms, and Le is the Lewis number. If Le =1

or if ae = aw = 0 as is to be expected in the hypersonic portion of a wind tunnel

nozzle, then Equation 29 indicates that diffusion has no effect upon the Reynolds

analogy.

For the solution of the momentum Equation 18 and for the calculation of heat
transfer from Equation 29 a relation between the skin friction coefficient and the
parameters of the flow is required. Since the mechanisms of turbulent transport
are not yet understood it is necessary to introduce an empirical skin friction law,
and this fact introduces the major uncertainty into the results of turbulent boundary

layer calculations. 4

Measurements of fully developed pipe flows have provided the basis for the
empirical power law expressions for the friction coefficient. 58, 61 In the incom-

pressible case it has been found that experimental results for smooth pipes could

-11-



be correlated over a limited Reynolds number range by a relation of the form

Tw peueR -
cle uz=A m , (30)
2 Pe e

where u, is the velocity at the center of the pipe and R is the pipe radius. What is
significant is that these laws remain valid for boundary layers provided that R and
u, are replaced by the boundary layer thickness and the free stream velocity.

Pramdtl61 has shown that Equation 30 leads to a velocity distribution of the form

- X’ (31)

which of course has the same form as Equation 24. By substituting Equations 30
and 31 into the momentum integral equation for a flat plate turbulent boundary layer

it is possible to express the friction coefficient in the form

1 . _m _m
-m_:r_l[(m+ 1)(m + Z)ZI' m+ 1 (uex) m+1

14
e

5 (32)

csz m (2 - m)

where x is the distance from the leading edge of the plate and it is assumed that
the boundary layer is turbulent over the entire plate. In the case of the well known

Blasius law with A =. 0466 and m = 1/4 this leads to the result

]
o=

u X

£
v
e

c, =.0592

; (33)

For a flat plate it also can be shown from Equation 31 that

so that the friction coefficient can be expressed in the form

-12-



1
m - =
¢ = A {m_:l Re5 4 (34)
2

2 (m+ 2)
where
pud
Re6 __ee 2
2 ue

Since Equation 30 has been found to apply both to pipe flow and flat plate bound-
ary layers its validity should in no way be affected by the transverse curvature
effect. On the other hand the derivations of the friction law in terms of the dis-
tance x from the leading edge or the momentum thickness are based on the assump-
tion of two dimensional boundary layer flow, and therefore may no longer be
applicable when 6/R ~ O(1). In Appendix B it is shown that in this case the rela-
tion between Cs and x should, to first order in 8/R, take the form

) mril 1.

} (34)

where the constant k 4 is defined in Appendix B, and Ctp is the plane value of the

friction coefficient given by Equation 33. Numerous authors have used the flat

u x
£

v
e

X
c.=¢C 1-k,=
f fp[ 4 R

plate relations in the analysis of nozzle boundary 1ayers4’ 0,46 and of course this
procedure will be valid if the boundary layers are thin compared to the radius

of curvature. On the other hand Mi.chel48 in his nozzle boundary layer study has
taken transverse curvature into account by starting with a friction law based on

the boundary layer thickness 5.

Incompressible skin friction laws also have been derived starting from either
the Prandtl mixing length hypothesis or the VonKarman similarity hypothesis.
The resultant friction laws, the best known of which are perhaps the Prandtl and
the VonKarman Schoenherr relations, are logarithmic in form, and are valid over

58, 61
a much larger Reynolds number range than the power laws.

-13-



Remarkably it has been found that the incompressible friction laws can be
extended to compressible flows if the density and viscosity are evaluated at an
appropriate reference temperature.s’ 61, 66, 68 Frequently the Eckert reference

temperature

X — -
T 0. 50 (Te + TW) + 0. 22 (Taw Te) (35)

has been used, or in the case of variable specific heat and dissociation Hayes and
Probstein5 suggest evaluation of p and pat a temperature corresponding to the

reference enthalpy

* = -
h* = 0. 50 (he + hW) + 0. 22 (haw he). (36)

The situation is somewhat different for a highly cooled stagnation point boundary
layer. In this case, since the free stream Mach numbers are small and since
the major part of the temperature change is confined to the laminar sublayer Rose,

et 2111,6'7 suggest use of the incompressible skin friction formula.

Compressible skin friction formulas also have been derived using the Prandtl
mixing length hypothesis. Van Driest has used this method to derive his well
known skin friction formu1a50 for a perfect gas and others have extended his work
to include the effects of dissociation.4’ 59 Dorrance59 also has computed a fric-
tion coefficient for dissociated turbulent boundary layers starting with the Prandtl
hypothesis. The Van Driest and Dorrance formulae are considerably more com-
plex than the power laws, though perhaps applicable over a wider Reynolds num-

ber range.

It is clear that a large number of skin friction formulas are available.
Enkenhus and Maher4 have calculated the heat transfer at a nozzle throat using
several different friction laws and found heat transfer rates ranging from 4200
BTU/ft2 sec to 12,300 BTU/ftz sec indicating the importance of the choice of
friction coefficient. The best agreement with experimental results seems to be
obtained when the reference enthalpy concept is used in conjunction with either

a power law or one of the incompressible logarithmic formulas, or if the

-14-



Van Driest or Dorrance friction laws are used. 4,46, 48

In general it is assumed
that the friction laws are not affected by a favorable pressure gradient. Varia-
tion of free stream properties is taken into account by using local values of velocity,

density and viscosity to evaluate the Reynolds number.

Solution of the momentum integral equation also requires a knowledge of H,
the ratio of displacement to momentum thickness. In boundary layers with
adverse pressure gradients, the velocity profiles do not obey the power law
(Equation 23) and in the case of incompressible flow Von Doenhoff and Tetervin
have shown that H acts as a form parameter which determines the nature of the
velocity profile. Thus one approach to a solution of the boundary layer integral

equations is to consider H and 6, as the basic variables and to use an empirical

2
equation relating H, 62, shear stress and pressure gradient in conjunction with

the momentum equation in order to obtain H and the displacement thickness.

With a favorable pressure gradient, such as will be the case in a wind tunnel
nozzle most investigators have assumed a velocity profile of the form given by
Equation 24. In incompressible flow Hi then is determined by the definition of
6* and 52,

nolds number. The subscript i here denotes the incompressible value of H. In

its value being dependent on n in Equation 24, and hence on the Rey-

compressible flow H also depends upon the variation of the density across the
boundary layer. With increasing free stream Mach number Moo and recovery

enthalpy there is a large increase of the displacement thickness 6* relative to

the momentum thickness so that H increases drastically. Most investigators46’ 48, 62

have used the modified Crocco relation (Equation 25a) to compute p and hence the

68

form parameter H. Using this approach Michel ™" has computed and tabulated H

for a perfect gas with constant specific heats over the range

h
OS(—aﬂ—lgoo; OSB'VLSI‘j

h
e aw

for n = 5 (Equation 23) and Hi =1, 4, and for this case also gives the approximate

formula

-15-



b w \ By = Py
—l_z-- 15+ 1.222—'h-—
/

+ BH, (37)

H=1.4+ 2.222(
e

where 6H is a correction factor which depends upon h W/ haw and (hé1 v/ he -1).

For a perfect gas with constant specific heats Sivells gives the formula

Twl Taw - Te\
e e

which agrees with experiment up to Mach numbers of 5. 0. Equations 37 and 37a

appear to be in reasonable agreement, and with the exception of the factor 8H, are

identical when T =T .
w e

In Reference 57 values of H are tabulated for Hi =1,286, n =7 and up to

MOo = 10. Corrections for real gas effects are discussed by Michel.

The form factor appearing in Equation 18 is

I
DN ¥*

rather than the usual factor

=

ti
oolo»
o | o*

The effect of transverse curvature upon H has been investigated by Michel,

who found that to a reasonable degree of approximation

1
as]]

H

for turbulent boundary layers with a cold wall. In the extreme case of 5/R =1

andh_=h _ Michel found that H/H = 1, 05.
w aw
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C. Approximate Hypersonic Solutions of the Nozzle Momentum Integral Equation

Solution of the boundary layer integral equations usually requires numerical
integration. Under certain conditions, such as when the core flow is hypersonic,
the equations can be sufficiently simplified to permit closed form integrations.
One cannot expect the resulting solutions to agree exactly with experiment; how-
ever, the solutions do provide a guide to the interpretation of experimental data
in that they show how key parameters such as the free stream Mach and Reynolds
numbers influence the boundary layer behavior. Closed form solutions have, for
example, been found by Cohen, 63 who applied the Stewartson transformation to the
boundary layer integral equations, and by Burke, 02 who utilized assumptions
valid when the core flow is hypersonic. The assumptions utilized by Burke are
used below to simplify the complete nozzle integral momentum equation (Equa-
tion 18). The effect of using various forms of the skin friction law are then

explored.

The analysis starts from the momentum equation

dg; — | = 1 due d i
_de +62 (H-ﬂ- 2)-&;&—'+E}z<lnpeR) :7 y (18)
and the continuity equation
m = TP, (R - 6*)2 . (7)

It is assumed that the inviscid core flow is hypersonic so that

(y-1) .0 2.
M >> 1 (38)

and that
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A futher assumption is that the fluid behaves as a perfect gas at the low static
temperature of the hypersonic free stream so that Reece's approximate flow
equations (see Appendix C) can be used. The coefficients of 6_2 and ¢, can then
be simplified sufficiently to make an explicit solution of Equation 18 possible,

as is shown below.

Since the free stream behaves as a perfect gas it follows that

.Yl 2
- =1+ 5 Me . (40)
pe e
Since
u =vyRT M (41)
e e e

combination of Equations 40 and 41 yields

due: 9 dMe 1
dx Me dx (y-1) M

1
u 2
e

(5]

1
—_— . (42)
M 4”

As long as the free stream behaves as a perfect gas

1

—_ -

Yy -1
_ y-1 .2
pe - pO F(p09 hO) [1 + 2 Me J 9 (43)

where F(po, ho) is a function of the stagnation conditions. Thus for fixed

stagnation conditions

j dog dinp) 2 1 Mg 1
—_— dX = dx g ~ 1 ° M dx 1 + O —_—'_2' o (44)
Pe 14 e (y - 1) Me

If it is assumed that the diverging part of the nozzle is conical R = wag Therefore

d(ln R)

1
dx R

IQ-
=

1

(45)

(o))

X
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As shown in Appendix C, the Mach number Me and the effective core area are

related by

2(y - 1)
= 12 [{,r=1 02
Aggr =1y By h) Ay M_ [w 1 (1 g My ﬂ (C-5)

where f1 (po, ho) is a function of the stagnation conditions and is discussed in

Appendix C. It now follows that for fixed At and stagnation conditions
\

dA dM
1 eff 2 1 e 1+O[ 1 } . (46)
( 2

Aeff dx y-lMe dx y-l)Me

If the modified Crocco relation holds it follows that, since hW <<L ho’ the
maximum enthalpy within the boundary layer is only about 1/4 ho' Consequently
it should not be too unreasonable to use Equation 37, developed for a perfect gas
with constant specific heats, for H. Assuming hW = he and Pr =1, Michel's
expression reduces to

_ v-1 ~y-1
H=1.4+ 5 Me =3 Me . (47)

Further as mentioned previously H ~ H.

Introducing these results the momentum equation becomes

d52+5—(7/-3) 1 dAeff+1_f_f_ (48)
dx 2 2 A dx x| 2
eff
and there remains the problem of evaluating Ct and I/Aeff" d Aeff/ dx. Since
A_=7(R- 6*)2 it follows that
eff
*
dA .. 2 (9 _dor
1 eff w dx (49)
A dx =~ 6 _x- 8% '
eff w .
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Results of boundary layer calculations4’ 46 indicate that, at least over a limited

distance, 6* ~ x. Assuming this to be the case

1 d Aeff = 2 (50)
Aeff dx X
so that the momentum equation becomes
dx X 2 2

The form which the solution of Equation 51 takes now depends upon Cer
One possibility is to use the flat plate type of power law combined with the

reference temperature concept so that

TW p*fu x
- =A * (52)
% st u
p g
From Equation 52 it follows that
. -
S wo_pr, [P0 (53)
2 2 p_ st u*
p u e
ee

and this is the skin friction law used by Burke. 02 Since u, "~ \/2ho, Equation 53

can be expressed in the form

-5 -5 o _\~S

Cf_Ar p*1ip* " [Pe Hol [Po 2hoX (54

2 %ol o) W T )
e e (0] (0]

Once again since h* < 1 hO in the hypersonic part of the nozzle it appears

reasonable to assume that



X = - ~
Now h* = 0, 50 (he + hw) + 0. 22 (haw he), and when, he’ hw <<L haw ho

it is approximately true that

h* = Bho (55)

where S is a constant. Thus it also follows that

——M : (57)

Further for given stagnation conditions To/ T* will be constant. Now it is
assumed that u~ Tw. Also since the pressure across the boundary layer is

constant

T
e
T*

‘DI‘D
(¢] *

and, hence, using the above results

S

- ws 0 JaE VS ,(S'l)*?_-_f
[F(po’ho)]_s( Ou O) X—SEL‘ Bs_l ° (58)

(0]

T

From Equation C-5, E and the effective core area are related by

Yy -1 y-1
2 _( 2 l(Aeff/ At)
2 e Y+ 1

2
fy—l('y-l

1 v+ 1

Now once again using the assumption that 6* ~ x so that 6* = Sx where S=a

constant, Equation 59 yields the following relation between E and x:
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(Z.__-__]_.i) (9W _ S)z('}’ - 1) < 2y - 1)

E - (——) : (60)

2
(v-1)
£

y-1
Y+ 1

Combining the above results the momentum equation becomes

— -8
d62 2 - ) rt) 20y -1)(s-1)+s

= X
dx = X 62 = lpl (pos hO) _“) (61)

where 11/1 is a dimensionless function given by

T -S
0]

s|T*

WS s [P, Y2h L
[F @y )] (—r—

(0]

_ s-1 X
Y b, b)) = A B

~ *(s-1)+y

(12_1) o, - g2 - 1)

Y+ 1 ’
2

y-1

(y - 1)
f Y+ 1

1

j—

P

and where L is some characteristic dimension such as the nozzle length.

Integration of Equation 61 is meaningful only over that part of the nozzle
for which the hypersonic approximation is applicable. It will now be assumed
that 6_2 = 6., at some position x

2R R
sonic assumptions first become valid.

downstream of the throat, where the hyper-

If the pressure gradient term in Equation 61 is arbitrarily neglected the

-0
} (63)

equation yields the following for g/x:
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where £ = 2(y - 1)(1 - s) - s. This solution is often called the flat plate solution,
and the only justification for dropping the pressure gradient term is that the

form of the resulting solutions often agree with experimental results. Now if

1-1¢
<< 1

X
<< R
X

b

|
4N

*2
X

the flat plate solution becomes approximately

-S

-4

%, . Y

x  2(y-1)(s

X

Tt

4

t
L
-1)+s+1 (64)

Equation 64 thus implies that the major portion of the boundary layer development
has occurred in the hypersonic section of the nozzle. From Equation 47 it follows
that 62 << 6* when the core flow is hypersonic. Thus even when 6*/R ~ O (1),

b

2| ~
R —62 . (65)

0,=0

2 21‘

From Equations 64, 61, and 53 it follows that the flat plate solution can be

expressed in the form

s+ws -1 ,
5 c./2 A[By-l] M2(s+ws-1)
2.2 f _ s 2 e (66)
x x 2y-1)(s-1)+s+1 2(y-1(s-1)+s+1 Re S ’
X
and from Equation 47 it follows that
y-1| y-137 91 o514 )
A 3 M
0¥ s 2 2 e (67)
X 2(y - 1)(s-1)+s+1 ReXS

Equation 67 was originally derived by Burke;52 however, he did not take into
account the upstream boundary conditions and the effect of the boundary layer

upon the core flow. The form of Equation 67 is in agreement with the experimental
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coorelation formulas developed by several authors for the hypersonic nozzle

boundary layer. °2,53,74

Equation 67 is essentially a local similarity solution
and implies that the upstream history of the boundary layer is not important.
In view of the many approximations needed to derive the above solution it is
surprising that it should actually have the same form as the experimental

correlations.

If the pressure gradient term in Equation 61 is retained the solution takes

the form

r
% %m(xy' Y MlTl o x Hx1TEY (68)
- x_ 1+0-~ |7+ <_ - ’
X X Xp 1+0-7vy rt XR

and it can be seen that the solution (Eq. 68) is quite different from the flat plate
solution (Eq. 63). The exponent £ and 1 + { - y is shown in the table below for
several values of s which might be expected in the case of a turbulent boundary

layer, and for y = 1. 4.

S 0. 20 0. 25 0. 30 0. 35
[l . 44 .35 . 26 .17
1+0-v . 04 -. 05 .14 . 23

In the range of interest, say 0. 20 < s 0.3, {1+ £ - v) << 1 so that Equation

68 may to reasonable accuracy be approximate by

~— = -8 -4
62~62R Xl_y , rt X X I't '
—_ = — |— +1,U1 "].:‘ T ln;—- 'x— (683)
* *g *R t t | \*r
since
Z
lim & _1=1na
z -0
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There are now no simple arguments by which the effect of boundary layer history

can be eliminated. If GR/ x., is sufficiently small it may be possible to find an

R
empirical value of the dimensionless reference distance xR/ I, such that experi-

*R
—r—t—)] ; (69)
X

where 1n -}E is now essentially an empirical constant. Whether or not Equation 69

mental data can be correlated using the formula

T M 2(s + ws - 1)
2 e
= const S l:ln
Re

X

Tt

X

will actuallty result in improved correlations of experimental data is certainly a

worthwhile subject for further investigation.

Of course, as stated in Section II-A above, the flat plate skin friction formu-
la is not really applicable to hypersonic nozzles with thick boundary layers.

Rather it is more consistent to use a power law based on Re6 so that

C

*
t_g p(

5 m 5; (70)

" -m
P ueé
“‘*

To find a solution of the momentum Equation 51 using this friction law it is neces-
sary to find a relation between 6 and 6,. From the definition of F; in Equation 12

2
it follows that

1 2
5 = p rju 4 4y
Z_GJp R |u 2) d(ﬁ) ) (71)
e u
0 €
Now assuming that
1
ple 5oy ouw_py)f (72)
p h’ r 7 u 6|’
e e

and using the Crocco relation, Equation 25a, integration of Equation 71 yields

the approximate result
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2 +
¢

e

1, 138
nE 2R EZ

o Lmn E) ., (73)

Now Equation 70 for cf/2 can be expressed in the form

c r\ 0 Sy -1-m) S /r, T
_f_W .i) . 2t (74)
2 2\L ry l-lg
2R
where
-wm -m
T pv2h nL
Vo = B Bm-l__g o 0 X
2 m T Ky
_ _—I—f‘—T-l
v-1, _g2r-1)
2 w -m
F(p ,h)
Y+ 1 [ o’ OJ
2
fv-ly-1
L1 Y+ 1
Now
m 12
l_lg, =1_E6_+E(_nl_"__1_)o_l_§
2R 2 R 1.2 4(R ) ’

and since m is usually small, for example . 25, the important result follows that

the effect of transverse curvature upon ¢, will be quite small even when 3/R ~ O (1).

f

The momentum equation now becomes

do, r,\
2 (2-9)+_ _t_)
&~ x 62“”2(L

Tt

T . (75)

2y - 1- m)(ﬁ_z)' o
t

If the pressure gradient term is ignored Equation 75 has the solution
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Tt

1-2(y-1-m)

m+ 1 (

5

and if once again gR is sufficiently small and

x

Tt

X

-2(y - 1 - m)

R

Tt

-2(r -1 -m)
.

1-2(y-1-m)
<L 1

*R

X

this solution becomes approximately

5,

[\

(m+1)B Bm(1+w)—m ) y-1
:[ 1-1212-1-m) n (2) x

X

(77)

Rem+1
X

If, as in the incompressible case, the coefficient s of the flat plate friction law

isrelated to m by s = it
m+ 1

ber dependence of '6—;/x indicated by Equations 66 and 77 is identical. This is

it is readily shown that the Reynolds and Mach num-

not surprising since we have shown that the effect of transverse curvature cf is

small.
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When the pressure gradient term is retained the solution becomes

— m+1 — m+1
_6_2 _6_25) _(Z-V)(m+1)+
X | x Xp
-m
. r_t _X_—Z(y-1)+m
2\ L r Yl -m)-1
t X 1 (78)
y(1 -m) -1 Xp

For values of m of interest in turbulent flows and with y = 1.4, (1 - m) - 1 will

be a small number. Hence if 5., is sufficiently small the solution can be expressed

2R
in the approximate form
_ . o 1
5 - -2(y - 1)+ m m+ 1
2. U ( t) X In = (79)
b
X 2\ L rt xR
which can also be written
mw - 1 1
— 2, T 1 m+ 1
09 (M) x *R
— = const In |[—] - In — , (79a)
X m I, ry
m+ 1
(Rex)

and this result is very similar to Equation 69 which was obtained using the flat
plate friction formula, the only difference being in the exponent of the logarith-

mic term.

The hypersonic solutions of the momentum and continuity equations found
above are relatively insensitive to the transverse curvature effect. The bound-
ary layer thickness correlation formulas (Equations 67, 69, 77, and 79) will be
valid only if the major part of the boundary layer development takes place in

the hypersonic portion of the nozzle. Because of the usual values assumed by v,
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m, and s, the boundary layer thickness correlation formula obtained with the
full momentum equation is the same as the flat plate formula multiplied by a
term involving In (x/ xR). As mnetioned in Section III below, results of bound-
ary layer measurements can be correlated using the flat plate type of formula

similar to Equation 67.

The logarithmic term in the more exact solution (Equation 79a) varies very
slowly with (x/ rt), and for nozzles with exit Mach numbers between 10 and 20
(x/ rt) varies from approximately 1000-2000. Thus the logarithmic term may
be buried in the empirical constants of the experimental flat plate type of cor-

relation formula.

The results above were obtained only after many simplifications and assump-
tions. The assumption that 6* = Sx actually gives the solutions the character of
a first iteration of the momentum and continuity equations, The solutions found
above show that actually 6* ~ xl"’ 55 Clearly a more precise and simultaneous
solution of the momentum and continuity equations is a worthwhile subject for
further study. The fact that the hypersonic solutions above, though they may
not provide exact quantitative predictions, have the same form as the experi-
mental results appears to indicate that most of the boundary layer development

occurs in the hypersonic section of the nozzle.

III. CALCULATION OF HYPERSONIC NOZZLE FLOW USING EMPIRICAL
RELATIONS FOR THE BOUNDARY LAYER DISPLACEMENT THICKNESS

An exact integration of the nozzle flow Equations 7, 18, and 22, is a major
undertaking which is beyond the scope of the present investigation. Hence,
experimental boundary layer thickness correlations have been combined with
the continuity Equation 7, in order to calculate the boundary layer and core
flow in a conical hypersonic nozzle.

52, 53,74 have found that experimental measurements

Several investigators
of boundary layer thickness at the test section of a hypersonic nozzle can be

correlated by an equation of the form
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M
%
6; =K eb ’ (80)
Re
X
which is the same as the flat plate formula found in Section II-C above, or of
the form
5* K
= ——-—-————p*u . 5 (81)
e
u*

E, K, a, b, and A are empirical constants, and x is the distance from the nozzle
throat to the test section. In Equation 81 the effect of free stream Mach number
is taken into account by using the reference enthalpy concept. Burke52 has
shown that Equation 81 correlates experimental results from several sources

quite adequately over the Reynolds number range

1°5x105< Re < 8x106

or

9x10° < Re, < 3.5x10°

if K and A have the values 0. 49 and 0. 3 respectively. Burke's empirical constants
have been used in the present calculations; however, outside the Reynolds number
range for which Equation 81 agrees with experiment, results can only be consid-

ered qualitative.

It has been assumed that the flow in the nozzle is in thermodynamic
equilibrium, and at relatively high stagnation pressures this assumption is not
too unreasonable. Using the results presented by Lukasiewicz43 a curve corres-
ponding to the case in which 1% of the oxygen in the air freezes out in atomic
form has been drawn on a stagnation pressure-density diagram (Figure 3),

which also shows the operating domain of the University of Michigan Hot Shot
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Tunnel. For stagnation conditions below the 1% freeze out curve the equilibrium
assumption should certainly be valid. Since oxygen freeze out nowhere exceeds
10% within the U of M hotshot operating range, the discussion of Lukasiewicz43
indicates that the effects of nonequilibrium even above the 1% freeze out curve
should not be excessive. The above considerations are qualitative; however, a
full investigation of the effects of nonequilibrium is beyond the scope of the present

investigation.

It now is possible to use the method developed by Burke and Bird3 to simul-
taneously calculate the development of the core and boundary layer flows. The

details of these calculations are presented in Appendix C.

In a hotshot tunnel stagnation conditions are determined from the arc chamber
pressure after firing and from the charging density, which, since energy addition
occurs at constant volume, is also the stagnation density. Consequently all results
have been presented on stagnation pressure-density diagrams similar to that in

Figure 3.

It is of course desirable to put the nozzle calculation results into a universal
form which is a function of the stagnation conditions only, but is independent of
the detailed nozzle configuration, and to some extent this is possible. However,
in the case of the detailed boundary layer thickness calculations not only stagna-
tion conditions but also a factor related to the conical nozzle configuration must
be specified. By combining the continuity Equation 7 with the correlation Equa-
tion 81 and using Equations C-3 - C-6, Burke and Bird3 have derived the follow-
ing equation for the ratio of boundary layer displacement thickness to test seétion

radius:

27\

.9 (1 - —-) F (o) (82)

where F1 is a function of stagnation pressure and enthalpy described in Appendix

C and where/é is a factor containing the conical nozzle geometry which is given
by
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A% 2
/5 L (flvf) -1 _[Zgeom - %] E)m x (83)
< | Tt awx)t Ay

The factor /j provides for some universality in that for a particular stagnation
condition, ad test gas all nozzle configurations having identical values of ;j
will have the same value of 6*/R. In the present case boundary layer calcula-
tions have been made for ¥ = 363 (ft)-o" S corresponding to

6 =7.5" = 0.131 radians

W -3

rt~—-0005 in. =4.16x 10 ~ ft

x =72.0 in. = 6, 00 ft

A=0.3
The results of the nozzle performance calculations will now be presented in detail.

The range of stagnation conditions of interest in the case of the U of M Hot
Shot Tunnel is shown in Figure 3. The stagnation chamber of this tunnel has been:
designed for a peak pressure of 80,000 psi.r73 and this determines the upper bound-
ary of the operating domain. The high temperature boundary is determined by
the fact that as TO increases contamination of the gases from vaporized arc cham-
ber material as well as radiation losses increase above acceptable levels. Calcu-
lations have been extended to T0 =10, 000°K subject to the assumption that flow
contamination is negligible. Indications are that the maximum operating tempera-
ture will be less than this value for practical hot shot tunnels. 72 Below a stagna-
tion temperature of 3000°K test section velocities are too low to be of interest in
connection with high speed flight problems. Figure 3 also includes lines of con-

stant stagnation temperature.

In hotshot tunnels energy is added to the test gas at a constant volume. Con-

sequently the energy, E A added to the test gas by the arc discharge will be

Py

By =p,Q (e - €)= (;_);

e
9
RT

(0,RT,) Q
RRRc

€
(0]

e.
1-;% (84)
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where Qc is the arc chamber volume and € and e, are the test gas stagnation and
initial energies per unit mass. Since ei/ € << 1 for the domain of interest the
curves of (eo/ RTR) (po/ pR) = const. correspond to constant values energy addition,
E A Figure 3 shows that the stagnation pressure depends almost entirely upon E

A
and is relatively independent of the charging density. For fixed E, an increase in

A
charging density simply lowers the stagnation temperature. For po/ PR > 100 the
thermodynamic data used for Figure 3, as well as for the results to follow was
obtained by extrapolating the air Mollier diagram. Results in this region must

therefore be regarded with considerable caution.

The results of the boundary layer calculations are presented in Figure 4 in
the form of lines of constant 8*/ 9Wx = 6*/R drawn on a stagnation pressure-
density diagram. Figure 4, unfortunately, only is valid for one particular value
of the geometrical factor)ﬁa It can be seen that 6*/R decreases with increasing
stagnation pressure, a result which is not surprising. What is remarkable is
that the curves in Figure 4 pass through a maximum. This means that for a con-
stant stagnation pressure po, as the stagnation density Py increases the boundary
layer thickness at first increases and then begins to decrease. Consideration of
the displacement thickness correlation formula (Equation 80) and Figure 6, which
shows contours of constant test section Mach number provides an explanation for
this strange result. With P, constant an increase in P, causes the test section
Mach number to increase and this tends to make 6* increase. On the other hand
the static density as well as the Reynold’s number also increase with increasing
Py which of course tends to decrease 6*. The maximum in the boundary layer
contours in Figure 4 thus corresponds to the point where these opposing effects

balance.

From:Equations 82 and 83 it can be seen that

(85)
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or when y=1.4, A =0.3

Consequently for a nozzle with fixed length and divergence angle the boundary
layer thickness varies almost inversely with the throat radius. This result sug-
gests that it may be possible to experimentally determine A by measuring the

effect of varying the throat radius r, upon the boundary layer thickness.

t

The strong dependence of 6* upon r, has another interesting consequence.

t
The effective area ratio of a conical nozzle of fixed length and exit area can be

increased by decreasing the throat radius r,. Now because of the relation be-

tl
tween Iy and 6* there is, for a given nozzle and stagnation condition a critical

value of throat radius, r c such that for T < Tic the effective nozzle area ratio

t
decreases with decreasing throat radius because of the rapid boundary layer

growth. If 6*/R is not too great Equation 82 becomes approximately

5 K
R '/ﬁFl Py hy) = I
¢

where K is constant for fixed P ho,x, BW, Y and A. Now the effective area ratio

is given by
Aott _®-09° _2f1 k72
At" r2 - r, r2”)/)\+1

t t
and Aeff/ At’ considered as a function of Ty has a maximum when

1

= 2yA

r,=r, = [y + 1)K] ,

and this is the critical throat radius mentioned above. For example, for the

=220, r, =.0123 in.

nozzle considered above when P, = 4000 atm, ho/ RT te

R
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and when P, = 200 atm, ho/RT = 180, Tio = 0342 in. At low stagnation pressures

R
the critical throat radius is thus rather close to the actual values used.

To obtain an overall view of nozzle performance and to determine the range of
test section Reynolds numbers encompassed by the domain of stagnation conditions

considered here other test section parameters have been computed.

It has been possible to present the variation of test section Mach number in a
semi-universal form. Equation C-11 relating Mach number to area ratio can,

using Equation C-10, be written in the form

y-1
Aeff :
M =@l—x (86)
t
where the function ¢ is defined by
_y+1 ?
2(y - 1)
Jfy-1
¢_|:y+1 f1 (ho’po)}

In the absence of a boundary layer Aeff/ At will be constant so that Me is directly
proportional to the function ¢, which in that case could be considered a universal
Mach number function. Hence contours of ¢ = const. are plotted on a stagnation
pressure-density diagram in Figure 5. When boundary layer thickness is appre-
ciable 6*/R, which can be read from Figure 4, must be known in addition to ¢ in
order to determine Me' Comparison of Figures 3 and 5 shows that Me decreases
with increasing stagnation temperature if the effective area ratio remains constant.
This is entirely a real gas effect for in the case of an ideal gas a constant area
ratio produces a constant Mach number independent of the stagnation conditions.

The results shown in Figures 4 and 5 have been combined to compute the
test section Mach number variation for a nozzle with /& = 363 ™0 30 The result-
ant constant Me lines are shown in Figure 6. For purposes of comparison sev-
eral constant Mach number curves have been computed both with and without
considering the nozzle boundary layer and the results are shown in Figure 7.
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Figure 8 shows constant static pressure contours and in Figure 9 several of
these contours are compared to pressure contours computed neglecting the bound-
ary layer. It can be seen that in the present case the static pressure is doubled

by the presence of the boundary layer.

Figure 10 shows the variation of test section static temperature with stagna-
tion conditions. Lines of constant static temperature appear to almost coincide
with lines of constant stagnation temperature., It should be noted that Reece's70
perfect gas approximation used in the present calculations is accurate to 1% for
T < 550°K therefore, it follows from Figure 10 that the perfect gas approxima-

tion remains valid over most of the stagnation conditions of interest.

The variation of static density and the variation of the limiting velocity u,

given by

u, =v2 h
{ 0]

are shown in Figure 11. In hypersonic flow the free stream velocity u, is almost

equal tou,. For the Mach number range shown in Figure 6 the free stream veloc-

[
ity u is at most 2 1/2% less than the ultimate velocity so that u, can, for all
practical purposes, be regarded as the free stream velocity u Since u, depends

only on the stagnation enthalpy hO the free stream velocity is essentially independ-
ent of the boundary layer development. The free stream density on the other hand
will be considerably modified as can be seen from Figure 12, which shows constant
density contours computed both with and without the boundary layer. The presence

of the boundary layer almost doubles the value of the free stream density.

A comparison of Figures 11 and 6 exposes an interesting aspect of hypersonic
nozzle performance. As the free stream velocity, and hence stagnation enthalpy,
increase the free stream Mach number actually decreases if the geometric area
ratio remains fixed. Thus the flow actually becomes less ""hypersonic' as stagna-

tion enthalpy is increased. The Mach number independence principle5 states that
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as Me -, the flow about bodies becomes independent of Me and depends only
onu, and P Consequently the above effect will not be important insofar as
testing is concerned as long as the free stream Mach number remains suffi-

ciently high.

Using the results of the calculations described above the free stream Reynolds
number in the present case has been found to lie in the range

0°4X105< Rexé 4x106

Fortunately this range almost coincides with the range of validity of the empirical

formula used to compute boundary layer thickness.

IV. DISCUSSION AND CONCLUSIONS

In the present work integral equations for the flow in a conical hypersonic
nozzle with a thick boundary layer have been formulated, and solutions of these
equations valid in hypersonic flow have been studied. Burke's method3 of calcu-
lating boundary layer thickness using empirical correlations has been extended
over a relatively broad range of stagnation conditions and has been used to com-

pute the effect of boundary layer development upon hypersonic nozzle flow.

The main effect of the nozzle boundary layer is to cause appreciable changes
in static pressure, density, and temperature, and to reduce the useful core area
of the test section. The free stream velocity depends mainly upon the stagnation
enthalpy, and in hypersonic nozzles is unaffected by the boundary layer develop-

ment.

For a fixed exit diameter and nozzle length, the boundary layer thickness
at the nozzle exit varies almost inversely with the throat radius, r ¢ This result
has two important implications. First as mentioned in Section III; it should be
possible. to obtain information about the boundary layer thickness correlation
formula by measuring the effect of varying throat radius upon the boundary
layer thickness. The effective area ratio of a conical nozzle with a fixed length

and exit area can be increased by decreasing the throat radius. Now because of
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the relation between throat radius and the boundary layer, there is, for a given
nozzle, and stagnation condition, a critical value of Iy such that for Iy less than
this critical value the effective area ratio of the nozzle will actually decrease

because of the rapid boundary layer buildup.

Contours of constant boundary layer thickness drawn on a stagnation pressure-
density diagram are found to pass through a maximum. Physically this means
that for a fixed nozzle geometry and stagnation pressure, as the stagnation den-
sity increases the boundary layer thickness first increases and then begins to
decrease. This strange behavior has been explained in Section III by consider-

ing the form of the empirical displacement thickness correlation formula.

The boundary layer calculations described in Section III are only as accurate
as the boundary layer correlation formula employed and as the approximations
to the real gas properties. Over most of the domain of interest the static temper-
ature and nonequilibrium effects seem to be sufficiently small that Reece's approx-
imations are applicable. The range of free stream Reynolds numbers for the par-
ticular nozzle considered and the range of validity of the empirical boundary layer
thickness correlation formula almost coincide. Mollier charts and cross plotting
have been used to compute the results described in Section III, and a certain
degree of random error is inherent in this procedure. A precise determination
of this error is difficult, though a reasonable estimate would seem to be that
the results are valid to an accuracy of +5% assuming that the boundary layer

correlation formula and Reece’'s approximations are valid.

The incompressible analysis in Appendix B as well as the analysis in Section
IT show that the transverse curvature of the nozzle boundary layer causes an
increase in boundary layer thickness and a decrease in the skin friction coeffi-
cient, as compared to a plane boundary layer. The approximate analysis of the
momentum equation in Section II shows, however, that in most cases this effect
will be negligible even when 8*/R ~ O (1), because 62 << d* in hypersonic bound-

ary layers and because the exponent m of the term (Re ™ in the skin friction law

5)
is a relatively small number in turbulent flows.
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Using approximations valid in hypersonic flow Burke 52 has shown that the
boundary layer momentum equation can be reduced to a relatively simple form.
In Section II it is shown that the nozzle integral equations reduce to the same
form if it is assumed that 6* ~ x. Solutions of this equation both with and with-
out the pressure gradient term have been investigated using power skin friction
laws based on Re6 and ReX° Either friction law leads to essentially the same
result. The flat plate solutions, which are obtained when the pressure gradient

term is dropped, can be reduced to the form

a

" M

— = const
X

e
Rexb

provided the boundary layer thickness at the start of the hypersonic portion of

the nozzle is sufficiently small and provided the nozzle is sufficiently long.

When the pressure gradient term is retained the corresponding solution has

the form

0% Mea [ X XR]
—X—-const blnr-ln}—
ReX t t
where Xp is an arbitrary distance from the throat where conditions are applied.
In view of the numerous approximations which have been introduced to obtain

the above approximate solutions it is remarkable that the form of the flat plate
solution is in agreement with the form experimental correlations of boundary
layer thickness. This agreement implies that the bulk of the boundary layer
growth occurs in the hypersonic portion of the nozzle and this contention is borne
out by exact calculations and measurements of boundary layer development. 16, 48
An interesting feature of highly cooled hypersonic boundary layers is that the
maximum enthalpy within the boundary layer is only about one quarter of the stag-

nation enthalpy, assuming that the Crocco relation is valid. Thus real gas effects
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will not be important throughout most of the boundary layer, and of course this
may be another reason why the approximate solution takes the same form as

experimental correlations.

It appears strange that the flat plate rather than the more exact solution
seems to provide the best agreement with experiment. There are several pos-
sible explanations. The logarithmic term in the exact formula varies very
slowly with (x/ rt), and for nozzles with exit Mach numbers between 10-20, x/ r,
varies over approximately the range 1000-2000. Consequently it is quite possible
that the logarithmic variation is buried in the constant of the empirical correlation
formula. In the approximate solution it was assumed, at least for what might be
considered a first iteration, that 6* ~ x. Actually of course 6* increases more
rapidly than this since, approximately, 6* ~ xl" 59 This more rapid boundary
layer growth will tend to decrease the free stream pressure gradient and thus

provides another possible reason for the success of the flat plate solutions.

There are a number of questions which have not been considered. When the
boundary layer is almost as thick as the nozzle there is some question as to
whether the boundary layer apprdximation remains valid and whether the pres-
sure remains constant across the boundary layer. The answers to these ques-
tions should depend upon the rate of variation of the core velocity. In the present
case both conditions above have been assumed to hold. Effects of chemical non-
equilibrium in the core flow and the boundary layer have been neglected. The
assumption of equilibrium core flow appears to be valid over most of the domain
of stagnation conditions of interest here. Whether or not the boundary layer flow

remains in equilibrium is open to question.

In addition to the above the present study suggests a number of further prob-
lems which should be investigated in order to gain a fuller understanding of

hypersonic nozzle flow.

In view of the above results, the use of the approximate hypersonic nozzle

flow integral equations appears as a promising approach to the analysis of
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hypersonic nozzle flow, and should be investigated further. A simultaneous
solution of the approximate momentum and the continuity equations, without
assuming 6* ~ x, would certainly be desirable. Solutions also should be found
using skin friction laws valid over a broader Reynolds number range than the

power laws.

A numerical solution of the exact nozzle equations should be obtained at
least in a few cases in order to provide a means of evaluating the results of the
approximate analysis. Finally an extensive study of existing experimental and
theoretical data should be made in order to further check the results of the
approximate theory and the experimental correlation formula used for the bound-

ary layer calculations in the present investigation.

-41-



10.

11,

12.

13.

REFERENCES

Yu, U.N,, "A Summary of Design Techniques for Axisymmetric Hyper-
sonic Wind Tunnels, " AGARDograph 35, Nov. 1958,

Johnson, R. H., "Hypersonic Viscous Effects in Wind Tunnels, " ARS
Journal, v. 31, pp. 1022-1024, July 1961.

Burke, A, F., Bird, K. D., "The Use of Conical and Contoured Expan-
sion Nozzles in Hypervelocity Facilities,' from, Advances in Hyper-
velocity Techniques, Proc. of Second Symposium on Hypervelocity
Techniques, Plenum Press; N. Y., pp. 373-424, Mar. 1962.

Enkenhus, K. R., Maher, E. F., "The Aerodynamic Design of Axisym-
metric Nozzles for High Temperature Air,'U. S. Naval Ordnance Lab. ,
White Oak, Md., NAVWEPS Rept. 7395, 5 Feb. 1962.

Hayes, W.D., Probstein, R. F., Hypersonic Flow Theory, Academic
Press, New York, Capt. 9, 1959.

Hilsenrath, J., et al, "Tables of Thermodynamic Properties of Air
Including Dissociation and Ionization from 15000K to 15, 0009K, "
Arnold Engineering Dev. Center, AEDC-TR-59-20, Dec. 1959.

Hilsenrath, J., et al, Tables of Thermodynamic and Transport Prop-
erties, Pergamon Press, London, 1960.

Humphrey, R. L., Neel, C. A., "Tables of Thermodynamic Properties
of Air from 90 to 1500°K," Arnold Engineering Dev. Center, AEDC-
TN-61-103, Aug. 1961,

Treanor, C.E., Logan, J.G., "Thermodynamic Properties of Nitrogen
from 2000°K to 8000°K, ' Cornell Aero. Lab., Rept. BE-1007-A-5,
Jan, 1957,

Little, W.J., Neel, C. A., "Tables of the Thermodynamic Properties
of Nitrogen from 100 to 15OOOK9 " Arnold Engineering Dev. Center,
AEDC-TDR-62-170, Sept. 1962,

Hilsenrath, et al, "Thermal Properties of Gases, ' National Bureau of
Standards, Circular 564 (1955).

Gilmore, F.R., "Equilibrium Composition and Thermodynamic Prop-
erties of Air to 24,000°K," The Rand Corp., Santa Monica, Calif.,
RM-1543, Aug. 1955,

Hochstim, A.R.,'Gas Properties Behind Shocks at Hypersonic Veloc-
ities, III. Tables of Thermodynamical Properties of Air," Convair
Div. of General Dynamics Corp., San Diego, Calif., Physics Sec.,
Rept. ZPh-004, Aug. 1958.

-49-



14,

15.

16,

17,

18.

19.

20.

21,

22.

23.

24,

25.

26.

REFERENCES (continued)

Blackwell, F., et al, "Properties of Argon-Free Air,'" Ramo-Wooldridge
Corp., Los Angeles, Calif. , Rept. GM-TR-76, Oct. 1956.

Goin, K. L., "Mach Tables for Real Gas Equilibrium Flow of Air in
Hypervelocity Test Facilities with Total Temperatures to 10, 000°K, "
Sandia Corp., Rept. SCR-288, Mar. 1961.

Logan, J.G., Jr., Treanor, C. E., "Tables of Thermodynamic Prop-
erties of Air from 3000°K to 10, 000°K at Intervals of 100°K, " Cornell
Aero. Lab., Rept. BE-1007, Jan. 1957.

Hansen, C. F., Heims, S.P., "A Review of the Thermodynamic,
Transport, and Chemical Reaction Rate Properties of High-Tempera-
ture Air,'" NACA TN 4359, July 1958.

Gilmore, J.R., ""Additional Values for the Equilibrium Composition
and Thermodynamic Properties of Air," The Rand Corp., Rept.
RM-2328, 30 Dec. 1959.

Chance Vought Research Center Staff, '"Thermodynamic Properties of
High Temperature Air,'" Rept. RE-IR-14, 28 June 1961.

Feldman, S., "Hypersonic Gas Dynamic Charts for Equilibrium Air, "
AVCO Research Lab., Research Rept. 40, Jan. 1957.

Humphrey, R. L., Little, W.J., Seeley, L. A., "Mollier Diagram for
Nitrogen, " Arnold Engineering Dev. Center, AEDC-TN-60-83, May
1960.

Korobkin, I, Hastings, S. M., "Mollier Charts for Air in Dissociated
Equilibrium at Temperatures of 2000°K to 15, 000°K, ' NAVORD Rept.
4446, May 1957.

Moeckel, W. E., Weston, K. E., "Composition and Thermodynamic
Properties of Air in Chemical Equilibrium, " NACA TN 4265, Apr.

1958,

Jorgensen, L. H., Baum, G. M., "Charts for Equilibrium Flow Prop-
erties of Air in Hypervelocity Nozzles, ' NASA TN D-1333, Sept. 1962.

Yoshikawa, Kenneth K., Katzen, Elliott D., ""Charts for Air-Flow
Properties in Equilibrium and Frozen Flows in Hypervelocity Nozzles, "
NASA TN D-693, 1961.

Erickson, W.D., Creekmore, Helen S., ""A Study of Equilibrium Real-
Gas Effects in Hypersonic Air Nozzles, Including Charts of Thermo-
dynamic Properties for Equilibrium Air," NASA TN D-231, 1960.

-43-



217,

28,

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

REFERENCES (continued)

Gibbs, G.J., "Correlation of Real Gas and Perfect Gas Flow Parameters
at Hypersonic Velocities in Computing the Free Stream Conditions between
Mach 6 and 10," STA Meeting Proc., Vol. II, Apr. 27, 1961,

Grabau, M., "A Method of Forming Continuous Empirical Equations for
the Thermodynamic Properties of Air from Ambient Temperatures to
15, 000°K with Applications, ' Arnold Engineering Dev. Center, AEDC-
TN-59-102, Aug. 1959.

Grabau, M., Humphrey, R. L., Little, W.J., "Determination of Test
Section, After-Shock, and Stagnation Conditions in Hotshot Tunnels using
Real Nitrogen at Temperatures from 3000 to 40000K, " Arnold Engineer-
ing Dev. Center, AEDC-TN-61-82, July 1961.

Smith, C.E., Jr., "Thermodynamic Properties of Nitrogen,' Lockheed
Missiles and Space Co., Rept. 6-90-62-111, Dec. 1962.

Heims, Steve P., "Effects of Chemical Dissociation and Moelcular Vibra-
tions on Steady One-Dimensional Flow, ' NASA TN-D-87, Aug. 1959.

French, E. P., des Jardius, P.R., Radbill; J.R., Luntz, N.G.,
"Computer Programs for Thermodynamic Properties of Air and Homo-

nuclear Diatomic Gases, " presented at Supersonic Tunnel Association
Meeting, Apr. 1962.

Hansen, C. F., "Approximations for the Thermodynamic and Transport
Properties of High Temperature Air, ' NASA TR R-50, 1950.

Lee, . . ., "Empirical Relationships between Test Section and Stagna-
tion Chamber Conditions in a High Temperature Wind Tunnel using Air, "
presented at Supersonic Tunnel Association Meeting, Oct. 1962.

Hochstim, A.R., "Approximations to High-Temperature Thermodynamics
of Air in Closed Form, " Kinetics, Equilibria and Performance of High
Temperature Systems, Proc. of the First Conference, Butterworth and
Co., Ltd., London, (1960).

Bray, K. N. C., "Atomic Recombination in a Hypersonic Wind Tunnel
Nozzle," J. Fl. Mech., v. 6, pt. 1, pp. 1-3, July 1959,

Hall, J. G., Russo, A.L., "Studies of Chemical Nonequilibrium in
Hypersonic Nozzle Flows, " Cornell Aero. Lab., Rept. AD-1118-A-6,
1959.

Eschenroeder, A.Q., Boyer, D.W., Hall, J. G., "Exact Solutions for
Nonequilibrium Expansions of Air with Coupled Chemical Reactions, "
Cornell Aero. Lab., Rept. AF-1413-A-1, 1961.

-44-



39.

40.

41.

42,

43,

44,

45.

46.

417,

48,

49,

50.

REFERENCES (continued)

Bray, K. N. C., Appleton, J.P., "Atomic Recombination in Nozzles:
Methods of Analysis for Flows with Complicated Chemistry," Univ.
of Southampton, Rept. AASU 166, 1961.

Anderson, J.P., "The Effect of Recombination Rate on the Flow of a
Dissociating Diatomic Gas,' Arnold Engineering Dev. Center, AEDC-
TR-61-12, Sept. 1961.

Glowacki, W.J., "Effect of Finite Oxygen Recombination Rate on the
Flow Conditions in Hypersonic Nozzles," U. S. Naval Ordnance Lab. ,
NOLTR 61-23, 15 Sept. 1961.

Bray, K. N. C., "A Simplified Sudden Freezing Analysis for Nonequi-
librium Nozzle Flows," Univ. of Southampton, AASU 161, Dec. 1960.

Lukasiewicz, J., discussion in, ""An Assessment of our Present Status
and Further Requirements for High Temperature Hypersonic Facilities,
Round Table Discussion, ' Training Center for Experimental Aerody-
namics, Rhode Saint Genese, Belgium, TCEA TM 14, 6 Apr. 1962.

Emanuel, G., Vincenti, W. G., "Method for Calculation of the One-
Dimensional Nonequilibrium Flow of a General Gas Mixture through
a Hypersonic Nozzle,' Arnold Engineering Dev. Center, AEDC-TDR-
62-131, June 1962,

Levinsky, E.S., Brainerd, J.J., "Inviscid and Viscous Hypersonic
Nozzle Flow with Finite Rate Chemical Reactions, " Arnold Engineer-
ing Dev. Center, AEDC-TDR-63-18, Jan. 1963.

Sivells, J. C., Payne, R. G., ""A Method of Calculating Turbulent
Boundary Layer Growth at Hypersonic Mach Numbers, " Arnold Engi-
neering Dev. Center, AEDC-TR-59-3, Mar. 1959.

Bartz, D.R., "An Approximate Solution of Compressible Turbulent
Boundary Layer Development,' Trans. ASME, Nov. 1955.

Michel, R., "Developpement de la Couche Limite Dans une Tuyere
Hypersonique, " presented at AGARD Specialists Meeting, High Temper-
ature Aspects of Hypersonic Flow, Rhode Saint Genese, Belgium, Apr.
1962, :

Reshotko, E., Tucker, M., "Approximate Calculation of the Compres-
sible Turbulent Boundary Layer with Heat Transfer and Arbitrary
Pressure Gradient," NACA TN 4154, Dec. 1957.

VanDriest, "Turbulent Boundary Layer in Compressible Fluids,'J. Aero.
Sci., Mar. 1951.

-45-



51.

52.

53.

54,

55,

56.

57,

58.
59.
60.

61.

62.

63.

64.

REFERENCES (continued)

Persh, J., Lee, R., "A Method for Calculating Turbulent Boundary Layer
Development and Convective Heat Transfer in Convergent-Divergent Noz-
zles, " NAVORD Rept. 4200, June 1956.

Burke, A. F., "Turbulent Boundary Layers on Highly Cooled Surfaces at
High Mach Numbers, ' ASD Symposium on Aeroelasticity, Wright-
Patterson Air Force Base, Ohio, Oct. 30-Nov. 1, 1961.

Lee, J., "Axisymmetric Nozzles for Hypersonic Flow,' Ohio State
Research Foundation, Rept. 459-1, July 1959.

Schlichting, H., "Berechnung der Stromung in rotationsymmetrischen
Diffusoren mit Hilfe der Grenzschitht-theorie," z. . Flugwissenschaften,
v. 9, n. 4/5, (1961).

Goldstein, S., ed., Modern Developments in Fluid Dynamics, v. 1,
Clarendon Press, Oxford, p. 304, 1938.

Durand, J. A., Potter, J. L., "Calculation of Thicknesses of Laminar
Boundary Layers in Axisymmetric Nozzles with Low Density, Hyper-
velocity Flows, ' Arnold Engineering Dev. Center, AEDC-TN-61-146,
Dec. 1961.

Shapiro, A.H., The Dynamics and Thermodynamics of Compressible

Fluid Flow, Vol. II, Ronald Press, New York, 1954.

Schlichting, H., Boundary Layer Theory, McGraw Hill, New York, 1955,

Dorrance, W. H., Viscous Hypersonic Flow, McGraw Hill, New York, 1967

Lees, L., "Laminar Heat Transfer over Blunt-Nosed Bodies at Hyper-
sonic Flight Speeds, " Jet Propulsion, v. 36, pp. 259-269 (1956).

Schubauer, G.B., Tchen, C. M., "Turbulent Flow,' Section B,
"Turbulent Flows and Heat Transfer,' v. V of Princeton Series,

High Speed Aerodynamics and Jet Propulsion, C. C. Lin, ed., Prince-
ton Univ. Press, 1959.

Shapiro, A.H., The Dynamics and Thermodynamics of Compressible
Fluid Flow, v. II, Chapt. 27, Ronald Press, 1954.

Cohen, N, B., "A Method for Computing Turbulent Heat Transfer in the
Presence of a Streamwise Pressure Gradient for Bodies in High Speed
Flow,'" NASA Memo 1-2-59L, Mar. 1959.

Spence, D. A., '"Distributions of Velocity, Enthalpy and Shear Stress in
the Compressible Turbulent Boundary Layer on a Flat Plate, ' Royal’
Aircraft Establishment (Farnborough), Rept. AERO 2631, Nov. 1959.

_46-



65.

66.

67.

68.

69.

70.

1.

12.

13.

74,

REFERENCES (continued)

Persh, J., "A Theoretical Investigation of Turbulent Boundary Layer
Flow with Heat Transfer at Supersonic and Hypersonic Speeds, ' NAVORD
Rept. 3854, May 1955.

Eckert, E.R. G., "Engineering Relations for Heat Transfer and Friction
in High-Velocity Laminar and Turbulent Boundary Layer Flow over
Surfaces with Constant Pressure and Temperature,' Trans. ASME,

v. 78, no. 6, p. 1273, Aug. 1956.

Rose, P.H., Probstein, R. F., and Adams, M. C., "Turbulent Heat
Transfer Through a Highly Cooled Partially Dissociated Boundary
Layer, ' JAS, v. 25, pp. 751-760, Dec. 1958.

Matting, J. W., Chapman, D.R., Nyholm, J.R., and Thomas, A.G.,
"Turbulent Skin Friction at High Mach Numbers and Reynolds Num-
bers in Air and Helium, ' NASA TR R-82, 1961,

Hidalgo, H., "On the Application of VanDriest's Method to a Highly
Cooled, Partially Dissociated Turbulent Boundary Layer, ' Jet Propul~
sion, v. 28, no. 7, pp. 487-489, July 1958.

Reece, J. W., "Test Section Cenditions Generated in the Supersonic
Expansion of Real Air," JAS, v. 29, pp. 617-618, May 1962,

Hilsenrath, J., and Beckett, C. W., "Tables of Thermodynamic Prop-
erties of Argon-Free Air to 15,0009K, " Arnold Engineering Dev.
Center, AEDC-TN-56-12, Sept. 1956.

Lukasiewicz, J., Jackson, R., Whitfield, J.D., "Status of Development
of Hotshot Tunnels at the AEDC, "' paper presented at AGARD Meeting on
High Temperature Aspects of Hypersonic Flow, Rhode-Saint-Genese,
Belgium, Apr. 3-6, 1962.

Sherman, P. M., Early, H. C., Lawrence, W. N., "Design Considera-
tions for Arc Heated Hypersonic Tunnel, " Final Rept. , ORA Project
02953, The Univ. of Mich., July 1960.

Whitfield, J.D., Private Communication, Arnocld Engineering Develop-
ment Center, AEDC, Tullahoma, Tenn., 1961.

-47-



Re

FIGURE |. CONICAL NOZZLE BOUNDARY LAYER CO-
ORDINATE SYSTEM.



\

— e —— = - - - ——————~—

Control volume

FIGURE 2. APPROXIMATE NOZZLE VELOCITY DISTRIBU-
TION FOR THE CASE Oy« 1 .



Ea = Energy added to arc chamber | Joules ot

7 ) o

// 7
/4/////-"‘04
. /

/

Q)
Q) o
= 2860 - N Q)
T <RTR) <’°R )Q " & <0 Q)?
ST 2z
Q = Arc chamber volume - Ft3 A #_7%—7&
20\0 WA O
A TSt
0 L 1% oxygen freeze out | 510% /. (% .
x / // D‘/ o
E:J /J -+ "7‘— ’ OO
T [ - ) 2PN
a 2 \ \OI 5 b L’ "/
S \ / 4 ,/ /
o /4 / y; //
E /// //" //f/,5'\04
By AU
o /_ ) 7
Q' " r/ / 4
th I,OOO / I, /
> /| S & =
8 AO i
2 / / , J A 29
) | Ao
L / / ~— /
& / -1 7
,‘—// /]
2 5
O
9
<z
a
}._
10p)

100
STAGNATION DENSITY, NS

FIGURE 3. ARC CHAMBER CONDITIONS FOR EQUILIBRIUM
AIR (Thermodynamic data from Ref.20).



1000

STAGNATION PRESSURE | p, , ATMOSPHERES

100

10 100
STAGNATION DENSITY, 2, /0

FIGURE 4. VARIATION OF TEST SECTION BOUNDARY LAYER

THICKNESS WITH STAGNATION CONDITIONS.



STAGNATION PRESSURE , p, , ATMOSPHERES

1,000

100

//’//%////// //
24%%
2 AN
/ // / ////////;3;90
N / / 4 i ’
Y. /// // Ly
s
AL
VA A AV
5 7/ / ////7/'
\(-l’{/ //;/////
Y
\%/ //
O /A/’
YL
v
[ 2 5 8 2
10 100

STAGNATION DENSITY, 4, /0

FIGURE 5. THE MACH NUMBER FUNCTION & FOR
EQUILIBRIUM AIR.



Y =363 Ft. 22

R= 9.45"

T n= .05"

5
()]
W
(14
w
& 2
n
@]
s
2
o
a 1000 _
w 7
> T 17
n //Q///
w 7\ 7/
& 5 Ay /,
z S
5 v/
z / /, /
2 ////
() / )

/|

27 e

/ //’

24

’/

100
2 5 8 2
10 100

STAGNATION DENSITY, £, /PR

FIGURE 6. VARIATION OF TEST SECTION MACH NUMBER
WITH STAGNATION CONDITIONS .



Y =363 Ft.73 ot

Q)
Q)
R = 9.45“ \09
-T— " ¢ “
= Qo
S rn= .05 «,’ ___TI\Q A
/ /'/ ,,\
. A A
| — With boundary layer 2 i \é
----- Without boundary | AR 4
out bDoundary layer P p
4 ) /’,
N ,/ ’/ yi
w 1 / //
@ // /‘ //
P 4 b 4
L:;:J 7 ’ //’/
Q_ 2 4 v/ .. ,‘l"
B /7 , 94 / R
2 / N 4% /S
§ // yd / / // 9
'& // ,/ /,' // /b
- y ,’l /‘I / //
Q 7
Q 1.000 67 2 /" / /
ro RA pAlV/A4 N, ‘
g //' 4 / /
x 8 2 21 ,r/,r <
17
N ’/ ‘/ /7 ‘/
/ L4 v
(lﬁ ,’,,’ 1/ ’// ,/r// / ,//
a /AN WAV
5 y 2 v 2
2 4 / 7
®) ’/ / // /,
}<—t ,\0 ,/ ,/
e X y g
G) Vi V. y.
< Ud /"7 / 7/
— // / /7
N /7 V;
/, /V/
2 4 -
/ Y
L/
/
V4
/
/
7
100
2 5 8 2
10 00

STAGNATION DENSITY Ao /PR

FIGURE 7. THE EFFECT OF THE BOUNDARY LAYER UPON
THE TEST SECTION MACH NUMBER.



STAGNATION PRESSURE , p, , ATMOSPHERES

1,000

100

$ =363 Ft 793 <
R= 9.45" S
il ; ACTI
rp= .09 /’/ L~ NO
a /7/1!%
L LA '
/// 1)
/// ///%6
o, %5/7 o
[
5 1&/,//25/; e
,\6\0 7////// /// / ’/o\{‘.
o’ //?/ e
//2///,// o ,/"’b"
/ Zf/// s
4 Ve
A // 17
XA -
A~ A
R O P T
v e ,b:1 A/
T
/ //l o ,’J
// \ o s
‘/ ///
// /
///,
///

100

STAGNATION DENSITY, A, /4,

FIGURE 8. VARIATION OF TEST SECTION STATIC PRESSURE
WITH STAGNATION CONDITIONS.



STAGNATION PRESSURE , p,, ATMOSPHERES

1000

100

Y = 363 1.7 ot
R =9.45" 07
B n «0 —
rs = .05 P
5 4—— » 1
With boundary layer e ! ,,/’ e
41 <
/’4
//"’ A4

10

o)

STAGNATION DENSITY, g /0g

FIGURE 9. THE EFFECT OF THE BOUNDARY LAYER UPON
THE TEST SECTION STATIC PRESSURE .



Y =363 F1 793 R

O .
R =9.45" & °*"(§* L
T . . A" NS
= .05 7.7 v 77 Pt

NN
N
x\ N
\\/\O\

ANNEANNNRN
AN
AN

N
NN
%

N
NS\

LNANNERNANY

v/ 1M
///%7 ///
1.000 ’//A // / //
’ N/ /4 VVE, X
N Y77/ 4. VA ARV,
TS 77 7707
o VNS XS A

X 7/ &/ 1AW

N
N
N
N\

STAGNATION PRESSURE, p, , ATMOSPHERES

100

10 100
STAGNATION DENSITY, . /0,

FIGURE 10. VARIATION OF TEST SECTION STATIC TEMPERA-
TURE WITH STAGNATION CONDITIONS.



STAGNATION PRESSURE , pg, ATMOSPHERES

Y - 363 Ft 93

R=9.45"
i rp= .05"
I
/;4’
) /]
2 / 7
WY
// //
/| M
’/
// / V1
Jr’ /
'1' /!
faf o
//4’/
1.8
.6
100
2 5 8 2
10 100

STAGNATION DENSITY, 4,/

FIGURE Il. VARIATION OF TEST SECTION DENSITY AND LIMI-
TING VELOCITY WITH STAGNATION CONDITIONS .



¥ =363 F1 03 s
un O
R=9.45 7
I ~ u «o -
5 ——— = .05 /——_%_——
4 Y
- — With boundary layer fA_\//
----- Without boundary /a‘/
n T layer 2 - H
H:J —— /’ I
: /A0
£ AN A
;s T 9
= 4 Apg=ari07t L 4L a8
Z ] e
S 000 L L AL L
A 1000 K ‘ i :
b /24 A ] A R Y
i 8 Al L/ " <~
8 /// " / " /l/)
(Lﬁ . ) / 'l'/ //
cr /7
0- 5 4 / I" "/ '/
) /
S VAY 'S
S ’
AT
7/
n " //
/ A
2 ,I //
e
II,/
/
Ve
/
//
100
2 > ° 2
o [0]6)

STAGNATION DENSITY , &, /0,

FIGURE 12. THE EFFECT OF THE BOUNDARY LAYER UPON
THE TEST SECTION DENSITY.



APPENDIX A

It has been shown that the mass flow through the nozzle is

2
_ 2 5
th = 21rpeVe ‘:Rc (1 - cos Guc) + RS - 5 COS GW) cos (Gw - euc)
R * 5+’ 6 o -8 A-1
- _—z—coswcos(w- uc) . (A-1)
Now let
a=606 -0 (A-Z)
W uc
then from Figure 1 it can be seen that
_ R
¢ cos asin d
w
(A-3)
5=R sina=R-20¢
(¢ sin 6
w
It follows that
2 2
R(1-cos 8 ) tan” acos 8
m uc 2 tana 1 _.2 w
= + cos a |R™ — -=R
2rp V 2 . 2 n o 2 . 2
e e cos asin 6 w sin 6
w w
6*2
- cos a |R&* - —5— Cos 9 (A-4)
w
Now assuming that
O Oer @ << 1 (A-5)

series expansion of the trigonometric functions yields the following for the

terms in Equation A-4:

A-1



2 2
R™ (1 - cos euc)_RZ 2 g 1+0w +naz+ Qwa a6)
2 ) 0 2 4 12 6 ’ )
cos asin 6 w 0
w w
2 t 2ozc &)
R tana 1 zan 08 w
cosa|l———— - =R =
sin 6 2 , 2
w sin 6
2| a az Gwz 1 ozz az 9w2
Rl l-T+ %3z % & ° (A-T)
w 0,
w
2
2 2 2 ] 2
o* a 6* 1 a
* - = * - —] - - - — -
RO 5~ COS GW) cos a=Ro* (1 2) 5 (1 5 2) . (A-8)

Combining these results, introducing a new parameter o defined as

and using the relations

Equation A-4 can be written in the form

m
i peVe

=(R - 5*)2 [1+ 9W

where the function E is given by

2 L 3 4

1 1 5% 1, , b* 3 1 *

o z*(l 2R @0 +(z‘2—§ R
E (0, =)= g g
R 5|2
"R
*
The function E (o; GR is plotted in Figure A-1 for ¢ = 1. 0 and 2. 0.
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APPENDIX B

In order to estimate the effect of transverse curvature upon the skin friction
coefficient in incompressible flow consider the case of an axisymmetric boundary
layer with R and u, constant; even though this case is not entirely realistic from

a physical point of view. The momentum equation becomes

d5. ¢
2 f
® "2 (B-1)
Now C; is assumed to be given by the power law (Equation 30)
P eue{j -m
c; = A (30)
He
and correspondingly the velocity distribution will be
u y S
it (52

where s = '2 - From Equations 9 and 12 it now follows that
1
5 5 [y||(x)° v\l 4 [x B-3
52=5J -'ﬁ(g) -6-) 1—(-6-) d(g) ( ')
0
so that
5. =6k, -k, 2 (B-4)
2 1 2R
where
1 1 ; 1 1
K =s+1 2s+1° ¥2"5+2 +2

B-1



Combining Equations 30, B-1, and B-4 yields the following differential

equation for the boundary layer thickness 6

-m
A peueﬁ)
do _ 2 “e ,
ax 5 (B-5)
k1 - 2k2 R

Equation B-5 shows that the rate of boundary layer growth increases with increas-
ing 6/R. Thus one reaches the tentative conclusion that in internal flows the

transverse curvature results in thicker boundary layers than in the cases in which
the transverse curvature effect is absent. Integrating Equation B-5 and assuming

that 6 = 0 when x = 0 yields the result

[ 2k2
1-1
1

It must be pointed out that the assumption 6 = 0 when x = 0 is inconsistent with the
fact that 6/R ~ O (1) and the assumption that u, and R are constant. Nevertheless

m+ 1 1{1
m+ 1

0

m+1 A
_— -R—J --é—Rex . (B—G)

m+ 2

Re6

the results of the integration above may be valid in the limiting case when 5/R is

quite small.

In the absence of transverse curvature (6/R = 0) Equation B-6 together with
Equation 30 immediately leads to flat plate power law for the friction coefficient

(Equation 32), Clearly as /R ~ O (1), c, can no longer be expressed as a

f
simple power of Rex, rather
_m
— m + 1
% Rex m+ 1
Cf = ok K (B-7)

1- ~2/m+ 1186 1

k., lm+ 2/R
|1 _

and from Equation B-7 it follows that the transverse curvature effect decreases

the skin friction coefficient.



If 5/R is sufficiently small it can be shown from Equation B-6 that to first
order in /R

2k 0

2 P

6_6Pl}+me (B-8)
where GP is the plane value of boundary layer thickness given by
I 1
x| M 1 m+ 1

e m+1A

O0p =X (_ue—) ( k2 (B-9)

From Equations 30, B-8, and B-9 it follows that to first order in 6/R

m

< m+ 1
Cp = C; 1-k4ﬁ(ReX) (B-10)
P
where
1
m+ 1
K = 2mk2 m+1A
'4—k1(m+2) kl 2

B-3



APPENDIX C

Burke3 used the empirical displacement thickness relation either of the form

o Mel. 311
< =+ 0483 —557% (-1
_ Re
X
or of the form
. -

6* pruX

09— (C-2)
in conjunction with the continuity equation

m=7p_u (R—ﬁ"‘)2 ("

e e

to calculate the combined nozzle and boundary layer flow at the test section. At
the hypersonic test section conditions of interest the static temperature of the
isentropic core is low so that the perfect gas assumption is applicable. In this
case, Reece70 has shown that the usual perfect gas nozzle flow equations can be
used with correction factors to account for the real gas effects in the reservoir
and upstream portion of the nozzle. Consequently static temperature and pres-

sure are determined from the equations

h
Oy 1y 2 ;
h—1+ 5 Me , (C-3)
T = yh
7'1R
and
_')/'i/l _§
£_=1+7-1M2) e B (C-4)
P, 2




The ratio of nozzle to throat area is written in the form

o r+1 y+ 1
A ¢ om,plrt 2(y—l)M'1 1+4y—1—1M22(Y- ‘) (C-5)
At 1707 0| 2 e 2 e ’

and the mass flow density at the nozzle throat is related to reservoir conditions by

by
——I);ptat :fz (h09 po) Gl (C_G)
_1 1
vy -1 2
N 2 | Y y-1
Glmﬁy+1) (’y—l y+ 1

Equations C-1 to C-6 form the basis of Burke's calculation method. Before apply-
ing these equations it is necessary to discuss the various real gas correction

factors.

In Equation C-4

ideal

where S(po, ho)/ R is the real gas dimensionless entropy at stagnation conditions,
which in the present case was determined from Feldman's Mollier diagram for

argon free air. 20 (S/R) in the perfect gas dimensionless entropy corres-

ideal
ponding to h0 and po, and given by
S
S Y R
(—— =—=—1In|—|-lnp +—=% . (C-17)
R ideal 7~ 1 hR o R

Subscript R refers to the reference condition of 273. 16°K and 1 atm pressure.

hR and SR/ R were taken from NBS Circular 564. Since the NBS tables are based

on air including argon it has been assumed that h and S/R are the same for real

and argon free air at the reference condition. The values of the gas constant R

and the molecular weight used here correspond to those given in Reference 20.
C-2



The correction factor fl (ho, po) in Equation C-5 has been determined from
Goin's ta,bles15 and from graphical calculations using Mollier charts for air. 2
The two calculations were in excellent agreement and the resulting curves for
fl (ho, po) are shown in Figure C-1. It should be noted that Burke and Reece3’ 70
assumed that f1 = f1 (ho) and this is approximately true over the enthalpy range
25 < ho/ RTO < 150 covered by their calculations. At higher values of stagnation

enthalpy h0 Figure C-1 shows that f1 strongly depends upon the stagnation pressure

Py

The correction factor fz (ho, po) in Equation C-6 has been computed using
Goin's tables15 and is plotted in Figure C-2. Once again there are considerable

variations in f 9 (ho’ po) with P, at the higher values of stagnation enthalpy.

In using the reference temperature form of the boundary layer correlation
(Equation C-2) it becomes necessary to determine the reference temperature
T* from the reference enthalpy h* as defined by Equation 36. For this purpose

an average specific heat, C , defined by

Cp T*=h* = YY_RI £, (p, h¥) T* (C-8)

has been introduced. To compute this function it has been found convenient to
use Blackwell's tables. 14 The function f3 (p, h*) is plotted as a function of h*/ RTR
in Figure C-3.

Using the assumption that 2/—;-—lMez >> 1, letting h* 20.235 h , assuming

that the thickness of the boundary layer at the nozzle throat is negligible, and
that

W=k, (T0/ 2

Burke has shown that Equations C-2 and 7 can be reduced to the single equation

2YA
_6_t_=k C(l-ﬁ—*) (C-9)



where for A = 0.3, v = 1. 4,

0.3 - 0. 54
1 -0.12. -0.3[%) % (’Xewz -0, 45
S s T T Py 1 v B ey B ’
W 0 At \ Tt

and for a boundary layer correlation of the form

*
91 k P uex]
x 1) pF
the constant k5 is given by
! 3/2 -A v+l -y - 1)
2 G (_7_R_) 5y - 1)
k. =k Y 1 Y - 1 Y - 1)
o 1 k, R(0. 29)%/2 v+ 1

For the correlation formula (Equation C-2), with y = 1.4, R =1.724 x 10
ftz/sec2 °R (argon free air), and k., = 2. 01 x 10_8 slugs/ft sec ORl/2 (taken

2
from Burke3) the constant k_ has the value 0. 362 x 1073 (ftz/ slug)O' 3,

5
¢ can be calculated once the stagnation conditions, and the nozzle throat
radius, length, and half angle are known. This in turn makes it possible to solve

Equation C-9 for 6*/ wa =5*/R. A graphical solution obtained by reading off
values of 6*/ 6% from a graph of 6*/ GWX vs. £ determined from Equation C-9 is
most convenient. A plot of Equation C-9 corresponding to the correlation formu-

la (Equation C-2) is shown in Figure C-4.

o*/ wa determines the effective test section area and consequently all the

test section parameters. Thus

Bett =(X0W) (1-—91)2 . (C-10)

C-4



Combining Equations C-5 and C-10 it follows that when %— 1 Me2 >>1

2
y-1
2 2
Kxew) ( 5% )2J
—_ (1 - —
rt 9Wx
Me="7 1 v+ 1 (1)
f1 y -1 4
Y+ 1
Knowing Me’ P, and Te can be calculated using Equations C-3 and C-4. The
dimensionless free stream density can be computed from
p, p_|T
R (C-12)
PR “e\PR

where PR is the density at standard or reference conditions and where p/ PR is

sometimes referred to as density in Amagat units.

The procedure described above combined with extensive cross plotting has
been used to compute the results described in Section III of the main report. One
source of error in the calculations above is that while Goin's tables, used to com-
pute f1 and fz, are based on the most recent NBS calculations for real air, 6 the
Blackwell Tables and the Feldman Mollier Diagram, used to calculate f3 and AS
are based on the older NBS data for argon free air. 7 In view of the large uncer-
tainty introduced in using the empirical formulas for 6*/x, the effects of the above

inconsistency can be ignored.

C-5
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