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Abstract 

 

Pancreatic adenocarcinoma is a leading cause of cancer death with a five-year survival 

rate of only 5%. Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA), the 

current diagnostic standard, cannot reliably rule out malignancy and is insensitive to 

distinguishing adenocarcinoma from chronic pancreatitis (inflammation). To investigate 

the ability of multi-modal optical spectroscopy to detect signals from human pancreatic 

tissue, a clinically-compatible instrument was developed for rapid, quantitative 

reflectance and fluorescence spectroscopy in tissues, including fluorescence lifetime 

sensing. Reflectance and fluorescence spectra and time-resolved fluorescence decay 

curves were successfully measured for the first time from freshly excised human 

pancreatic tissues and in vivo human pancreatic cancer xenografts in mice. 

For the first time, pancreatic tissue classification algorithms using optical spectroscopy 

data were developed. A total of 96 fluorescence and 96 reflectance spectra were 

considered from 50 sites (adenocarcinoma, chronic pancreatitis, and normal tissues) on 9 

patients. The SpARC (Spectral Areas and Ratios Classifier) and PCA (principal 

component analysis) algorithms employed linear discriminant analysis on classification 

variables extracted from optical data. Maximum sensitivity, specificity, NPV, and PPV 

(85%, 89%, 92%, and 80%, respectively for the SpARC, and 91%, 90%, 95%, 83%, 

respectively for the PCA algorithm) for correctly identifying adenocarcinoma were 

achieved employing both reflectance and fluorescence spectra. Inclusion of time-resolved 

fluorescence data in the PCA algorithm further improved the distinction between 
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pancreatitis and normal tissues in a limited data set. Importantly, the sensitivity of both 

algorithms far exceeds reported EUS-FNA sensitivity (54%) at distinguishing 

adenocarcinoma from chronic pancreatitis. The developed algorithms show promise for 

rapid automated pancreatic tissue classification using multi-modal optical spectroscopy 

and could be employed in a clinical setting. 

The possibility of applying optical spectroscopy to evaluate tissue engineered devices 

was also investigated. Tissue engineered constructs are functional biologic devices 

employed for grafting wounds or replacing diseased tissue. Non-invasive methods are 

required to assess the viability of these engineered constructs. Monte Carlo simulations 

and multi-modal optical spectroscopy were coupled to assess porcine articular cartilage 

and oral mucosa constructs for the first time. The developed methods would be safe for 

clinical human use as they employ endogenous contrast for non-invasive quantitative 

assessment. 
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Chapter 1                                                                

Introduction 

1.1  Optical spectroscopy for biological sensing 

The interaction of light with complex, inhomogeneous media such as biological tissue is 

characterized by a variety of processes that depend on the physical nature of the light and 

the specific morphology and composition of the tissue [1, 2]. Incident light may be 

scattered (elastically or inelastically) multiple times due to microscopic differences in the 

index of refraction within the tissue, it may be absorbed by fluorophores (e.g. cellular 

NAD(P)H or FAD and extracellular collagen), which may then release their excess 

energy by radiative decay, producing fluorescence or be non-radiatively absorbed by 

chromophores present in the medium [3-5]. The remitted fluorescent light may, in turn, 

be multiply scattered or absorbed. The, reflected and fluorescent light reaching the tissue 

surface is affected by scattering (e.g., from inhomogeneities including extracellular 

matrix and membranes and intracellular nuclei and mitochondria) and absorption (e.g., 

from hemoglobin and proteins) properties of the tissue.  

Methods of optical spectroscopy and imaging are being developed for a variety of 

biomedical applications in non- or minimally-invasive tissue diagnostics, including 

sensing molecular concentrations of delivered pharmaceutical or contrast agents, probing 

tissue physiologic status, and detecting early stages of disease in vitro and in vivo [2-10]. 

The work in this dissertation applies reflectance and fluorescence spectroscopy for the 
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assessment of biological tissues without the use of contrast agents. The remaining text of 

this chapter introduces these modalities of optical spectroscopy, motivates the optical 

assessment of biological tissue studied in this dissertation, lists the specific aims of the 

dissertation, and concludes with an outline for the remaining thesis. 

Spectral (steady-state) detection of fluorescence emission resolves the variation of 

fluorescence intensity with wavelength of emitted light [11]. Endogenous tissue 

fluorescence non-invasively provides information about the native biochemical 

composition and microenvironment in living tissues without the use of exogenous 

contrast agents [8-10]. Endogenous fluorescence spectra recorded from biological 

systems like cells and tissues are composed of spectral bands from multiple constituent 

fluorophores, including extracellular structural proteins (such as collagen and elastin) and 

intracellular metabolic co-factors (NAD(P)H and FAD) [9]. Fluorescence intensities are 

sensitive to factors including variations in excitation intensity, fluorophore concentration, 

photobleaching, and sources of optical loss (absorption and scattering) in biological 

systems [11, 12]. To gain diagnostic value, these complex spectra are analyzed 

chemometrically or modeled computationally [4, 7, 13-23]. 

Time-resolved fluorescence techniques capture the transient decay of the fluorescence 

intensity in time. This decay reflects the relative concentrations and the excited-state 

lifetimes of the endogenous fluorophores contributing to the emission [11].  Fluorophore 

lifetimes are sensitive to the local biochemical environment and vary with pH and 

oxygenation [11]. However, time-resolved measurements do not vary with fluorescence 

intensity because they are generally independent of artifacts influencing fluorescence 

steady-state measurements. This is important when applying fluorescence spectroscopy in 
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vivo, since intensity losses seen in the steady-state emission spectrum due to absorption 

of light by hemoglobin in tissue would not affect time-resolved measurements [24, 25]. 

Reflectance spectroscopy relies upon the absorption and elastic scattering of light in 

tissues, which depend on tissue composition (e.g., oxy- vs. deoxy-hemoglobin content) 

and index of refraction variations (e.g., cell nuclei size, shape, and density), respectively.  

Reflectance methods have been employed to distinguish neoplastic from normal 

epithelial tissues in the colon [26] and in studies of Barrett’s esophagus [27], as well as to 

characterize tissues in solid organs, such as the breast [28].   

These different measurement modalities (steady-state fluorescence, time-resolved 

fluorescence, and reflectance spectroscopy) can thus provide complimentary information 

about biological tissue. For example, studies in the breast, which is a solid organ like the 

pancreas, have demonstrated improved diagnostic discrimination of inflammatory and 

malignant breast tissues ex vivo via the use of a multi-modal approach involving both 

fluorescence and reflectance studies [21].   

In this dissertation work, instrumentation for reflectance and fluorescence spectroscopy, 

including lifetime sensing, was developed and applied to non-invasively study natural 

pancreatic tissues, porcine articular cartilage, and engineered oral mucosa.    

1.2  Motivation 

1.2.1 Pancreatic Adenocarcinoma 
 
Pancreatic adenocarcinoma has a five-year survival rate of only 5%, making it the fourth-

leading cause of cancer death in the United States [29]. Current diagnostic procedures are 

unable to diagnose the disease in its early stages [30]. In various imaging modalities, 
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diagnosis is compromised due to similarities in the appearance of chronic pancreatitis 

(inflammation of the pancreas) and adenocarcinoma [30]. Endoscopic ultrasound-guided 

fine needle aspiration (EUS-FNA) is the current clinical standard for the diagnosis of 

pancreatic adenocarcinoma. In EUS-FNA, ultrasound is employed to guide a hollow 

needle through an endoscope into the suspected pancreatic mass. Cells from the 

suspected mass are sampled via the needle and analyzed by a cytopathologist for 

malignancy. Small specimen size, overlap with chronic pancreatitis in the diagnostic 

features seen at cytological evaluation, and EUS-FNA operator dependence make this 

technique inconsistent in its performance at detecting pancreatic cancer. This is apparent 

from the wide range of sensitivities (54 – 95%), specificities (71- 100%), and negative 

predictive values (NPVs) (16-92%) of adenocarcinoma detection reported for this method 

(Figure 1.1a) in a recent meta-analysis of 28 EUS-FNA studies [30]. In particular, EUS-

FNA has only 54% sensitivity (Figure 1.1b) for adenocarcinoma in the setting of chronic 

pancreatitis (i.e. when the patient has both adenocarcinoma and chronic pancreatitis) [31] 

and the two conditions frequently coexist. The exceedingly large range (16-92%), and 

low median (72%) of the NPV indicated the inability of EUS-FNA to definitively rule-

out malignancy, thus leading to the conclusion that “preoperative biopsy of potentially 

resectable pancreatic tumors is not generally advisable, as malignancy cannot be ruled 

out with adequate reliability” [30]. A study found that as many as 9% of patients undergo 

complicated pancreatic surgery, only to reveal absence of malignancy during pathological 

examination of the resected specimen [32]. Clearly, detection of pancreatic 

adenocarcinoma in its early stages and its distinction from chronic pancreatitis could 

greatly improve the chances of patient survival.  



 5

Multiple studies have employed optical techniques for minimally invasive detection of 

breast, cervical, colon, and esophageal cancers, including [3, 4, 27, 33-36].   

 

Figure 1.1 The median and range of sensitivity, specificity, NPV, and PPV for adenocarcinoma 
identification reported in a meta-analysis of 28 EUS-FNA studies [30]. (b) The performance of 
EUS-FNA for distinguishing between adenocarcinoma and chronic pancreatitis in the setting of 
chronic pancreatitis as reported in a study [31]. 

   

However, owing to the relative inaccessibility of the pancreas, only a handful of studies 

have applied optical methods for pancreatic cancer detection. Optical coherence 

tomography was applied to both in vivo and ex vivo detection of pancreatic cancer [37, 

38] and near-infrared spectroscopy [39] was applied ex vivo. Pancreatic cancer cells on 

microscope slides were studied employing partial-wave microscopic spectroscopy [40]. A 

field effect hypothesis predicting changes in the duodenum owing to presence of cancer 
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in the pancreas [41, 42] was studied ex vivo using four-dimensional elastic light-

scattering, and low-coherence enhanced backscattering spectroscopies.  

The aim of the study reported here was to employ reflectance and fluorescence 

spectroscopy for differentiating between pancreatic adenocarcinoma, chronic pancreatitis, 

and normal pancreatic tissue. Tissue classification algorithms were developed to classify 

the measured optical spectroscopy data employing linear discriminant analysis and 

principal component analysis. 

1.2.2 Non-invasive sensing of tissue engineered constructs 

Tissue engineering is the process of creating functional biologic devices either for 

grafting wounds or for replacing diseased tissues. A significant challenge in tissue 

engineering is the non-invasive, quantitative assessment of the viability of these 

engineered tissue constructs, and how they compare to normal biologic tissue. At present, 

evaluation of soft tissue regeneration of engineered tissue constructs during the 

manufacturing process or post-implantation into patients is done mostly via histology. 

First, this approach is invasive and requires time-consuming sectioning of the tissue for 

staining to be performed. Second, histology is inherently qualitative since the stain color 

and intensity may not reflect the amount of matrix present in the soft tissue. Biochemical 

assays can also be employed to measure, for example, the level of glucose uptake from 

the cell culture media in which the tissue constructs are being grown [43]. While such a 

method could be non-invasive, quantitative, and able to assess overall cell viability, it 

cannot provide spatial information about the functionality of the construct. In addition, 

such a technique could not be employed post-implantation into patients. 
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Table 1.1. Methods to assess the viability of tissue engineered constructs 

Histology Biochemical Assays Optical Methods 

Destructive Non-invasive Non-invasive 

Qualitative/ Subjective Quantitative/ Objective Quantitative/ Objective 

Labor intensive Real-time monitoring Real-time monitoring 

No spatial information No spatial information Spatial information 

Invasive monitoring post-
implantation into patients 

No post-implantation 
assessment possible 

Non-invasive monitoring post-
implantation using 

endogenous contrast  

  

An optical spectroscopy or optical imaging technique could non-invasively and 

quantitatively determine soft tissue composition or cellular function and would represent 

a significant advance in the assessment of engineered tissues. Since the method would be 

non-destructive, it would allow repeated assessment of a given sample over time, thereby 

significantly speeding up lengthy and expensive protocols requiring multiple samples. 

Furthermore, the method could provide spatial information about the biological viability 

of the construct via fiber optic probes both pre- and post- implantation into patients.  

Table 1.1 compares the present methods for assessing viability of tissue engineered 

constructs with the proposed optical methods. 

In order to quantify optical measurements made in biological tissues, it is necessary to be 

able to describe accurately all light-tissue interactions (composed of elastic scattering of 

both incident and remitted light, as well as absorption of incident excitation by tissue 

chromophores or fluorophores). A widely used technique for quantitative simulations of 

light-tissue interactions involves the use of Monte Carlo (MC) models for photon 

transport in turbid media; an approach proven to provide accurate predictions of light 
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energy distribution in turbid media along with the ability to model complex tissue 

architectures and source-detector geometries [10, 44]. 

In this dissertation, reflectance and fluorescence spectroscopy and previously developed 

MC simulations were coupled towards the goal of assessing viability of two tissue 

engineered constructs namely, articular cartilage constructs, and oral mucosa constructs. 

A significant advantage of the methods employed in this work was the use of endogenous 

contrast for non-invasive quantitative assessment, thus ensuring safety for clinical human 

use.  

1.2.2.1 Articular cartilage constructs  

Hyaline articular cartilage (AC) is found in the synovial joints and is an important 

contributor to the functional capacities of these joints [45]. If a chondral defect or lesion 

occurs, it does not heal on its own. Thus methods are being developed to make tissue 

constructs that would mimic true AC. Pre- and post implantation non-invasive viability 

testing of these constructs can potentially be done by analyzing their optical signals. 

Here, we present a novel combination of experiment and computation to quantitatively 

characterize fresh porcine knee cartilage using endogenous fluorescence. Fluorescence 

data and simulations were used to extract a quantitative measure to monitor relative 

changes in concentration of the constituent fluorophores in AC tissue over time. The 

porcine articular cartilage (AC) tissue samples studied offered the biological variability 

not found in artificial tissue-simulating phantoms and will serve as a model for future 

optical molecular sensing studies on tissue engineered AC constructs intended for use in 

human therapy. 
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1.2.2.2 Ex Vivo Produced Oral Mucosa Equivalent (EVPOME) 

constructs 

Oral surgeries or trauma in humans can result in open wounds that are susceptible to 

infections and require grafting by either skin or oral mucosa grafts from donor sites [43, 

46]. The procedure however involves multiple surgeries and can result in donor site 

morbidity. In addition, non-oral mucosa grafts, such as skin, have different keratinization 

patterns. Tissue engineered ex vivo produced oral mucosa equivalent (EVPOME) 

constructs can be used to graft oral wounds. To manufacture these constructs, oral 

keratinocytes from the patient are suspended in an artificial, biologically compatible 

matrix at day 0 and the cell-matrix composite is grown to form the tissue construct, ready 

for implantation at day 11. Since the cells are obtained from the patient’s own mouth, 

there is no risk of rejection by the patient’s immune system or a difference in 

keratinization pattern. The EVPOME has been successfully tested in a Phase I human 

clinical trial. 

Quantitative, non-invasive tools are required to monitor structure, composition, and 

function of these engineered tissues in real time. Non-invasive tools can be developed to 

assist in creating release criteria for the manufactured engineered tissues, in vitro, and for 

assessing tissue performance after their grafting, in situ. 

In this dissertation work, non-invasive optical assessment of cell viability in EVPOME 

constructs by employing fluorescence spectroscopy via fiber optic probes was 

investigated. Measuring the fluorescence from the same healthy EVPOME construct 

under sterile conditions from day 0 to day 11 could be used for characterizing the 

fluorescence expected from a viable construct from day 0 to day 11. This information 
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could then be used to discard faulty constructs early on in the manufacturing process, 

thereby saving time and resources. 

The use of a non-invasive quantitative optical technique could establish a release criteria 

of an engineered tissue in a more comprehensive fashion, i.e., viability, structure and 

metabolic activity, compared with presently used assay systems, such as glucose uptake. 

The development of release criteria in real time will improve the quality control of 

engineered tissues during their manufacturing process. The technique, once developed, 

will also allow the ability to assess tissue viability in situ, non-invasively, after grafting 

into animals and, eventually, into humans.   

1.3  Dissertation objectives 

Specific Aim 1: To design and develop instrumentation for reflectance and 

fluorescence spectroscopy. A clinically compatible instrument for rapid, quantitative 

optical sensing in biological tissues using reflectance and fluorescence spectroscopy, 

including fluorescence lifetime sensing will be developed.  

 

Specific Aim 2: To assess the application of fluorescence and reflectance 

spectroscopy for differentiating between human pancreatic adenocarcinoma, 

chronic pancreatitis (inflammation of the pancreas), and normal pancreatic tissues. 

The developed clinical instrumentation will be employed, for the first time, to perform 

reflectance and fluorescence spectroscopies on human pancreatic xenografts in mice and 

from human pancreatic tissues. Chemometric tissue classification algorithms that employ 

principal component analysis (PCA) and linear discriminant analysis (LDA) will be 
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developed for the first time for pancreatic tissue classification using optical spectroscopy 

data.  

 

Specific Aim 3: To assess the application of optical spectroscopy for non-invasive 

assessment of tissue engineered constructs. The developed clinical instrumentation and 

previously developed Monte Carlo (MC) codes of photon transport in turbid media will 

be employed for the first time to optically characterize porcine articular cartilage and ex 

vivo produced oral mucosa constructs (EVPOME) in a non-invasive and quantitative 

manner.  

1.4  Dissertation overview 

The dissertation has been organized as follows: 

Chapter 2 introduces the theoretical concepts of fluorescence and reflectance 

spectroscopy and introduces Monte Carlo modeling of photon transport in turbid media. 

Chapter 3 describes in detail the developed clinical instrumentation for reflectance and 

fluorescence spectroscopy, including lifetime sensing. The chapter includes the optical 

and electrical design of the instrument and describes the software developed for 

controlling the instrument. The chapter also describes the instrument calibration and data 

processing required after data acquisition.  

Chapter 4 describes the application of the developed technology to the first in vivo 

measurements of fluorescence and reflectance spectra from human pancreatic cancer 

xenografts in NOD/SCID mice (non-obese diabetic/severe combined immunodeficiency). 

It also describes the first ex vivo measurements of fluorescence and reflectance spectra 

and fluorescence life-time decays from freshly excised human pancreatic tissue. A 
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correlation of the optical measurements with known histological features of normal, 

pancreatitis, and adenocarcinoma pancreatic tissues is described. 

Chapter 5 describes the development of the first pancreatic tissue classification 

algorithms employing the measured optical data. Two tissue classification algorithms 

developed in this dissertation – SpARC (spectral areas and ratios classifier) algorithm and 

PCA (principal component analysis) algorithm - are described and their performance at 

classifying pancreatic tissue into normal, pancreatitis and adenocarcinoma tissue is 

presented. 

Chapter 6 describes the application of the developed technology to the non-invasive 

assessment of tissue-engineered constructs. Optical spectroscopy measurements and 

Monte Carlo simulations are coupled for optimized non-invasive, quantitative assessment 

employing endogenous contrast. The first part of the chapter describes the first attempt of 

this kind for optical assessment of porcine articular cartilage (AC) tissue samples. These 

samples offer the biological variability not found in artificial tissue-simulating phantoms 

and serve as a model for future optical molecular sensing studies on tissue engineered AC 

constructs intended for use in human therapy. 

The second part of the chapter describes the MC simulations and experiments undertaken 

to optimize the assessment of biological viability of tissue engineered ex vivo produced 

oral mucosa constructs (EVPOME). The first fluorescence spectroscopy measurements of 

EVPOME and its constituents are described. Also described is the first application of 

previously developed Monte Carlo codes to the quantitative simulation of photon 

transport in EVPOME constructs. 



 13

Chapter 7 summarizes and concludes the dissertation and discusses possible future work 

and potential applications of the work presented here. 
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Chapter 2                                                                

Theoretical Background 

 

A background of the optical techniques employed in this dissertation work is presented in 

this chapter. Section 2.1 of this chapter introduces the theoretical concepts of reflectance 

and fluorescence spectroscopy, including time-resolved fluorescence spectroscopy. 

Section 2.2 briefly describes the previously developed Monte Carlo code of photon 

transport in turbid media.  

2.1  Reflectance and Fluorescence spectroscopy 

When photons impinge on biological tissue, they can undergo a variety of interactions [1, 

2]. Incident photons could be scattered multiple times due to the mismatch of refractive 

indices, be absorbed by chromophores present in the medium (e.g. hemoglobin), or be 

absorbed by fluorophores, which may then release their excess energy by radiative decay, 

producing fluorescence. The remitted fluorescent light may, in turn, be scattered or 

absorbed multiple times.  

Fluorescence and reflectance spectroscopies can provide complimentary information 

about biological tissue. Reflectance spectroscopy provides information primarily about 

tissue morphology (including the size and density of cell nuclei), while fluorescence 

reports mainly on tissue biochemistry (including intra- and extra-cellular endogenous 

fluorophores like NAD(P)H and collagen). These two spectroscopies may be performed 
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with thin, flexible, fiber-optic probes; the techniques are thus clinically feasible and allow 

access to internal organs endoscopically or during surgery [10, 25, 35, 47-49]. 

Fluorescence and reflectance spectroscopies have been applied in combination to detect 

oral cancer [50], breast cancer [3], dysplasia in Barrett's esophagus [27], and cervical 

cancer [22]. 

2.1.1 Steady-state reflectance spectroscopy 

As light propagates in a turbid medium, it encounters optical in-homogeneities. Every 

time a refractive index mismatch occurs, light is scattered. If the scattered photon has the 

same energy as the incident photon then light is scattered elastically. Reflectance 

spectroscopy involves the detection of these elastically scattered photons. The 

propagation of elastically scattered (reflected) light is dependant on the characteristic 

features (e.g. size and density of scatterers) of the medium. Thus, reflectance 

spectroscopy can provide pathologically relevant information about living tissues, 

including tissue morphology, as well as the size, shape and, density of cells [2, 5]. Such 

information can help track architectural changes in tissue and has been employed to study 

dysplasia in living tissue [3, 4, 6, 7, 27, 51].  

The instrumentation required for measuring steady-state reflectance spectra in a clinical 

setting typically consists of a light source that gives out white light, and optical fibers for 

delivering the light to the tissue specimen and collecting the scattered signal [27, 52]. A 

spectrograph is used to disperse the intensity spectrum into its various wavelength 

contributions and a charge-coupled device (CCD) camera is then used for detecting the 

signal. As the distance between the source and detector fibers is increased, the light 

scattered from deeper and deeper layers of the tissue can be detected.  
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Figure 2.1 plots a representative normalized reflectance spectrum measured from human 

pancreatic normal tissue (blue line) [6]. A reflectance spectrum is represented as a plot of 

intensity of reflected light, as a function of the wavelength.   

 

Figure 2.1 A representative normalized reflectance spectrum measured from human pancreatic 
normal tissue (blue, solid line) [6]. Also shown are the absorption spectra of oxy-and deoxy-
hemoglobin obtained from [53]. It can be seen that the dips in the pancreatic spectrum correspond 
with the characteristic absorption peaks in hemoglobin at the same wavelengths. 

 

The measured tissue spectrum is affected not only by the size and density of scatterers in 

the tissue but also by chromophores like hemoglobin in blood. Figure 2.1 also plots the 

characteristic absorption spectra of oxy-and deoxy-hemoglobin obtained from [53]. It can 

be seen that the dips in the pancreatic spectrum correspond with the characteristic 

absorption peaks in hemoglobin at the same wavelengths. 
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2.1.2 Steady state and time-resolved fluorescence spectroscopy 

In addition to being scattered or absorbed by chromophores, the light entering tissue may 

be absorbed by certain molecules and excite the molecules to electronically higher states. 

The molecules could then lose some of their energy by non-radiative means and then re-

emit a photon of lower energy. This phenomenon of light emission is called fluorescence 

and the molecules that fluoresce are called fluorophores [10, 11].  

 

Figure 2.2 Jablonski diagram showing the energy level transitions when excitation light is incident 
on a molecule (adapted from [11]). 

 

The processes involved in fluorescence are represented by an energy level diagram 

referred to as the Jablonski Diagram [11] (Figure 2.2). Following light absorption by 

fluorophore molecules, the electrons of the molecule transition from the ground state (S0) 

to higher vibrational states of the first or second excited state (S1, S2). The molecules then 

relax in a time scale of ~ 10-12 seconds to the lowest vibrational level of S1. At this stage, 

the molecules can relax to the ground state in a number of ways. They could radiatively 
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relax to the ground state, resulting in the emission of fluorescence photons in times 

typically between 10-9 to 10-8 s. The emitted fluorescence photons are typically emitted at 

a larger wavelength (lower energy) than the excitation photons. This change in 

wavelength is referred to as the Stokes shift. The molecules could also relax to the ground 

state by non-radiative decay processes (e.g. collisional quenching). Another possibility is 

the transition of the molecules to a triplet state (T1) by spin conversion, which could then 

eventually relax to the ground state by emitting a phosphorescence photon. This 

transition termed as inter-system crossing is a forbidden transition, which implies that the 

decay rate for such a transition would be very short. As a result, phosphorescence 

photons have a longer lifetime associated with them compared to fluorescence photons. 

A fluorophore is characterized by its fluorescence lifetime and quantum yield [10, 11]. If 

 and kNR are the radiative and non-radiative decay rates (as shown in Figure 2.2), the 

measured fluorescence lifetime τ (which is the average time spent by a molecule in the 

excited state prior to decay to the ground state) can be calculated as,  

τ = 1/ ( + kNR).                - 2.1 

The quantum yield () is defined as the number of emitted photons relative to the number 

of absorbed photons and can be calculated as,  

 =  / ( + kNR).    - 2.2 

The value for  can range from 0 to 1, with a higher value implying brighter 

fluorescence.  

There are two types of fluorescence emission measurements that can be performed - 

steady state (emitted fluorescence intensity as a function of wavelength) and time 

resolved (emitted fluorescence intensity as a function of time). Time-resolved optical 
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spectroscopy and imaging involves delivering a pulse of light to a sample under 

investigation and detecting the transient response of the medium in the time-domain. In 

contrast to time-resolved optical methods steady-state (or, time-integrated) fluorescence 

measurements integrate the signal over time, thus losing an additional dimension of 

information contained in the dynamics of the fluorescence decay.  Fluorophore lifetimes 

are known to be sensitive to the local biochemical environment and to vary with pH and 

oxygenation in a controlled way, but are generally independent of artifacts influencing 

fluorescence intensity, including fluorophore concentration, photobleaching, and sources 

of optical loss (absorption and scattering) in biological systems [11]. This is an important 

issue to consider when applying fluorescence spectroscopy in vivo, since intensity losses 

attributed to hemoglobin absorption in tissue are routinely observed in the lineshape of 

the steady-state emission spectra when measured in vivo [25, 35]. In addition, since 

biomolecules generally have broad and overlapping fluorescence spectral bands, lifetime 

spectroscopy can provide an alternate means of in situ discrimination in multi-

fluorophore systems.  Despite these differences, both methods have been employed for 

differentiating between morphological and biochemical changes in tissue samples. 

Fluorescence methods are useful in biomedical research for several reasons, including the 

molecular specificity of the technique, the relatively large signal strength in regions of the 

electromagnetic spectrum readily accessible to experimentalists, and the many bio-

compatible fluorophores (endogenous and exogenous) available for study. Several 

endogenous bio molecules including amino acids, keratin, flavin adenine dinucleotide 

(FAD) and reduced nicotine amide adenine dinucleotide (NAD(P)H) and collagen are 

naturally fluorescent [9]. Endogenous tissue fluorescence (autofluorescence) provides 
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information about the native biochemical composition and microenvironment in living 

tissues without the use of contrast agents [5, 8-10, 25, 54-56]. 

2.2  Monte Carlo models for tissue photon interactions  

In order to quantify optical measurements made in tissues, it is necessary to accurately 

describe all light-tissue interactions. Analytical treatment of light propagation in tissue is 

possible by considering light to be composed of neutral particles, and applying the 

radiative transport equation to describe photon propagation in such turbid media [57]. A 

common simplification to this approach has been to use the diffusion approximation to 

the radiative transport equation, which yields analytical solutions for the light energy 

distribution, both spatially and temporally, when applied to simple geometries [58-60]. 

The mathematical intractability and the assumptions of analytical approaches are 

significant and have limited the utility of the diffusion theory approximation in 

experiments on tissues that have multiple constituents or complex source configurations. 

A widely used technique for quantitative simulations of light-tissue interactions involves 

the use of Monte Carlo (MC) models for photon transport in turbid media, since they 

provide accurate predictions of light energy distribution in turbid media along with the 

ability to model complex tissue architectures and compositions, as well as source-detector 

geometries [10, 44]. 

Monte Carlo (MC) models for photon transport in turbid media employ tissue and 

fluorophore optical properties to construct photon trajectories in tissue and calculate  

reflectance and fluorescence photons collected at the surface of the tissues for a given 

source and detector fiber geometry. For a tissue with a single fluorophore in a single layer 

the MC code is executed as follows [61]. Excitation photons with a weight of unity are 
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launched from a source fiber normal to the tissue surface. The photons per unit time 

exiting the tissue surface are collected by annuli of detectors placed around the source 

fiber at increasing radii. The weight of the photon is attenuated exponentially as given by 

Beer’s law for the absorption coefficient (a) of the medium. Photon trajectories are 

constructed by stochastic sampling of scattering angles (specified by the anisotropy 

coefficient, g) and path lengths (specified by the scattering coefficient, s of the medium). 

The flight of the photon ends either when it leaves the tissue (by crossing the tissue-air 

interface) or when its weight falls below a threshold minimum value (set to 1x10-5), as 

determined by a Russian roulette routine [62]. At the end of its travel in the tissue, the 

time, t, spent by the photon within the medium was given by t = L/nc, where L is the total 

path-length of the photon, c is the speed of light in vacuum, and n is the refractive index 

of the medium [63].  

If a fluorophore is present in the medium, then the absorption of the excitation photon by 

the fluorophore is governed by the fluorophore absorption coefficients (μafx). Upon 

successful fluorescence absorption, the excitation photon is relabeled a fluorescence 

photon with wavelength m (the emission wavelength of the fluorophore), its new 

direction of travel is determined by an isotropic scattering event, and its weight is 

multiplied by the fluorescence quantum yield . This newly created fluorescence photon 

then continues to propagate from the point of its spatial origin, as governed by the 

scattering, absorption, and anisotropy coefficients of the medium at the fluorescence 

emission wavelength. After each successful fluorescence absorption event, the simulation 

adds a decay time, to the photon's total time of flight to include the effect of a finite 
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fluorophore lifetime (τ). This MC code is further extendible to a tissue with multiple 

fluorophores and multiple layers [61].   

Although the MC model requires a prior knowledge of the medium’s optical transport 

coefficients at wavelengths of interest, it has been shown to be an accurate model for the 

recovery of intrinsic fluorescence from tissue for both steady-state as well as time-

resolved applications [15, 36, 44, 54, 64, 65]. 

In this thesis, a previously developed MC transport code for photon transport in tissue 

media [61] was applied to model photon transport in articular cartilage tissues and to 

assess the fluorescence from EVPOME tissue constructs in order to select appropriate 

excitation wavelength, fiber diameter, and source detector geometry for optimal cellular 

signal detection. Details of the specific MC models used for the articular cartilage and 

EVPOME constructs are described in Chapter 6. 

 

Motivated by the phenomenon discussed in this chapter, a clinically compatible 

instrument was designed for reflectance and fluorescence spectroscopy measurements, 

including lifetime sensing; the next chapter describes the details of that spectrometer. 
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Chapter 3                                                                

Development of clinically compatible instrumentation 

This chapter describes the Reflectance and Fluorescence Lifetime Spectrometer (RFLS) 

[6, 56] designed and developed in this dissertation work. The RFLS is a portable, 

clinically compatible instrument that employs fiber optic probes for reflectance and 

fluorescence spectroscopy, along with time-resolved fluorescence sensing. The RFLS has 

been inspected for human clinical use by the Biomedical Engineering Unit affiliated with 

the University of Michigan Institutional Review Board (UMIRB) at the UM Hospitals 

and is registered as a non-hospital instrument: UMHS 318435.  

Section 3.1 of this chapter describes the optical components of the RFLS and Section 3.2   

explains the electrical connections. The graphical-user-interface software developed to 

control the RFLS and acquire data remotely is described in Section 3.3. Sections 3.4 and 

3.5 describe the instrument calibration and data processing procedures. The chapter 

concludes with steps undertaken to monitor the performance of the instrument in Section 

3.6.  

3.1  Optical design 

Figure 3.1 shows a schematic of the RFLS. For fluorescence excitation, the RFLS 

employed a pulsed, solid-state laser source (PNV001525-140, JDS Uniphase, San Jose, 

CA) emitting at 355 nm with a 1 KHz repetition rate (500 ps pulse width,15 μJ/pulse). 
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After attenuating pulse energy with a neutral density (ND) filter (ND1), laser light was 

delivered to the sample via an optical fiber.  

 

Figure 3.1 Schematic of the Reflectance and Fluorescence Lifetime Spectrometer (RFLS) (ND – 
neutral density filter, L – lens, LP – long-pass filter, BP- band-pass filter, APD – avalanche photo 
diode, ICCD – intensified charge coupled device). The inset in top left corner shows a schematic 
and photograph of the fiber optic probe employed during pancreatic studies.  

 

For fluorescence spectral measurements, the emitted signal was collected by a detector 

fiber and focused by a series of lenses (L2 and L3) before reaching the detectors. The 

excitation light was eliminated at this stage by placing a long-pass (LP) filter that cut on 

at 387 nm (LP 57345, Spectra Physics, Mountain View, CA). A portion of the 

fluorescence was split off by a ND filter (ND2) and directed towards an avalanche 

photodiode (APD) (C5658, Hamamatsu, Bridgewater, NJ). The time-resolved signal 

detected by the APD was sampled at 4 MHz by a digitizing oscilloscope (TDS 784A , 
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Tektronix, Beaverton, OR). The rest of the fluorescence was sent to a spectrograph (MS 

125, Oriel Instruments, Stratford, CT) coupled intensified charge coupled device (ICCD) 

camera (ICCD 2063, Andor Technology, Belfast, Northern Ireland) for spectral data 

detection.  

For reflectance measurements, light from a tungsten halogen lamp (HL 2000FHSA, 

Ocean Optics, Dunedin, FL) with continuous wave (CW) output between 360-2000 nm 

was delivered to the sample by a third identical optical fiber (reflectance source fiber). 

Reflectance measurements were made by blocking light from the laser by employing the 

shutter (S) and opening the shutter in front if the lamp. The scattered photons were 

detected by the detector fiber and directed as before to the spectrograph coupled ICCD 

camera for detecting the reflectance spectra. 

Fluorescence and reflectance measurements were made sequentially by blocking out the 

light from the other source. For each spectral measurement a background signal was first 

collected by blocking the source lights and then that background was subtracted from the 

acquired data signal to give the background subtracted signal. 

The light from both sources was delivered to the sample using separate optical fibers and 

the signal from the sample was collected and delivered to the detectors via a third 

identical detection optical fiber. The size and geometry of the fiber probes could be 

varied depending on the application [66]. For example, the distance between the source 

and detector fibers could be changed to probe varying depths into the sample. For the 

pancreatic cancer study, at the distal end, the fiber probe was comprised of the three 

fibers placed adjacent to each other in a triangular geometry (Figure 3.1, inset) 
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(customized fiber probe, Ocean Optics). The fibers had 600 µm core diameter and 0.22 

numerical aperture (NA). 

 

Figure 3.2 The electrical connections on the Reflectance and Fluorescence Lifetime Spectrometer 
(RFLS) (ND – neutral density filter, L – lens, LP – long-pass filter, BP- band-pass filter, APD – 
avalanche photo diode, ICCD – intensified charge coupled device). 

 

3.2  Electronic design 

Figure 3.2 is a schematic of the electrical connections employed for triggering the laser 

source, gating the ICCD camera, and triggering the oscilloscope during data acquisition. 

A medical grade isolation transformer was employed to electrically isolate the RFLS for 

compliance with University of Michigan IRB regulations for conducting human clinical 

studies. All data acquisition and instrumentation was controlled remotely via a laptop 
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using software written in LabVIEW (LabVIEW 7.1, National Instruments, Austin, TX) as 

described in Section 3.3.  

3.2.1 Laser triggering and shutter control 

The pulsed 355 nm laser excitation source was triggered to emit optical pulses by 

employing electrical pulses generated using a timer/counter (T/C) board (PCI-6602, 

National Instruments, Austin, TX). The T/C board was programmed to emit pulses at 1 

KHz repetition rate of 55 microsecond duration. The trigger signal from the T/C board 

was sent via a connector block (CB-68LPR, National Instruments) to the laser. 

As mentioned in Section 3.1, fluorescence and reflectance measurements were made 

sequentially by blocking out the light from the other source. While the lamp had an 

inbuilt shutter, the laser light was blocked when required by employing a home-built 

shutter (S). The shutter for the laser was built by attaching light blocking material to a 

rotatory solenoid (H-2744-032, Testco, San Jose, CA) that was controlled by the T/C 

board. To control the shutter, signals were sent from the T/C board via the connector 

block and a relay box (SC-2062, National Instruments) to the solenoid which then rotated 

to open or close the shutter. An appropriately light-weight material was employed for 

blocking light to ensure that the solenoid could rotate easily and not malfunction due to 

over-heating. The in-built reflectance lamp shutter was also controlled employing the T/C 

board by sending signals from the board via the connector block and relay box to the 

lamp shutter. 
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3.2.2 Gating of the ICCD 

To minimize background signal during fluorescence spectra acquisition, the ICCD gating 

was synchronized with the arrival of the fluorescence signal. A portion of the trigger 

signal to the laser was input to a home built pulse conditioner (described previously [67]), 

which provided a stable TTL pulse output. The TTL pulse was then input to a delay 

generator (DG535, Stanford Research Systems, Sunnyvale, CA) that introduced a 175 μs 

gate delay and 30 μs gate width in the ICCD with respect to the triggering of the laser. 

These setting corresponded with the time delay between the emission of the laser 

excitation pulse and when the emitted fluorescence reached the ICCD camera (gate 

delay) and the duration of the emitted fluorescence (gate width). These settings would 

need to be changed if a significantly longer or shorter fiber probe is employed for data 

collection. 

Typically, a few 100 ns at most should be an appropriate gate width to capture the 

transient fluorescence from endogenous fluorophores. However, the gate width had to be 

set to 30 μs due to an inherent temporal jitter in the output from the laser. In addition, the 

laser was not left on for periods longer than 2 hours at a time, as this would lead to a 

thermal drift in the laser pulse emission time which in turn would have required changing 

the gate delay parameter.  

3.2.3 Triggering of the oscilloscope 

The oscilloscope was externally triggered to synchronize the sampling of the time-

resolved fluorescence signal acquired by the APD with the emission of the laser 

excitation pulse. A ND filter (ND3) of optical density 0.03 was employed to direct a 
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portion of the emitted laser light to a second photodiode (DET10, Thorlabs) (Figure 3.2). 

The signal from this photodiode was employed as an external trigger to the oscilloscope.  

3.3   Software 

A graphical user interface (GUI) program was developed in LabVIEW for data collection 

using the RFLS. The developed GUI enabled remote, fully automated acquisition and 

storage of fluorescence and reflectance data sequentially. The software had the following 

functions:  

– The GUI provided easy access to instrument acquisition parameters including gate 

width, gate delay, number of data acquisitions to average (spectral and time-

resolved), and ICCD chip exposure times for both fluorescence and reflectance 

acquisition.  

– The GUI enabled the automated storage of fluorescence and reflectance spectral data 

and fluorescence life-time decays with a date and time stamp into folders chosen by 

the user. 

– The GUI provided control of the energy of laser excitation photons reaching the 

sample (ND1) and the fraction of light transmitted to the ICCD for spectral detection 

(ND2). This was achieved by employing motorized rotating filter wheels (FW102, 

Thor Labs) remotely controlled via the GUI. Six ND filters of varying optical density 

could be positioned on each of the filter wheels thus providing a choice of 6 ND1 and 

6 ND2 filter to choose from. This enabled the detection of optimized optical signals 

with low noise and without the risk of saturating the detectors (ICCD and APD) due 

to excessive signal. 
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– The software remotely controlled the laser and lamp shutters and enabled the 

acquisition of a background spectrum prior to data acquisition. The user could then 

choose to either store background subtracted or raw measured spectral data. 

– Prior to data acquisition, the software cooled the ICCD head to -5 oC to decrease dark 

noise in the ICCD camera chip. After data acquisition, the software ensured a 

controlled increase of the ICCD temperature to avoid thermal stress in the output 

optical fibers on the intensifier of the ICCD. 

3.4  Instrument calibration 

The RFLS was calibrated for wavelength and absolute fluorescence and reflectance 

spectral intensity by employing procedures in [67]. These procedures are briefly 

described below. 

Wavelength calibration was performed to assign wavelength values to each of the 1024 

pixels on the ICCD camera of the RFLS. An Hg(Ar) lamp (6035, Oriel Instruments, 

Stratford, CT) with emission lines at known wavelengths was employed. The lamp 

emission was measured using the RFLS and the ICCD pixel number corresponding to 

each known emission line was noted. The pixel numbers and the corresponding emission 

wavelengths were then employed to assign a wavelength to each pixel of the ICCD 

camera of RFLS. 

The RFLS spectral instrument response S(λ) was calculated by measuring the emission 

from a National Institute of Standards and Technology traceable tungsten halogen lamp 

(63355 S.N. 7-1329, Oriel Instruments) and dividing it by the known theoretical spectrum 

provided by Oriel Instruments. Calibration for the spectral instrument response was then 

achieved by dividing measured spectra by S(λ). 
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3.5  Data processing 

For fluorescence and reflectance spectral measurements, a background spectrum was 

acquired with the sources blocked and was subtracted from the detected sample spectrum. 

Background subtracted data were then corrected to give distortion free spectra by 

calibrating the wavelength and correcting for the spectral instrument response of the 

RFLS as described in Section 3.4  and in [67]. 

Reflectance spectra were also corrected for the intensity spectrum of the lamp. First, the 

lamp spectrum was measured by placing a diffuse reflectance standard (SRS-50-010, 

Labsphere, North Sutton, NH) in lieu of the tissue sample. Next, the background 

subtracted and instrument response corrected sample reflectance spectrum (Rsample) was 

divided by the background subtracted and instrument response corrected lamp spectrum 

(R0), to give the reflectance spectrum (R) (i.e. R = Rsample / R0). 

The RFLS also has a temporal instrument response due to the finite pulse width of the 

laser excitation pulse and response of the electronics. Measured time resolved 

fluorescence decays M(t) were interpreted as a convolution of the intrinsic fluorescence 

decay,  f(t), and the temporal instrument response function, I(t): i.e. M(t) = f(t)  I(t) as 

detailed in [67]. The instrument response function I(t) was measured using the scatter of 

the excitation pulse by a dilute solution of silica spheres (Bangs Laboratories, Inc., 

Fishers, IN).The intrinsic fluorescence decay (f(t)) was then calculated by least-squares 

iterative reconvolution (Light Analysis software, Quantum Northwest, Inc., Spokane, 

WA), where f(t) was modeled as a multi-exponential decay:  f(t) = ∑ ci exp (-t/τi). The 

average decay time τ, was then calculated as τ = ∑ci* τi
2/ ∑c1i* τ1i. Section 3.6 shows an 

example of time-resolved fluorescence data analyzed in this manner. 
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3.6  Monitoring the performance of the RFLS 

The RFLS is a portable device that was transported to the surgery suites for data 

acquisition. It was necessary to ensure that the calibration of the instrument and the 

alignment of the optics were not disturbed during these trips and that data from 

measurements made on multiple days could be relied upon. Measuring fluorophore 

standards along with laser output energy and the lamp spectrum R0 as detailed in Section 

3.5 helped to monitor the performance of the RFLS instrument. 

Spectral measurements: 

Prior to, and post data acquisition, solutions of 1 µM Rhodamine B (R6626, Sigma 

Aldrich, St. Louis, Missouri) in DI water and 1 µM Fluorescein (166308, Aldrich) in de-

ionized (DI) water were measured to ensure the wavelength and spectral instrument 

response had not changed. These solutions were also measured by employing a 

spectrofluorometer (Fluorolog-3, Horiba Jobin Yvon) as well as the RFLS measurements 

The Fluorolog-3 is described in detail in Section 4.1.3. The measurements from the two 

instruments were compared to check the wavelength calibration and spectral instrument 

response of the RFLS. Figure 3.3 plots a typical measurement of Fluorescein and 

Rhodamine B fluorescence measured by employing the Fluorolog-3 (dotted lines) and 

RFLS (solid lines) instruments.  

The coincidence of the location of the peaks indicated that the wavelength calibration of 

the RFLS was correct and the coincidence of the spectral shapes indicated that the 

spectral instrument response of the RFLS was correct. 
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Figure 3.3 Plot of the fluorescence spectrum of solutions of 1 µM Rhodamine B in water (blue) 
and 1 µM Fluorescein in water (red) measured by employing the Reflectance and Fluorescence 
Lifetime Spectrometer (RFLS) (solid lines) and the Fluorolog-3 spectrofluorometer (dotted lines). 

 

Time resolved fluorescence measurements: 

Freshly prepared solutions of 1µM POPOP (P3754, Sigma Aldrich) in cyclohexane and 

1µM Rhodamine B in DI water were measured before and after data acquisition and the 

extracted decay times were compared to literature values for these single exponential 

decay fluorophores (1.58  0.08 ns, for Rhodamine B in water and 1.12  0.02 ns, for 

POPOP in cyclohexane) [68]. Figure 3.4 plots a time-resolved fluorescence decay curve 

measured employing the RFLS from Rhodamine B in water (red dashed line). The 

instrument response of the RFLS (solid black line) is labeled ‘‘Excitation’’ and was 

measured with a dilute solution of silica spheres as described in Section 3.5. Data were fit 

to a single exponential decay [67]. The plot also shows the residual between the 

measured fluorescence and the simulated fit (labeled “Simulation”). 
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An example of the mean  standard deviation decay times extracted from two successive 

fluorescence decay measurements of Rhodamine B and POPOP are: 1.49  0.01 ns and 

1.05  0.01 ns, respectively. These extracted decay times were in good agreement with 

the literature values.  

 

 
Figure 3.4  Time-resolved fluorescence of 1 µM Rhodamine B in water (red dashed line) 
measured employing the RFLS. Data were fit to a single exponential decay (green dotted line, 
labeled “simulation”) with a lifetime of 1.5 ns. The instrument response of the RFLS (solid black 
line) is labeled ‘‘Excitation’’ and was measured with a dilute solution of silica spheres.  
 
 

Thus, a clinically compatible, fiber optic coupled instrument was developed for 

measuring reflectance and fluorescence spectra and time-resolved fluorescence decay 
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measurements from human pancreatic tissues, (Chapter 4) human pancreatic xenografts 

in mice (Chapter 4), porcine articular cartilage (Chapter 6), and tissue engineered oral 

mucosa devices (Chapter 6). 
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Chapter 4                                                             

Optical spectroscopy for pancreatic adenocarcinoma detection 

Pancreatic adenocarcinoma is a leading cause of cancer death with a five-year survival 

rate of only 5%. Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA), the 

current diagnostic standard, cannot reliably rule out malignancy, and is insensitive to 

distinguishing adenocarcinoma from chronic pancreatitis (inflammation). In this study, 

for the first time, we tested the ability of multi-modal optical spectroscopy to detect 

signals from pancreatic tissue by studying human pancreatic cancer xenografts in mice 

and freshly excised human pancreatic tissues, and correlated measured optical spectra and 

fluorescence decays with pathology [6, 69]. Section 4.1 describes the in vivo and ex vivo 

mouse studies of human pancreatic xenografts in mice and presents the results of the 

study. Section 4.2 describes the ex vivo measurements of human pancreatic cancer tissue 

during pancreatic surgeries. The section discusses the histopathology of the measured 

sites and presents the spectral data. The section also presents the time-resolved 

fluorescence data measured on a limited data set.  

4.1  Optical spectroscopy of human pancreatic xenografts in mice 

4.1.1 Pancreatic cancer xenografts in mouse models 

Cultured human pancreatic cancer cells derived from mouse xenografts initiated with 

cells from a patient with pancreatic adenocarcinoma (AsPC-1, American Culture 
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Collection Type, Manassas Virginia) were cultured in RPMI 1640 medium with 2 mM L-

glutamine adjusted to contain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 10 mM 

HEPES, and 1.0 mM sodium pyruvate and 10% fetal bovine serum at 37oC with 5% CO2 

on 100mm plates. Cells were grown to 80% confluence, harvested by trypsinization, 

washed with medium and 10% fetal bovine serum, and re-suspended to a final 

concentration of 1 x 106 cells/ml in sterile phosphate buffered saline. 

4 week old male NOD/SCID mice (non-obese diabetic/severe combined 

immunodeficiency) were housed in a sterile environment. Cages, bedding, food, and 

water were all autoclaved. All animals were maintained on a daily 12-hr light/12-hr dark 

cycle. The animals were anesthetized using 100 mg/kg ketamine and 15 mg/kg of 

xylezene injected intraperitoneally. The abdomen was opened via a 2 cm midline 

incision, and the tail of the pancreas was exposed. The pancreas was then injected with 

105 AsPC-1 cells suspended in 100 l of sterile phosphate buffered saline solution. The 

midline wound was then closed in 2 layers.    

For optical characterization of the tumor, 3 weeks after tumor injection, the mice were 

anesthetized using 100 mg/kg ketamine and 15 mg/kg of xylezene injected 

intraperitoneally. The abdomen was opened laterally to the previous 2 cm midline 

incision, and the tail of the pancreas exposed. The first mouse had a 0.4 cm mass in the 

pancreas. The second had a 0.7 cm mass in the tail of the pancreas.  In vivo reflectance 

and fluorescence spectroscopy measurements were made on the tumors by employing the 

RFLS. The tumors were then resected and a spectrofluorometer was employed to obtain 

ex vivo fluorescence excitation-emission matrices. The animal study was approved by the 

University of Michigan Committee on Use and Care of Animals.  
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4.1.2 In vivo RFLS measurements 

Reflectance and fluorescence spectral data were obtained using the Reflectance and 

Fluorescence Lifetime Spectrometer (RFLS) (described in Chapter 3). Briefly, for 

fluorescence measurements, a pulsed 355 nm excitation source was employed. A 

tungsten halogen lamp was employed as the reflectance source. The fluorescence and 

reflectance spectra were collected using a spectrograph coupled intensified charge 

coupled device (ICCD) camera. The light from both sources was delivered sequentially to 

the sample using separate optical fibers (600 micron core) (SFS600/660 Fiberguide 

Industries) and the signal from the sample was collected and delivered to the 

spectrograph via a third identical fiber. At the distal end, the three fibers were placed in a 

triangular geometry. Figure 4.1 shows the fiber probe placed on the pancreas of a 

NOD/SCID mouse during in vivo RFLS measurements. 

 

Figure 4.1 NOD/SCID (non-obese diabetic/severe combined immunodeficiency) mouse pancreas 
with human pancreatic cancer xenograft during in vivo measurement [6]. Measurements were 
made employing the clinically compatible reflectance and fluorescence lifetime spectrometer 
(RFLS). 
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All measured spectra were background subtracted and corrected for the spectral 

instrument response. The measured reflectance spectra were also scaled by the measured 

intensity spectrum of the lamp (Ro) to get the corrected reflectance spectra (R/Ro). Details 

of the calibration are described in Chapter 3. All corrected fluorescence and reflectance 

spectra were then normalized by scaling the peak intensity to unity. 

The gray solid line in Figure 4.2 shows in vivo fluorescence measured from a human 

pancreatic cancer xenograft grown in one of the mice. The measured fluorescence peaked 

around 460 nm indicating predominant fluorescence from NAD(P)H [9].  

 

Figure 4.2 The fluorescence spectrum of in vivo adenocarcinoma xenograft in a mouse model 
(gray solid line). Reflectance spectrum of adenocarcinoma xenograft is also shown (black dashed 
line). Measurements were made employing the clinically compatible reflectance and fluorescence 
lifetime spectrometer (RFLS). 

 

In general, pancreatic tumor tissue is expected to have excess fibrosis. Thus, predominant 

fluorescence emission associated with collagen might be expected. However, since SCID 

mice were employed, due to their immunodeficiency, the expected fibrosis associated 

with tumor tissue was absent. Thus, the measured xenograft fluorescence could be 
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associated primarily with the cellular component of the grown tumor (mainly NAD(P)H) 

and corresponded well with the fluorescence attributed to the cellular signal in the human 

study (results in Section 4.2.2). The black dashed line in Figure 4.2 shows an in vivo 

reflectance spectrum measured from the same human pancreatic xenograft. The spectrum 

showed characteristic hemoglobin absorption dips at approximately 400–440 and 540–

580 nm as was discussed in Section 2.1.1 [28]. 

4.1.3 Ex vivo spectrofluorometer measurements 

The pancreatic cancer xenografts grown in the mice were resected after the in vivo 

measurements and excitation emission matrices (EEMs) were measured using a 

spectrofluorometer (SPEX® FL3-22 Fluorolog-3, Jobin-Yvon Horiba, Japan). The 

Fluorolog-3 spectrofluorometer was equipped with a 450 W Xe short arc lamp source 

that was focused onto a tunable, double excitation spectrometer (Czerny-Turner 

1200/mm kinematic grating blazed at 330 nm) to produce a monochromatic collimated 

excitation beam at the sample at any desired wavelength from 290-900 nm. Emitted 

fluorescence was collected perpendicular to the excitation direction, collimated, and 

dispersed by a tunable double emission spectrometer (Czerny-Turner 1200/mm kinematic 

grating blazed at 500 nm) into a multialkali photomultiplier tube detector. The system 

was interfaced to a computer via custom software which allowed an automated scanning 

of the sample via measurement of an excitation spectrum, an emission spectrum, or 

combined EEM spectra. The tumor samples were front illuminated at a 45o angle to the 

excitation beam to obtain the EEM for 20 excitation wavelengths between 300 and 450 

nm while monitoring the emission from 300 to 650 nm (at 2 nm increments). 
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Figure 4.3a shows EEM data acquired ex vivo from the pancreatic cancer xenograft 

grown in one of the mice. The EEM fluorescence intensity pattern was consistent with 

endogenous tissue fluorescence predominantly originating from tryptophan (peak 

emission about 350 nm), intracellular NAD(P)H (peak emission about 460 nm) along 

with some fluorescence from extracellular collagen (peak emission about 400 nm) [5, 8-

10, 25, 54-56]. Figure 4.3b shows this EEM data around excitation wavelength 355 nm, 

which was the wavelength employed for excitation in RFLS studies. As was observed in 

the in vivo measurements, the measured fluorescence peaked around 460 nm indicating 

predominant fluorescence from NAD(P)H for 355 nm excitation, as was expected since 

the mice were immunodefficient and so the expected fibrosis usually associated with 

tumor tissue was absent.  

 

Figure 4.3 (a) Measured EEM of a pancreatic cancer xenograft grown in a NOD/SCID mouse 
showing fluorescence emission primarily associated with tryptophan, extracellular collagen, and 
intracellular NAD(P)H [69]. (b) Same EEM expanded to highlight the area between white dashed 
lines in (a) showing fluorescence emission primarily associated with collagen and NAD(P)H. 
RFLS excitation in the human studies occurred at 355 nm (white dotted line) [69]. The EEM data 
was measured on the Fluorolog-3 spectrofluorometer.  
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4.2  Ex vivo optical spectroscopy of human pancreatic tissues 

Reflectance and fluorescence spectra and time-resolved fluorescence decays were 

measured from freshly excised human pancreatic tissues obtained during pancreatic 

surgical procedures, by employing the fiber optic coupled RFLS. Figure 4.4 shows the 

fiber optic probe (discussed in Section 3.1) placed on human pancreatic tissue during data 

acquisition. A total of 90 sites were measured on tissues obtained from 12 patients within 

30 minutes of excision. Table 4.1 shows the details of the patients’ age, gender, and final 

diagnosis of the resected specimen. Two sets of fluorescence and reflectance 

measurements were made on each site, excepting one site.  After data acquisition from 

each measurement site, a tissue biopsy was immediately performed to link optical 

measurements with histopathologic analysis. The study was approved by the Institutional 

Review Board of the University of Michigan (U of M) and written patient consent was 

obtained prior to data acquisition. 

 

Figure 4.4 Human pancreatic tissue during ex vivo measurement [6]. Measurements were made 
employing the clinically compatible reflectance and fluorescence lifetime spectrometer (RFLS).  

 
 
The acquired fluorescence spectra were corrected for spectral instrument response after 

background correction [67]. The reflectance spectra were also background subtracted and 
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then scaled by the lamp reflectance spectrum (Ro) to obtain the corrected reflectance 

spectra (R/Ro) [56]. All spectra were normalized by scaling the peak intensity value to 

unity. 

 
Table 4.1. Patient information and final diagnosis 

Patient Age M/F Final Diagnosis 

1 68 F Adenocarcinoma 

2 41 F Adenocarcinoma 

3 79 F Adenocarcinoma 

4 54 M 
Intraductal papillary mucinous neoplasm, adenoma type. No 

invasive carcinoma identified. Chronic pancreatitis. 
5 69 M Serous cystadenoma 

6 53 F 
Lipomatous pseudohypertrophy with foci of fat necrosis.  

Background pancreas with mild patchy chronic pancreatitis 

7 60 M 
Intraductal papillary mucinous neoplasm with high grade dysplasia. 

No invasive carcinoma was identified. Chronic pancreatitis 
8 69 F Adenocarcinoma 

9 70 M Adenocarcinoma 

10 63 F Chronic Pancreatitis 

11 65 F Adenocarcinoma 

12 76 F Metastatic breast adenocarcinoma 

 

4.2.1 Histopathology and inclusion criterion 

Figure 4.5 shows representative histology slides of samples obtained from sites with (a) 

normal, (b) chronic pancreatitis, and (c) adenocarcinoma tissue after RFLS optical 

measurements. The images were taken at 200x magnification. Hematoxylin and eosin 

(H&E) were used as the staining agent. The light pink in the slides denotes the stroma or 

extra cellular matrix (ECM) where collagen resides while the nuclei, where NAD(P)H 

and FAD are found, stained dark purple. 
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Figure 4.5. Shows representative histology slides [69] of human tissue obtained from -  (a) 
Normal pancreatic tissue [A - normal component of fibrous stroma between pancreatic lobules; B - 
small interlobular pancreatic duct; C- normal pancreatic lobule with acinar cells having abundant 
granular cytoplasm and little intervening stroma]. (b) Chronic pancreatitis tissue [D- acinar cells 
separated by abundant fibrous stroma and inflammation; E- abundant interlobular inflamed fibrous 
tissue; F- white blood cells having small dark nuclei (shown in small circles)]. (c) 
Adenocarcinoma tissue [G - adenocarcinoma cell groups surrounded by abundant fibrous stroma; 
H - adenocarcinoma cells having enlarged dark nuclei, and arranged in duct-like structures]. (200 
x magnification and H&E stain were employed). 

 

A

B

C

A

B

C

 

D

E

F

F

D

E

F

F

G
G

H H

H

G
G

H H

H

(a) 

(b) 

(c) 



 45

The normal pancreatic tissue histology (Figure 4.5a) shows normal component of fibrous 

stroma between pancreatic lobules (A), small interlobular pancreatic duct (B), and normal 

pancreatic lobule with acinar cells having abundant granular cytoplasm and little 

intervening stroma (C).  

Chronic pancreatitis is associated with an increase in fibrosis (mainly collagen) due to 

inflammation. This also leads to more white blood cells (lymphocytes) in the tissue. This 

is evident in Figure 4.5b where abundant interlobular inflamed fibrous tissue (E – light 

pink) can be seen along with white blood cells having small dark nuclei (F- shown in 

small circles). Acinar cells were now observed separated by abundant fibrous stroma and 

inflammation (D) unlike in the normal tissue.  

Figure 4.5c shows adenocarcinoma cell groups surrounded by abundant fibrous stroma 

just like in the pancreatitis tissue (G). However unlike pancreatitis, adenocarcinoma cells 

have enlarged, dark nuclei (H). In the figure, the cells can be seen arranged in duct-like 

structures. This observed increase in fibrosis and excess collagen in both chronic 

pancreatitis and adenocarcinoma tissue, and an increase in the nuclear size in 

adenocarcinoma cells, was expected to affect the optical measurements made on these 

tissues. 

Histopathology indicated that of the 90 measured sites from 12 patients, 17 were 

adenocarcinoma sites, 22 were chronic pancreatitis sites, and 11 were normal tissue sites. 

The remaining 40 sites were either malignant breast cancer that had metastasized to the 

pancreas (10 sites), intraductal papillary mucinous neoplasm (8 sites), pancreatic 

intraepithelial neoplasia (6 sites), serous cystadenoma (8 sites), scar or fat tissue or both 

(5 sites), or a hybrid tissue site having two or more of the above mentioned pathologies (3 
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sites). These 40 sites were excluded from the data set used for tissue classification 

algorithm development in Chapter 5. Their analysis will be considered in the future, once 

a larger data set is in place. Table 4.2 indicates the pathology of the measured sites, for 

each patient. The numbers in green indicate the sites that were included in algorithm 

development while red indicates the excluded data. 

 

Table 4.2. Patient-wise histology of the sites from which data was collected  
(Red: excluded data; Green: included data) 

Patient N P A PanIN IPMN  SCA  MBC 
Scar/ 
fat/ 
both 

P and 
Aa 

N and 
Ab 

1 2 3 - - - - - - - - 
2 - - 5 - - - - - - - 
3 - 5   - 1 - - - 1 1  
4 - 3 - - 1 - - 1 - - 
5 - - - - - 8 - - - - 
6 4 - - 1 - - - - - - 
7 - - - - 7 - - 1 - - 
8 - 4 1 1 - - - - 1 1 
9 5 1 1 3 - - - - - - 

10 - 6 - - - - - 2 - - 
11 - - 10 - - - - - - - 

12 - - - - - - 10 - - - 

N: Normal; P: Pancreatitis; A : Adenocarcinoma; PanIN : Pancreatic Intraepithelial Neoplasia; 
IPMN: Intraductal papillary mucinous neoplasm; SCA : Serous Cyst Adenoma; MBC:  
metastatic breast carcinoma 
a: A hybrid tissue site of chronic pancreatitis and adenocarcinoma;  
b: A hybrid tissue site of  focal adenocarcinoma at the edge of mostly normal tissue 

 

Furthermore, fluorescence spectra with signal to noise ratio (SNR) less than 25 (two 

spectra) were excluded from the data set. SNR was calculated as mean signal at peak 

fluorescence divided by the standard deviation of noise in the data (SNR = (average 

intensity between 470-500 nm) / (standard deviation of intensity between 700-750 nm)). 

Reflectance spectra that had a ratio of reflectance at 550 nm to that at 650 nm less than 
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0.1 were also excluded from the data set (one spectrum).  The corresponding fluorescence 

and reflectance spectra of these spectra were also excluded, resulting in the exclusion of 3 

pairs of fluorescence and reflectance spectra. 

This left data from 9 patients and 50 sites: 33 pairs of measured reflectance and 

fluorescence spectra from adenocarcinoma, 41 pairs of spectra from chronic pancreatitis 

measurements, and 22 pairs of spectra from measurements of normal pancreatic tissue. 

These 96 pairs of measured reflectance and fluorescence spectra were used for the 

development of tissue classification algorithms (discussed in Chapter 5). 

The corresponding 96 time-resolved fluorescence decays were obtained by detecting 

either: (a) fluorescence emission from 360-750 nm (76 measurements) or, (b) 

fluorescence emission from 500-750 nm (20 measurements). Analysis was restricted to 

the 76 measurements from category (a), as all category (b) measurements were from 

adenocarcinoma sites only. Of these 76 measurements, 19 were excluded due to initial 

errors (subsequently resolved) in triggering the oscilloscope during data acquisition. This 

left 57 time-resolved fluorescence decay measurements, of which, 4 were made on 

adenocarcinoma sites, 35 were made on chronic pancreatitis sites, and 18 were made on 

normal pancreatic tissue sites. Considering the small number of adenocarcinoma 

measurements in this subset, tissue classification algorithm development was limited to 

the remaining 18 normal and 35 chronic pancreatitis tissue time-resolved fluorescence 

decays (results in Section 4.2.3). 

4.2.2 Spectral data 

Figure 4.6 shows the mean of normalized measured reflectance and fluorescence spectra 

for adenocarcinoma (red dashed line), chronic pancreatitis (green dot-dashed line), and 
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normal (blue solid line) pancreatic tissues along with the standard error at select 

wavelengths.  

 

Figure 4.6 (a) Mean fluorescence spectra obtained from human pancreatic normal (blue), 
pancreatitis (green dot-dash), and adenocarcinoma (red dashed) tissues. (b) Mean reflectance 
spectra obtained from normal (blue), pancreatitis (green dot-dash) and adenocarcinoma (red 
dashed) tissues. N denotes the number of individual spectra. The standard error is shown at select 
wavelengths [70]. 

 

Tissue fluorescence spectra revealed cellular NAD(P)H (emission around 460 nm) and 
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absorption dips at around 420, 540, and 575 nm in the reflectance and fluorescence 

spectra [55, 56]. The relative collagen emission from adenocarcinoma and chronic 

pancreatitis tissues was larger than that from normal tissues, as anticipated from the 

increase in fibrosis in the diseased tissues [71]. The cellular fluorescence corresponded 

well with the fluorescence attributed to the cellular signal in the mouse study ((Figure 

4.2, gray solid line).  

Features in the 400–440 and 540–580 nm ranges in both fluorescence and reflectance 

spectra could be attributed to hemoglobin absorption [28]. The adenocarcinoma sites 

showed a higher reflectance than chronic pancreatitis and normal tissue sites in the 430 to 

500 nm range. Such tissue reflectance features have been associated with both the density 

and size of cellular scatterers (e.g. nuclei and organelles) [28, 72]. Indeed, this reflectance 

feature was observed in the data obtained from xenograft tumor in mice (Figure 4.2, 

black dashed line) and corresponded well with measurements made on human 

adenocarcinoma. 

4.2.3 Time-resolved fluorescence data 

As described in Section 4.2.1, analysis of the time-resolved fluorescence decay 

measurements was restricted to a limited data set comprising of 35 chronic pancreatitis 

and 18 normal tissue measurements. Figure 4.7a plots the mean of the normalized 

measured time-resolved fluorescence decay curves from these pancreatitis (green, dashed 

line) and normal (blue, solid line) tissue sites.  

Figure 4.7b plots the same data on a logarithmic scale to enhance for viewing purposes 

the difference between the decay curves of the two tissue types. 
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All the measured time resolved data were interpreted as a convolution of the instrument 

response curve with the intrinsic fluorescence decay curve (f(t)) as described in Section 

3.5 [67].  The instrument response was measured using the scatter of the excitation pulse 

by a dilute solution of silica spheres.  f(t) was interpreted as a triple exponential decay of 

the form f(t) = ∑ exp(-aiti/τi), (i = 3) with lifetimes τi and amplitudes ai. The average 

decay time was defined as τavg = a1τ1
2 + a2τ2

2 + a3τ3
2 / (a1τ1 + a2τ2+ a3τ3). 

 

 

Figure 4.7 (a) Mean normalized time-resolved fluorescence decay, measured from chronic 
pancreatitis (green dashed line, 35 measurements) and normal (blue solid line, 18 measurements) 
pancreatic tissue sites. (b) The plot on a logarithmic scale zoomed with the standard error shown at 
a select time point. 
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The mean τavg was 4.5 ± 1.7 for chronic pancreatitis tissue (35 measurements), and 3.3 ± 

0.9 ns for normal tissue (18 measurements). Wilcoxon rank sum test of the decay times of 

normal and chronic pancreatitis tissue indicated a difference in the median decay times of 

the tissues (p-value = 0.0078).  The relative excess of collagen emission from chronic 

pancreatitis vs. normal tissue corresponded well with this increase in fluorescence decay 

time measured for all chronic pancreatitis tissues vs. all normal tissues [69], which was 

attributed to the longer excited-state lifetime associated with collagen compared to 

NAD(P)H [36]. 

4.3  Conclusion 

The ability of multi-modal optical spectroscopy to detect signals from pancreatic tissue 

was demonstrated by studying human pancreatic cancer xenografts in mice and freshly 

excised human pancreatic tumor tissue for the first time. The EEM matrices measured 

from human pancreatic cancer xenografts in mice enabled a complete characterization of 

pancreatic adenocarcinoma tissue and indicated the expected fluorophores in the tissue. 

The mouse study indicated that 355 nm was an appropriate excitation wavelength to 

excite fluorescence from the pathologically relevant endogenous fluorophores in the 

pancreas. Good correspondence was observed between spectra from human pancreatic 

adenocarcinoma and cancer xenograft tissues.  Measured optical spectra and fluorescence 

decays were correlated with tissue morphological and biochemical properties. The 

measured spectral features and decay times correlated well with expected pathological 

differences in human normal, pancreatitis and adenocarcinoma pancreatic tissue states. 

The observed differences between the fluorescence and reflectance properties of normal, 
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pancreatitis and adenocarcinoma tissue indicated a possible application of multi-modal 

optical spectroscopy for differentiating between the three tissue classifications. The next 

chapter describes the development of tissue classification algorithms employing the 

multi-modal optical data described in this chapter. 
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Chapter 5                                                              

Development of tissue classification algorithms for the 

detection of pancreatic adenocarcinoma 

A number of chemometric and statistical techniques have been applied to develop tissue 

classification algorithms employing optical spectroscopy data. These include multiple 

linear regression analysis, linear discriminant analysis (LDA), neural network analysis, 

principal component analysis (PCA), logistic discrimination, partial least squares, 

multivariate linear regression, and support vector machine [4, 7, 19-23].  

This chapter describes the development of the first ever algorithms for pancreatic tissue 

classification using multi-modal optical spectroscopy data [70, 73, 74]. In this 

dissertation, LDA was employed to classify pancreatic tissues using classification 

variables extracted from the measured optical reflectance and fluorescence data described 

in Chapter 4. Two different tissue classification algorithms were developed based on the 

classification variables [70, 73, 74]. The first was the SpARC (spectral areas and ratios 

classifier) algorithm that employed ratios of intensities at different wavelengths and areas 

under the measured spectral curves, thus using information only at specific 

wavelengths[70]. The second algorithm was the principal component analysis (PCA) 

algorithm that employed diagnostically relevant information at all wavelengths of the 

spectra for tissue classification [73]. The PCA algorithm was also employed on the 



 54

limited data set of time-resolved fluorescence spectra (described in Section 4.2.1). 

Section 5.1 of this chapter introduces LDA. Section 5.2 describes the SpARC algorithm, 

presents the results of the algorithm’s classification performance, and compares it with 

that of EUS-FNA, the current accepted diagnostic standards for pancreatic 

adenocarcinoma (discussed in Section 1.2.1). Section 5.3 describes the development of 

the tissue classification algorithm employing PCA and LDA and reports the performance 

of the PCA algorithm for pancreatic tissue classification. Section 5.3 also discusses a 

framework for automated detection of pancreatic adenocarcinoma using multi-modal 

optical spectroscopy and the developed PCA algorithm and makes a comparison of the 

PCA algorithm performance with EUS-FNA.  

5.1  Linear discriminant analysis  

Linear discriminant analysis (LDA) [20, 75-77] is a classification technique in which a 

classification score (Z) is calculated based on a linear combination of the classification 

variables (Vi).  

Z =  b + a1V1 +a2V2 + …….+ akVk.    - 5.1 

Where, k is the number of classification variables, and b and ai are the coefficients 

calculated such that the distance between the classification scores of the same group is 

minimized, while maximizing the distance between the classification scores of different 

groups. 

An unknown specimen could then be classified into a group based on it’s proximity to the 

centroid of the classification score of that group. For a two group problem, this proximity 

can either be measured by deciding a cut-off point (i.e. Z > cut-off implies belongs to 

group 1, else group 2) or by calculating the probabilities of the unknown specimen 
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belonging to a group given that a score Z was obtained using the LDA model. The 

specimen would then be classified as belonging to the group for which the probability is 

highest.  

The  LDA model for classification can be developed either by employing all variables 

specified by the user (Direct LDA) or the set of variables that provide the best 

classification can be selected from the given variables using selection criterion (for 

example, Wilks’ Lambda (Λ) criterion) that assess the discriminating power of the 

variables. The latter DA is called a stepwise DA. At each step, variables are considered 

for the classification algorithm only if the p-value (representing the discrimination added 

by the variable) satisfies the P-to-enter significance criterion (set by the user). Out of 

those variables, the variable that minimizes Λ is selected. At the next step, all variables 

that have already entered the algorithm are re-assessed to see if any of them no longer 

sufficiently discriminate between the classification groups (measured by a P-to-remove 

value). This is repeated until no variables satisfy the P-to-enter criterion. The variables 

retained at the end by the stepwise analysis are then employed to classify the data.  

5.2  Spectral areas and ratio classifier (SpARC) algorithm 

The SpARC algorithm was developed based on the differences in the fluorescence and 

reflectance spectra of normal, chronic pancreatitis, and adenocarcinoma human 

pancreatic tissue types (Figure 4.6 in Chapter 4). The adenocarcinoma sites showed 

markedly higher reflectance than chronic pancreatitis and normal tissue sites between 450 

to 540 nm, higher fluorescence at around 400 nm, and lower fluorescence between 450 to 

700 nm. Due to the ex vivo nature of the study, it is difficult to draw conclusions on 

differing hemoglobin absorption between tissue types. The observed spectral differences 
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are consistent with increased cellular nuclear size and collagen content in pancreatic 

adenocarcinoma tissues [72]. To classify the tissue spectra based on these apparent 

differences, the ratio Rratio = R470/R650 was calculated for each reflectance spectrum, the 

wavelength integrated fluorescence (Farea) was calculated as the area under each 

normalized fluorescence spectrum, and the ratio Fratio = F400/F600, was calculated for each 

normalized fluorescence spectrum.   

Three different sets of these calculated spectral parameters (“classification variables”) 

were employed to develop tissue classification algorithms for distinguishing (a) 

adenocarcinoma (A) from chronic pancreatitis (P) and normal (N) tissue, (b) A from P 

tissue, (c) A from N tissue, and (d) P from N tissue. A leave-one-out cross-validation was 

undertaken to test the performance of the proposed tissue classification algorithms by 

considering each measured spectrum as the test data and by employing the remaining 

spectra as training data in the classification algorithm. LDA was employed using SPSS 

software to classify the test data using the three different sets of classification variables. 

This process was repeated for each spectrum and the sensitivity, specificity, negative 

predictive value (NPV), and positive predictive value (PPV) of the classification 

algorithms were calculated. 

5.2.1 Classification performance of the SpARC algorithm and 

comparison to EUS-FNA 

The first classification algorithm, RSpARC (reflectance spectral areas and ratios 

classifier), employed Rratio as the sole classification variable for LDA and Table 5.1 gives 

the algorithm’s performance. The second algorithm, FSpARC (fluorescence spectral 
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areas and ratios classifier), employed Farea and Fratio as the classification variables for 

LDA and Table 5.2 gives that algorithm’s performance.  

In the third algorithm, SpARC (spectral areas and ratios classifier), stepwise LDA was 

performed (as described in Section 5.1) using minimization of Wilks’ Lambda (Λ) 

criterion (P-to-enter 0.085; P-to-remove 0.1) to assess the discriminating power of the 

variables and to select the best set of variables from Rratio, Farea, and Fratio for 

classification [77]. The variables retained by the stepwise analysis were employed to 

classify the data. Table 5.3 shows the performance of this algorithm along with the 

variables retained for each classification. For example, classification of A vs. (P and N) 

employed Rratio and Fratio. 

 

Table 5.1. RSpARC algorithm - reflectance only [70] 

Tissue Type 
Sensitivity 

(%) 
Specificity    

(%) 
NPV      
(%) 

PPV        
(%) 

A vs. P and N 85 86 92 76 

A vs. P 85 83 87 80 

A vs. N 88 95 84 97 

P vs. N 56 82 50 85 

 

 

Table 5.2. FSpARC algorithm - fluorescence only [70] 

Tissue Type 
Sensitivity 

(%) 
Specificity   

(%) 
NPV     
(%) 

PPV        
(%) 

A vs. P and N 55 89 79 72 

A vs. P 52 88 69 77 

A vs. N 58 91 59 90 

P vs. N 56 64 44 74 
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Table 5.3. SpARC algorithm - reflectance and fluorescence [70] 

Tissue Type 
Sensitivity 

(%) 
Specificity    

(%) 
NPV      
(%) 

PPV      
(%) 

A vs. P  and Na,b 
85 89 92 80 

A vs. Pa 
85 83 87 80 

A vs. Na 
88 95 84 97 

P vs. Na,c 
61 73 50 81 

Classification parameters a: Rratio
  ; b: Fratio

  ; c: Farea 

 

 For A vs. (P and N) and P vs. N classification, the combination of classifiers extracted 

from both reflectance and fluorescence (Table 5.3) performed better than using 

information from either just reflectance (Table 5.1) or just fluorescence (Table 5.2), 

indicating that for the SpARC algorithm, bi-modal optical spectroscopy with both 

fluorescence and reflectance is required for accurate pancreatic tissue classification. 

Based on the results in Table 5.3, a potential method for classifying an unknown tissue 

site could employ Rratio and Fratio to classify the data set as adenocarcinoma or not 

adenocarcinoma using LDA. If the data is classified as not cancer, then Rratio and Farea 

could be employed to classify it as chronic pancreatitis or normal tissue types. 

Hartwig et al. [30], conducted a meta-analysis of 28 EUS-FNA studies, and reported 

median (range) values of sensitivity 83% (54 -96%); specificity 100% (71-100%); NPV 

72% (16-92%); and PPV 100% (92-100%) for adenocarcinoma distinction from normal 

tissue and chronic pancreatitis. The performance of the SpARC algorithm for 

adenocarcinoma distinction from normal tissue and chronic pancreatitis (Table 5.3, row 

1) is comparable to that of the reported performance of EUS-FNA. Fritscher-Ravens et 

al. [31] studied patients having both adenocarcinoma and pancreatitis and reported that 

EUS-FNA had a 54% sensitivity, 100% specificity, 91% NPV, and 100% PPV for 
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distinguishing adenocarcinoma from pancreatitis in the setting of pancreatitis. All 

adenocarcinoma measurements in the study reported here were also made on pancreata 

that had concurrent histologic pancreatitis in addition to the carcinoma. Thus, the 

sensitivity of SpARC (85%) (Table 5.3, row 2) is well above that of EUS-FNA (54%) 

[31] at distinguishing adenocarcinoma from pancreatitis in the setting of pancreatitis, 

which is an unmet clinical need in pancreatic cancer detection. The receiver operating 

curves (ROC) for A vs. (P and N) (area 0.901 ± 0.043) and A vs. P (area 0.874 ± 0.047) 

classification using the SpARC algorithm were calculated using SPSS software and are 

shown in Figure 5.1. The blue line suggests that in achieving a specificity of close to 

100%, the A vs. P sensitivity would be comparable to EUS-FNA. Thus, employing an 

optical technique to guide EUS-FNA could improve the sensitivity of pancreatic 

adenocarcinoma detection in the setting of pancreatitis. 

 

Figure 5.1 The receiver operating curves (ROC) for A vs. (P and N) (black, dashed line) and A vs. 
P classification (blue, dotted line) using the SpARC algorithm, where the areas under the ROCs 
were 0.901 ± 0.043 and 0.874 ± 0.047, respectively [70]. The gray dotted line indicates the line of 
no discrimination. 
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Although the SpARC algorithm is simple to implement, its performance may be limited 

because it utilizes information at only select wavelengths. Section 5.3 describes the 

development and classification performance of a PCA algorithm that employed 

diagnostically relevant information at all wavelengths for classification. 

5.3  Principal component analysis (PCA) algorithm 

In this algorithm, principal component analysis (PCA) was used to identify the diagnostic 

features in the spectra and then LDA was employed to classify the data based on these 

features. PCA and LDA analyses were also conducted on a subset of the data that 

included time-resolved fluorescence decay measurements in addition to spectral 

measurements (subset defined in Section 4.2.1). 

 

Figure 5.2 Steps in the PCA tissue classification algorithm development [73]. (PCA: principal 
component analysis; PC: principal component; LDA: linear discriminant analysis; PPV: positive 
predictive value; NPV: negative predictive value) 
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Figure 5.2 illustrates the steps involved in the tissue classification algorithm 

development. The acquired spectra were first analyzed using PCA. The principal 

components (PCs) that accounted for at least 99.5% of the variance in the data were then 

identified. Wilcoxon rank-sum tests were performed on the fit-coefficients of these PCs 

for each tissue type to identify the diagnostically relevant PCs as described in Section 

5.3.1. Linear discriminant analysis was then undertaken using various subsets of the 

diagnostically relevant PCs (Section 5.3.2) to classify the spectral data employing leave-

one-out cross validation. These procedures are detailed below.  

5.3.1 Principal component analysis of the spectra 

PCA was employed to express each measured spectrum as a linear combination of a set 

of orthogonal basis vectors (or principal components (PC)) [4, 7, 19, 21, 78, 79]. The 

spectra 1 n
i Rs  (i = 1 to m) for different tissue types were grouped together and 

arranged row-wise in a matrix nmRS   as shown below: 
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Where, p, q and r (p+q+r=m) are the number of spectra for adenocarcinoma, chronic 

pancreatitis and normal pancreatic tissue, respectively. Using PCA, n-dimensional data 
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set (corresponding to the n measured wavelengths) with m total spectra was represented 

as a linear combination of n basis vectors as shown below:  

     ,CXST                   - 5.3 

Where, T is the transpose operator, nnRC   is the matrix of the n principal components, 

and X is a matrix of the fit-coefficients. 
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Where, an element xji is the fit-coefficient of the jth component for the ith spectrum. 

The principal component matrix C was obtained from S by employing the princomp 

function in MATLAB.  The princomp function first calculates matrix S0 by subtracting 

the column mean vector from each row of S. Then singular value decomposition is used 

to calculate the principal components as the eigenvectors of the sample covariance matrix 

(
00

1)1( SSm T ). The princomp command also calculates the eigenvalues corresponding to 

each principal component. The columns of X were estimated by fitting the principal 

components to the spectra using an ordinary least squares method (the backslash operator 

in MATLAB). The vectors of estimated fit-coefficients for each spectrum (i.e. the 

columns of X) were then separated into three groups based on the tissue type. This 

analysis was done separately for both fluorescence (n = 492) and reflectance spectra (n = 

521). Figure 5.3a and Figure 5.3b plot select fluorescence and reflectance PCs extracted 

from the spectral data.  
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Figure 5.3 Select PCs extracted from (a) fluorescence and (b) reflectance spectra of pancreatic 
adenocarcinoma, chronic pancreatitis, and normal tissues. The percent eigenvalues of the extracted 
PCs for (c) fluorescence and (d) reflectance spectra [73]. 
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features of the spectra are diagnostically relevant (i.e. enabling differentiation between 

the tissue types). Wilcoxon rank-sum tests were employed to identify the PCs whose fit-

coefficients showed differences between tissue types and were thus diagnostically 

relevant.  

The PCs for which the fit-coefficients were significantly different between the tissue 

types were determined based on a two-sided Wilcoxon rank-sum test (p < 0.05).  This test 

was done for the PCs that accounted for at least 99.5% of the variance in the data (Figure 

5.3c and Figure 5.3d). The first 11 fluorescence PCs accounted for at least 99.5% of the 

variance in fluorescence data and the first 8 reflectance PCs accounted for at least 99.5% 

variance in the reflectance data. Four Wilcoxon rank-sum tests were performed for the 

fit-coefficients of these PC. The hypothesis tested was that the median fit-coefficients 

were significantly different for the principal component of: (1) adenocarcinoma (A) vs. 

the rest of the tissue types; (2) A vs. chronic pancreatitis (P); (3) A vs. normal pancreatic 

tissue (N); (4) P vs. N. The PCs for which the p-values of the Wilcoxon rank-sum tests 

were less than 0.05 were considered diagnostically relevant. This analysis was done for 

both fluorescence and reflectance spectra separately to determine the PCs whose fit-

coefficients would be used for classification of tissue types: RPC, diagnostically relevant 

reflectance PC; FPC, diagnostically relevant fluorescence PC. The PCs plotted in Figure 

5.3a and Figure 5.3b are some of the diagnostically relevant RPC and FPC we identified 

in this study. 

LDA was employed using SPSS software to distinguish between tissue types using the 

fit-coefficients of the diagnostically relevant RPC and FPC as classification variables. 

The analysis was undertaken by employing the fit-coefficients of three different sets of 
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diagnostically relevant PCs: reflectance PC only, fluorescence PC only, or a combination 

of the reflectance and fluorescence PC variables. In the latter case, a stepwise DA (P-to-

enter ≤ 0.05; P-to-remove value ≥ 0.25) was performed using minimization of Wilks’ 

Lambda (Λ) criterion to assess the discriminating power of the variables and to select the 

best set of variables from diagnostically relevant RPC and FPC for classification.  

A leave-one-out cross-validation was undertaken to test the performance of each of the 

proposed tissue classification algorithms. For each algorithm, the data were divided into 

training and test data where each pair of reflectance and fluorescence spectra were 

considered as test data one at a time, while the remaining spectra were treated as training 

data. The classifiers were then employed to classify the test data using LDA. Each 

algorithm was implemented 96 times and sensitivity, specificity, NPV, and PPV were 

calculated. 

5.3.3  PCA and LDA employing time-resolved fluorescence 

measurements 

As described in Section 4.2.1, analysis of the time-resolved fluorescence decay 

measurements was restricted to a limited data set comprising of 35 chronic pancreatitis 

and 18 normal tissue measurements. Figure 5.4a plots on a logarithmic scale the mean of 

the normalized measured time-resolved fluorescence decay curves from these pancreatitis 

and normal tissue sites. PCA was employed on the normalized time-resolved 

fluorescence decays of this limited data set with the premise that the shape of the decay 

curve should reflect changes in decay time for different tissue types, assuming the 

temporal instrument response did not change. PCA was also employed on the 
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fluorescence and reflectance spectral data for the same subset of chronic pancreatitis and 

normal tissue data.  

 

Figure 5.4 (a) The plot of mean normalized time-resolved fluorescence decay, measured from chronic 
pancreatitis (green dashed line) and normal (blue solid line) pancreatic tissue sites on a logarithmic 
scale. (b) Select PCs extracted from these time-resolved fluorescence decays [73]. 

 

The first 12 fluorescence spectral PCs and first 5 time-resolved fluorescence PCs 

accounted for at least 99.5% of the variance in the spectral and time-resolved 

fluorescence data, respectively. The first 7 reflectance PCs accounted for at least 99.5% 

variance in the reflectance data. The diagnostically relevant spectral fluorescence, 
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spectral reflectance, and time-resolved fluorescence PCs (FPC′, RPC′, and TRPC′, 

respectively) were determined as before using Wilcoxon rank-sum tests on these PCs that 

explained at least 99.5% variance of this limited data set. (The ′ symbol denotes PCs 

extracted from the limited data set).  

A stepwise LDA (P-to-enter = 0.09; P-to-remove = 0.1) was performed on the fit-

coefficients of these diagnostically relevant FPC′s, RPC′s, and TRPC′s, to distinguish 

between chronic pancreatitis and normal tissue sites. The analysis was undertaken by 

employing three different sets of diagnostically relevant PCs: only fluorescence and 

reflectance spectral data PCs, only time-resolved data PCs, or a combination of the 

spectral and time-resolved data PCs. A leave-one-out cross validation was implemented 

for each of these sets of PCs and sensitivity, specificity, NPV, and PPV were calculated. 

Figure 5.4b plots some of the diagnostically relevant TRPC′s extracted from the time-

resolved fluorescence data. 

5.3.4 Classification performance of the PCA algorithm  

5.3.4.1 Classification using fluorescence and/or reflectance spectra 

Three different set of classification variables were employed to develop the chemometric 

tissue classification algorithm: diagnostically relevant fluorescence PCs only, reflectance 

PCs only, or a combination of the fluorescence and reflectance spectra PCs. 

Classification results are summarized below. 

Classification using fluorescence parameters 

Table 5.4 lists the performance of the chemometric algorithm for classifying tissue types 

using only the diagnostically relevant fluorescence PC. The diagnostically relevant PCs 
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were identified by Wilcoxon rank-sum tests as described in Section 5.3.2. For example, 

for distinguishing adenocarcinoma from chronic pancreatitis and normal tissue FPC1, 

FPC4, FPC6, and FPC11 (some of which are shown in Figure 5.3a) were employed and 

sensitivity, specificity, NPV, and PPV of 82%, 78%, 89%, and 66%, respectively were 

achieved.  

Table 5.4. Pancreatic tissue classification using fluorescence spectra PCs [73] 

Tissue Type 
Sensitivity 

(%) 
Specificity    

(%) 
NPV      
(%) 

PPV      
(%) 

Components 

A vs. P & N 82 78 89 66 FPC1, FPC4, FPC6, FPC11 

A vs. P 79 73 81 70 FPC1, FPC2, FPC11 

A vs. N 88 91 83 94 FPC1, FPC4, FPC6,FPC8, FPC9 

P vs. N 56 73 47 79 FPC7, FPC8, FPC9 

A: adenocarcinoma (33 spectra); N: normal (22 spectra); P: pancreatitis (41 spectra) 

 

Table 5.5. Pancreatic tissue classification using reflectance spectra PCs [73] 

Tissue Type 
Sensitivity 

(%) 
Specificity    

(%) 
NPV      
(%) 

PPV    
(%) 

Components 

A vs. P & N 94 84 96 76 RPC1, RPC2 

A vs. P 79 88 83 84 RPC1, RPC2, RPC7, RPC8 

A vs. N 94 86 90 91 RPC1, RPC2 

P vs. N 78 82 67 89 RPC1, RPC3, RPC5, RPC7, RPC8

A: adenocarcinoma (33 spectra); N: normal (22 spectra); P: pancreatitis (41 spectra) 

 

Classification using reflectance parameters 

Table 5.5 lists the sensitivity, specificity, NPV and PPV for classifying tissue types using 

only the diagnostically relevant reflectance PCs. For example, for distinguishing 

adenocarcinoma from chronic pancreatitis and normal tissue, LDA was performed on the 
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fit-coefficients of RPC1, and RPC2 (shown in Figure 5.3b). The classification 

performance of the algorithm using reflectance PCs only was found to be better at 

classifying the tissue types than the algorithm using fluorescence PCs only.  

 

Classification using fluorescence and reflectance parameters  

The third set of classification variables was comprised of the diagnostically relevant PCs 

from both fluorescence and reflectance spectra. Table 5.6 lists the sensitivity, specificity, 

NPV, and PPV for classifying tissue types using both diagnostically relevant fluorescence 

PCs and reflectance PCs, where a stepwise LDA was performed (as described in Section 

5.3.2) to further select classification variables from all the diagnostically relevant 

fluorescence and reflectance PC listed in Table 5.4 and Table 5.5. The last column in 

Table 5.6 indicates the PCs selected by the stepwise LDA for the classification 

procedure. Figure 5.3a and Figure 5.3b show some of the diagnostically relevant PC used 

for this classification. The results in Table 5.6 indicate that a combination of reflectance 

and fluorescence PCs has the best sensitivity and specificity for identifying pancreatic 

adenocarcinoma.  

 

Table 5.6. Pancreatic tissue classification using fluorescence and reflectance  spectra  PCs [73] 

Tissue Type 
Sensitivity 

(%) 
Specificity    

(%) 
NPV      
(%) 

PPV      
(%) 

Components 

A vs. P & N 91 90 95 83 RPC1, RPC2, FPC1, FPC4, FPC6

A vs. P 82 85 85 82 RPC1, RPC2, RPC8, FPC1 

A vs. N 94 86 90 91 RPC1, RPC2 

P vs. N 83 86 73 92 RPC1, RPC5, RPC7 

A: adenocarcinoma (33 spectra); N: normal (22 spectra); P: pancreatitis (41 spectra) 
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The receiver operating curves (ROCs) for A vs. (P and N) (area 0.923 ± 0.040) and A vs. 

P (area 0.908 ± 0.036) classification using the PCA algorithm employing both 

fluorescence and reflectance parameters were calculated using SPSS software and are 

shown in Figure 5.5. 

 

Figure 5.5 The receiver operating curves (ROC) for A vs. (P and N) (black, dashed line) and A vs. 
P classification (blue, dotted line) using the PCA algorithm, where the areas under the ROCs were 
0.923 ± 0.040 and 0.908 ± 0.036, respectively. The gray dotted line indicates the line of no 
discrimination [73]. 

 

5.3.4.2 Inclusion of time-resolved fluorescence data 

The effect of including diagnostically relevant time-resolved fluorescence data PCs was 

evaluated on the limited data set of 18 normal and 35 pancreatitis tissue measurements, as 

described in Section 4.2.1. Table 5.7 lists the sensitivity, specificity, NPV, and PPV for 

classifying chronic pancreatitis vs. normal tissue types employing stepwise LDA on: 

diagnostically relevant fluorescence and reflectance spectral data PCs only (results in row 

1), time-resolved data PCs only (row 2), or a combination of the spectral and time-

resolved data PCs (row 3). For example, for distinguishing chronic pancreatitis from 

normal tissue using time-resolved data PCs only, the stepwise LDA employed the fit-
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coefficients of TRPC′1, TRPC′3, and TRPC′5 (shown in Figure 5.4b). The results of this 

analysis on the limited data set indicated that using a combination of both spectral and 

temporal information (results in row 3 of Table 5.7) significantly improved the 

classification performance of the chemometric algorithm for distinguishing pancreatitis 

from normal pancreatic tissue (compared to row 4 of Table 5.6). 

 
Table 5.7. Chronic pancreatitis vs. normal pancreatic tissue classification using spectral and/or 
temporal  PCs [73] 

Tissue Type 
Sensitivity 

(%) 
Specificity    

(%) 
NPV     
(%) 

PPV    
(%) 

Components 

P vs. N 80 83 68 90 RPC′1, RPC′5, RPC′7, FPC′9 

P vs. N 80 89 70 93 TRPC′1, TRPC′3, TRPC′5 

P vs. N 89 100 82 100 RPC′1, RPC′5, RPC′7, FPC′9, TRPC′5 

N: normal (18 measurements); P: pancreatitis (35 measurements) 

  

5.3.4.3 . Framework for automated clinical detection of pancreatic 

disease using optical spectroscopy and the PCA algorithm 

The results in Table 5.6 showed that a combination of reflectance and fluorescence 

parameters had the best sensitivity, specificity, and PPV for identifying adenocarcinoma. 

In addition, the NPV of 95% was nearly identical to 96% for algorithm employing RPCs 

only. Based on these results, data from an unknown tissue site could be classified in a 

two-step chemometric algorithm as illustrated in Figure 5.6. First, the test data could be 

classified by employing RPC1, RPC2, FPC1, and FPC4, FPC6 into ‘adenocarcinoma’ or 

‘not adenocarcinoma’. If the data is classified as ‘not adenocarcinoma’ then, if needed, 

RPC1, RPC5, and RPC7 could be employed to further classify the data into ‘normal’ or 

‘chronic pancreatitis’. Employing PCA and LDA on the limited time-resolved 
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fluorescence data set indicated improved classification of chronic pancreatitis vs. normal 

tissue with the use of both spectral and time-resolved data. If this result holds true in a 

larger data set, as well, then time-resolved fluorescence PCs could also be included in the 

classification algorithm.  

Our results suggest that using the optical technique in conjunction with EUS-FNA could 

significantly improve the sensitivity of pancreatic adenocarcinoma detection in the setting 

of chronic pancreatitis. In a clinical setting, such a chemometric classification procedure 

could be undertaken in a few seconds, giving a quick, automated classification scheme 

either to guide EUS-FNA procedures or to improve tumor margin detection during 

pancreatic surgery.  

 

Figure 5.6 The proposed tissue classification algorithm schematic for unknown data. 

5.3.4.4 Comparison of the developed PCA algorithm with current 

diagnostic standard, EUS-FNA 

As mentioned previously, EUS-FNA has median (range) values of 83% (54 -95%) 

sensitivity, 100% (71-100%) specificity, 72% (16-92%) NPV, and 100% (92-100%) 

PPV, for adenocarcinoma identification according to a recent meta-analysis of 28 studies 

that employed EUS-FNA [30]. The maximum sensitivity, specificity, NPV, and PPV of 
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the developed optical tissue classification PCA algorithm for correctly identifying 

adenocarcinoma were 91%, 90%, 95%, and 83%, respectively. Thus, the classification 

performance of the developed optical algorithms for adenocarcinoma identification is 

comparable to the reported performance of EUS-FNA. In the setting of pancreatitis, i.e. 

when the patient has both adenocarcinoma and chronic pancreatitis, EUS-FNA has a 

reported sensitivity, specificity, NPV, and PPV of 54%, 100%, 91%, and 100% 

respectively [31] for distinguishing adenocarcinoma from chronic pancreatitis. The 

sensitivity is unacceptably low, being only slightly better than the outcome of a coin toss. 

All adenocarcinoma measurements in the study reported here were also made on 

pancreata that had concurrent histologic pancreatitis in addition to the carcinoma. For 

distinguishing adenocarcinoma from chronic pancreatitis, the PCA algorithm had a 

sensitivity, specificity, NPV, and PPV of 82%, 85%, 85%, and 82% respectively. Thus, 

the sensitivity of the optical PCA algorithm is well above that of EUS-FNA, indicating a 

decreased likelihood of obtaining false negative results. Our results suggest that using the 

optical technique in conjunction with EUS-FNA could significantly improve the 

sensitivity of pancreatic adenocarcinoma detection in the setting of chronic pancreatitis. 

In a clinical setting, such a classification procedure could be undertaken in a few seconds, 

giving a quick, automated classification scheme either to guide EUS-FNA procedures or 

to improve tumor margin detection during pancreatic surgery.  
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Chapter 6                                                             

Non-invasive characterization of tissue engineered devices 

using optical spectroscopy 

 
Tissue engineered constructs are functional biologic devices employed for grafting 

wounds or replacing diseased tissue. Non-invasive methods are required to assess the 

viability of these engineered constructs. In this chapter, the prospect of employing the 

developed optical spectroscopy instrumentation and previously developed Monte Carlo 

(MC) simulations to non-invasively and quantitatively investigate endogenous optical 

signals from tissue engineered devices was assessed. The methods developed in this 

chapter have the significant advantage of being safe for clinical human use as they 

employ endogenous contrast. 

In Section 6.1, a method to non-invasively and quantitatively characterize thick 

biological tissues by combining experimental and computational approaches in tissue 

optical spectroscopy was developed and validated on porcine articular cartilage (AC) 

tissue samples [13, 56]. This work and the methods developed here should aid in the 

future study of AC tissue constructs. To the best of our knowledge, this study is the first 

to couple non-invasive reflectance and fluorescence spectroscopic measurements on 

freshly harvested tissues with MC computational modeling of time-resolved propagation 

of both excitation light and multi-fluorophore emission. Section 6.1.1 describes the 
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histology and sample preparation of the porcine AC samples measured in this study. 

Sections 6.1.2 and 6.1.3 describe the fluorescence and reflectance spectra and time-

resolved fluorescence decay measurements made on porcine AC. Section 6.1.4 describes 

the extraction of tissue optical properties of AC and Section 6.1.5 describes the MC 

simulations that were run using these tissue optical properties. Section 6.1.6 then presents 

the results of the optical measurements and simulations and introduces a method to 

couple the two for non-invasive assessment of tissues using endogenous contrast agents. 

Section 6.2, presents the work done in this dissertation to optimize non-invasive optical 

assessment of cell viability in ex vivo produced oral mucosa equivalent (EVPOME) 

constructs [80]. In this work, fluorescence spectral measurements and Monte Carlo 

simulations were executed for the first time to characterize the optical signatures in 

EVPOME and to optimize fluorescence signal form the cellular component of EVPOME 

in order to assess the viability of the constructs pre- and post- implantation into patients.  

Section 6.2.1 describes the manufacturing procedure and histology of EVPOME 

constructs and Section 6.2.2 discusses the expected fluorescence optical signatures in an 

EVPOME construct. Section 6.2.3 describes the MC simulations of photon transport in 

EVPOME constructs executed at 355 nm and 450 nm excitation for different source-

detector fiber geometries. The Section also describes the tissue optical properties and 

fluorophore optical properties employed as inputs to the MC simulations. Section 6.2.5  

describes measurement of EVPOME constructs employing the reflectance and 

fluorescence lifetime spectrometer (RFLS). Section 6.2.6 presents the results of the MC 

simulations and experimental measurements. Section 6.2.7 concludes the chapter with a 

discussion of the results obtained and possible future directions for the study. 
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6.1  Porcine articular cartilage (AC): towards the assessment of AC 

constructs 

6.1.1 Porcine knee articular cartilage (AC) sample preparation 

Hyaline AC is found in the synovial joints and is composed of chondrocytes surrounded 

by extracellular matrix, which is mainly composed of tissue fluid (80% water) and a 

macromolecular framework composed of collagens (mainly collagen type II, 90% – 

95%), proteoglycans, and non-collagenous proteins and glycoproteins [45]. Figure 6.1 

shows a micrograph of porcine knee AC tissue made by using an antibody based 

immunochemical stain (C7510-20F, United States Biological, Swampscott, MA) that 

specifically stains collagen type II in brown color. Cells and remaining tissue components 

not containing collagen type II appeared green in the figure. 

 

Figure 6.1  Immunohistochemical staining for collagen type II (brown) found in the extracellular 
matrix (ECM) (blue arrows) of porcine knee articular cartilage (AC) [56]. Red arrows indicate 
cells (chondrocytes) where NADH is found.  
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Sixteen porcine knee AC samples (approximately 1-2 mm in thickness) were either 

freshly harvested (with measurements done 1-2 hours after harvesting) or cultured in 

culture media composed of Dulbecco's modified Eagle's medium (11995-065, 

Gibco/Invitrogen, Carlsbad, CA) + 10% fetal bovine serum (16000-044, 

Gibco/Invitrogen) + 1% penicillin/streptomycin (15140-122, Gibco/Invitrogen) for 1 

week before measurements were taken. These two groups of samples were employed to 

determine whether culturing would affect tissue optical response.  No marked differences 

were observed between the two groups. All samples were washed in phosphate-buffered 

saline (Cat. No.110010-023, Invitrogen) to remove traces of blood and cell culture media, 

placed on 0.88 mm thick quartz microscope slides (01018-AB, Structure Probe Inc., West 

Chester, PA) and sealed inside imaging chamber gaskets (C-18160, Invitrogen) for 

experimental measurements. Two of the samples (cultured) were used to extract tissue 

scattering and absorption coefficients via integrating sphere (IS) measurements 

(described in Section 6.1.4). The remaining fourteen samples were employed for steady-

state and time-resolved fluorescence measurements. Reflectance measurements were 

performed on eleven out of these fourteen samples and a fluorescence excitation-

emission matrix (EEM) was acquired using one of the other three samples (as described 

in Section 6.1.2).  

6.1.2 Spectrofluorimetry 

A spectrofluorometer (SPEX® FL3-22 Fluorolog-3, Jobin-Yvon Horiba, Japan) was 

employed to measure the EEM for AC tissue. Details of the Fluorolog-3 

spectrofluorometer can be found in Section 4.1.3. The AC sample was front illuminated 

to obtain the EEM for 25 excitation wavelengths between 320 and 450 nm while 
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monitoring the emission between 340-650 nm (at 1 nm increments). Data acquisition 

time was approximately 6 minutes.  

6.1.3 Reflectance, steady-state fluorescence and fluorescence lifetime 

spectrometer measurements 

The Reflectance and Fluorescence Lifetime Spectrometer (RFLS) described in Chapter 3 

was employed to measure reflectance and fluorescence spectra and time-resolved 

fluorescence decays from AC tissues. Light from the fluorescence laser and reflectance 

lamp sources were delivered to the sample via two identical optical fibers (fluorescence 

and reflectance source fibers) (SFS600/660N, Fiberguide Industries, Stirling, NJ) of 600 

µm core diameter and 0.22 numerical aperture (NA). At the distal end, the fiber probe 

was comprised of these two source fibers and a third, identical detector fiber placed 

adjacent to each other in a triangular geometry (as shown for the probe in Figure 3.1). 

Fluorescence and reflectance measurements were acquired sequentially. 

For reflectance measurements, the LP and ND2 filters in Figure 3.1 were removed and 

the optical signal from the sample was sent via the detector fiber and focusing optics 

directly to the spectrograph-coupled ICCD camera. The ICCD camera was run in its 

internal mode (i.e. the gate was open throughout data acquisition) and room lights were 

turned off to minimize background signal. 

For fluorescence and reflectance measurements, a background spectrum was acquired 

with the sources blocked and was subtracted from the detected sample spectrum. 

Background subtracted data were then corrected to give distortion free spectra in units of 

photon numbers by calibrating the wavelength and correcting for the spectral instrument 

response of the RFLS. Details of these calibration procedures were described earlier in 
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Section 3.4 of Chapter 3 [67]. Reflectance spectra were also corrected for the intensity 

spectrum of the lamp. First, the lamp spectrum was measured by placing a ND filter of 

OD 0.03 (03FNQ002, Melles Griot, Rochester, NY) in lieu of the tissue sample. Next, the 

background subtracted and instrument response corrected tissue sample reflectance 

spectrum (Rsample) was divided by the background subtracted and instrument response 

corrected lamp spectrum (Rlamp), to give the reflectance spectrum (R) from each AC 

tissue sample (i.e. R = Rsample / Rlamp). 

In this study, all measurements were taken with the fiber optic probe oriented normal to, 

and at a slight distance (0.5-1.0 cm) above, the AC tissue surface to mimic likely 

experimental conditions for studies on sterile samples. Reflectance spectra were 

measured keeping the ICCD gate open for 380 µs and steady-state fluorescence spectra 

were measured by averaging over 1600 pulses (1.6 s integration time). For fluorescence 

measurements, laser pulse energy was attenuated using an ND1 filter of optical density 

(OD) 1.0 (03FNQ015, Melles Griot).  

Three set of time-resolved fluorescence measurements were made on each sample: one 

full spectrum measurement (using the LP filter) and two wavelength-selected 

measurements (using BP filters (centered at 400 and 540 ± 10 nm) in place of the LP 

filter). All time-resolved fluorescence measurements were collected by averaging over 50 

pulses. All measured fluorescence decays M(t) were interpreted as a convolution of the 

intrinsic fluorescence decay,  f(t), and the instrument response function, I(t) [67], where 

f(t) was modeled as a double exponential decay:  f(t) = ∑ ci exp (-t/τi), (i = 1,2) because  

the AC tissue was considered to be composed of a long-lived (collagen) and a short-lived 



 80

(NADH) fluorophore. The average decay time τ, was calculated as τ = [(c1* τ1
2+ c2* τ2

2)/ 

(c1* τ1+ c2* τ2)]. 

 

Figure 6.2 Spectrally weighted fluorescence emission W(λ) (see text) for two 
fluorophores in the AC tissue [56]. These spectra were measured on the RFLS for 
powdered collagen II (blue line) and for 70 M NADH in DI-H2O (red dashed line). The 
black dashed lines indicate the spectral position of band-pass filters that were employed 
for obtaining time-resolved fluorescence measurements from porcine AC samples. 

 
 
Figure 6.2 shows the spectral positions of the BP filters (black dashed lines) relative to 

the spectrally weighted fluorescence emission W(λ) of collagen (blue line, solid) and 

NADH (red line, dashed). These fluorescence emission spectra were acquired on the 

RFLS from NADH (N-8129, Sigma Aldrich) in DI-H2O (70 µM) and collagen type II (C-

1188, Sigma Aldrich) in powder form. In order to calculate W(λ) each measured 

fluorescence spectrum was normalized by setting the maximum fluorescence emission 

intensity to unity (thus getting rid of fluorophore concentration effects), then scaled such 

that area under each curve was unity, and finally multiplied by the quantum yield (QY) 
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of the corresponding fluorophore (0.15 for collagen and 0.1 for NADH obtained from 

literature [36, 81, 82]). As seen in Figure 6.2, at BP 400 nm, collagen dominated the 

fluorescence emission relative to NADH, while at BP 540 nm, this was reversed. Thus, 

the effects of the changes in the measured fluorescence decays from a medium containing 

these two fluorophores (NADH and Collagen II), obtained via these two BP filters could 

be quantitatively modelled using a Monte Carlo model (described below in Section 6.1.5  

below). 

6.1.4 Integrating sphere measurements 

Tissue scattering and absorption coefficients (s and a, respectively) were determined 

using an integrating sphere (IS) and the inverse adding-doubling (IAD) method [83]. The 

adding-doubling method models random scattering events in a planar sample by 

approximating the sample as a discrete number of scattering layers and scattering angles. 

The IAD method used iteration to fit the measurements, and was implemented using IAD 

software available online [84]. The method required separate measurements of diffuse 

reflectance, diffuse transmittance, and collimated transmittance as illustrated in Figure 

6.3. A CW tungsten halogen lamp (LS-1, Ocean Optics) emitting light between 360-2000 

nm with a 200 micron fiber coupling was used for all measurements. 

Two cultured AC tissue samples, each with overall thickness 1.2 mm, were measured. 

For diffuse reflectance measurements, the light source was attached to the reflectance 

port (Port 3) of an integrating sphere (Avasphere-30, Avantes, Boulder, CO) (Figure 

6.3a). The sample was placed at the sample port (Port 1, 8 mm diameter) and the 

collimated light formed a spot size approximately 5 mm in diameter on the sample. The 

sum of intensity of diffuse and specular reflected light was measured using a 
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spectrometer (USB-2000, Ocean Optics) coupled to the IS with a 600 micron core fiber at 

the detection port (Port 2).  Integration times varied from 4-60 seconds. Reflectance 

measurements were calibrated using a 75% reflectance standard (SRS-75-010, 

Labsphere, North Sutton, New Hampshire).  

 

  

Figure 6.3 (a) Schematic for diffuse reflectance and transmittance measurements using an 
integrating sphere. (b) Schematic for collimated transmittance measurements.  (L- Lens; LP – 
long-pass filter; SP – short-pass filter; BP – band-pass filter; PMT – photomultiplier tube; Port 1 – 
sample port; Port 2 – detection port; Port 3 – reflectance port) [56]. 

 

Diffuse transmittance measurements (Figure 6.3a) were taken by collimating the fiber 

coupled light source by a lens pair (L1 and L2) to form a spot size approximately 4 mm 

in diameter at the sample.  For this measurement, the IS was tilted to prevent collimated 

transmitted light from falling on the uncoated portion of the sphere at the reflectance port. 

Two set of diffuse reflectance and transmittance spectra were taken - for source 
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wavelengths less than, and greater than 420 nm - by placing appropriate filters (SP or LP) 

in front of the lamp. This reduced the number of photons hitting the spectrograph detector 

and avoided saturation of the detector. 

For collimated transmittance measurements (Figure 6.3b) the IS and spectrometer were 

removed and a photomultiplier tube (PMT) (R928, Hamamatsu) was employed for light 

detection. A pinhole placed in front of the PMT limited the acceptance angle to 0.17 

degrees to eliminate fluorescent and diffuse light. An optical chopper (SR540, Stanford 

Research Systems) and lock-in amplifier (LIA-MV-150, Femto, Berlin, Germany) were 

employed to increase sensitivity. Measurements were taken for 9 wavelengths by placing 

narrowband (nominally 10 nm full width at half maximum) band-pass (BP) filters at the 

source (Table 6.1). Transmittance measurements were calibrated using ND filters of OD 

1.0 (03FNQ015, Melles Griot) and OD 3.0 (03FNQ027, Melles Griot).  

6.1.5 Monte Carlo model for photon migration simulations 

An MC transport code [16] was used to simulate both time-resolved reflectance and 

fluorescence from an AC tissue model (Figure 6.4). The AC tissue model was a bulk 

medium (0.12 cm thickness) containing two uniformly distributed fluorophores 

(intracellular NADH and collagen type II in the extracellular matrix). 2.5x107 photons 

were launched into the tissue model normal to the surface, at the air-tissue interface via a 

source optical fiber of specified numerical aperture (0.22) and diameter (600 microns 

core). Reflectance and fluorescence escaping the tissue per unit time was collected at 

surface within detector annuli concentric with the source fiber. The spacing between 

consecutive (detection) rings was identical and set equal to source fiber diameter. As 

described in Section 2.2, photon trajectories (black lines, Figure 6.4) were constructed by 
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stochastic sampling of scattering angles (specified by the anisotropy coefficient, g) and 

path lengths (specified by the scattering coefficient, s). Each photon entered the tissue 

medium with a weight of unity, which was attenuated exponentially as given by Beer’s 

law for the absorption coefficient a of the medium. After each scattering step, a new 

direction for the photon trajectory was calculated via the scattering phase function (the 

Henyey-Greenstein function [62]), which is specified by the anisotropy coefficient (g) of 

the tissue. The flight of the photon ended when it left the tissue (by crossing the tissue-air 

interface) or when its weight fell below a threshold minimum value (set to 1x10-5), as 

determined by a Russian roulette routine [62]. At the end of its travel in the tissue, the 

time, t, spent by the photon within the medium was given by t = L/nc, where L is the total 

path-length of the photon, c is the speed of light in vacuum, and n is the refractive index 

of the medium [63]. 

 
Figure 6.4 Model for articular cartilage tissue showing fluorescence from two uniformly 
distributed fluorophores (intracellular NADH and extracellular collagen) relative to the excitation-
detection fiber probes, as simulated by the MC code) [56]. 
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For the two-fluorophore AC tissue model studied here, the simulation supported tissue 

models containing Nf  = 2 fluorophores (emitting at Nf different wavelengths) that were 

considered to be uniformly distributed in the tissue medium [85]. The incident excitation 

could be absorbed by any one of the Nf fluorophores. After each scattering event of the 

excitation photon, fluorescence absorption was sampled using a rejection technique, as 

governed by a cumulative fluorescence absorption coefficient Maf. Here, Maf was the sum 

of the fluorescence absorption coefficients (afx) of all Nf fluorophores specified in the 

tissue model, i.e. Maf = iafx (1i Nf). Once it was determined that the photon had been 

absorbed to produce a fluorescence photon, the wavelength of the remitted fluorescence 

photon was selected by a MC routine, where the probability of absorption of the 

excitation photon by one of the Nf fluorophores was equal to the ratio iafx af (1i Nf) 

[85]. Upon successful fluorescence absorption, the excitation photon was relabeled a 

fluorescence photon, its new direction of travel was determined by an isotropic scattering 

event, and its weight was multiplied by the fluorescence quantum yield, iQY. This newly 

created fluorescence photon then continued to propagate from the point of its spatial 

origin (blue lines - collagen type II, red lines – NADH in Figure 6.4), as governed by the 

scattering, absorption, and anisotropy coefficients of the medium at the fluorescence 

emission wavelength. After each successful fluorescence absorption event, the simulation 

added a sampled decay time, td, to the photon's total time of flight to include the effect of 

a finite fluorophore lifetime (τ0). 

To simulate the experimental procedure of placing the fiber probe above the AC sample 

surface, the reflectance and fluorescence photons were collected within an annulus of 

inner radius = 0.15 cm and outer radius = 0.33 cm (relative to source fiber center). The 
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simulation required input values of a and s, which were obtained from IS experimental 

measurements while the anisotropy was kept at a literature value of g = 0.9 [86], as 

described in Section 6.1.6.2. In this study, separate codes were run for two fluorescence 

emission wavelengths (400 nm and 540 nm) to simulate experimental data. Wavelength 

dependence of fluorescence emission characteristics of the two fluorophores were 

introduced by using the spectrally weighted fluorescence emission W(λ) described in 

Section 6.1.3 in lieu of the quantum yield coefficients iQY. The tissue thickness z1 was 

the same as those for the samples used in Section 6.1.4. Fluorophore lifetime for bound 

NADH was set to 1.5 ns [11, 36]. The input values for the fluorescence lifetime of 

collagen and the relative fluorophore absorption coefficients iafx (for collagen and 

NADH) were matched to simulate experimental measurements (described in Section 

6.1.6.4). 

Table 6.1. Scattering and absorption coefficients for AC tissue  (g = 0.9) 

Wavelength (nm) μa (cm-1) μs (cm-1) 

400 0.50 ± 0.05 300 ± 75 

420 0.56 ± 0.02 285 ± 57 

460 0.45 ± 0.16 220 ± 61 

480 0.47 ± 0.09 188 ± 48 

500 0.44 ± 0.23 168 ± 46 

520 0.65 ± 0.06 133 ± 67 

540 0.46 ± 0.21 199 ± 32 

560 0.49 ± 0.21 125 ± 27 

600 0.50 ± 0.20 106 ± 20 
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6.1.6 Results and discussion 

6.1.6.1 Fluorescence excitation-emission matrix (EEM) 

Figure 6.5a shows EEM data for AC tissue sample #12 (Table 6.2). The EEM 

fluorescence intensity pattern was consistent with endogenous tissue fluorescence from 

extracellular collagen and intracellular NADH [5, 8-10, 25, 54, 55]. Figure 6.5b shows 

this EEM data around excitation wavelength 355 nm, which was the wavelength 

employed for excitation in RFLS studies. These EEM tissue data were consistent with 

measurements on pure collagen and NADH at 355 nm excitation (Figure 6.2), further 

confirming the hypothesis that these two fluorophores represent the primary components 

of AC tissue autofluorescence in RFLS studies. Thus, the AC tissue model developed for 

computational simulations of these measurements was composed of these two 

endogenous tissue fluorophores. 

 
 

 
Figure 6.5 (a) Measured EEM of articular cartilage (AC) tissue showing fluorescence emission 
primarily associated with extracellular collagen and intracellular NADH [56]. (b) Same EEM 
expanded to highlight the area between white dotted lines in (a) [56]. RFLS excitation occurred at 
355 nm. The EEM data was measured on the Fluorolog-3 spectrofluorometer. 

Emission Wavelength, m [nm]

350 400 450 500 550 600 650

E
xc

ita
tio

n 
W

av
el

en
gt

h,
 

x 
[n

m
]

320

340

360

380

400

420

440 1e+6 
2e+6 
3e+6 
4e+6 
5e+6 
6e+6 

Emission Wavelength, m [nm]

350 400 450 500 550 600 650

E
xc

ita
tio

n
 W

a
ve

le
ng

th
, 
 x

 [
n
m

]

345

350

355

360
5.0e+5 
1.0e+6 
1.5e+6 
2.0e+6 
2.5e+6 

(a) (b) 



 88

6.1.6.2 Porcine AC tissue optical coefficients 

AC Tissue optical absorption (μa) and scattering (μs) coefficients at nine wavelengths 

were calculated from IS measurements by employing the IAD software and an anisotropy 

value of g = 0.9 [86] (Table 6.1). For each coefficient, the table lists the mean ± standard 

deviation over data obtained on two AC tissue samples. The μs values decreased with 

increasing wavelength indicating lower wavelengths were scattered more by the tissue. 

There was no such specific trend for μa values. MC simulations were run using the two 

sets of μa and μs that were calculated using data from both tissue samples. 

6.1.6.3  Reflectance spectroscopy: experimental measurements and 

computational modeling 

 

Figure 6.6 Average, measured (gray, solid line) and simulated (black, triangles) normalized 
reflectance spectra from porcine AC [56]. The normalization was done by setting reflectance at 
540 nm to unity. The model inputs at each indicated wavelength were obtained from integrating 
sphere measurements. The error bars represent the results of the variations in the optical properties 
(see Table 6.1) input to produce the simulations. 
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 Reflectance from 11 AC tissue samples (samples # 1-11, Table 6.2) varied over the 

wavelength spectrum and increased between 400 nm and 540 nm. The gray line in Figure 

6.6 shows the measured average normalized reflectance as a function of wavelength 

between 400 and 600 nm. The normalization procedure set the reflectance at 540 nm to 

unity. Table 6.2 lists details of sample preparation for all samples, as well as the 

percentage increase (ΔR), in reflectance at 540 nm (R540) vs. reflectance at 400 nm (R400). 

Thus, ΔR = [R540 - R400]*100/ (R540). The average measured ΔR value was found to be 23 

(±7) %. 

 

Table 6.2. Porcine articular cartilage (AC) sample preparation, experimental and, computational results [56]. 

AC Tissue 
Sample # 

Sample 
Preparation 

Measured 
ΔR$ 

Measured average 
fluorescence decay time 

(ns) 

BP! 400 nm      BP 540 nm

Simulated 
fluorescence 

decay time (ns) 
at BP 540 nm 

Extracted 
η% 

1 Freshly harvested 25 % 4.3 4.0 4.04 25.00
2 Freshly harvested 17 % 5.4 5.3 5.25 60.00
3 Freshly harvested 29 % 4.8 4.1 4.13 12.00
4 Freshly harvested 22 % 4.9 4.1 4.13 10.54
5 Freshly harvested 11 % 5.1 4.5 4.49 15.00
6 Cultured* 28 % 5.4 4.0 3.98 5.45
7 Cultured* 28 % 5.3 4.8 4.81 20.33
8 Cultured 22 % 5.2 4.6 4.60 16.00
9 Cultured 13 % 5.1 4.0 4.00 7.00

10 Cultured 29 % 5.1 4.6 4.59 18.53
11 Cultured 27 % 5.2 4.4 4.42 11.50
12 Freshly harvested - 5.2 4.2 4.21 8.52
13 Freshly harvested - 5.3 4.2 4.21 7.59
14 Cultured - 6.4 3.0 3.00 1.38
15 Freshly harvested - 5.1 4.5 4.49 15.00

 Average value 23± 7 % 5.2 ±0.4 4.3±0.5  
* Measurements taken on different sites of an elongated tissue sample. 

$ ΔR =  percentage increase in reflectance at 540 nm (R540) vs. reflectance at 400 nm (R400) 

! BP = band-pass filter 

% η = ratio of the fluorescence absorption coefficients of collagen to NADH 
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A set of nine simulations were run to study the radially resolved reflectance at nine 

excitation wavelengths between 400-600 nm (listed in Table 6.1). At each wavelength, 

two simulations were run using two sets of μa and μs values, obtained as described in 

Section 6.1.6.2. Figure 6.6 shows mean normalized reflectance (black triangles) 

calculated by the MC simulations. The error bars represent the standard deviation 

between outcomes at each wavelength. The MC simulation predictions matched well with 

the average experimental data over the entire spectral range with a maximum residual 

error of 11% and predicted a R of 15 (±2) %. This corroboration between experiment 

and simulation for reflectance gave us confidence in our estimation of the wavelength 

dependence of the tissue optical properties of porcine AC. A similar study has been done 

to assess bovine cartilage thickness using MC simulations [87]. This study did not 

consider any wavelength dependence of the absorption and scattering coefficients. 

6.1.6.4 Fluorescence and fluorescence lifetime spectroscopy: 

experimental measurements and computational modeling 

Figure 6.7a shows a representative normalized intrinsic fluorescence spectrum from 

(sample # 15, Table 6.2) porcine knee AC tissue measured using the RFLS (black line). 

The fluorescence emission peaked near 400 nm, and was attributed to collagen dominated 

emission. The measured average decay time for the entire spectrum (i.e. with no BP filter 

employed) was observed  to be 5.4 ± 0.5 ns, which was consistent with collagen 

dominated emission [88]. Figure 6.7a also shows the band-pass filters centered at 400 nm 

(dashed blue box) and at 540 nm (dashed red box), employed to take time-resolved 

measurements as described in Section 6.1.3. These representative, normalized time-
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resolved data obtained from the same AC tissue (sample # 15, Table 6.2) are shown in 

Figure 6.7b for the BP at 400 nm (solid blue line) and for BP at 540 nm (dashed red line).  

 

Figure 6.7 (a) Autofluorescence spectrum of AC tissue (black line) acquired on the RFLS. Blue 
and red boxes indicate band-pass (BP) filters placed at 400 and 540 nm to measure fluorescence 
decay times for photons from those parts of the spectrum [56]. (b) Time-resolved fluorescence of 
the tissue with a BP filter of 400 nm (solid blue line) and a BP filter of 540 nm (dashed red line). 
The black dotted line shows the excitation pulse temporal profile (instrument response) [56]. 

 

The dotted black line in Figure 6.7b shows the temporal profile of the excitation laser 

pulse. As can be seen in Figure 6.7b, the blue curve (BP 400) decayed slower than the red 

curve (BP 540). This trend was seen consistently amongst all the 15 measured samples 
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(Table 6.2). A one sided, unequal variances, Student t-test for the mean values of decay 

time at 400 nm and 540 nm wavelengths, yielded a P-value of 1.21x10-5, indicating that 

the mean decay times were different from each other at the two band-pass filter locations. 

As mentioned earlier, collagen type II and NADH were considered to be the two major 

fluorophores in the porcine AC tissue sample. The time-resolved fluorescence decays 

from each AC tissue sample at the two emission wavelengths (with BP filters centered at 

400 nm and 540 nm) were simulated via two different tissue models to account for the 

differences in the optical transport coefficients at these two wavelengths. These simulated 

decays were analyzed by a bi-exponential model and an average decay time parameter 

was determined [36].  

For each tissue model the tissue optical transport coefficients required at the central 

wavelength of each BP were obtained from the IS measurements as discussed in Section 

6.1.6.2 (Table 6.1). The spectrally weighted fluorescence emission W(λ) (Figure 6.2) at 

the corresponding central wavelength of the BP filter were used in lieu of the fluorophore 

quantum yields. These spectrally weighted fluorescence emission coefficients were 

1.35x10-3 and 1.35x10-5, for collagen and NADH, respectively, for the 400 nm BP tissue 

model while at 540 nm they were 8.64x10-5 and 2.80x10-4 for collagen and NADH, 

respectively. 

Given these inputs for the fluorophore quantum yield coefficients, the simulations 

predicted that average decay time for the fluorescence signal at 400 nm using the bi-

exponential model collapsed to the original input lifetime of collagen in the tissue model 

(irrespective of the exact values of the lifetimes of either fluorophore), if () the ratio of 

the fluorophore absorption coefficient of collagen to that of NADH was greater than 0.1, 
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which included the most physically plausible values for these fluorophores [36]. This 

behavior was anticipated in these simulations, since the weight of remitted fluorescence 

photons from collagen was on average 100 (approximately the ratio of the W(λ) inputs of 

collagen to NADH at 400 nm) times larger than weight of remitted fluorescence photons 

from NADH. This result, however, meant, that each measured average decay time with 

the 400 nm BP filter would have to be interpreted as the lifetime of collagen for each 

particular sample. The variability seen amongst samples could be attributed to changes in 

the environment of the fluorophore.  

Hence, in the 540 BP tissue model, for each sample, the input lifetime of collagen was set 

to the average decay time measured (for the same sample) via the 400 nm BP while 

holding the lifetime of NADH at 1.5 ns. The model was then used to extract the 

fluorescence absorption coefficients (afx) of both fluorophores by matching (to within 

1%) the simulated average decay time at 540 nm to the experimentally measured 

fluorescence decay time measured via the 540 nm BP. Table 6.2 shows the values for 

the ratio of the fluorescence absorption coefficient of collagen to that of NADH for 

each measured AC tissue sample. Also shown are the predicted values of the simulated 

decay times using the  values specified. The extracted  values were found to vary by a 

large amount. One source of this variation could be the high variability in biological 

samples which can not be accounted for by simulations. It is thought that by repeating 

this study for a large number of samples the expected range of  values for naturally 

occurring AC tissues could be extracted. Then comparison of  values for artificially 

constructed AC tissue with this range could serve as a check of the viability of the 
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construct. In addition, this method of extracting  values could be used to monitor the 

development of an AC tissue construct over time, in a non-invasive manner. 

Previous fluorescence lifetime imaging studies of what appear to be fixed and sectioned 

slices of porcine AC did not explain the biological origins of the detected fluorescence 

nor the statistical significance of the obtained data [89]. 

6.1.7 Summary and conclusions 

In conclusion, a method for noninvasive, quantitative characterization of fresh tissues 

using reflectance and fluorescence measurements was applied to porcine knee AC. To the 

best of our knowledge, the work described in this report is the first study of endogenous 

fluorescence from unfixed and untreated porcine knee AC, where the biological origins 

of the measured fluorescence and reflectance are explained in the context of a 

quantitative model for photon transport in AC tissue.  

MC simulations of photon propagation in a single layer, two – fluorophore (extracellular 

collagen type II and cellular NADH) tissue model were used to quantitatively explain 

experimentally measured fluorescence and reflectance signals from AC tissue. The 

concept of a spectrally weighted fluorescence emission W(λ) was introduced to account 

for the wavelength dependence of fluorescence emission characteristics of the two 

fluorophores. The experimental and computational results agreed to within 11% of the 

mean reflectance spectra (from 11 samples), which provided the wavelength dependent 

tissue optical properties (μa and μs) for porcine AC tissue models. For fluorescence 

measurements, a combination of experimental measurements and computational 

simulation was used to extract a quantitative description of the samples. For each AC 

tissue sample, the MC simulations for fluorescence used the measured decay time at BP 
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400 nm as an input to extract the ratio of fluorescence absorption coefficients () of the 

constituent fluorophores such that simulated average decay time at 540 nm were made to 

match to within 1%, the experimentally measured fluorescence decay time.  

Although the AC tissue models used the optical transport coefficients determined via the 

IS-estimated average, it is to be noted that the reflectance spectrum from each sample 

could be inverted via MC simulations (guided by the IS values) to obtain the sample’s 

transport coefficients. Estimation of μa and μs using MC simulations vs. IS, for tissue 

models that had identical η values but modeled extreme variations of the transport 

coefficients, yielded average decay times (at 540 nm) that were within 1% of the decay 

time determined via using the IS estimates. 

The approach presented here attributes a single fluorescence decay time to each 

constituent fluorophore in a tissue. A further refinement to this approach could include 

changes in fluorophore lifetime with emission wavelength. Although future systematic 

studies on pure substances should resolve conflicting reports existing in the literature 

regarding lifetime variations with wavelength (for example, for collagen [88]), it remains 

problematic to use data acquired on pure substances to describe those molecules in 

complex environments, such as biological tissues.  An alternate and more biologically 

relevant approach would be to employ optical molecular imaging (via, e.g., fluorescence 

lifetime imaging microscopy) to characterize spatially-resolved endogenous fluorophores 

in their tissue environment.  These studies are ongoing and should prove useful to 

enhance the ability to quantitatively interpret experimental measurements on tissues. 

Hyaline AC is found in the synovial joints and is an important contributor to the 

functional capacities of these joints. If a chondral defect or lesion occurs, it does not heal 
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on its own. Thus methods are being developed to make tissue constructs that would 

mimic true AC. Pre- and post implantation testing of the viability of these constructs can 

potentially be done by analyzing the optical signal from them. Towards this goal, a first 

step has been taken to optically characterize porcine knee AC. This work and the 

methods developed here should aid in the future study of AC tissue constructs. For 

example, monitoring the change in  value for a sample over time would help detect 

changes in the sample’s biological make-up by giving a measure of changes in relative 

concentrations of the constituent fluorophores. Furthermore, since the method would be 

non-destructive, it would allow repeated assessment of a given sample over time to 

follow intervention, thereby significantly speeding up lengthy and expensive protocols 

requiring multiple samples. 

6.2  Oral mucosa constructs 

6.2.1 Engineering oral mucosa constructs 

Ex vivo produced oral mucosa equivalent (EVPOME) constructs are manufactured by 

seeding human oral keratinocytes onto an acellular dermal matrix namely, AlloDerm® 

(LifeCell, Branchburg, NJ, USA). AlloDerm is non-immunogenic human cadaver skin 

from which the cellular component has been removed to leave a matrix composed mainly 

of collagen. Details of the EVPOME manufacturing process can be found in [43, 46, 90]. 

Briefly, the dry AlloDerm® is first cut into a 1 cm diameter circle and immersed thrice in 

phosphate buffer saline (PBS) solution for 30 minutes to re-hydrate the dermal matrix 

and to remove any antibiotics injected to preserve the matrix. The re-hydrated 

AlloDerm® is then immersed overnight in a solution of PBS and collagen-IV to enhance 
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the attachment of keratinocytes. The harvested keratinocytes are then seeded on to the 

AlloDerm® on what is referred to as day 0 of the manufacturing process. The 

keratinocytes and AlloDerm® composite is then cultured submerged in cell culture media 

for four days. On day 4, the composite is raised to the air-liquid interface with an increase 

in calcium concentration to encourage stratification and is cultured in this manner until 

day 11. By this stage, the cell-matrix composite has undergone keratinocyte 

differentiation and stratification with formation of a keratinized layer, and the EVPOME 

construct is ready for implantation. Figure 6.8 shows the histology of a typical day 11 

EVPOME construct consisting of keratin (layer 1), keratinocytes (layer 2), and 

AlloDerm® scaffold (layer 3). 

 

Figure 6.8 Cross-sectional histology of a day 11 EVPOME construct showing the three 
layers of the construct – keratinized layer, keratinocytes and AlloDerm® scaffold. 

 
 

6.2.2 Optical signatures in EVPOME constructs 
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employing the spectrofluorometer Fluorolog-3 (described in Section 4.1.3) at 355 nm 

excitation which is the excitation wavelength of the RFLS.  

 

Figure 6.9. Plot of normalized fluorescence intensity measured from oral keratinocytes at 
355 nm excitation. The data was measured on the Fluorolog-3 spectrofluorometer. 

 
 

Figure 6.9 plots the normalized fluorescence intensity measured from oral keratinocytes. 

The observed fluorescence peaks were associated with NAD(P)H and FAD fluorescence 

[9]. As stated in Section 6.2.1, AlloDerm® is composed mainly of collagen. The 

constituent fluorophores in a day 11 EVPOME could thus be assumed to be the acellular 

keratin in the first layer, NAD(P)H and FAD in the second layer where the oral 

keratinocyte cells reside, and collagen in the third layer. Hence, it could be conjectured 

that assessment of the biological viability of the EVPOME constructs should be 

achievable by using fluorescence spectroscopy to target the fluorophores in the cellular 

component of the EVPOME namely, NAD(P)H and FAD. Previous studies done by us on 

the autofluorescence of oral keratinocytes of increasing size suspended in saline solution 
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indicated that cell size correlates positively with flavoprotein autofluorescence intensity 

[91]. The stem cell population has been found to reside in the small cell population while 

more mature differentiated cells are larger in size [92]. Thus, we expect the fluorescence 

intensity owing to FAD to increase as the cells mature and become larger in size i.e. as 

the EVPOME graft goes through its manufacturing process, with an increase in cell 

stratification. This provides a possible tool for sensing changes (hence viability), non-

invasively, in the cellular component of EVPOME from day 0 to day 11 of the 

manufacturing process. 

The cells in an EVPOME construct are present in a relatively thin layer buried between 

highly scattering and fluorescent keratin and collagen layers (Figure 6.8). This poses a 

significant challenge to the measurement of cellular autofluorescence. In the remaining 

text, we describe the Monte Carlo (MC) simulations and experiments executed to 

optimize detection of cellular autofluorescence in EVPOME constructs. Fluorescence 

simulations and measurements were executed for a 355 nm excitation wavelength 

(preferential excitation of NAD(P)H) and simulations were also implemented at 450 nm 

excitation wavelength (preferential excitation of FAD) for different optical probe designs 

to arrive at an optimum experimental set up for cellular autofluorescence detection.  

6.2.3 Monte Carlo simulation of photon transport in EVPOME 

constructs at 355 nm and 450 nm excitation 

A previously validated multi-fluorophore, multi-layer MC code of light propagation in 

tissue [15, 56, 61] was employed to simulate fluorescence in a day 11 EVPOME 

construct model. The EVPOME construct model was considered to be a three layer 

model with the fluorophore keratin in acellular layer 1, cells with NAD(P)H and FAD in 
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layer 2, and collagen in layer 3 (Figure 6.10). Simulations were executed at 355 nm and 

450 nm excitation to predict (as a function of source detector fiber separation) the 

contributions to the detected fluorescence, from the fluorophores in different layers of the 

EVPOME. The simulations at 355 nm excitation were executed with optical fiber 

diameters of 100 µm. Simulations at 450 nm were executed for two optical fiber 

diameters, 50 µm and 100 µm. The tissue optical properties and fluorophore optical 

properties required as inputs to the MC codes are described in Section 6.2.4.  

 

Figure 6.10 Schematic of the layers in an EVPOME construct on day 11 of the 
manufacturing process. Modeling was done for excitation wavelengths 355 nm and 450 
nm assuming keratin (acellular), NAD(P)H and FAD in cells, and collagen to be the 
fluorophores localized in the layers as shown in the figure.  

 

For each simulation, excitation photons were launched from a source fiber normal to the 

tissue surface. The photons per unit time exiting the tissue surface were collected by 

annuli of detectors placed around the source fiber at radii increasing in steps equal to the 

source fiber diameter. Photons entered the tissue with a weight of unity which was 

attenuated as governed by the absorption coefficient (a) of the medium. The trajectory 
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Layer 2 Cells with NAD(P)H and FAD 
(50 microns)

Layer 3 COLLAGEN (500 microns)

ρ
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of the photon in the medium was based on the scattering coefficient (s) and anisotropy 

coefficient (g) of the medium. The different layers of the tissue were represented by a 

change in tissue optical properties (a, s, and g) and the path of the photons as they 

traversed between layers was governed by the Snell’s laws and any refractive index (n) 

mismatch. The flight of the photon ended when it left the tissue (by crossing  the tissue-

air interface) or when its weight fell below a threshold minimum value (set to 1x10-5), as 

determined by a Russian roulette routine [62].  

In any layer, the absorption of the excitation photon by a fluorophore was governed by 

the sum of the fluorophore absorption coefficients (μafx) of all fluorophores (Nf in 

number; = 1, 2, and 1 for layers 1, 2, and 3 respectively) in that layer. Where, each 

fluorophore was assumed to emit at a distinct emission wavelength (m).  The probability 

that the ith fluorophore (1 ≤ i ≤ Nf) in a layer absorbed the excitation photon was equal to 

the ratio iμafx / Σ
iμafx (1 ≤ i ≤ Nf). Once absorbed by the ith fluorophore in a layer, the 

excitation photon was marked as a fluorescence photon having wavelength im and was 

scattered isotropically. The weight of the photon was scaled by the quantum yield (i) of 

that fluorophore and the trajectory was now governed by the scattering, absorption, and 

anisotropy coefficients of the medium at the fluorescence emission wavelength. The code 

kept an account of fluorescence weight per unit time of photons exiting the tissue surface 

at all emission wavelengths. These weights were integrated over time to give the steady 

state fluorescence detected at each detector due to each fluorophore. 
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6.2.4 Inputs to the Monte Carlo codes  

In order to implement the MC simulations, it was necessary to specify the thickness and 

refractive index of each layer, tissue optical properties (a(), s(), and g)  of each of the 

excitation (x) and emission wavelengths (m) in each layer, and the fluorophore optical 

properties (afx , , and ) for all the fluorophores. 

Tissue optical properties of EVPOME 

The thickness of the layers were set to be 10 m, 50 m, and 500 m, to model a typical 

day 11 EVPOME (shown in Figure 6.10). The refractive index was set to 1.4 for all 

layers and the anisotropy (g) was set to 0.9, 0.85, 0.7 for layers, 1, 2, and 3, respectively 

[81]. Table 6.3 and Table 6.4 list the absorption (µa) and scattering coefficients (µs) used 

for simulations at 355 nm and 450 nm excitation, respectively. These were obtained from 

an algorithm [93] for extracting µa(λ) and µs(λ) for layers in skin, but with blood content 

set to zero.  

 

Table 6.3. Tissue absorption(a) & scattering coefficients(s) used for MC 
simulations at an excitation wavelength of 355 nm [80]. 

 (Fluorophore) 
(nm) 

Layer 1 Layer 2 Layer 3 

a 

cm-1 
s 

cm-1 
a 

cm-1 
s 

cm-1 
a 

cm-1 
s 

cm-1 

355 ( Excitation)   3.88   

420 (Keratin)   2.27   

450 ( NADH)   1.81   

530 ( FAD)   1.06   

430 ( Collagen)   2.1   
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Table 6.4. Tissue absorption(a) & scattering coefficients(s) used for MC 
simulations at an excitation wavelength of 450 nm 

 (Fluorophore) 
(nm) 

Layer 1 Layer 2 Layer 3 

a 

cm-1 
s 

cm-1 
a 

cm-1 
s 

cm-1 
a 

cm-1 
s 

cm-1 

450 ( Excitation) 3.17 577   1.81 385 

520 (Keratin) 1.95 499   1.13 333 

525 ( NADH) 1.87 494   1.09 329 

530 ( FAD) 1.83 490   1.06 327 

 500 (Collagen) 2.22 519   1.28 346 

 

Fluorophore optical properties of EVPOME 

The fluorophore optical properties employed for the MC codes at 355 nm and 450 nm 

excitation are shown in Table 6.5. These values were chosen based on literature as well 

as experiments performed by us (described below).  

 

Table 6.5. Fluorophore properties used for Monte Carlo simulations of light  
propagation in EVPOME constructs at 355(450)  nm excitation. 


 

Keratin NAD(P)H FAD Collagen 

Emission 
(nm) 

420 (520) 450 (525) 530 (530) 430 (500) 

Decay Time 
(ns) 

4.0 (4.0) 1.5 (1.5) 3.0 (3.0) 5.0 (5.0) 

Quantum 
Yield 

0.25 (0.01) 0.05 (0.005) 0.03 (0.03) 0.4 (0.04) 

afx  (cm-1) 0.5 (0.5) 0.6 (0.01) 0.9 (1.6) 0.9 (0.9) 

 

The decay times of the fluorophores were assumed independent of the emission and 

excitation wavelengths. The values for keratin and FAD were obtained from [94] while 

for NADH and collagen were obtained from [36].  
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Fluorophore absorption coefficients and emission wavelengths for keratin were obtained 

from literature [95, 96]. The peak emission wavelengths and intensities at an excitation of 

355 nm and 450 nm for NADH, FAD and collagen were measured on a 

spectrofluorometer (SPEX® FL3-22 Fluorolog-3, Jobin-Yvon Horiba, Japan). Solutions 

of 0.005 mg/ml of NADH (N-8129, Sigma Aldrich, St. Louis, Missouri) in water, 0.06 

mg/ml of FAD (F6625, Sigma Aldrich) in water, and 1mg/ml of collagen (C5483, Sigma 

Aldrich) in acetic acid were used for the measurements. The absorbance of the same 

NADH, FAD, and collagen solutions were measured at the two excitation wavelengths 

using a spectrophotometer (DU® 800, Beckman Coulter, Inc., Fullerton, CA). The 

fluorophore absorption coefficients were then derived from the measured absorbance 

using the Beer-Lambert Law. 

The quantum yields () at 355 nm and 450 nm excitation were obtained from literature 

for keratin and FAD [81, 95, 97]. The values at 355 nm excitation for NADH and 

collagen were also obtained from literature [36]. In order to obtain an estimate of any 

order of magnitude change in the quantum yield of collagen and NADH at 450 nm 

excitation we considered the equation for calculation of quantum yield of an unknown 

sample [11] 

   
 

 
  2

2

Rx

xR

xR

x
Rx n

n

A

A

I

I







      - 6.1  

Where, I denotes the integrated intensity, n denotes the refractive index, and A denotes 

the absorbance of the fluorophore at x excitation wavelength. The subscript R refers to 

reference fluorophore of known quantum yield and R was considered independent of the 
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excitation wavelength. A 1 M solution of Rhodamine 6G (83697, Sigma Aldrich) in 

ethanol was employed as the reference fluorophore [11].   

Thus, the ratio of  (450x) / (355x) for a fluorophore could be expressed as 

 
 

 
 

 
 

 
 xR

xR

xR

xR

x

x

x

x

x

x

A

A

I

I

A

A

I

I

355

450

450

355

450

355

355

450

355

450
















    - 6.2 

 Measurements on Rhodamine 6G indicated  

 
 

 
  1

355

450

450

355 
xR

xR

xR

xR

A

A

I

I







 (order of magnitude) - 6.3 

 

Thus,  (450x)/ (355x) for a fluorophore could be approximated as  

 
 

 
 x

x

x

x

x

x

A

A

I

I

450

355

355

450

355

450










     - 6.4 

Measured integrated emission intensity and absorbance at the 355 nm and 450 nm 

excitation for both collagen and NADH indicated order of magnitude ratios of quantum 

yield equal to 

1

355

450 10
collagen

x

collagen
x




  and   1

355

450 10
NADHn

x

NADH
x




   - 6.5 

Estimates for quantum yields of NADH and collagen at 450 nm excitation were thus 

obtained by scaling the quantum yield values at 355 nm excitation (Table 6.5) by a factor 

of 10. 
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6.2.5 Steady-state fluorescence measurements at 355 nm excitation 

A portable, fiber-optic coupled Reflectance and Fluorescence Lifetime Spectrometer 

(RFLS) (described in Chapter 3) was employed for steady-state fluorescence spectra 

measurements from a day 11 EVPOME and from an acellular AlloDerm® kept under 

similar conditions, as a control. Prior to data acquisition, the EVPOME and Alloderm® 

were dipped in PBS to wash away any cell culture media. The excitation light was 

delivered to the sample via a source optical fiber of 100 µm diameter and the emitted 

fluorescence was collected via a separate 100µm diameter collection fiber placed 

adjacent to the source fiber at the distal end (same fiber probe configuration as in the MC 

simulations at 355 nm excitation). For each spectrum, a background spectrum was 

acquired with the source blocked and was subtracted from the detected sample spectrum. 

Background subtracted data were then corrected for the spectral instrument response of 

the RFLS. The calibrated spectra were then normalized by scaling the peak intensity to 

unity. Details of these calibration procedures are described in Chapter 3. 

6.2.6 Results of the MC simulations and experiment 

Figure 6.11 shows the simulated fractional contributions from layers 1, 2, and 3 (black 

squares, red circles, and blue triangles, respectively) of a day 11 EVPOME to the 

detected fluorescence signal at 355 nm excitation as a function of source-detector 

separations (ρ). The simulations indicated that detected signal would be dominated by 

fluorescence from layer 3 i.e. collagen, at all ρ, thus making it difficult to assess changes 

occurring in layer 2 where the cells reside. Thus, while 355 nm excitation would 

preferentially excite NAD(P)H in the cells, collagen would emit at a much higher 
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quantum yield. As a result, that fluorescence collected at the tissue surface would be 

dominated by collagen emission. 

 

Figure 6.11. Results of MC simulations executed for day 11 EVPOME Model - Plot of simulated 
fractional contributions to the detected fluorescence signal from layer 1 (keratin : black squares), 
layer 2 (NADH+FAD :  red circles), and layer 3 (Collagen  : blue triangles) of a Day 11 EVPOME 
construct at 355 nm excitation for different source-detector separations. The green dashed line 
indicates the source-detector fiber separation during experiments [80]. 
 
 
 

Figure 6.12 shows the measured normalized fluorescence intensity (normalized by setting 

the peak intensity to unity) from AlloDerm® (blue dashed line) and EVPOME (red solid 

line) on day 11 at 355 nm excitation. The source detector separation was 100 microns 

(green dashed line in Figure 6.11). The measured signal from EVPOME could be 

associated predominantly with fluorescence from AlloDerm® alone (Layer 3). This 

confirmed the simulated results at 355 nm excitation.  The variation in the measured 

spectra was within the variation seen among measured spectra from different batches of 

AlloDerm® tested. 
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Figure 6.12. Plot of the measured normalized steady-state fluorescence from an EVPOME 
construct on Day 11 (red line), and from AlloDerm® kept under similar conditions (blue dashed 
line). Measurements were made at 355 nm excitation employing the Reflectance and Fluorescence 
Lifetime Spectrometer (RFLS); source and detector fiber diameters were 100 µm for simulations 
and experiment (dashed green line in Figure 6.11). 

 

Figure 6.13 shows results of MC simulations at 450 nm excitation for two fiber diameters 

100 µm (Figure 6.13a) and 50 µm (Figure 6.13b). The results indicated that employing 

450 nm excitation and ρ = 0 would preferentially excite the FAD in the cells while 

decreasing the emission from collagen in layer 3. However, while the relative 

contribution form cellular autofluorescence would be increased, the emission from layer 

3 would still be quite dominant. 

Comparing different fiber sizes indicated better extraction of cellular signal for the 

smaller (50 µm) diameter fibers.  However, as the fiber probe diameter is decreased, 

while the relative contribution of the cellular layer to the detected fluorescence could be 

increased, the over-all signal strength would decrease.  

 

Wavelength [nm]

400 450 500 550 600 650 700

N
or

m
al

iz
ed

 I
nt

en
si

ty
 [a

.u
.]

0.0

0.2

0.4

0.6

0.8

1.0
EVPOME
Alloderm



 109

 

 

Figure 6.13. The simulated fractional contribution from Layer 1 (Keratin – black circles), Layer 2 
(NAD(P)H + FAD – red squares), and Layer 3 (Collagen – blue triangles) to the detected 
fluorescence at 450 nm excitation for different source-detector separations. Simulations were run 
with fiber diameters set to 100 µm (a) and 50 µm (b). 

 

6.2.7 Conclusion and discussion 

In conclusion, Monte Carlo simulations and fluorescence experiments were employed to 

optimize non-invasive characterization of cell viability in tissue engineered oral mucosa 

constructs. Monte Carlo simulations were executed to simulate fluorescence of day 11 

EVPOME constructs due to 355 nm and 450 nm excitations.  
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Fluorescence spectra measured at 355 nm excitation from day 11 AlloDerm® and 

EVPOME constructs validated the predictions of the simulations at 355 nm excitation. 

Both simulations and experiment indicated that the measured fluorescence signal from 

EVPOME constructs could be associated predominantly with fluorescence from 

AlloDerm® alone (layer 3) at 355 nm excitation. 

The simulations at 450 nm indicated that the relative fluorescence contribution from the 

cellular component of the engineered construct could be increased by employing 450 nm 

excitation light and a single fiber geometry for light delivery and detection. However, 

while the relative contribution to the detected signal from cellular autofluorescence 

would be increased, the emission from collagen in layer 3 would still be quite dominant. 

Simulations implemented at different fiber diameters showed a further increase in relative 

contribution from cellular autofluorescence with decrease in fiber diameters. However, 

while employing a 450 nm excitation wavelength and decreasing the size of the fibers 

would amplify the relative contribution to detected fluorescence from the cellular layer, 

the reduction in over all signal intensity would be a limiting factor.  

Thus, the results of this study indicate the need to investigate alternative solutions 

including different fiber probe geometries that might decrease collagen contribution 

while at the same time maximize fluorescence from the cellular layer in EVPOME. 

Angled fiber probes have been shown to be useful at selective excitation and collection of 

fluorescence from select areas of tissue samples [98]. Preliminary studies undertaken by 

us using MC codes at varying angles between source and detector fibers have shown 

promise at improving selective cellular fluorescence excitation and detection [99]. 

Another potential solution would be the use of fiber-optic coupled confocal microscopy 
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for selectively studying cellular autofluorescence. Chapter 7 shows preliminary 

measurements obtained from EVPOME constructs by employing confocal microscopy. 
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Chapter 7                                                             

Conclusions and Future Directions 

7.1  Summary and conclusions 

The primary goal of this dissertation was to develop and employ optical spectroscopic 

techniques for non-invasive sensing of (a) human pancreatic tissues to detect pancreatic 

adenocarcinoma and (b) engineered tissue constructs to assess the viability of the 

constructs during their manufacturing process.  

 

Chapter 3 discussed the design of a clinically compatible reflectance and fluorescence 

lifetime spectrometer (RFLS) developed as a part of this dissertation work. The RFLS is 

a portable, fiber-optic coupled instrument capable of measuring reflectance and 

fluorescence spectra and time-resolved fluorescence decays. The instrument employs a 

pulsed 355 nm excitation laser for fluorescence excitation and a continuous wave lamp 

emitting between 360 to 2000 nm as the reflectance source. The detectors are optimized 

for optical detection in the 380 to 800 nm wavelength range.  

 

In Chapter 4, we investigated whether optical spectroscopy could potentially aid in the 

detection of human pancreatic adenocarcinoma. Reflectance and fluorescence 

spectroscopies including time-resolved fluorescence decays were employed for the first 

time to probe freshly excised human pancreatic tissues and in vivo human pancreatic 
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cancer xenografts in mice. A total of 96 fluorescence and 96 reflectance spectra were 

considered from 50 tissue sites (including human pancreatic adenocarcinoma, chronic 

pancreatitis (inflammation), and normal tissues) on 9 patients. Measured optical spectra 

and fluorescence decays were correlated with tissue morphological and biochemical 

properties. Good correspondence was observed between spectra from human 

adenocarcinoma tissues and cancer xenografts grown in mice. In human pancreatic 

tissues, measurements were associated predominantly with endogenous fluorophores 

NAD(P)H and collagen, as well as tissue optical properties, with larger relative collagen 

content detected in adenocarcinoma and chronic pancreatitis than normal. Reflectance 

data indicated that adenocarcinoma had higher reflectance in the 430 to 500 nm range 

compared to normal and chronic pancreatitis tissues. The measured spectral features and 

decay times correlated well with expected pathological differences in normal, chronic 

pancreatitis and adenocarcinoma tissue states. 

Thus, the ability of multi-modal optical spectroscopy to detect signals from pancreatic 

tissue was demonstrated by studying human pancreatic cancer xenografts in mice and 

freshly excised human pancreatic tumor tissue. 

 

In Chapter 5, we presented the development of the first algorithms for pancreatic tissue 

classification using data from optical spectroscopy and assessed their diagnostic 

accuracy. The developed approach would be compatible with minimally-invasive 

diagnostic procedures for early cancer detection in the pancreas. Two classification 

algorithms using linear discriminant analysis were developed to distinguish among 
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tissues and leave-one-out cross validation was employed to assess the algorithms’ 

performance.  

The SpARC (Spectral Areas and Ratios Classifier) algorithm employed a combination of 

reflectance and fluorescence data and had sensitivity, specificity, negative predictive 

value, and positive predictive value for correctly identifying adenocarcinoma of 85%, 

89%, 92%, and 80%, respectively. The performance of the SpARC algorithm for 

adenocarcinoma distinction from normal tissue and chronic pancreatitis was comparable 

to that of, and in some cases better than, the reported performance of EUS-FNA [30], the 

currently accepted diagnostic standard. In the setting of pancreatitis, i.e. when the patient 

has adenocarcinoma and chronic pancreatitis, the sensitivity of SpARC (85%) was well 

above that of EUS-FNA (54%) [31] for distinguishing adenocarcinoma from chronic 

pancreatitis, which is an unmet clinical need in pancreatic cancer detection. Although the 

SpARC algorithm is simple to implement, its performance may be limited because it 

utilizes information at select wavelengths only. Towards this end, a chemometric 

algorithm employing principal component analysis (PCA) and linear discriminant 

analysis of fluorescence and reflectance spectra was developed for pancreatic tissue 

classification.  

The PCA algorithm that employed a combination of both reflectance and fluorescence 

classification variables performed the best and a maximum sensitivity, specificity, NPV, 

and PPV for correctly identifying pancreatic adenocarcinoma of 91%, 90%, 95%, and 

83%, respectively, was achieved. The algorithm’s performance was comparable and in 

some cases significantly better than that of EUS-FNA for pancreatic adenocarcinoma. 

Also, in the specimens where cancer was present along with chronic pancreatitis, the 
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sensitivity of the optical chemometric algorithm (82%) was well above that reported in 

other studies for  EUS-FNA (54%) for distinguishing between adenocarcinoma and 

chronic pancreatitis [31], indicating a significantly decreased likelihood of obtaining false 

negative results. PCA and LDA of a limited data set of chronic pancreatitis and normal 

tissue measurements indicated that inclusion of time-resolved fluorescence data in the 

analysis could improve the classification performance of the developed tissue 

classification algorithms.  

While the diagnostically relevant PCs cannot be linked to morphological or biochemical 

changes in tissue, PCA of the spectral data considers information at all wavelengths of 

the fluorescence and reflectance spectra. This is an improvement over the spectral areas 

and ratios classifier (SpARC) algorithm, which employed information only at select 

spectral wavelengths for tissue classification. The sensitivity for correctly identifying 

adenocarcinoma using the SpARC algorithm was 85% and is less than that of the optical 

chemometric algorithm developed in this study (91%). We are also developing a tissue 

classification algorithm that employs biophysical tissue parameters extracted from optical 

data using a photon-tissue interaction model we reported recently [72]. Future work will 

also involve data acquisition in vivo, with the aim of deploying the fiber-optic probe 

through a needle for optically-guided EUS-FNA. 

Thus, the developed tissue classification algorithms show promise for pancreatic tissue 

classification using multi-modal optical spectroscopy. In a clinical setting, such a 

classification procedure could be undertaken for rapid, automated tissue classification 

either to guide EUS-FNA procedures or to improve tumor margin detection during 

pancreatic surgery. 
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In Chapter 6, the prospect of employing developed optical spectroscopy instrumentation 

and previously developed Monet Carlo (MC) simulations to non-invasively and 

quantitatively investigate endogenous optical signals from tissue engineered devices was 

assessed. The methods developed have the significant advantage of being safe for clinical 

human use as they employed endogenous contrast.  

Porcine articular cartilage 

A method to non-invasively and quantitatively characterize thick biological tissues by 

combining both experimental and computational approaches in tissue optical 

spectroscopy was developed and validated on fifteen porcine articular cartilage (AC) 

tissue samples. To the best of our knowledge, this study is the first to couple non-invasive 

reflectance and fluorescence spectroscopic measurements on freshly harvested tissues 

with Monte Carlo computational modeling of time-resolved propagation of both 

excitation light and multi-fluorophore emission. The experimental and computational 

results agreed to within 11% of the mean reflectance spectra. Fluorescence data and 

simulations were used to extract the ratio of the absorption coefficients of constituent 

fluorophores for each measured AC tissue sample. This ratio could be used to monitor 

relative changes in concentration of the constituent fluorophores over time. The samples 

studied possessed the complexity and variability not found in artificial tissue-simulating 

phantoms and served as a model for future optical molecular sensing studies on tissue 

engineered AC constructs intended for use in human therapeutics. An optical technique 

that could non-invasively and quantitatively assess soft tissue composition or physiologic 

status would represent a significant advance in tissue engineering. Moreover, the general 

approach described here for optical characterization should be broadly applicable to 
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quantitative, non-invasive molecular sensing applications in complex, three-dimensional 

biological tissues. 

Oral mucosa constructs 

Monte Carlo simulations and fluorescence experiments were employed to optimize non-

invasive characterization of cell viability in tissue engineered oral mucosa constructs. 

Monte Carlo simulations were executed to simulate fluorescence of EVPOME constructs 

due to 355 nm and 450 nm excitation. Fluorescence spectra measured at 355 nm 

excitation from AlloDerm® and EVPOME constructs validated the predictions of the 

simulations at 355 nm excitation. Both simulations and experiment indicated that the 

measured signal from EVPOME could be associated predominantly with fluorescence 

from AlloDerm® alone (Layer 3) at 355 nm excitation. The simulations at 450 nm 

indicated that the relative fluorescence contribution from the cellular component of the 

engineered construct could be increased by employing 450 nm excitation light and a 

single fiber geometry for light delivery and detection. However, while the relative 

contribution to the detected signal from cellular autofluorescence would be increased, the 

emission from collagen in layer 3 would still be quite dominant. Simulations 

implemented at different fiber diameters showed a further increase in relative 

contribution from cellular autofluorescence with decrease in fiber diameters. However, 

while employing a 450 nm excitation wavelength and decreasing the size of the fibers 

would amplify the relative contribution to detected fluorescence from the cellular layer, 

the reduction in over all signal intensity would be a limiting factor. Thus, the results of 

this study indicated the need to investigate alternative solutions including different fiber 

probe geometries that might decrease extracellular contributions to the detected 
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fluorescence while at the same time maximize fluorescence detection from the cellular 

layer in EVPOME.  

 

The major contributions of this dissertation can be summarized as follows: 

 We designed and developed a clinically compatible, fiber optic coupled, reflectance 

and fluorescence lifetime spectrometer that could be employed for measuring 

reflectance and fluorescence spectra and time-resolved fluorescence decay curves 

from biological tissues. 

 We developed a graphical-user-interface for remote and fully automated detection of 

optical spectra in a clinical setting employing the RFLS. 

 We made the first in vivo and ex vivo measurements of reflectance and fluorescence 

spectra from human pancreatic xenografts in mice and correlated optical 

measurements with expected histopathology. 

 We made the first ex vivo measurements of reflectance and fluorescence spectra and 

time-resolved fluorescence decays from human pancreatic tissues resected during 

pancreatic surgeries.  

 We presented the first assessment of the diagnostic accuracy of algorithms developed 

for pancreatic tissue classification using data from optical spectroscopy by employing 

two tissue classification algorithms: the SpARC (Spectral Areas and Ratios 

Classifier) algorithm and the principal component analysis (PCA) algorithm. 

 We presented a novel method coupling non-invasive reflectance and fluorescence 

spectroscopic measurements on freshly harvested tissues with Monte Carlo 

computational modeling of time-resolved propagation of both excitation light and 
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multi-fluorophore emission and applied the developed methods to assess untreated, 

unfixed porcine articular cartilage using endogenous contrast. 

 We employed Monte Carlo simulations and fluorescence experiments for the first 

time to optimize the detection of cellular autofluorescence in ex vivo produced oral 

mucosa equivalent (EVPOME) constructs using endogenous contrast. 
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7.2  Future directions 

7.2.1 Changes to the RFLS instrumentation 

While certain changes to the spectrometer instrumentation including, laser excitation 

wavelength and fiber probe geometry, would depend on the biological system being 

studied, other changes can be made to improve the working of the RFLS. Some of these 

changes will be useful during data acquisition in an in vivo setting as they could result in 

lower data acquisition times. 

As discussed in Section 3.2.2, a 30 µs ICCD gate width is required for fluorescence 

spectral acquisitions due to the temporal jitter in the emitted laser pulses. While this gate 

delay was not an issue in the present work, if data acquisition requires reduction of the 

gate width size due to fast changes in the background lights (say inside an endoscope 

during in vivo data acquisition) then this issue would need to be addressed. In principle, 

an optical trigger from the photodiode in Figure 3.2 could be used for the ICCD instead 

of the electrical trigger from the T/C board. However, the gate delay can be set to only 85 

ns or higher employing the present Delay Generator, while the approximate time between 

the optical trigger and the time taken for the fluorescence to travel from the specimen via 

the optics and the fiber probe to the ICCD camera was found to be only ~ 20 ns. Thus, 

the fluorescence pulse will always be missed even when the gate delay is set to the 

minimum (as it would actually be 85 ns). A possible solution would be the use of longer 

fiber probes. This would artificially introduce a delay between the emitted laser pulse and 
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the time taken for the fluorescence to travel from the specimen via the optics and the fiber 

probe to the ICCD camera. For example, a 20 m long silica fiber would introduce an 

approximately 100 ns delay in light propagating through it thus, allowing the electronics 

to catch up. 

Newer, more sensitive detectors including the WTM (wavelength – time matrix) 

technology from Fluorescence Innovations Inc. (Bozeman, Montana) can be incorporated 

into the RFLS for fluorescence detection. The WTM technology would enable the rapid 

acquisition of spectrally resolved time-resolved data, thus allowing a more thorough 

optical investigation of biological systems. 

The ICCD camera is run in external trigger mode to synchronize the data acquisition with 

emitted laser pulses during fluorescence acquisitions (Section 3.2.2). For reflectance 

spectra acquisitions, this is not necessary and the ICCD can be run in an internal trigger 

mode. In the present ICCD camera, a switch between external and internal trigger modes 

has to be done manually. As a result, for reflectance measurements as well, the external 

trigger mode is being used in the interest of time and leads to the need for longer 

integration times. A quick switch to the internal trigger mode remotely using LabVIEW 

would lead to shorter integration times for reflectance data acquisition. Thus, an ICCD 

where one can change between external and internal trigger modes remotely could reduce 

reflectance acquisition times.  

The Biomedical Engineering Unit affiliated with the Institutional Review Board at the 

University of Michigan has recommended the use of an enclosed cart with larger wheels 

(for ease during transport) for housing the RFLS in a clinical setting. 
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7.2.2 Detection of pancreatic adenocarcinoma 

Further analysis of acquired optical spectroscopy data 

This dissertation work employed linear discriminant analysis and principal component 

analysis for tissue classification algorithm development. Other chemometric approaches 

can also be investigated to see if further improved classification can be achieved. Some 

of these techniques include multiple linear regression analysis, neural network analysis, 

logistic discrimination, partial least squares, multivariate linear regression, and support 

vector machine [4, 7, 19-23]. 

We are presently working on the analysis of additional multi-modal optical spectroscopy 

data measured ex vivo from human pancreatic cancer tissues during the course of this 

dissertation work. This includes data measured from 66 sites on 10 additional patients. 

The developed tissue classification algorithms will be tested on the larger data set of 

optical spectroscopy data. 

Another future work would be the classification of the optical data measured from sites 

that were excluded due to their histopathology in Section 4.2.1. These include serous 

cystadenomas, metastatic breast adenocarcinoma, intraductal papillary mucinous 

neoplasm, pancreatic intraepithelial neoplasia (a precursor to adenocarcinoma), scar or fat 

tissue, or a hybrid tissue site having two or more pathologies. 

In vivo optical measurements from human pancreatic tissues 

We are now poised for conducting in vivo optical studies, pending IRB approval. The 

first  in vivo  experiments would be undertaken during pancreatic surgery by employing a 

sterilized fiber optic probe with the same dimensions and design as the probe used in the  

ex vivo  studies. Apart from ensuring the manufacturing of a sterilizable fiber probe by a 
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vendor employing current good manufacturing practices defined by the Food and Drug 

Administration (FDA), the following two precautions must be taken to comply with the 

IRB requirements for this study: (i) a short-pass filter that cuts- off around 750-800 nm 

should be employed in front of the reflectance lamp source. This precaution is necessary 

to prevent any possible heating of the tissue due to light emitted in the NIR and IR region 

by the lamp. (ii) The laser and lamp lights should be blocked prior to data acquisition and 

should be opened only during acquisition of fluorescence and reflectance data from the 

tissues to minimize the amount of source light incident on the tissues.  

The eventual aim of the pancreas project would be to employ fiber probes that can fit 

through the EUS needle to obtain multi-modal optical spectroscopy data in vivo during 

EUS-FNA studies. The EUS needle (Echo-Tip 19, G31520, Wilson Cook Medical, 

Winston-Salem, NC) is 19 gauge and has an inner diameter of ~680 m (outer diameter 

of ~ 1.07 mm). The size of the fibers employed in the optical probe would have to be 

reduced to fit through the needle. Monte Carlo simulations could be undertaken to design 

the optimum fiber probe configuration which would provide the desired collection 

sensitivity and specificity to extract relevant structural and biochemical information from 

pancreatic tissues measurements during EUS-FNA procedures. 

Measurements of mouse models for pancreatic cancer 

Controlled experimentation and larger data sets can be achieved by studying animal 

models. In this dissertation work, human pancreatic xenografts were studied in mice with 

immunodeficiency. As a result, the mouse models did not mimic the increased fibrosis 

associated with adenocarcinoma in humans. Future studies could involve the 

measurement of mice models that more closely mimic progression of the disease in 
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humans, such as the models being developed in Prof. M. Pasca di Magliano’s laboratory 

at the University of Michigan. 

Tissue optical properties of pancreatic tissue 

The tissue optical properties of pancreatic tissue are needed for MC simulations. An 

experiment could be designed for extracting these properties for adenocarcinoma, 

pancreatitis, and normal pancreatic tissues by employing Integrating Sphere 

measurements (as described in Section 6.1.4). 

7.2.3 Assessment of articular cartilage constructs 

In this study, a large variation was seen in the extracted η values (ratio of the absorption 

coefficients of constituent fluorophores) for different samples. By repeating the study for 

a larger number of samples, the expected range of η values for naturally occurring AC 

tissues could be extracted. Thus, future work could include undertaking the above study 

for a larger set of porcine AC tissue to extract η values in the same manner as in the 

preliminary study reported here.  

The developed methods could then be applied to extract η values of tissue engineered AC 

constructs and a comparison could be made of η values for artificially constructed AC 

tissue with the range of η values for naturally occurring AC tissues. This could serve as a 

check of the viability of the construct. In addition, this method of extracting η values 

could be used to monitor the development of an AC tissue construct over time, in a non-

invasive manner. 

The approach presented here attributes a single fluorescence decay time to each 

constituent fluorophore in a tissue. A further refinement to this approach could include 

changes in fluorophore lifetime with emission wavelength. Although future systematic 
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studies on pure substances should resolve conflicting reports existing in the literature 

regarding lifetime variations with wavelength (e.g., for collagen [88]), it remains 

problematic to use data acquired on pure substances to describe those molecules in 

complex environments, such as biological tissues.  An alternate and more biologically 

relevant approach would be to employ optical molecular imaging (via, e.g., fluorescence 

lifetime imaging microscopy [100]) to characterize spatially-resolved endogenous 

fluorophores in their tissue environment. 

7.2.4 Assessment of cellular viability in EVPOME constructs 

More detailed optical characterization of EVPOME 

In this study, an initial attempt was made to obtain the tissue and fluorophore optical 

properties of EVPOME constructs. Alloderm® should be characterized further by 

measuring tissue optical properties using an integrating sphere as described in Section 

6.1.4. In addition, the presence of other fluorophores like elastin in the matrix should also 

be considered.  

Angled fiber optic probes for selectively exciting and detecting cellular fluorescence  

A conclusion of the study on EVPOME constructs was the need for alternative solutions 

to decrease acellular contributions to detected fluorescence while maximizing 

fluorescence from the cellular layer in EVPOME.  Preliminary studies undertaken by us 

using Monte Carlo codes at varying angles between source and detector fibers have 

shown promise at improving selective cellular fluorescence excitation and detection [99]. 

Future work could involve measurements of EVPOME constructs employing fiber optic 

probes designed with optimal angles between source and detector fibers as dictated by the 
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MC simulations. One potential problem with this approach could be the manufacturing of 

such probes. The preliminary angled fiber MC simulations have indicated the need for > 

50o angles between source and detector fibers which could be a design issue. 

Confocal microscopy for selectively exciting and detecting cellular fluorescence 

Another possible solution could be employing confocal microscopy for selectively 

measuring fluorescence from the cellular layer. We conducted preliminary experiments in 

which measurements from EVPOME constructs were made employing the Zeiss 

LSM510 Confocal fluorescence images were measured from a healthy Day 11 EVPOME 

construct at 364 nm and 458 nm excitation, to selectively detect NADH and FAD related 

fluorescence emission from these cells, respectively. Figure 7.1a and Figure 7.1b show 

the combined NADH and FAD emission from a non-stressed (NS) EVPOME construct, 

where Figure 7.1b is a zoomed in version. The haze in the images could be attributed to 

scattering of light from keratin and collagen layers. Thus, by employing confocal 

microscopy we could detect signals from the cellular layer in EVPOME. 

Employing redox ratios for assessment of tissue viability 

Metabolic activity in living cells and tissues has been assessed via optical measurements 

of the redox ratio of NADH and FAD, two cellular metabolic co-factors involved in the 

oxidative phosphorylation pathway in mitochondria. In their reduced and oxidized states, 

NADH and FAD are endogenous cellular fluorophores, respectively [101-117]. This 

method has been applied successfully to measure metabolic changes in mesenchymal 

stem cells placed in stem cell-supporting or osteogenic medium and found to report on 

stem-cell differentiation, cell density, and cell contact [108].  
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Figure 7.1. Confocal microscopy image of the combined NADH and FAD emission from 
keratinocytes in a healthy non-stressed (a – zoomed out, b – zoomed in) and stressed (a – zoomed 
out, b – zoomed in) day 11 EVPOME construct 

 

A preliminary attempt was made to calculate redox ratios from the healthy (non-stressed) 

and “stressed” day 11 EVPOME constructs. The stressed constructs simulated non-viable 

EVPOME constructs and were stressed by increasing incubation temperature of the 

constructs from 370C to 430C with 5% CO2, for 24 hours. Figure 7.1c and Figure 7.1d are 

confocal images from a stressed EVPOME sample. The cells were found to be smaller in 

the stressed case compared to the healthy case. Redox ratio defined as signal from FAD 

at 450 nm excitation divided by signal from NADH at 355 nm excitation was calculated 

from the cellular regions of the acquired images. The redox ratio was found to increase 

from the non – stressed (0.58 ± 0.06) to the stressed (0.99 ± 0.1) EVPOME constructs by 

(a) Non Stressed (c) Stressed 

(b) (d) 

Cells

Cells
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72 ± 29 %. Thus, redox ratio measurements could be a feasible tool to detect differences 

between healthy and non-viable EVPOME constructs. 

7.3  Potential applications 

The instrument developed in this dissertation work is a versatile research instrument that 

can be easily optimized for non-invasive optical assessment via reflectance and 

fluorescence spectroscopy of a variety of biological systems in a laboratory or clinical 

setting. Some of the aspects that can be changed include fiber probe design (size and 

source-detector fiber geometry), spectroscopy at select wavelengths by the application of 

long-pass, short-pass or band-pass filters, and use of different excitation wavelengths for 

fluorescence spectroscopy.  

The algorithms developed in this dissertation work for pancreatic tissue classification 

could also be generally applied to classifying optical data obtained from other biological 

tissues, be it to differentiate healthy vs. stressed tissue engineered constructs or to 

differentiate between healthy and diseased biological tissues in animal models or humans. 

The general approach developed in this thesis for optical characterization by combining 

experimental and computational approaches in tissue optical spectroscopy should be 

broadly applicable to quantitative, non-invasive molecular sensing applications in 

complex, three-dimensional biological tissues. 
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