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ABSTRACT

Detonations through an explosive of finite width are curved and propagate at
a lower velocity than an ideal one-dimensional plane wave. A theory relating the
velocity decrement and curvature of a gaseous detonation to the conditions at the
explosive inert interface is developed. A two—dimensionalk detonation bounded on
one side by a solid wall and on the other by an inert gas is considered. Approxi-
mate reaction zone equations are derived by expanding the flow variables in pow-
ers of a small parameter proportional to the ratio of reaction zone thickness to
radius of curvature. Locally the reaction zone equations are the same as for
one-dimensional flow with increasing area and heat addition, the rate of increase
depending on the local wave curvature and the density variation through a plane
detonation. Using Fay's result that the relative detonation velocity decrease is
proportional to the fractional increase in the reaction zone streamtube area, an
ordinary differential equation for variation of the wave angle is developed. Approxi-
mate solutions of the above equation yielded velocity decrements which agreed with

experimental results,
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I. INTRODUCTION

Detonations traveling through an explosive medium of finite width are curved
and propagate at a lower velocity than an ideal one-dimensional plane wave. Since
the extent of this effect, which is a result of the interaction between the detonation
and the inert material bounding the explosive, depends upon the wave structure
and thickness it has, in recent years, been the subject of a number of theoretical
investigations attempting to relate measured velocity decrements to details of det-
onation structure. The present paper presents an analysis of detonations propa-
gating through finite gaseous explosives, which hopefully avoids some of the

difficulties of earlier theories.

It is generally agreed that the loss in velocity and the curvature of the wave
are caused by the divergence of the streamlines within the reaction zone. The
extent of this divergence depends upon the nature of the refraction at the inter-
face between the explosive and the inert bounding material. In solid explosives
conditions at the interface depend upon whether the charge is uncased or cased
and on whether the case is thick or thin; for gaseous explosives the acoustic im-
pedance of the inert relative to the explosive gas appears to be the determining
factor. In the present paper we are concerned with gaseous explosives bounded
by an infinite region of inert gas, which, as Sommers1 has pointed out*, is ana-

logous to a solid explosive with a very thick case.

One of the earliest treatments of the finite charge problem is due to J onesz’

Rather than computing the details of the diverging flow within the reaction zone

Jones ignored the curvature of the wave and approximated the reaction zone by

*Numbers refer to the bibliography at the end of the paper.



an inner region of one-dimensional diverging flow. The actual expansion within
the reaction zone is approximated by reaction products expanding through a
Prandtl-Meyer wave at the outer edge of the region of one-dimensional flow, the
streamline séparating the two regions being determined by a pressure matching
condition. The situation is shown in Fig. 1, which also shows the oblique shock
induced in the boundary by the expanding charge. The Jones theory thus ignores
wave curvature and must therefore depend on a theoretical model which is far
removed from the actual conditions within the reaction zone of the curved deton-

ation.

Eyring et al. 3 , in their treatment of the problem took wave curvature into
account and computed the wave shape in a finite cylindrical charge by replacing
the curved detconation by a series of spherical detonation segments. It is shown
that the divergence of the flow within the reaction zone, which is also responsible
for the decrease in detonation velocity, depends upon the ratio of reaction zone
thickness to the radius of curvature. The curvature of each wave segment is
chosen so that the reduced detonation velocity equals the normal component of
the oncoming flow. The detonation angle at the edge of the charge is established
by requiring the flow angle and pressure behind the detonation and behind the
oblique shock which propagates into the case to be equal. In the theory of
Eyring et al. , it is assumed that the flow is steady relative to the spherical det-
onation segments, which is self-contradictory since spherical detonations are
inherently unsteady{ Since it is the flow within the reaction zone which deter-
mines the wave curvature and velocity, it also appears inconsistent to use condi-

tions behind the detonation to establish the interface boundary condition.

Wood and Kiuﬂm;vomd5 determined the effect of wave curvature upon the propa-
gation velocity of steady detonations in an analysis which was based upon the

inviscid conservation equations applied to the reaction zone. However, their



analysis did not consider the finite charge problem and so they do not establish
any relation between the curvature of the wave and the conditions at the explo-

sive inert interface.

Both from an experimental and theoretical standpoint gaseous detonations
are much simpler to study than detonations5 in solid and liquid explosivess and
this fact provided the impetus for the experimental investigation of gaseous det-
onations in the presence of inert compressible boundaries by Scommers1 and
DaboraGG To explain his results Dabora used a one-dimensional theory similar
to that of Jones; however, rather than ihtroducing the artificial concept of an
outer Prandtl-Meyer expansion the flow divergence within the one-dimensional
reaction zone is determined by matching the flow behind the detonation to that

behind the oblique shock in the inert boundary as in the theory of Eyring et al. 30

The curved front theory developed below is closely related to that of Wood
and Ki.r’l«zwood5 in that the inviscid conservation equations of the reaction zone
provide the starting point. In contrast to the theories above conditions within the
reaction zone are employed to establish the nature of the wave refraction at the ’

explosive-inert interface.



II. FORMULATION OF FIRST ORDER REACTION ZONE EQUATIONS

A two-dimensional detonation propagating with velocity D through an explosive
gas of width L. bounded on one side by a solid wall and on the other by an inert gas
is considered. The above corresponds to the configuration investigated experi-
mentally by Dabora6 and is shown schematically in Fig. 2(a) from the point of
view of an observer fixed to the wave while Fig. 2(b) shows a typical Schlieren
picture of such a wave as obtained by Dabora. The analysis is based on the Von-
‘Neumann-Doring model of detonation structure in which the wave is treated as a

shock of infinitesimal thickness followed by an inviscid reaction zone.

As in the analysis of curved shock wave structurev’ 8 shock based coordinates,
as,shown in Fig. 3, appear to be the most natural ones to use for the equations
describing the flow within the reaction zone. In this coordinate system the con-

tinuity equation and the momentum equations along and normal to the detonation

are
aégu) + (1 - Ky) aggv) - Kpv =0 (1)
u%+(1-Ky)v5——Kuv+%@§=0 (2)
u%+'(1—Ky)v%+ Ku2+u—y—)%=0 (3)

where x and y and the corresponding velocities u and v are along and normal to

the wave respectively.

K = curvature = 1 = — (4)

s
o
"

where @ is the wave angle defined in Fig. 3.



In the absence of viscous dissipation and conduction the energy equation is

simply

uZ VZ
h+§—+7-:ho=const (5)

where now h includes the heats of formation of the chemical species present with-

in the reaction zone.

In addition to the above, the chemical kinetic equations, and a thermodynamic
equation of state are required to completely specify conditions within the reaction
zone, Following the notation of Wood and Kirkwood9 the stoichiometric equation

for each chemical reaction is written in the form
v X =0 |, (@=1,2. .. n) (6)

. . a., o _
where XS represents a unit mass of species s and VS is the specific stoichio-
metric coefficient for species s in the oth reaction. Defining a progress vari-

able, )\a, for the ath reaction by

a
dKS-—-ZVS d)xa , (a=1, ... n) (7

a
where . is the mass fraction of species s the reaction rates are given by

da

o
at  Fa (8)

where T the rate of the ath reaction, is taken as a function of the local thermo-
dynamic variables. In shock based coordinates the Lagrangian derivative d/dt

is given by

GO =um O+ (LK) vg= () 9)



Assuming that thermodynamic quasi-equilibrium exists, i. e., thermal and mechan-
ical equilibrium but not chemical equilibrium, it is possible to use the usual ther-
modynamic equations of state with the )\.a as additional independent variables. All
thermodynamic variables can, for example, be expressed as functions of T, p and

the progress variables A.ac

If there are n reactions then with the equation of state there are n+ 5 inde-
pendent equations for the n + 7 variables )\a’ p, u, p, v, K, D, and h, so that the
number of unknowns exceeds the number of equations by two. Only one exira un-
known, the propagation velocity D, appears in the formulation of the plane detona-
tion equations, and its value is deterrhined by the introduction of the Chapman-
Jouguet (C-J) condition. Now the curvature K(x) enters as an additional variable
and its evaluation must in some way be related to conditions where the detonation
meets the inert boundary gas. Essentially the variation of K(x) must be consist-
ent with the refraction at the explosive-inert interface. Furthermore, the propa-
gation velocity D and the curvature K(x) are not independent of each other, an
increase in K(x) generally resulting in a reduction in D. Exact solution of the
curved front problem formulated above presents formidable difficulties; however,
since the relative decrease in D due to curvature, and KQO the ratio of a charac-
teristic reaction zone length ﬂo to shock radius of curvature R are usually small
approximate solution of the problem becomes possible. In HZ - OZ detonations
for example reduction of the plane wave velocity by more than about 10% generally
results in qutenching6.,

The basic equations above are supplemented by the following reactive flow

relation between pressure and density as derived by Kirkwood and Woodlzz



where CO is the frozen sound speed,

o8

o 0
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C_° is the frozen constant pressure specific heat, v is the specific volume, BO

is the frozen expansion coefficient given by

QO

\4

0T

B =

0

e
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while the operator Aa is defined as

0
A ==()
@, T,p,{Aa)
The subscript A signifies that all progress variables are held constant while

Aa signifies that all progress variables except )La are held constant.

The present situation is similar to the problem of finding the influence of
shock wave curvature and thickness upon the Hugoniot conditions, as considered
for example by Probstein and Pan7, and Germain and Guiraud8o In the case of the
detonation both the effects of reaction zone thickness and the variation of the
wave angle @ must be considered. To evaluate the thickness effect it is convenient
to follow a procedure similar to that of Germain and Guiraud. The coordinates

x and y are stretched according to

- dx ) -_ ¥
dX - R(X) 9 y - ,Q (11)
0
so that significant changes in x and y will be of the same order of magnitude within
the reaction zone. With the introduction of these stretched coordinates the conti-

nuity, and the momentum equations become



0 (pu) -, 2 (pv) _
6—832 + (1 Gy)———ay -8pv=0 (12)
du - . du 6 dp _
6ua§+(1-6y)va_-6uv+pa§-0 (13)
v v, 52, -0V
5ua§+(1—5y)va_+6u + 8?”0 (14)
ﬁo
whereﬁzi ,

and usually, 8 << 1

Now as in Refs. 7 and 8 it is assumed that the variables within the reaction

zone may be expanded in the small parameter 8§ so that
u= u(o) + 6u(1) + 0(62)

V= V(O) + 5v(1) + 0(62)

(15)
ov = (09 + 560V + 05%)

2

p+ PV2 = (p + pvz)(o) + 8(p + pvz)(l) + 0(57)

2

A= )\(0) + M(l) + 0(8%)

In Eq. (15) the zeroth order terms represent the plane wave solution for which
d = 0. Since in a plane wave

au(o) 3 (pv)(o) 0

ek TR AT (16)

introduction of (15) in the continuity and momentum Eqgs. (12)-(14) leads to the

equations



209 5 [0 ©@ (@22 @] o2

3y = TP x|t 00 (17)
(0) (0)
%,; Vj?'o—) u(o) V(O) - u(O) agi - péo) ag.}.{, + 0(52) (18)

0) ) (o1)(0) _ ,(0) 2u'” b0 W(O)Z_u(())@(pv)(o)

0X 09X

(19)

5, 2
ﬁ(pv +p)=8|v " ({pv

which show the effect of thickness and curvature on the variation of mass flow
density pv, tangential velocity u and total momentum p + pvz, quantities which
remain invariant across a plane wave. To 0(5) the above derivatives depend only

upon the zeroth order or plane wave solution.

It is assumed that the expansions of Eq. (15) are uniform, or in other words
that the ratios u(l)/u(o), v(l)/v(o), p(l)/p(o), etc., are all of 0(1). It is of course,
also possible to question whether or not the deviations from the plane detonation
structure should be of 0(d) instead of say 0(53/ 2) or 0((51/ z)o From relations
between the shock angle @ and the streamline angle behind the shocklo it is readily
- shown that the relative increase in streamtube area dA/A behind a curved shock
wave varies as 6. Furthermore, in simple one-dimensional flows with a small
relative area change, the resultant changes in pressure, temperature, velocity,
and density all vary linearly with dA/ AH, so that the expansion in 8 is certainly

justified on physical grounds.

As will be seen later, it is convenient to write the energy equation in the

form

2 2\ (1)
I R g

The magnitudes of the zeroth order quantities on the right of Egs. (16-19)

depend upon the magnitude of the angle a. Thus



u(o) =D sin a (21)

(pv)( =P, D cos @ (22)
while immediately behind the shock
0 2
pl( ) (r+ 1) M
5 5 (23)

Py (y-l)Moo+
cos «a

2 2 |
Py ZyMOo cos” a-(y-1)

(24)

P, - (y+ 1)

MOo is the propagation Mach number of the detonation. As mentioned previously,
D depends upon the wave curvature but if it is assumed that the deviation of D

from the plane wave propagation velocity D(O) is 0(5) so that

1)

p=00, sp! (25)

then D(O) can be used in the above expressions for the zero order quantities,

The above assumption will be found to be consistent with the results to follow.

Introduction of Egs. (21), (22), and (23) in Eq. (17) leads to the result

(0)
8| _BY | .5 cosall -P—yo| —2lx+1)

dy (0) P 2
PP 0 (v-1)" M_

1 tan2 a sec2 al/ , (26)

In deriving the above equation the variation of a with respect to X has been taken

into account so that for example

6u(0) ~ 811(0) dx D(0)

dx _ &
9x  9x dx X

(0)
dx D

COoSs a

CSQEIE
05 ¥ &

10



It has been assumed that the magnitude of ap(o)/ax at the shock, i.e., apl(o)/ 0x
is representative of the magnitude of this quantity throughout the reaction zone.
For a << 1 and for the relatively large values of MOo typical of detonations the

continuity equation (26) thus can be approximated by

(0)
9 |_PY_|_5 ( - p——) : (217)
oy wa(O) Pey

It should be noted that the quantity (ov/ pooD(O) ) within the brackets will be of 0(1)
within the reaction zone. Similarly introduction of Eqs. (21)-(24) in the momen-

tum and energy equations (18)-(20) leads to the results

—

] . ) p(0)
2 P )\ (0 (0)
ga:ﬂ__'{:_% =5(-—(08—))00520l (l-p )—p (l-i-p )tanza (29)
B I P b0l Po | P
o0
2]
h+— (0)
2 22 =26sin® a|1-2—+0(1)] . (30)
V| o Pe
L~

The quantities in brackets on the left side of the above equations are all 0(1) in
the reaction zone. While the changes in u/ D(O) sin a, (p + pvz)/pOOD(O)z are of
order & across the reaction zone the change in (h + VZ/Z)/D(O)Z/Z will be of
order sin2 a, so that the energy equation reduces to

2

h + 325- = const (31)

11



for a << 1. From Eq. (31) the important result that the x momentum equation
for u is uncoupled from the y momentum and energy equations follows. Clearly

when a << 1 the term with coefficient ‘i:anzoz can be dropped from Eq. (29).

The conservation equations fail to provide sufficient information for deter-
mining the propagation velocity of a detonation wave; however, it is found that un-
supported plane waves propagate with a velocity such that the gases at the end
of the reaction move with sonic velocity with respect to the wave, and this is the
well known Chapman-Jouguet condition. Physically this result is justified by the
argument that with sonic velocity behind the reaction zone downstream disturb-
ances can no longer overtake the wave making steady propagation possible. If
the reactions within the detonation are reversible both an equilibrium and a
frozen speed of sound may be defined and then there is some ambiguity as to which
sound speed to use in the Chapman-Jouguet condition. Recently Wood and Kirk-
wood13, and Wood and Salsburg14 have shown that the Chapman-Jouguet condition
should be based on the equilibrium rather than the frozen speed of sound as pre-
viously suggestedlzo A simple physical argument for the plausibility of this con-
(r;l,u.sion14 is based upon Chu’s15 result for near equilibrium flows that while the
wave head of an unsteady rarefaction moves with the frozen speed of sound, the
bulk of the disturbance will, after sufficient time has elapsed, move with the
equilibrium speed of sound. Consequently the main disturbance of the rarefaction
wave that usually follows the C-J detonation can never overtake the detonation

even when the equilibrium speed of sound is used to formulate the C-J condition.

In the model under consideration here the curved detonation ig followed by
a steady Prandtl-Meyer expansion rather than by an unsteady rarefaction wave,
Furthermore, stream tube area varies through and behind the wave due to the
curvature effects. Consequently the nature of the curved wave Chapman-Jouguet
condition is unclear, for the arguments used to establish the nature of the C-J
condition no longer apply. In attempting to establish the conditions to be satisfied

at the downstream edge of the reaction zone it is useful to eliminate the

12



derivatives of pressure and density by combining the momentum and continuity

equations (12)-(14) with Eq. (10) relating to dp/dt to dp/dt, with the resulting

equation
u |du v {dv uv -\ Ju av
5 (1 ———2-)8—_+ (1 - 5y) (1 "'i)a_y'_'i[(l -0y) ==+ d a-—J
¢ ¢ c
0 0 0
(32)
Ma s
v + Zoa 6u—a—§—+ (1-93y)v =

Equation (32) is the reactive form of the ''gas dynamic' equation of compressible
flow. Introducing the expansions (15) and Eqs. (21)-(24) and dropping terms of
0(5 sin2 @) as well as replacing (1 - 8y) by 1. 0 Eq. (32) reduces to
0)
2 (0) on (
PR Kk AP (V) D) N PR ) B 3 (33)
. 2|3y p a 0y

o0
o a

where for the present we have not expanded.the left side of Eq. (33). For con-

venience in the discussion below the abbreviations

o L V<o>)

00/=6v(0)(—p—-- ) =5

o0

(34)
a (0)

Ve 0 e
R=) o2
a

are introduced. It is readily shown ‘thataOb, which represents the effect of stream-

tube divergence due to detonation curvature is always positive and decreases with

increasing y. K represents the effect of chemical reaction upon the velocity v.

13



In a plane wave o= 0. At the C-J point v = ¢, where c is the equilibrium
speed of sound. Since ¢ < €y always14 it follows that (1 - cz/coz) > 0 and at
the equilibrium C-J point it follows that since aka/ay =0, 0v/dy = 0. Thus the
plane wave equilibrium C-J point occurs at y - o where all variations have dis-
appeared. If it is assumed that v always approaches ¢ monotonically, an assump-
tion which is supported by the reaction profile calculations of Duif16, then /f >0
in the reaction zone; however, it is difficult to arrive at general conclusions re-
garding the behavior of/f)o In a curved detonation the divergence term A opposes
the accelerating effect of the chemical reaction term and results in a reduction in
the velocity gradient ov/ 8_37, at least for v < €y The velocity variation within the
reaction zone of the curved wave will depend upon the relative magnitudes of &L
and o and upon whether (1 - VZ/ coz) is positive or negative. Several possible

conditions at the edge of the reaction zone will now be considered.

Within the reaction zone itself & >ﬁ so that v accelerates from the subsonic
value immediately behind the shock; and it is presumed that v ultimately will reach
the equilibrium sonic speed c. If when first v = ¢, /= 0 so that (£ -4%) < 0, it
follows than then (2v/ 8-}7) < 0 implying a velocity maximum Vonax > ¢ at some
point upstream which contradicts the fact that the point where v first reaches c
is under consideration. Hence (X - >0 whenv=c. If (K- =0, av/iy =0
and v has a maximum or inflection point. If K decreases with increasing y such
that (£ -4) < 0, v decreases below ¢, a result which is at variance with con-
tinued increase of v through the Prandtl-Meyer wave behind the reaction zone,
though it is not entirely inconceivable that there is a region in which v passes
through several maxima and minima. Of course another possibility is that
(R -AF) remains at zero with increasing y. Such a condition implies v = const = ¢
and &= const. However since £ > 0 for (£ - &) = 0 chemical reactions must be
occurring tending toward chemical equilibrium, which is at variance with the
requirement that R = const =, Physically the most plausible condition is that

((R - 0(7) > 0 when v = ¢. The assumption that the velocity continues to increase

14



monotonically throughout the reaction zone finally leads to the requirement that
R - 0475 =0 whenv = €y and this corresponds to the modified C-J condition used
by Eyring3, and by Wood and Kirkwood6 in their curved front theories. In some
sense it may be more meaningful to refer to this condition as the curved wave

choking condition rather than as a C-J condition.

In the model under consideration here a Prandtl-Meyer expansion propagates
into the explosive from the edge of the wave as shown in Figs. 2a, and 4. It has
been shownZB’ 24 that near the vertex of a P-M (Prandtl-Meyer) expansion fan the
bulk of the disturbance lies along the frozen wave fronts and this fact lends further
support to the use of the curved wave choking condition above. An important un-
answered question, and one which was also asked by Wood and Salsburg14, is how
does the transition from the curved wave choking condition to the equilibrium C-J

condition occur as the wave radius of curvature R approaches infinity.

In order to close the first order curved reaction zone equations above it be-
comes necessary to in some way introduce the conditions at the explosive inert
interface. To this end the first order equations above will be used to derive a
differential equation for the variation of the wave angle a with the position x along

the wave.

The conservation equations (27)-(30) are readily integrated with respect to

y. With the introduction of the function £(y,x) defined by
oy
LG =0 [ (E=-1f & (35)

and letting £ be the reaction zone thickness, the integrated first order conserva-
tion equations become |
L
[

0

vl = vl |1+ L

J (36)

15



uy = U, [1 + f(z@-o-)} (37)

(pv2 +p) = (ov2 + p), [1 g

<

¢

[
[
0]
g S ogs
O

In deriving these equations the assumption that @ << 1 has been used as well as

the fact that to first order

(pv) = Py D(O) u, = D(O) sin a

2
KON

~

v + v o)

The first order C-J or, perhaps more appropriately, choking condition becomes

(39a)

v=cec_ . (39b)

The formulation of the first order curved detonation equations is essentially
complete for the conservation equations (31),(36), and (38) together with the C-J
condition (39), the rate equation (8) and an appropriate equation of state are suf-
ficient to determine the component of D normal to the wave front provided that
the radius of curvature R(x) is known. Clearly, then, the problem of relating
R(x) to boundary conditions at the edge of the wave remains, and is considered in

the section which follows.

16



For fixed x equations (31), (36), (38), and (39) have the same form as the
one-dimensional reaction zone equations used by Fa1y1’7 in his analysis of the effect
of the boundary layer upon the velocity of detonations in tubes. In the one-dimen-
sional case df equals the fractional streamtube area increase dA/A. In the present
curved front case the differential dX can be assigned a similar interpretation.
Hayes and Probsteinlo show that behind any curved hydrodynamic discontinuity
with density ratio ps/ Py and such that the tangential component of velocity is con-
served, the streamline angle GS and the shock or discontinuity angle o are related

by

do
S

p
= =S 1) (40)

Peo

at the point where a = 0, i. e., where the discontinuity is normal to the oncoming

flow. Consequently for a streamtube behind such a discontinuity

dy (41)

Comparing Eqs. (35), and (41) it is clear that d< represents the local value of
dA/A within the reaction zone of the detonation subject to the assumption a << 1.
Equations (35), (36), (38), and (31) thus indicate that for a fixed value of x the
flow behaves as a one-dimensional flow with variable area, the area increase be-
ing a function of the local curvature and the density profile through the reaction
zone. This one-dimensional character of the curved front flow provides the basis
for the approximate solution developed below. As mentioned before, the tangen-
tial momentum equation is completely uncoupled from the other equations to the

present order of approximation.

17



II. THE VELOCITY DECREMENT AND WAVE SHAPE

It has been shown above that to first order in 6 the curved front reaction
zone equations are identical to the equations for one-dimensional flow with
variable area used by Fay17 in his analysis of the boundary layer induced
velocity decrement of detonations in tubes. From numerical solutions of these

equations Fay found that for / << 1 the relation

0 _p. |
D -(Do)cosazKleofﬁi (42)
D o]
is valid to an accuracy of a few percent, In (42) K1 is a constant, D cos ais
the component of propagation velocity normal to the wave, and € is related to
the integral in equation (38) by
L
[
0
0)oy — (0712
o0 %y - p, O[] « (43
y 2 ﬂo
0

where
1 <e < 2

Wood and Kirkwood5 arrived at a similar result in their curved front analysis,
Fay's result will be used directly below for the object of the present analysis
is not so much to compute the exact effect of curvature upon local velocity
decrement as to establish how boundary conditions at the explosive-inert inter-

face affect propagation.,

Introducing the definition of of into equation (42) now yields the following

differential equation for the wave angle @ as a function of x

18



do

1—(1—n)cosa=Klelzoax—A (44)
where
L
0. v
D<O) -D j .p{KO)
e o A e
D \ 0 /

0
In general both the reaction zone thickness ( , and hence A, are functions of x,
the distance along the wave, It is necessary to use the choking condition as ex-

pressed by Eq. (39a) to determine the variation of the reaction zone thickness

¢, and in view of Eq. (44) this equation can be written in the form

SO a,';\a(o)
—p;; - 1) dYJ . = Z @Ol 8-57 o (4 5)
=7

0

~

'

y
lu(lnn)cosataﬁf
0

K, €A oy

An approximate form of the conditions v = s has already been used by Fay in

arriving at Eq. (42).

It now becomes expedient to let ’0‘@ equal the reaction zone thickness at x = 0
where the wave front is normal to the oncoming flow. If now it is assumed that
along the wave AL/ !ZO << 1 so that approximately Q/QO =1, then Eqs. (44) and
(45) reduce to relatively simple simultaneous ordinary differential equations

for Qo and a(x). Equation (45) can be used to show that

L
a')’}r
0O

AL

{
0

~0

provided a one step reaction model in which » approaches its equilibrium value

exponentially is used to evaluate the reaction rate term.

19



The wave angle Eq. (44) can be integrated in analytical form and upon intro-
ducing the boundary condition o= 0 when x = 0, which implies negligible wall

boundary layer etfects, the following relation between o and x is obtained:

== T gn X V0(2-17)
g =\frg g 3K en (49)

The dimensionless velocity decrement ) plays the role of an eigenvalue in Eq. (46),
its value being determined by the interface boundary condition a = ozi atx = X,
Since X, = L to quantities of higher order in the present case, the velocity de-

crement 7 is determined by the equation

.. Lyn(@2-n)

5 Vz ntan_o K, €A (47)

Equations (46) and (47) now provide the desired link between the wave shape, the
velocity decrement, and the conditions at the explosive-inert interface. In order
to determine a, the nature of the flow at the explosive-inert interface must be

studied in detail.

The interaction at this interface, particularly at the point where the shock
preceeding the reaction zone meets the inert gas, is closely related o the re-
fraction of an ordinary hydrodynamic shock, by a surface of separation betwesn
two gases, If the angle between the interface and the incident shock, {#/2 - o
in the present notation) is sufficiently small a shock is transmitted across the
interface and either a shock wave or an expansion wave is reflected from the
interface. The theory of such '"regular' refractions is well uzcml«zéﬂr’55‘ic:c»«:)dl8 and
has been verified by experimental observa.tionslg, Whether the reflected wave
is an expansion or compression depends upon the strength of the incident wave

and the values of v and the speed of sound in the two adjacent gases,

As the angle between the incident shock and the interface increases beyond
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some critical value, the simple configuration described above no longer can satisfy
all the deflection and pressure conditions at the interface. The flow, which then

is called an irregular refraction, becomes very complex, and though extensive
experimental observations of irregular refractions were made by Jahn199 no
adequate theory is available. The nature of the interaction then depends drasti-
cally upon the relative values of the speed of sound and the ratio of specific heats

on the two sides of the interface,

The interaction process under consideration here falls into the class of
irregular refractions since the angle between the detonation and the interface
is always very close to 90°, The experiments of Dabora6 and S@mmers1 show
that the nature of the refraction depends in a crucial way upon whether the acoustic
impedance, pa,of the inert gas is greater or less than the acoustic impedance of
the unreacted explosive, or more precisely, the refraction depends upon the a-

coustic impedance ratio (p5 a,5)/ (poo ). Subscripts « and 5 refer to the explo-

a
00
sive and inert gases respectively. When Ve = V5 and P, =P the impedance

ratio reduces to, (a,oo/ a,5), the ratio of sonic velocities in the two media,

When ag < a_ the refraction is relatively simple for then an oblique shock
with supersonic velocity behind it is usually transmitted into the inert gas, and
‘it is this situation which will be considered in detail below., On the other hand
when ag > a complicated interaction patterns result, and in some cases both
Dabora® and Jahn19 have observed transmitted waves which actually precede the

incident detonation or shock.

The flow at the inert-explosive interface must adjust itself to contain the
high pressure behind the shock and within the reaction zone relative to the low
pressure in the inert bounding gas. When ag < a_ this containment, in the case
of ordinary shocks, occurs by deflection of the interface which in turn induces
an oblique shock wave in the inert gas, and by transmission of an expansion wave

u " . . . .19 )
or "expansion zone' into the region behind the incident shock™ ™ as shown in
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Fig. 4. 1In the case of the detonation the shock wave is followed by a reaction
zone within which the gases expand to sonic velocity and the pressure rapidly
drops to the Chapman-Jouguet value at the sonic or C-J plane. If the deftbnation
is viewed as a discontinuity then, when ag < a, the deflection and pressure
conditions can be satisfied by transmission of an oblique shock into the inert gas
and the propagation of a Prandtl-Meyer expansion into the region behind the
detonation. This theoretical model, which has been verified experimentally by
Sommersl, however, provides no information about the interface flow within the
reaction zone itself, which must be understood in order to calculate the interface

angle aio

It is postulated that the flow at the edge of the interaction zone is as shown
in Fig. 6. Along the interface, the pressure and flow direction in the reaction
zone and in the supersonic region behind the induced shock must match. Some
experimental support for this model is provided by the schlieren photograph of a
quenching detonation moving past an inert gas as shown in Fig. 5. Here the com-
bustion zone lags considerably behind the shock with the result that the incident
and induced shock waves are clearly visible in the region between the shock and
the reaction zone. With respect to the inert gas the reaction zone acts as a slender
body on which a tangency and pressure condition must be satisfied while the sur-
face shape is left free. These requirements are sufficient to determine the inter-
face angle 05 though the detailed calculation will be ciu,ite difficult. Clearly if
o is too small, for example the extreme o, = 0, the induced shock will be unable
to contain the pressure in the reaction zone; on the other hand, with a too
large.the pressure behind the induced shock will be too large. Fortunately the
flow in this interaction region is isolated from the downstream flow by the C-J
or sonic plane and by the region of supersonic flow behind the induced shock
wave. To be consistent with the first order theory plane wave reaction zone
pressures should be used to compute the flow in the above interaction region.
It follows that to first order o will be independent of channel width and velocity

decrement but will only depend on the properties of the explosive and inert gases.
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The formulation of the curved front theory is essentially complete, Once
o, is determined equation (47) provides a relation between the velocity decrement
n, and the channel width and reaction zone thickness L, and ﬁoo The reaction
zone thickness ﬂo, can be obtained from the C-J condition, (45), evaluated at

a= 0, that is from the equation
' (0)
n /P - a
-1 =) 0 — (45a)
K, €A \poo ) _ § a5y

Application of the above theory requires detailed knowledge of the chemical pro-

cesses within the reaction zone as well as computation of Q. Exact solution

of these two auxiliary problems is difficult and beyond the scope of the present
work; however, to provide a preliminary test of the theory approximate velocity
decrement calculations for stoichiometric H2 - O2 detonations have been made

and compared with experimental results as described below,
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IV. APPROXIMATE CLACULATION OF THE VELOCITY DECREMENTS

OF A STOICHIOMETRIC H2 - O2 DETONATION

The combustion process has been approximated by the single first order re-

versible reaction

Ay =4y

such that there is no change in molecular weight. A similar scheme has been

used by others 17, ZO. Then it is readily shown that
ar © ax.(0)
o @ __Q 2 (48)
o dy CpT oy

a

where Q is the heat of reaction. For this first order reaction the reaction rate

. . 20
in terms of the mass concentrations becomes

0 0 0
a® o © 0

dy 0, ©
e

exp -

E
@“T?O)) (49)

TKZ

where 7 is a characteristic time, K2e the equilibrium mass concentration, and

E A the activation energy. For purposes of computing Qo only the rate near the

end of the reaction zone is required. If it is assumed that
Ep

m) = constant
T

%U : (50)

1
)

1
© , © -

TV
2e

integration of Eq. (49) yields

K (0) = K (0) {1 - exp -

2 2e
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This result, in which A plays the role of a relaxation distance, was also used by
Fay”,, Following Fay it has been assumed that Kze(O) = 1.0, that (Q/ CpT) =10,

and that A = 0. 6 mm for stoichiometric H2 - O2 detonations at 1 atmosphere.

To compute A the reaction zone density has been assumed constant and equal

to the average of the density behind the shock and at the C-J plane so that

(0) 0)y, -
p p
A=’%—(1+ 2 )J , (51)

Po Po

The density ratios in (51) were obtained from normal shock tables and the equi-
librium calculations of Moylezlo For stoichiometric H2 - O2 detonations,

©, _ 0, _
P4 /pOo = 5, 06, Py /P = 1.78.

In order to compute a, it has been assumed that the interface is straight and
at an angle 1/2 (Bl + Bz) where 61 and ,82 are the deflection angles at the shock
and at the C-J plane (Fig. 6). Requiring the pressure behind the induced oblique
shock to equal the pressure at the C-J plane then resulted in a value a,= 13, 3°
in the stoichiometric H2 - O2 case, Essentially it is assumed that the pressure
rapidly drops to the final C-J value. A plane detonation velocity and Mach num-

ber of 9,250 ft/sec and 5, 20, taken from Moyle were used in the calculation of Q.

Finally Fay's values for K1 and € and that is K1 =0, 53, € = 1, were used,

With the above information it was possible to simultaneously solve Egs, (45a),
and (47) for n and ﬁo, The computed values of  are compared to the measure-
ments of Dabora in Fig, 7 and it can be seen that there is reasonable agreement
between theory and experiment. Figure T also indicates the decrease in reaction
zone thickness with decreasing channel width, The results of Fig, 7 provide

encouraging support for the present theory.

25



V. DISCUSSION

The first order theory developed above provides a relationship between the
explosive~inert interface conditions and the velocity decrement and detonation
curvature, The theory is essentially a hydrodynamic one without detailed con-
sideration of chemical effects. Analysis of the problem of detonation stability
and quenching limits, which is not considered in this paper, can undoubtedly be

coupled to the present theory.

Laminar flow within the reaction zone has been assumed, though it is well
kmown22 that the structure of many C-J detonations is turbulent and that the wave
surfaces may be non-uniform or crinkled. If it is reasonable to use temporal
averages within distances of the order of the reaction zone thickness the theory

developed here may still be applicable,

The agreement between the approximate calculations and Dabora's experi-
mental results is reassuring; however, further verification would be desirable,
In particular more precise values of p(o)/ Py and the pressure variation, should
be used in the computation of A and @ Cé,lcula.ted values of a, and wave cur-
vature should be compared with values taken from Schlieren photographs, and
the comparison of theory and experiment should be extended to wider ranges of
mixture ratio. It should be possible to use the present theory to obtain
chemical-kinetic information from Schlieren photographs and velocily decre-

ment data from gaseous detonations with side relief,

Only the case in which the speed of sound in the inert is less than in the
explosive was considered in the treatment of the interface flow. The curved front
theory above should remain valid even in the case of higher sound speed in the
inert gas, The chief difficulty in this more complex case lies in the calculation

of the detailed interface flow,

The nature of the C-J condition requires further study, especially the nature
of the transition from the plane to the curved front case.
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NOMENCLATURE

width of explosive
detonation velocity
density

distance along and normal to wave
X,y velocity components
local wave curvature
wave radius of curvature
wave angle

pressure

static enthalpy

total enthalpy

unit mass of species s

stoichiometric coefficient of species s
in reaction «

progress variable of ath reaction

rate of ath reaction

mass fraction of species s

frozen speed of sound

specific volume

frozen constant pressure specific heat
frozen expansion coefficient

a characteristic reaction zone length
QO/ R

dimensionless coordinate defined by
dx =dx/R

{

yA

dimensionless velocity decrement
reaction zone thickness

sonic velocity of unreacted explosive and
undisturbed inert gas respectively
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Subscripts

( )1 immediately behind the shock
( )2 at the C-J plane
( )i at the explosive-inert interface
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Fig. 1: Schematic Diagram of the Jones Model
of a Detonation with Side Relief
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Fig. 2a: Schematic Diagram of a Two Dimensional
Detonation Propagating through a Slab
of Gaseous Explosive
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R
R= Local radius
of curvature
k=|/R = da /dx
a = Wave angle
2 2 2 2
ds =(l-xy) dx + dy (Metric)

Fig. 3. Shock Based Coordinates
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Fig. 6: Postulated Flow at the Edge of the Interaction Zone.
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