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Abstract 

Medulloblastoma is the most common malignant brain tumor in children, and 

occurs in up to 5% of patients with Gorlin syndrome, a familial cancer susceptibility 

disorder characterized by inappropriate activation of the Hedgehog (Hh) signaling 

pathway.  Activation of Hh signaling is also seen in a significant fraction of sporadic 

medulloblastomas, many of which are believed to arise from the external granular layer 

(EGL) of the cerebellum, a transient, highly proliferative pool of Hh-responsive neural 

progenitors that disappears within the first several weeks of life, in mice.  I investigated 

where and when medulloblastomas arise using a novel mouse model expressing SmoA1, 

a constitutively activated allele of the proximal Hh effector Smo, in the brain in a 

temporally restricted manner.  SmoA1 induction in the developing cerebellum induced 

100% penetrant medulloblastoma as early as two weeks old.  Once the EGL had 

disappeared, however, mice were completely refractory to induction of de novo 

medulloblastomas, providing strong evidence that the EGL represents a bona fide pool of 

cells with the potential to become medulloblastoma, and that other SmoA1-expressing 

cells in adult mice are not competent to form medulloblastomas. 

To test whether SmoA1-induced medulloblastomas remain dependent on 

continued Hh signaling, I repressed transgene expression in established tumors.  I 

observed that even relatively brief 3-week inhibition of SmoA1 resulted in complete and 

durable elimination of tumors.  Tumors did not recur following resumption of transgene 

expression, suggesting that no dormant tumor cells remain.  This is a timely finding, as a 
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Hh antagonist is currently in Phase II clinical trials for antitumor therapy.  Lastly, I 

examined the dependence of tumor formation on the stem cell maintenance gene Bmi1, 

which is required for physiologic cerebellar development and is expressed in Hh-active 

human medulloblastomas.  Breeding SmoA1 mice onto a Bmi1-null background revealed 

that in the absence of Bmi1, tumor initiation occurs, but lesions do not progress to frank 

medulloblastomas.  This implicates Bmi1 as a key downstream target of Hh in a 

pathologic setting.  The work presented herein provides several important insights into 

the pathogenesis of Hh-driven medulloblastoma, and may suggest a more general role for 

Bmi1 in Hh-mediated cancer.  

x 



Chapter 1 

A Role for Hedgehog and Bmi1 in Maintenance and Disease of the Epithelium and 
Cerebellum 

Introduction 

The Hedgehog signaling pathway is a key morphogenic and mitogenic pathway in 

mammalian development.  Originally identified in Drosophila, this pathway has come to 

be recognized as a critical factor in either embryogenesis or postnatal tissue maintenance 

in virtually every organ system in mammals.  Mounting evidence also links dysregulation 

of the Hh pathway to the development of multiple types of tumors, including basal cell 

carcinomas in the skin and medulloblastomas in the cerebellum.  In some settings, such 

as postnatal cerebellar development, the Hh pathway regulates expression of the 

polycomb protein Bmi1.  Bmi1 plays an important role in the development of the 

cerebellum, and expression of Bmi1 is frequently seen in medulloblastomas in which the 

Hh pathway is activated. 

In this thesis, I address several aspects of medulloblastoma development, 

expansion, and maintenance, using a novel doxycycline-regulated mouse model that I 

have generated for pathologic activation of the Hh pathway.  The model described herein 

is based on an oncogenic mutant form of the Hedgehog effector protein smoothened 

(Smo) designated SmoA1.  To develop our model, we placed SmoA1 under 

transcriptional control of the tetracycline response element, allowing us to restrict its 

expression spatially and temporally by choosing appropriate driver mice and modulating 
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doxycycline treatment.  We utilized this model, in conjunction with previously developed 

Hh pathway activation models, to demonstrate that activation of the Hh pathway at the 

level of Smo is sufficient to drive tumorigenesis in the cerebellum, but not elsewhere in 

the central nervous system.  We also took advantage of the doxycycline-inducible nature 

of our model to define the developmental window for medulloblastoma susceptibility, 

helping define the precursor cell for these tumors, and examined whether Hh-driven 

medulloblastomas remain dependent on continued Hh signaling.  I also describe the use 

of Bmi1-null mice to investigate the role of Bmi1 in epithelial maintenance and 

medulloblastoma development, demonstrating the importance of Bmi1 both in skin 

maintenance and Hh-driven medulloblastoma expansion, perhaps suggesting a role for 

Bmi1 in epithelial and medulloblastoma stem cells.  The work described in this thesis 

presents a powerful new tool in the study of medulloblastoma, suggests a place for anti-

Hh therapy in treatment of medulloblastomas, and provides the first evidence that Bmi1 is 

required for de novo formation of a solid tumor.   

Sonic Hedgehog Signaling 

Sonic Hedgehog, one of three members of the Hedgehog (Hh) family, is a 

secreted morphogen that plays a critical role in embryologic development of many tissues.  

During embryogenesis, appropriate localization of Shh ligand within the embryo controls 

limb polarity, left-right asymmetry, and dorsal-ventral patterning of somites (Casey et al., 

2000, Chuang et al., 2000).  Homozygous null mutation of Shh (Shh-/-) is incompatible 

with life and results in severe defects including cyclopia, holoprosencephaly and lack of 

distal limb structures (Chiang et al., 1996).  Additionally, signaling via the Hh pathway 

impacts tissue maintenance in adult tissues such as hair and the central nervous system 
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(CNS) (Dlugosz, 1999, Ahn et al., 2005).  Although all three members of the mammalian 

Hh family, Sonic, Indian and Desert Hedgehog, play important and often non-redundant 

roles, Shh is the best characterized of the three. 

Shh functions as an extracellular signaling peptide that can exert its effects in an 

autocrine or paracrine, dose-dependent manner (Chuang et al., 2000).  In its active form, 

its N-terminus is palmitoylated, and its C-terminus contains a cholesterol modification, 

which facilitates extracellular diffusion (Miura et al., 2006).  Upon reaching its target cell, 

Shh binds to the 12-span transmembrane protein Patched1 (Ptch).  In the absence of Hh 

ligands, Ptch represses the function of Smoothened (Smo), a 7-span transmembrane 

protein with structural homology to the G protein-coupled receptor proteins (Kasai et al., 

2004).  Upon binding of Shh to Ptch, Ptch function is inhibited and Smo is de-repressed, 

leading to Hh pathway activation.  Pathway activation occurs via a series of intracellular 

intermediates, ultimately resulting in activation of the Gli family of transcription factors 

(Ruiz i Altaba et al., 2007) (Fig. 1-1). 

The manner in which Ptch represses the function of Smo in a resting cell is not 

entirely understood. Despite an initial report using highly overexpressed proteins that 

suggested the contrary (Stone et al., 1996), Taipale et al. (Taipale et al., 2002) 

demonstrated that there is no direct interaction between Ptch and Smo.  They also showed 

that the impact of ligand-free Ptch on repression of Smo function was sub-stoichiometric, 

as a 1:45 ratio of Ptch:Smo reduced total Smo function by approximately 80%.  These 

data are most consistent with a model in which Ptch functions catalytically to repress 

Smo.  A potential mechanism for the catalytic action of Ptch was proposed by Corcoran 

and Scott (Corcoran et al., 2006).  They demonstrated that oxysterols stimulate activity of 
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the Shh signaling pathway, and suggest that Ptch, which is structurally related to several 

bacterial transmembrane pump proteins, may pump sterols out of the cell, thereby 

keeping them from interacting with and activating Smo. 

Following Shh ligand binding to Ptch, the next step in the canonical Shh signaling 

pathway is de-repression of Smo.  The mechanism by which Smo signals through to the 

Gli transcription factors is an active area of research.  Several studies have shown that 

following Hh stimulation in Drosophila, Smo is extensively phosphorylated by protein 

kinase A and casein kinase I (Zhang et al., 2004, Apionishev et al., 2005).  Furthermore, 

it has been demonstrated that this PKA and CKI-mediated phosphorylation of Smo is 

necessary for Hh-dependent Smo cell surface accumulation and activation in Drosophila 

(Jia et al., 2004, Zhou et al., 2006).  The situation is different in mammalian cells, 

however, as the cytoplasmic tails of mammalian Smo orthologs diverge significantly 

from that of Drosophila.  Activation of Smo is coupled to its translocation to the primary 

cilium (Corbit et al., 2005). 

Smo itself has structural similarities to members of the seven-pass membrane 

spanning G protein-coupled receptor (GPCR) family, but as yet no endogenous ligand for 

Smo has been directly identified (Frank-Kamenetsky et al., 2002).  In mammalian cells, it 

appears that G protein-coupled receptor kinase 2 (GRK2) associates with and 

phosphorylates Smo when the Hh pathway is activated, and that this association is 

required for Smo signal transduction (Chen et al., 2004, Meloni et al., 2006).  This 

phosphorylation leads to localization of β-Arrestin 2 to activated Smo.  Recruitment of β-

Arrestin 2 appears to be involved in the clathrin-dependent internalization of activated 

Smo, although functional relevance of this internalization has yet to be demonstrated 
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(Chen et al., 2004).  Independent confirmation of the internalization of activated Smo in 

vertebrate cells was presented by Masdeu et al., who demonstrated a 74% reduction in 

cell-surface localization of oncogenic, constitutively active SmoA1 when compared to 

unstimulated Smo (Masdeu et al., 2006).  It has been suggested that the G protein Gα12 

and the small GTPase RhoA mediate Shh pathway signaling, as constitutively active Gα12 

increases Gli1 reporter activity, whereas a dominant-negative form of RhoA decreases 

signaling from a Gli1 reporter (Kasai et al., 2004). 

In vertebrate Shh signaling, the downstream protein suppressor of fused (Sufu) is 

a key player in the transduction of signal at a level between Smo and the Gli transcription 

factors.  It appears that Sufu inhibits Shh signaling pathway activity, a hypothesis borne 

out by the fact that Sufu-/- mice have a phenotype similar to that of Ptch-/- mice (Cooper et 

al., 2005, Svärd et al., 2006).  It has been postulated that Sufu achieves this by disrupting 

Gli activity either by sequestering Gli proteins in the cytoplasm and preventing their 

translocation to the nucleus or by binding, along with members of a histone deacetylase 

complex, to promoters containing the Gli binding element, thereby repressing 

transcription from these promoters (Cheng et al., 2002, Merchant et al., 2004).  Although 

the mechanism is unclear, activated Smo has been proposed to inhibit Sufu (Varjosalo et 

al., 2006). 

Once inhibition is released, the activator forms of the Gli transcription factors are 

able bind to their promoter recognition sites and activate transcription of target genes.  In 

mammalian cells, the Gli family comprises three zinc finger transcription factors, Gli1, 

Gli2 and Gli3.  Although Gli1 is a transcriptional activator and is upregulated in response 

to Hh signaling, it appears to be largely dispensable in the context of normal Gli2 
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expression, as Gli1 mutant mice develop essentially normally (Park et al., 2000, Bai et al., 

2002).  These data suggest that both Gli1 and Gli2 function as transcriptional activators, 

with at least partially redundant function.  Gli3, conversely, appears to function primarily 

as a transcriptional repressor, despite containing both activation and repression domains.  

Loss of Gli3 expression, for example, is able to partially or completely rescue neural and 

limb development defects of Shh-/- mice (Litingtung et al., 2000, Rallu et al., 2002, te 

Welscher et al., 2002, Wang et al., 2007).  Gli3 is believed to act primarily as a 

transcriptional repressor because the majority of full-length Gli3 protein is proteolytically 

processed (Wang et al., 2000, Pan et al., 2006). 

Of the three members of the vertebrate Gli family, Gli2 is the primary activating 

effector of the Shh pathway.  Mice lacking Gli2 have significant defects in the 

development of multiple organs, including the hair follicles, skeletal system and central 

nervous system (Mo et al., 1997, Matise et al., 1998, Mill et al., 2003).  Recently, several 

groups have demonstrated a molecular mechanism by which Gli2 transcriptional activity 

can be directly regulated by Shh (Bhatia et al., 2006, Pan et al., 2006).  These studies 

showed that Gli2 exists primarily in a full length activator form, rather than the 

proteolytically processed repressor form.  They further showed that PKA and CK1-driven 

phosphorylation of C-terminal serine residues in Gli2 allows for direct interaction of Gli2 

with βTrCP.  This association leads to ubiquitination and proteosomal degradation of 

Gli2.  Stability and proteolytic degradation of Gli1 are known to be controlled by two 

independent degradation signals, and one of these signals is also present in Gli2, 

suggesting a role for this degron in controlling Gli2 accumulation, as well (Huntzicker et 

al., 2006).
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Figure 1-1.  Physiologic activation of the Hedgehog pathway.  In a resting cell, the Hh pathway is maintained in an “off” state by 
the inhibitory effects of Ptch1 on Smo.  Sufu either binds to Gli proteins, sequestering them in the cytoplasm, binds to Gli-responsive 
promoter elements, inhibiting transcription, or both.  PKA phosphorylates Gli proteins, leading to βTrCP-mediated ubiquitination and 
proteosomal degradation.  When Shh binds to Ptch1, its inhibitory effects on Smo are blocked, leading to translocation of Smo to the 
primary cilium.  Smo is phosphorylated by GRK2, which facilitates association of β-arrestin2 with Smo and clathrin-mediated 
endocytosis.  Smo-mediated repression of Su(fu) results in translocation of the active forms of Gli1 or Gli2 to the nucleus, resulting in 
transcription of Hh target genes.  In physiologic signaling, this process is entirely reversible, depending on the presence or absence of 
Hh ligands.

 



Cerebellar Development – a Hedgehog Driven Process 

The cerebellum is an extremely neuron-dense structure that resides in the 

infratentorial space in the posterior cranium.  The cerebellum, which is responsible for 

coordination of movement, contains more neurons than the rest of the brain combined 

(Wechsler-Reya et al., 1999).  Despite this remarkable density of neurons in the adult 

organism, the majority of cerebellar neurogenesis occurs postnatally.  The cerebellar 

anlage of a newborn mouse is largely devoid of mature granule neurons.  It is instead 

covered with a thin layer of cerebellar granular neural precursors (CGNPs), the cells 

which will give rise to mature cerebellar granule neurons.  As the cerebellum develops in 

the first few weeks of life, these CGNPs proliferate extensively, expanding to form the 

external granular layer (EGL).   This proliferation occurs in response to Shh secreted by 

the neurons of the underlying Purkinje layer and, transiently, by early CGNPs themselves 

(Dahmane et al., 1999, Wechsler-Reya et al., 1999).  Treatment of in vitro CGNP or 

cerebellar slice cultures with Shh results in an increase in BrdU incorporation in the EGL 

and an inhibition of neuronal differentiation of isolated CGNPs (Wechsler-Reya et al., 

1999).  Conversely, conditional knockout of Shh in EGL and Purkinje cells or Gli2 in 

rhombomere 1 (which gives rise to the cerebellar anlage) impairs EGL proliferation and 

disrupts proper murine cerebellar patterning and foliation, and similar results have been 

observed with Hh-neutralizing antibody in chick embryos (Dahmane et al., 1999, Lewis 

et al., 2004, Corrales et al., 2006).  This proliferative response of CGNPs to Shh is 

dependent on the proto-oncogene N-Myc (Oliver et al., 2003). 

As cerebellar development progresses, the EGL begins to stratify into an outer 

EGL and an inner EGL.  While the cells in the outer layer of the EGL continue to 
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proliferate, those in the inner EGL become post-mitotic, lose expression of Gli1, and 

begin to differentiate (Dahmane et al., 1999, Wechsler-Reya et al., 1999).  As the CGNPs 

differentiate, they take on a marker expression pattern similar to that of mature IGL 

neurons; Math1 expression decreases, and the expression of mature neuronal markers 

such as NeuroD1, NeuN, Zic1 and TrkC increases (Kim et al., 2003).  The nature of the 

signal that causes this phenotypic change is not entirely clear.  However, it appears that 

the Hh antagonist RENKTCD11 may play a role in this process by upregulating expression 

of the cyclin-dependent kinase inhibitor p27/Kip1 (Argenti et al., 2005).  It has also been 

demonstrated that upregulation of the developmental adapter protein Numb in the inner 

EGL may be partially responsible for abrogating CGNP response to Shh (Marcotullio et 

al., 2006). 

Whatever the nature of the inductive signal, the differentiating CGNPs in the 

innermost layers of the EGL, having lost responsiveness to Shh, begin to migrate deeper 

into the cerebellum.  They pass through the developing molecular layer (ML), a region 

consisting primarily of the axons of granular cells and the dendrites of Purkinje cells 

(Hatten, 1999).  The migration continues deep past the Purkinje cell layer, and the mature 

cerebellar granular neurons take up their permanent residence in the region known as the 

internal granular layer (IGL) (Fig. 1-2).  Mature IGL neurons make synaptic connections 

to Purkinje neurons, Golgi neurons, and mossy fibers (Weyer et al., 2003).  In mice, this 

wave of proliferation, differentiation and migration is complete by two weeks after birth, 

by which time the EGL no longer exists, all of the cells having differentiated and 

migrated into the IGL.  The same process occurs in humans, and is complete within the 

first year of life (Wang et al., 2001). 
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Figure 1-2.  Hedgehog-driven development of the cerebellum.  At birth (P0), the cerebellar anlage consists of a thin layer of 
CGNPs (round red cells) overlying the Purkinje layer (PL) of neurons (gray rectangular cells).  The PL secretes Shh, inducing the 
CGNPs to proliferate (indicated by anaphase nuclei in CGNPs).  This causes significant expansion of the CGNP population, forming 
the external granular Layer (EGL).  As CGNPs lose responsiveness to the Shh signal, they withdraw from the cell cycle and begin to 
differentiate and migrate inwards (indicated by oblong green cells).  These cells migrate through the growing molecular layer (ML) 
and past the PL, taking up residence as the fully differentiated, mature granule neurons in the internal granular layer (round blue cells).  
By P21, this process is complete, and the EGL has completely disappeared.  The ML is formed primarily of the axons of granule cells 
and the dendrites of Purkinje cells, and is sparsely populated with the nuclei of basket and stellate cells (round black cells.)  The 
CNGPs of the EGL are believed to function as a cell of origin for medulloblastomas, potentially secondary to forced continued 
responsiveness to Hh signaling, as shown.
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The Hedgehog Pathway and Cancer – a Connection Between Development and 

Tumorigenesis 

In contrast to the important role of physiologic Hh signaling in normal embryonic 

development, hyperactivation of the Hh pathway has been linked to the development of 

multiple cancers.  Patients with the autosomal dominant disorder Gorlin Syndrome harbor 

an inactivating germline mutation in one allele of the HH receptor and signaling repressor 

PTCH (Gorlin, 2004).  Gorlin Syndrome, also known as Nevoid Basal Cell Carcinoma 

Syndrome, is characterized by the early development of multiple basal cell carcinomas 

(BCCs), with some individuals developing more than one thousand of these tumors over 

the course of their lives (Gorlin, 2004).  Gorlin Syndrome is also associated with the 

development of additional neoplasms, including ovarian and cardiac fibromas, 

fibrosarcomas, rhabdomyosarcomas, meningiomas, and medulloblastomas (Booth, 1999). 

Inappropriate activation of the HH pathway is seen not only in familial tumor 

susceptibility, but also in sporadic cancer development.  HH activation has been 

identified in a variety of neoplasms, including breast, prostate, pancreatic and small cell 

lung cancers, and others (Pasca di Magliano et al., 2003, Watkins et al., 2003, Sanchez et 

al., 2005a, Lau et al., 2006, Hatsell et al., 2007), involving alterations at multiple levels 

of the pathway (Fig. 1-3).  Additionally, expression of direct HH target genes, indicating 

activation of the pathway, is a unifying feature of sporadic human BCC (Unden et al., 

1997).  This is attributable to PTCH mutations in the majority of sporadic BCCs, and 

mutations in SMO or SUFU in a smaller subset (Reifenberger et al., 1998, Xie et al., 

1998, Reifenberger et al., 2005, Evangelista et al., 2006). 
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The nearly universal activation of HH in BCCs provides an important clue to the 

relationship between normal organ development and tumorigenesis in the skin, as both 

processes are driven by activation of the Hh pathway.  Basal cell carcinomas are thought 

to arise primarily from progenitor cells within hair follicles, which are dependent on Hh 

signaling for appropriate development (Gerdes et al., 2005, Hutchin et al., 2005).  While 

Shh null mice form hair germs consisting of epidermal placodes and dermal condensates, 

early structures indicating preliminary specification of hair follicles, these structures are 

unable to develop into fully-formed follicles (Chiang et al., 1999). 

Hh is similarly important in cycling of the adult hair follicle, an organ which is 

unique in that it undergoes multiple rounds of regeneration, which include phases of 

extensive proliferation and invasion into the underlying tissue (anagen), apoptotically-

driven regression (catagen), and quiescence (telogen) throughout the life of the organism.  

Progression through the hair cycle is controlled by Shh, among other signals, as several 

studies have demonstrated that brief Shh stimulation of resting telogen skin is sufficient 

to induce de novo anagen (Sato et al., 1999, Paladini et al., 2005), whereas inhibition of 

Hh signaling blocks postnatal hair follicle growth during anagen .  Together, these 

observations link physiologic formation and cycling of hair follicles with BCC 

development, and suggest that this most common skin tumor may result from the 

disordered development of normal hair follicles.  

In addition to its role in sporadic BCC development, HH pathway activation is 

also associated with the development of sporadic medulloblastoma.  Medulloblastoma is 

the most common malignant pediatric brain tumor, affecting as many as 1 in every 

150,000 children (Hallahan et al., 2004, Romer et al., 2004).  As with BCC, the 
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connection between HH and medulloblastoma first came from the observation that Gorlin 

Syndrome patients have an elevated risk for medulloblastoma development.  20 – 25% of 

sporadic medulloblastomas were later revealed to carry pathway-activating mutations in 

HH signaling components, as well (Raffel et al., 1997, Wetmore, 2003, Marino, 2005).  

Although there has been some discrepancy in the literature about what fraction of 

sporadic medulloblastomas display elevated levels of HH activity, several recent reports 

demonstrated expression of target genes in approximately 60% of examined tumors 

(Hallahan et al., 2004, Leung et al., 2004).  Furthermore, the most common genetic 

lesion in medulloblastoma, occurring in up to 50% of cases, is loss of chromosome 17q, 

which includes the region that codes for the Hh antagonist RENKTCD11 (Gulino et al., 

2007).  Taken together, these data suggest that HH signaling may be important in a larger 

subset of human medulloblastomas than previously believed. 

As mentioned above, the early postnatal proliferation of developing CGNPs is 

dependent on Shh.  It has been hypothesized that these neural precursor cells in the EGL 

represent a cell of origin for medulloblastomas, secondary to forced prolongation of Hh 

pathway activity.  Several lines of evidence support this idea.  First, medulloblastoma is 

primarily a pediatric tumor.  Although the reason for this predilection for occurring in 

children is not entirely clear, it is consistent with a precursor cell population that is 

present only during childhood, such as the CGNPs of the EGL.  Second, 

medulloblastomas resemble CGNPs or more differentiated granule neurons in their 

expression of markers such as synaptophysin, NeuroD, NeuN, TRKC, NSE, Zic, PAX5, 

PAX6 and ATOH1/Math1, albeit often in a deregulated manner (Kozmik et al., 1995, 

Kim et al., 2003, Grimmer et al., 2008).  As with the hair follicle-BCC connection, it 

14 



appears that dysregulation of Hh activation, which is normally very tightly controlled, 

leads to medulloblastomagenesis in a manner that diverges from normal cerebellar 

development.  However, despite these suggestive observations, additional support that the 

EGL serves as a pool of potential medulloblastoma precursors is needed.   

Finally, the role of Hh in development and tumorigenesis of the forebrain should 

be considered.  As with cerebellar development, Shh is a key mediator of proper 

formation of the forebrain.  Historically speaking, the effects of blocking Hh in the 

developing embryo were first appreciated in lambs born to sheep grazed on Veratrum 

californium, the corn lily.  This plant produces the alkaloid cyclopamine, which inhibits 

Smo function, rendering the Hh pathway inactive irrespective of ligand status.  These 

animals were born cyclopic and holoprosencephalic (Bale, 2000).  Holoprosencephaly, 

disrupted ventral patterning of the telencephalon and cyclopia were subsequently 

confirmed in Shh knockout mice, as well as in human patients with Shh mutations 

(Chiang et al., 1996, Schell-Apacik et al., 2003). 

In addition to its role in embryonic development of the forebrain, Hh is also 

important for maintenance and activation of adult neural stem cells.  These cells reside 

primarily in the subventricular zone (SVZ) lining the lateral ventricles and the 

subgranular zone (SGZ) of the hippocampal dentate gyrus (Taupin et al., 2002).  

Confirmation that signaling through the Hh pathway is required for maintenance of this 

stem cell population came from experiments in which Shh or Smo was ablated in a Nestin 

promoter-specific manner.  Nestin is a broadly expressed marker of neural progenitors, 

including the stem cells of the SVZ and SGZ.  Conditional abrogation of Hh signaling in 

these cells resulted in reduced size of the SVZ and SGZ, and impaired proliferation and 
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increased apoptosis in these regions.  These mice also gave rise to reduced numbers of 

multipotent neurospheres, a functional assay of stem cell number (Machold et al., 2003).  

Shh and Gli1 are both expressed in the adult germinal zones, and de novo mature neurons 

form from neural stem cells in mice in a Hh-dependent, cyclopamine inhibited manner 

(Ahn et al., 2005, Palma et al., 2005). 

In keeping with the idea that Hh-driven tumorigenesis can be viewed as a 

paradevelopmental process, it follows that gliomas, which are thought to arise from Hh-

responsive neural stem cells (Sanai et al., 2005), may well depend on Hh for their 

development.  In fact, GLI1 was first identified as a gene amplified in a human glioma 

(Kinzler et al., 1987).  Following this discovery, this proposed role of Hh pathway in 

gliomas went largely unsupported for some time.  In the past several years, however, 

increasing evidence has bolstered this hypothesis.  The observation that human gliomas 

express PTCH and GLI1, confirmed both by RT-PCR and by in situ hybridization, was 

published in 2004 (Ruiz i Altaba et al., 2004).  Several subsequent studies indicated that 

gliomas of all grades and histological subtypes display Hh activation, and that increasing 

Gli activity correlates with worsening tumor grade (Clement et al., 2007, Becher et al., 

2008).  Furthermore, Hh blockade with cyclopamine was shown to deplete a population 

of neurosphere-forming, cancer stem-like cells from human glioblastomas multiforme, 

indicating that targeting the Hh pathway may serve as a useful therapeutic target in 

glioma patients.  However, the story is complicated by the observation that unrestricted 

Hh signaling in adult neural stem cells results in apoptosis and arrested progression 

through the cell cycle (Galvin et al., 2008).  This suggests that Hh activation is necessary 

but not sufficient for gliomagenesis, although it is also possible that a more moderate 
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upregulation of the Hh pathway may lead to tumor development without inducing arrest 

and apoptosis of neural stem cells.
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Figure 1-3.  Activating alterations in the Hedgehog pathway in human cancer.  a) 
HH overexpression is associated with esophageal, gastric, pancreatic, breast, prostate and 
small-cell lung cancer.  b) Loss of function mutations in PTCH1 are seen in basal cell 
carcinoma and medulloblastoma.  c) Pathway-activating SMO mutations have been found 
in basal cell carcinomas and medulloblastomas, as well.  These mutations render SMO 
insensitive to PTCH1 inhibition, irrespective of HH ligand status.  d) GLI2 amplification 
is seen in squamous cell carcinoma.  e) Loss of function mutations of SUFU are seen in 
medulloblastoma and BCC.  Modified from (Pasca di Magliano et al., 2003).
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Hh-Driven Mouse Models of Basal Cell Carcinoma 

Inspired by the well-recognized connection between HH deregulation and BCC in 

humans, numerous groups have made strides towards developing mouse models for BCC 

(reviewed in (Dlugosz et al., 2002)).  Approximately one third of mice carrying a 

heterozygous inactivating germline mutation of Ptch develop microscopic lesions 

resembling basal cell carcinomas, and UV or ionizing radiation induces BCC-like tumors 

in 100% of Ptch+/- mice by 3 months of age or older  (Aszterbaum et al., 1999 ).  Another 

study indicated a link between anagen induction and BCC-like tumor formation in X-ray 

irradiated Ptch heterozygote mice (Mancuso et al., 2006).  This provides a genetically 

faithful model of Gorlin Syndrome; tumor latency is relatively long, however, and 

requires repeated, significant, long-term radiation exposure, which may lead to a variety 

of additional genetic alterations. 

Overexpression of SHH from the keratin 14 (K14) promoter results in the 

development of microscopic basal cell-like epithelial proliferations at birth (Oro et al., 

1997).  K14-SHH mice are not viable postnatally, and so it is difficult to observe if these 

lesions are able to progress to full-blown BCCs.  Likewise, it is not known if induction of 

deregulated SHH expression in an adult animal skin is sufficient to give rise to frank 

BCCs (Oro et al., 1997).  Similar basal cell-like lesions are seen in newborn transgenic 

mice expressing a constitutively activated mutant allele of human SMO, M2SMO, from 

the full length keratin 5 promoter (Xie et al., 1998).  As with K14-SHH mice, 

K5-M2SMO mice are perinatally lethal, preventing analysis of progression or adult 

tumorigenesis in these mice.  Animals in which M2SMO is expressed from a truncated 

form of the K5 promoter (ΔK5-M2SMO) survive into adulthood, presumably because the 
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ΔK5 promoter is active in only a subset of K5-positive cells.  These mice develop 

widespread basaloid follicular hamartomas (BFHs), slow-growing tumors which express 

low levels of the Hh target genes Ptch1 and Gli1, both in mice and humans.  Despite the 

development of BFHs, however, these mice never develop frank BCCs, even a full year 

after birth (Grachtchouk et al., 2003).  Similar, but more slowly developing, lesions are 

seen in mice heterozygous for Sufu, as well (Svärd et al., 2006).  

As discussed above, the primary downstream effectors of the Hh pathway are the 

Gli family of transcription factors.  Several reports have indicated that unrestrained Hh 

activation at the level of Gli is sufficient to drive BCC formation.  Transgenic mice 

expressing Gli2 driven by the keratin 5 (K5) promoter (K5-Gli2) develop multiple tumors 

within three months of birth (Grachtchouk et al., 2000).  These tumors strongly resemble 

human BCCs in both gross and histologic morphology, and demonstrate robust 

expression of Ptch1 and Gli1.  K5-Gli2 mice also develop less aggressive tumors 

displaying lower levels of Hh pathway activation; these lesions appear identical to the 

BFHs seen in ΔK5-M2SMO mice (Grachtchouk et al., 2003).  Expression of human GLI1 

in K5-positive cells induced development of BCCs as well as a variety of other skin 

tumors (Nilsson et al., 2000).  When considered together, the data from these models 

suggest a significantly different tumorigenic potential of proximal, upstream (i.e. at the 

level of Shh, Ptch or Smo) vs. distal, downstream (i.e. at the level of Gli) activation of the 

Hh pathway, possibly secondary to differing levels of Hh pathway activation. 

In addition to the models described above, our laboratory also developed an 

inducible, doxycycline-regulated model for epithelial Hh pathway activation (Hutchin et 

al., 2005).  To generate this model, transgenic mice were developed in which 
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transcription of Gli2 was driven by the tetracycline response element (TRE).  These mice 

were then crossed with K5-tTA mice (Diamond et al., 2000), in which expression of the 

tetracycline transactivator is driven by the K5 promoter.  In the absence of doxycycline 

treatment, double transgenic K5-tTA;TRE-Gli2 mice express Gli2 in K5 promoter-active 

cells.  100% of these mice develop proliferative BCCs with robust Hh activation by 6 

months of age.  Treatment with doxycycline inhibits expression of transgenic Gli2 and 

induces regression of tumors over approximately three weeks.  Residual transgene-

independent cells remain following regression, and tumors regrow following reactivation 

of exogenous Gli2 expression (Hutchin et al., 2005).  Although it is difficult to 

definitively identify the cells which give rise to re-grown tumors, some returning tumors 

in this model do appear to arise from within residual tissue when examined shortly after 

transgene reactivation.  The presence of presumptive dormant tumor cells in this model 

raises the possibility that shut-down of Hh signaling in other Hh-driven tumors may also 

leave behind a small population of potential tumor cells. 

The K5-tTA;TRE-Gli2 model provides two pieces of information.  First, 

conditional epithelial expression of a Hh-pathway activating transgene is sufficient to 

generate BCCs.  A conditional model has the significant advantage of allowing for 

postnatal transgene activation, bypassing any potential embryonic or perinatal lethality.  

This, then, suggests a novel way to induce high level, upstream activation of the Hh 

pathway, either embryonically or postnatally, to examine its tumorigenic potential.  In 

order to achieve this, I generated the TRE-SmoA1HA line of transgenic mice.  By 

employing the doxycycline-repressible K5-tTA or doxycycline-inducible K5-rtTA driver 

mice, I used these mice to examine the consequences of pre- and postnatal doxycycline-
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regulated epithelial activation of SmoA1HA.  SmoA1HA is an HA epitope-tagged, 

oncogenic, constitutively active allele of Smo.  In Chapter 2, I describe the generation of 

this mouse model and its epithelial phenotype, which includes BFH-like hyperplasia but 

not frank BCC development.  Second, the K5-tTA;TRE-Gli2 model demonstrates that Hh-

driven BCCs remain dependent on continued Hh activation for tumor maintenance.  This 

raises the question of whether oncogene “addiction” is seen in other Hh-driven tumors, 

such as medulloblastoma.  This issue is especially relevant at the present time because Hh 

pathway antagonists are currently in Phase II clinical trials (ClinicalTrials.gov reference # 

NCT00636610). 

The Hedgehog Pathway in Mouse Models of Medulloblastoma 

In order to study the biology of medulloblastoma, as well as to investigate 

potential therapeutic avenues in a pre-clinical setting, robust, faithful animal models are 

required.  In vivo models are particularly critical for the study of medulloblastoma, as the 

Hh pathway is dramatically down-regulated in medulloblastoma cells grown in culture, 

and is not restored by allografting cultured cells into the flanks of recipient mice (Sasai et 

al., 2006).  The mechanism for this downregulation of Hh activity is not understood.  

Over the past ten years or so, significant progress has been made in our understanding of 

the molecular biology of medulloblastoma development, and multiple murine models of 

the disease have been developed.  As reviewed above, a subset of human 

medulloblastomas harbor demonstrable mutations in genes encoding members of the HH 

pathway, and a larger fraction show HH pathway activity.  Definitive demonstration of an 

etiologic role for Hh in medulloblastoma came from the generation of Ptch1 

heterozygous knockout mice.  While Ptch1-/- mice die in utero, Ptch1+/- mice are viable, 
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and between 10 and 14% develop medulloblastoma, with peak onset between 16 and 27 

weeks of age (Goodrich et al., 1997, Hahn et al., 1998, Wetmore et al., 2000, Kim et al., 

2003).  Development of these tumors is partially reliant on appropriate expression of Gli1 

(Kimura et al., 2005), although a separate study indicates that virally-delivered Shh is 

able to induce medulloblastomas in Gli1-/- mice (Weiner et al., 2002).  Tumor latency can 

be decreased and incidence increased by breeding Ptch1+/- mice onto a p53-/- background 

(Wetmore et al., 2001).  However, this model may no longer faithfully recapitulate the 

genetic basis of human medulloblastoma, as inactivation of the p53 pathway is rare in the 

human disease (Saylors et al., 1991, Adesina et al., 1994).  In a model developed by 

McMahon et al., Cre recombinase-mediated activation of the human mutant SMO allele 

M2SMO resulted in 40% medulloblastoma incidence when driven by the compound 

CMV/β-actin (CAGGS) promoter.  These mice develop numerous other tumors, as well, 

and succumb to heavy tumor burden and infection by 18 weeks of age (Mao et al., 2006). 

As briefly mentioned above, mouse models of medulloblastomas have been 

developed in which retroviruses are used to target Hh-modifying transgenes to specific 

cells.  In the RCAS/tv-a system, mice are engineered to express TV-A, the receptor for 

the avian retrovirus ALV subgroup A, from a tissue-specific promoter.  Ntv-a mice 

express TV-A in cells in which the promoter for the stem and progenitor cell marker 

nestin is active.  Only cells which express TV-A can be infected by RCAS vectors, which 

are engineered to deliver specific transgenes to the target cells.  When retrovirus is 

delivered via intracerebellar injection within 3 days after birth, RCAS-Shh induces 

tumors in 15% of animals.  Tumor incidence can be raised to 40% or higher by co-

infection with RCAS-Shh and RCAS-c-Myc, -Akt, or -IGF2 (Rao et al., 2003, Rao et al., 
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2004).  While these retroviral models are powerful, and provide important information 

about the interplay between Hh and other signaling pathways in tumorigenesis, they do 

not serve as models for spontaneous, Hh-driven medulloblastoma formation. 

Perhaps the most robust Hh-driven medulloblastoma model described to date is 

the ND2:SmoA1 mouse line.  In this model, a truncated version of the NeuroD2 (ND2) 

promoter controls expression of a mutant allele of Smo, SmoA1, which is very similar to 

the SmoA1 used to develop the model described in this thesis.  The ND2 promoter is 

active in a wide range of neuronal cells throughout the CNS, including the CGNPs of the 

EGL (Olson et al., 2001).  Approximately 50% of ND2:SmoA1 mice develop 

medulloblastoma at a median age of 26 weeks (Hallahan et al., 2004).  A very recent 

report indicates that increasing transgene dosage by crossing ND2:SmoA1 mice to 

homozygosity increases the incidence of tumors to 85% by one month (Hatton et al., 

2008).  While this is a significant increase in tumor penetrance, this model still falls short 

of the goal of complete, early tumor penetrance, an important feature for preclinical 

tumor therapy models, and lacks the means to rapidly and specifically activate and 

inactivate the transgene. 

Having developed the TRE-SmoA1HA mouse line, we were in a unique position to 

examine the consequences of conditional, high level, upstream activation of the Hh 

pathway in the developing cerebellum.  In order to achieve this, I took advantage of  

several previously developed lines of transgenic mice (Table 2-1).  I used GFAP-tTA 

mice (Lin et al., 2004, Wang et al., 2004) to generate GFAP-tTA;TRE-SmoA1HA mice.  

The GFAP promoter used to develop these mice is active in several populations of cells 

throughout the CNS, including mature glial cells, adult neural stem cells, and CGNPs 
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within the developing EGL.  GFAP-tTA;TRE-IFN-γ mice develop medulloblastomas 

associated with activation of the Hh pathway (Lin et al., 2004), suggesting that GFAP-

tTA mice would also be useful drivers for our system.  As described in detail below, I 

also combined the advantages of the permanent Cre/loxP system with the rapid induction 

and inhibition of the rtTA/TRE system, using GFAP-Cre mice (Zhuo et al., 2001) to 

permanently activate expression of doxycycline-induced rtTA from R26-LSL-rtTA mice 

(Belteki et al., 2005), in which a floxed strong stop sequence is knocked into the ROSA26 

locus upstream of the reverse tetracycline transactivator (rtTA).  This results in 

expression of rtTA in GFAP positive cells and their progeny. 

In Chapter 3, I detail the development and phenotype of bitransgenic GFAP-

tTA;TRE-SmoA1HA mice and triple transgenic GFAP-Cre;R26-LSL-rtTA;TRE-SmoA1HA 

mice.  One hundred percent of both of these varieties of transgenic mice develop 

histologically evident medulloblastomas within two weeks of birth, but do not develop 

other brain tumors, despite broad transgene expression elsewhere in the CNS, including 

the subventricular zone (SVZ), a niche for adult neural stem cells in the forebrain.  These 

novel models represent powerful new tools for modeling spontaneous Hh-driven 

medulloblastomas, and have enabled me to address several fundamental questions in 

tumor biology.  I describe how I exploit the doxycycline-regulated nature of these 

transgenic models to define a very brief postnatal window of susceptibility to 

medulloblastoma development, supporting the notion that these tumors arise from the 

transient CGNPs in the EGL.  Additionally, I contrast the results from these two SmoA1-

based models with the phenotypes I observed in GFAP-tTA;TRE-Gli2 and 

GFAP-tTA;TRE-GLI2* mice.  Neither of these downstream activation models develop 
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medulloblastoma, but GFAP-tTA;TRE-GLI2* mice develop diffuse undifferentiated 

forebrain tumors when transgene expression is activated postnatally, suggesting that 

robust downstream Hh activation is sufficient to revert mature glial cells to a progenitor-

like phenotype.  All murine models used in this thesis are summarized in Table 2-1. 

Continued Requirement for Hedgehog Signal in Medulloblastoma Maintenance 

The need for specific anti-tumor therapies in the treatment of medulloblastoma is 

clear.  Current treatment modalities include surgical resection followed by chemotherapy 

and/or craniospinal axis radiation.  While 5-year progression-free survival rates have 

risen to approximately 75% for average-risk disease (Gilbertson, 2004), these therapies 

often have severe long-term side effects, which can significantly impact quality of life.  

Radiation therapy, in particular, is poorly tolerated by Gorlin Syndrome patients, as they 

have an exquisite sensitivity to radiation-induced BCC development (Kimonis et al., 

1997).  As previously discussed, there is a discrepancy between the percentage of human 

medulloblastomas with identifiable mutations in Hh pathway components and the notably 

higher proportion of these tumors in which the Hh pathway is activated.  This suggests 

that even in tumors with disparate etiologic mechanisms, the Hh pathway may play a role 

in tumor pathogenesis.  If true, this would argue for a role in anti-Hh therapy in perhaps 

as many as 60% of patients with this malignancy. 

It is important to take into account the ideas of oncogene addiction and tumor 

dormancy when considering the targeting of specific pathways as clinical therapeutic 

modalities.  Oncogene addiction is the idea that tumors remain dependent on a specific 

oncogenic stimulus for continued maintenance.  In keeping with this idea, discussed in 

(Weinstein, 2002), tumors which remain “addicted” to an oncogene would be susceptible 
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to treatment by inhibition of the specific oncogenic pathway involved.  The observation 

of specific gene fusions or amplifications, such as the recurrent BCR/ABL fusion in 

chronic myelogenous leukemia and HER2 overexpression in a subset of breast cancer, 

have lead to major advances in tumor-specific therapies for these diseases via treatment 

with Gleevec and Herceptin, respectively (reviewed in (Ross et al., 2004)).  Regression 

of BCCs in K5-tTA;TRE-Gli2 mice (Hutchin et al., 2005) suggests that Hh-driven tumors 

may remain addicted to Hh signaling, perhaps providing an effective therapeutic target, 

as reflected in the clinical trials mentioned above. 

Tumor dormancy can be viewed as the flip side to oncogene addiction.  As seen in 

K5-tTA;TRE-Gli2 mice and several other conditional mouse models of cancer, tumors 

which appear to be addicted to an oncogenic stimulus may regress following abrogation 

of the critical oncogene, only to leave behind small populations of dormant tumor cells 

(Boxer et al., 2004, Shachaf et al., 2004, Hutchin et al., 2005).  These cells retain the 

capacity to develop into full-blown tumors when the oncogenic stimulus is reactivated.  

The presence of dormant tumor cells would significantly complicate the use of oncogene-

specific anticancer therapy, potentially requiring long-term treatment to prevent relapses 

or targeting additional pathways involved in tumor dormancy.  As such, examination of 

both oncogene addiction and tumor dormancy are critical to understanding the biology of 

tumors.  

In keeping with the observed dependence of BCCs on Hh stimulus, additional 

reports indicate that Hh-driven medulloblastomas may also remain dependent on 

continued oncogenic stimulus for their maintenance.  Treatment with the Hh pathway 

antagonist cyclopamine of either in situ Ptch+/-/p53-/- medulloblastomas or allografts of 
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cell lines derived from these tumors results in inhibition of tumor proliferation (Berman 

et al., 2002, Sanchez et al., 2005b).  Use of a synthetic Smo inhibitor results in a more 

robust inhibition of tumors, and can induce short-term tumor regression (Romer et al., 

2004).  Consistent with the observation that Hh pathway activation is seen in human 

tumors without identifiable Hh pathway mutations, GFAP-tTA;TRE-IFNγ 

medulloblastomas express Shh and Gli1, and medulloblastomas derived from Cxcr6-/- 

mice display activation of the Hh pathway and are inhibited by pharmacologic blockade 

of Smo function, consistent with a downregulation of Ptch1 expression in these tumors 

(Sasai et al., 2007).   

Despite these encouraging results, no studies have yet demonstrated that 

inhibition of the Hh pathway can completely and permanently eliminate 

medulloblastomas, and previous reports have relied on pharmacological Hh inhibitors 

(Berman et al., 2002, Romer et al., 2004, Sanchez et al., 2005b), making it extremely 

difficult to rule out off-target effects.  With the development of our double and triple 

transgenic TRE-SmoA1-based medulloblastoma models, we are in a unique position to 

test the hypothesis that abrogation of the Hh pathway will lead to complete tumor 

elimination.  Our models are robust and 100% penetrant, do not require introduction of 

additional engineered genetic alterations such as p53 deficiency, and are doxycycline-

regulated, allowing us to begin studies earlier, and perform them with the precision 

afforded by genetically manipulated, as opposed to pharmacologically manipulated, mice.  

In Chapter 4, I describe the use of both our double and triple transgenic models to 

demonstrate that Hh-driven medulloblastomas remain absolutely dependent on continued 
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Hh activity, and that focal abrogation of SmoA1 induces focal, regional tumor regression, 

whereas complete SmoA1 inhibition results in total, durable tumor elimination. 

Bmi1 in Stem and Progenitor Cells and Cancer 

Bmi1 is a member of the polycomb group of multiple transcriptional repressors.  

It functions primarily via its inhibition of the Ink4a/Arf locus (Jacobs et al., 1999), which 

encodes p16Ink4a and p19Arf (p14ARF in humans).  By repressing transcription of p16Ink4a, 

Bmi1 allows activation of CyclinD and Cdk4/6, resulting in phosphorylation and 

inactivation of pRB and activation of E2F, ultimately resulting in progression through the 

cell cycle.  Additionally, by repressing transcription of p19Arf, itself an inhibitor of 

MDM2, Bmi1 also contributes to inhibition of p53 function, preventing apoptosis and cell 

cycle arrest (reviewed in (Park et al., 2004)). 

Bmi1 is an important regulator of stem and progenitor cells in multiple tissues, 

and is believed to be important in tumors, as well.  Park et al. demonstrated a requirement 

for Bmi1 in self-renewal of hematopoietic stem cells, as Bmi1-/- fetal liver cells were 

unable to successfully reconstitute lethally irradiated recipient mice (Park et al., 2003).  

Likewise, while Bmi1-/- hematopoietic stem cells form leukemia following transformation 

with Hoxa9 and Meis1, these tumors cells are unable to induce frank leukemia in 

secondary recipients (Lessard et al., 2003).  Several laboratories have demonstrated a 

dependence on Bmi1 for adult neural stem cells, mediated by p16Ink4a and p19Arf 

(Molofsky et al., 2003, Bruggeman et al., 2005, Molofsky et al., 2005), and BMI1 is 

expressed in human glial tumors and required for a virally-mediated grafting-based 

mouse model of glioma, which, as discussed above, may arise from neural stem cells 

(Bruggeman et al., 2007, Hayry et al., 2008). 
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Furthermore, Bmi1, in a manner known to be at least partially dependent on 

Ink4a/Arf, regulates proliferation and apoptosis of CGNPs (Leung et al., 2004, 

Bruggeman et al., 2005).  Bmi1 is expressed in both EGL cells as well as in mature 

cerebellar neurons of the IGL (Leung et al., 2004).  This observation is particularly 

interesting in light of the fact that, at least in in vitro CGNP culture, Bmi1 expression is 

upregulated upon stimulation with Shh (Leung et al., 2004).  When considered in 

conjunction with the leukemia findings discussed above and the observation that BMI1 

expression correlates well with PTCH expression in human medulloblastomas (Leung et 

al., 2004), these data suggest a role for BMI1 in Hh-driven medulloblastoma 

development.  Indeed, an initial report indicates that knockdown of Bmi1 inhibits growth 

of a medulloblastoma cell line and tumor xenografts (Wiederschain et al., 2007).  

However, these studies do not show an absolute dependence on Bmi1 in medulloblastoma, 

nor do any studies exists in the literature which demonstrate a requirement for Bmi1 in 

the de novo development of a spontaneously-arising solid tumor. 

In keeping with the idea that Bmi1 is required for maintenance of multiple adult 

tissue stem cells, I employed the Bmi1-/- mouse model to briefly begin exploring whether 

Bmi1 is required for proliferation and maintenance of keratinocytes.  These data, which 

suggest a role for Bmi1 in keratinocyte stem cell function, are presented in Chapter 5.  

We also employed Bmi1-/- mice to test the hypothesis that medulloblastoma development 

requires proper Bmi1 function.  In order to achieve this, we bred our 

GFAP-tTA;TRE-SmoA1 mice onto a Bmi1-/- background, an experiment made possible by 

the short tumor latency and complete penetrance of this model.  As reported in Chapter 5, 

we discovered that, while apparently not necessary for tumor initiation, Bmi1 is required 
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for progression to full-blown medulloblastoma.  In contrast to the complete penetrance of 

medulloblastomas in GFAP-tTA;TRE-SmoA1 mice, these mice do not develop frank 

medulloblastomas on a Bmi1-/- background.  Bmi1-/-, SmoA1-expressing mice initiate 

tumorigenesis, but the lesions are small, unproliferative and apoptotic, and display loss of 

the nestin expression, indicating a loss of progenitor cell-like phenotype in the absence of 

Bmi1. 

Summary 

The Hh signaling pathway plays a central role in many developmental processes, 

both physiological and pathological.  In order to address several fundamental questions in 

Hh-driven tumor biology, I generated a novel transgenic mouse line, the TRE-SmoA1 line, 

on which the work described in this thesis is based.  I describe the generation of these 

animals in Chapter 2.  I observed that activation of this transgene in squamous epithelia 

prenatally resulted in perinatal lethality due to numerous developmental abnormalities, 

while postnatal activation induced epithelial hyperplasia consistent with basaloid 

follicular hamartomas, but not full-blown BCCs, confirming the resistance of murine skin 

to BCC development (Chapter 2).  I also exploited the TRE-SmoA1 mouse line to activate 

the Hh pathway in the CGNPs of the developing cerebellum, inducing completely 

penetrant medulloblastoma development.  In so doing, I defined a narrow developmental 

window for tumor susceptibility, which strongly implicates CGNPs as the cell of origin 

for these tumors.  By contrasting these results with data generated using TRE-Gli2 and 

TRE-GLI2* mice, I observed a differential tumorigenic response in the brain to proximal 

versus distal activation of the Hh pathway, suggesting strong inhibition of the Hh 

pathway in cells which are not normally regulated by Shh (Chapter 2).  Taking advantage 
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of the conditional nature of our medulloblastoma model, we demonstrated that Hh-driven 

medulloblastomas remained entirely dependent on Hh signaling for their maintenance, 

and that relatively brief inhibition of this signal resulted in complete disappearance of 

tumors, an observation with potentially significant impact for treatment of the human 

disease (Chapter 3).  Finally, I used our robust new model for medulloblastoma to 

address the question of the necessity for Bmi1 in medulloblastoma development, 

demonstrating that while Bmi1 is apparently not required for tumor initiation, it is 

required for progression to full-blown medulloblastoma (Chapter 4).  
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Chapter 2 

SmoA1 is Sufficient to Induce Medulloblastomas but not Forebrain Tumors or 
Basal Cell Carcinomas 

Introduction 

Basal cell carcinoma (BCC) and medulloblastoma are the most common skin 

cancer in light-skinned people, and the most common malignant brain tumor in children, 

respectively (Hallahan et al., 2004, Hutchin et al., 2005).  There are between 750,000 and 

one million new cases of BCC diagnosed each year in America (Hutchin et al., 2005, 

Athar et al., 2006), whereas medulloblastomas account for roughly 20% of pediatric 

brain malignancies, affecting approximately 1 in 150,000 children  (Hallahan et al., 2004, 

Romer et al., 2004).  Development of both of these relatively undifferentiated tumors has 

been linked to inappropriate activation of the Hedgehog (HH) signaling pathway. 

The first clue to the link between BCC and HH signaling came from the 

observation of PTCH mutations in patients with Gorlin Syndrome.  These patients are at 

greatly elevated risk for BCC development, often developing many of these tumors over 

their lives (Gorlin, 2004).  PTCH normally functions as both a receptor for HH ligands 

and a repressor of HH signaling activity (see Fig. 1-1), and loss of PTCH leads to 

uncontrolled activation of the pathway.  Mutations in the HH pathway are not limited to 

BCCs arising in the context of Gorlin Syndrome, and have been detected in nearly all 

examined sporadic BCCs, either at the level of PTCH, SMO, or SUFU (Reifenberger et 
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al., 1998, Xie et al., 1998, Bale et al., 2001, Reifenberger et al., 2005, Evangelista et al., 

2006). 

As discussed in Chapter 1, numerous murine models for BCC-like tumors have 

been developed based on activation of the Hh pathway.  Ptch+/- mice develop full-blown 

BCCs, but only after significant doses of UV or ionizing irradiation (Aszterbaum et al., 

1999, Corcoran et al., 2001).  Distal pathway activation at the level of Gli transcription 

factors, however, leads to robust BCC development in the absence of other genetic 

alterations (Grachtchouk et al., 2000, Nilsson et al., 2000, Hutchin et al., 2005).  Despite 

the robust tumor development seen in Gli-driven models, full-blown BCCs have not been 

observed in mice in which the Hh pathway is activated proximally at the level of Shh or 

Smo.  Overexpression of SHH from the K14 promoter results in development of basaloid 

proliferations in newborn mice, but no BCCs (Oro et al., 1997).  M2SMO, a 

constitutively active mutant allele of SMO cloned from a BCC, is able to transform rat 

embryonic fibroblasts in conjunction with E1A.  However, mice expressing M2SMO 

from either the full-length K5 promoter or the truncated ΔK5 promoter, which drives 

patchy activation in squamous epithelium, develop microscopic basaloid proliferations or 

basaloid follicular hamartomas, but not frank tumors, an outcome ascribed to insufficient 

activation of the Hh pathway (Xie et al., 1998, Grachtchouk et al., 2003).  Although these 

results suggest that proximal activation of the Hh pathway in murine skin is not sufficient 

to induce BCC development, it is entirely possible that activated murine Smo may more 

efficiently activate Hh signaling, leading to tumor formation. 

In contrast to the identification of HH pathway mutations in nearly every BCC, 

medulloblastoma, a primitive neuroectodermal tumor (PNET), represents a 
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heterogeneous disease, without a defined genetic lesion common to all tumors (Marino, 

2005).  Nevertheless, a clear link has been established between dysregulation of the 

Hedgehog (Hh) pathway and medulloblastomagenesis, based on the observation that 

approximately 1 in 20 Gorlin syndrome patients develop medulloblastoma, a 7500-fold 

increase over the risk of medulloblastoma in the general population (Gorlin, 1995, Packer 

et al., 1999).  Activating mutations in components of the HH pathway have been detected 

in spontaneous medulloblastomas, and approximately 25% of all medulloblastomas 

examined harbor such a mutation (Wetmore, 2003, Marino, 2005).  Additional studies 

indicate that the pathway is activated in an even greater fraction of human 

medulloblastomas, as measured by expression of HH target genes (Hallahan et al., 2004, 

Leung et al., 2004).  Several mouse models have subsequently confirmed that 

inappropriate activation of the Hh pathway can give rise to medulloblastoma 

development (Goodrich et al., 1997, Rao et al., 2003, Hallahan et al., 2004, Mao et al., 

2006). 

Development of medulloblastomas is tightly linked to the physiologic 

development of the cerebellum.  As described in Chapter 1 and reviewed in (Wetmore, 

2003), the majority of cerebellar development occurs postnatally.  In normal neonatal 

cerebellum, a thin layer of cerebellar granule neuron precursors (CGNPs) lines the 

external surface of the cerebellar anlage.  These cells are stimulated by sonic hedgehog 

(Shh) secreted by the neurons of the underlying Purkinje layer (PL).  Activation of the Hh 

pathway induces proliferation and significant expansion of the CGNP population, 

forming the external granular layer (EGL.)  Cells within the EGL eventually become 

refractory to the Shh signal and abstract themselves from the cell cycle.  As they do so, 
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they differentiate and migrate inwards, passing through the developing molecular layer 

(ML) and past the PL, settling in the internal granular layer (IGL) as the mature 

cerebellar neurons.  This process is complete by P21 in the mouse, and within the first 

year of life in humans (Wang et al., 2001, Marino, 2005).  Due in part to the location and 

timing of medulloblastoma development, the Shh-responsive CGNPs of the EGL are 

thought to comprise a pool of potential medulloblastoma precursor cells (Marino, 2005, 

Ueba et al., 2008), although this model awaits definitive proof. 

In addition to the well-supported contribution of HH pathway deregulation to 

medulloblastoma development, several lines of evidence suggest a role for HH signaling 

in the development of glial tumors, as well.  GLI1, one of the primary transcriptional 

effectors of the HH pathway, was originally identified as a gene overexpressed in glioma 

(Kinzler et al., 1987).  More recently, additional studies have indicated that the entire 

spectrum of glial tumors display Hh pathway activation, and have linked increasing 

pathway activity to worsening tumor grade (Ruiz i Altaba et al., 2004, Clement et al., 

2007, Becher et al., 2008).  Furthermore, glial tumors are believed to arise from SHH-

responsive neural stem cells in the forebrain (Sanai et al., 2005), providing further 

support for the idea that deregulation of the HH pathway contributed to CNS tumors 

other than PNETs.  However, as yet no experimental models have demonstrated that 

activation of Hh signaling is sufficient to induce or promote, with other genetic 

alterations, gliomagenesis. 

In this chapter, I will describe the use of a novel mouse model to examine the 

consequences of conditional, high level, proximal activation of the Hh pathway in skin, 

cerebellum, and forebrain.  To generate this model, I placed HA epitope-tagged SmoA1, a 
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constitutively active mutant Smo allele (Taipale et al., 2000), under control of the 

tetracycline response element (TRE), and generated transgenic mice carrying the 

TRE-SmoA1 construct.  I initially bred the resulting mouse lines with doxycycline-

regulated, squamous epithelium-specific K5-tTA activator mice (Diamond et al., 2000), 

allowing me to test the hypothesis that activated murine SmoA1 can induce BCC 

formation.  I observed that postnatally activated adult SmoA1-expressing mice developed 

basaloid follicular hamartoma-like lesions, but not full-blown BCCs, in keeping with the 

phenotype observed in M2SMO-expressing mice (Xie et al., 1998, Grachtchouk et al., 

2003).  

Taking advantage of the power and flexibility of the TRE-SmoA1 mice, I induced 

high-level proximal Hh activation in the CGNPs of the developing EGL by activating 

transcription from the glial fibrillary acidic protein (GFAP) promoter.  We achieved this 

either in bitransgenic mice also expressing the GFAP-tTA transgene (Lin et al., 2004), or 

in triple transgenic mice, by way of the Cre-loxP system, using combinatorial expression 

of GFAP-Cre (Zhuo et al., 2001) and a Cre-mediated, ROSA26-driven rtTA (Belteki et 

al., 2005).  One hundred percent of mice expressing SmoA1 in the cerebellum using 

either of these models developed medulloblastomas within two weeks of birth.  

Characterization of these mice revealed many similarities to human medulloblastomas 

and other published mouse models.  By controlling the timing of transgene activation, we 

were able to define a window of susceptibility to tumor development that extends to at 

least the seventh postnatal day, but not past 21 days old, supporting the hypothesis that 

these tumors arise from the transient EGL.  
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Since SmoA1-expressing mice do not develop forebrain tumors, we also 

employed several additional models for inducing distal activation of the Hh pathway in 

order to assess the sufficiency of the Hh pathway to drive glioma formation.  By crossing 

GFAP-tTA mice with TRE-Gli2 mice (Hutchin et al., 2005) or TRE-GLI2* mice (which 

express a Myc-tagged, repressor domain-deleted GLI2 allele), we were able to compare 

the outcome of postnatal Hh activation at the level of Smo to the outcome of activation at 

the level of Gli.  While neither SmoA1-expressing nor GFAP-tTA;TRE-Gli2 mice 

developed forebrain tumors, GFAP-tTA;TRE-GLI2* mice developed large numbers of 

small, undifferentiated tumors consisting of clusters of progenitor-like cells scattered 

throughout both the cerebellum and the cerebrum.  Notably, none of these models 

developed glioma, suggesting that by itself, activation of the Hh pathway in GFAP-

expressing cells is not sufficient to induce gliomagenesis. 

Materials and Methods 

Generation of TRE-SmoA1 mice. 

A plasmid containing the SmoA1 allele was generously provided by Dr. Phil 

Beachy (Taipale et al., 2000).  Dr. Alex Ermilov appended an HA epitope tag to the 3’ 

end of SmoA1 in the pEGFP plasmid.  In order to place SmoA1HA under control of the 

tetracycline response element (TRE), the SmoA1HA insert was liberated by digestion with 

NotI and HindIII, then blunted with Klenow polymerase.  The ~2.7 kb insert was isolated 

by agarose gel separation and DNA purification using the Qiaquick kit (Qiagen).  pTet-

Splice acceptor plasmid (Invitrogen) was linearized by digestion with EcoRV and 

agarose gel purified as above.  Linearized pTet-Splice vector and insert were blunt-end 

ligated using the Roche rapid DNA ligation kit (Roche).  Transformation-competent 
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JM109 E. coli (Promega) were transformed with the resulting ligation product and grown 

on agar plates with ampicillin selection.  Picked colonies were grown as mini-preps, and 

plasmid DNA was isolated using the Qiagen Plasmid Mini kit (Qiagen).  Presence of a 

single insert copy was ascertained by digestion with XbaI, and proper insert orientation 

was ascertained by digestion with XhoI.  The resulting plasmid contained the TRE, 

comprising seven copies of the tetracycline operator and the minimal CMV promoter 

upstream of the SmoA1HA sequence and the SV40 intron and polyadenylation sequence 

downstream (Figure 2-1A). 

The TRE-SmoA1HA/SV40 intron + pA fragment was liberated by digestion with 

BsshII and purified as above.  The purified fragment was microinjected into (C57BL/6 X 

SJL)F1 X (C57BL/6 X SVJ)F1 eggs by the University of Michigan Transgenic Animal 

Core.  Potential founder animals were screened by PCR for presence of the transgene as 

described below, and five transgenic TRE-SmoA1 lines were established by backcrossing 

to C57BL/6 mice.  The identity of our transgenic construct was confirmed by sequencing 

at the University of Michigan Sequencing Core.  Comparison of obtained primary 

sequence data with RefSeq mRNA sequence (NM_176996.3) confirmed the presence of 

the expected W539L mutation, and also revealed the presence of an unexpected second 

point mutation, T425R.  As indicated by robust expression of Ptch1 and Gli1 in tumors 

(Figure 2-4), this second mutation does not appear to affect the ability of SmoA1 to 

activate the Hh pathway. 

Housing, breeding and genotyping of mice 

All mice were maintained in the University of Michigan Cancer Center animal 

facility under specific pathogen-free conditions in accordance with university and federal 
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guidelines.  All animals were given food and water ad libitum.  In order to activate 

SmoA1 expression in squamous epithelium, I crossed TRE-SmoA1 mice with K5-tTA 

(“Tet-off”) or K5-rtTA (“Tet-on”) mice, generously provided by Dr. Adam Glick 

(Diamond et al., 2000). 

GFAP-tTA  mice (Lin et al., 2004) were a gift from Dr. Brian Popko at the 

University of Chicago.  TRE-Gli2 mice were generated as described previously (Hutchin 

et al., 2005).  TRE-GLI2* mice were developed by Dr. Marina Grachtchouk in the 

Dlugosz laboratory (Grachtchouk et al., in preparation).  GFAP-Cre (Zhuo et al., 2001) 

and R26-LSL-rtTA (Belteki et al., 2005) mice were purchased from Jackson Labs (Bar 

Harbor, ME).  TRE-lacZ mice were a gift from Dr. Julie Segre at the National Human 

Genome Research Institute of the NIH.  GFAP-tTA mice were crossed with TRE-SmoA1, 

TRE-Gli2, TRE-GLI2* or TRE-lacZ mice to generate double transgenic GFAP-tTA;TRE-

SmoA1 (designated tTA-SmoA1), GFAP-tTA;TRE-Gli2 (designated tTA-Gli2), 

GFAP-tTA;TRE-GLI2* mice (designated tTA-GLI2*) or GFAP-tTA;TRE-lacZ mice 

(designated tTA-lacZ).  To obtain rapidly inducible “Tet-on” mice expressing SmoA1 in 

the developing EGL, triple transgenic mice were obtained using a multi-step breeding 

scheme.  Initially, GFAP-Cre mice were bred with R26-LSL-rtTA mice to obtain double 

transgenic GFAP-Cre;R26-LSL-rtTA progeny.  These offspring were then bred with 

TRE-SmoA1 mice to obtain triple transgenic GFAP-Cre;R26-LSL-rtTA;TRE-SmoA1 

animals (designated rtTA-SmoA1).  Single and double transgenic progeny from these 

crosses were also intercrossed as appropriate to generate additional rtTA-SmoA1 animals.  

See Table 2-1 for summary of transgenic mice. 
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To repress transgene expression in K5-tTA;TRE-SmoA1, tTA-SmoA1 and 

tTA-GLI2* mice, pregnant and nursing dams or weaned animals were fed chow 

containing 1 g/kg or 200 mg/kg doxycycline ad libitum after weaning (BioServ).  To 

activate transgene expression in K5-rtTA;TRE-SmoA1 and rtTA-SmoA1 mice, animals 

were fed chow containing 1 g/kg doxycycline.  K5-rtTA;TRE-SmoA1 animals were 

provided water containing 200 μg/ml doxycycline for the first three days of treatment, 

after which time they were returned to regular water.   

To genotype animals, tail snips were taken between 14 and 21 days old and 

digested overnight using Proteinase K to obtain DNA for genotyping PCR.  K5-tTA, 

K5-rtTA, GFAP-tTA and R26-LSL-rtTA genotypes were ascertained by performing PCR 

with primers specific for the tetracycline transactivator: 5’-ctcgcccagaagctaggtgt-3’ and 

5’- ccatcgcgatgacttagt-3’ (Diamond et al., 2000).  TRE-SmoA1 and TRE-GLI2* 

genotypes were ascertained by performing PCR with primers specific for the SV40 polyA 

sequence: 5’-ggaactgatgaatgggagca-3’ and 5’-gggaggtgtgggaggttt-3’.  Genotyping for 

TRE-Gli2 was performed as previously described (Hutchin et al., 2005)).  Animals were 

genotyped for GFAP-Cre status by PCR using primers specific for Cre recombinase 

(5’-catgcttcatcgtcggtcc-3’ and 5’-gatcatcagctacaccagag-3’), and for TRE-lacZ by using 

PCR primers specific for lacZ (Li et al., 2003) (5’-gctgggatccgccattgtcagacatg-3’ and 

5’-gctggaattccgccgatactgac-3’) .  For some experiments, mice were injected 

intraperitoneally with 100 µg 5-bromo-2-deoxyuridine (BrdU) per gram body weight one 

hour prior to sacrifice. For long-term BrdU treatment, mice were given a loading dose of 

50 μg/gram body weight injected intraperitoneally, and then maintained on drinking 

water containing1.5 mg/ml BrdU for one week. 
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Tissue harvesting, processing and sectioning 

Animals were sacrificed by CO2 narcosis.  For general histology and 

immunohistochemistry, whole brains were removed and fixed overnight in 10% neutral 

buffered formalin, then transferred to 70% EtOH.  For fixation of skin, a 2 cm2 section of 

full-thickness epithelium was blunt dissected away from the underlying tissue and 

stretched, dermis-side down, on nitrocellulose filter paper.  Tissue was then cut into strips 

and fixed in the same manner as brain tissue.  All other post-fixation processing, 

including paraffin embedding, mounting, and initial sectioning and hematoxylin and 

eosin staining was performed by Histoserv, Inc., of Bethesda, MD.  All subsequent 

sections for immunostaining were cut at 5 μm thick, either by Paula Arrowsmith of the 

Unit for Laboratory Animal Medicine at the University of Michigan or by LEM.  Serial 

coronal sections were cut by LEM and James Diener.  Additional tissue from the 

ventrolateral region of tTA-SmoA1 cerebella, the region of greatest tumor burden, was 

collected for RNA analysis by stabilization in RNAlater and RNA extraction using the 

RNEasy kit (Qiagen).  For X-gal staining, animals were sacrificed as above, and brains 

were briefly fixed in 4% PFA at 4° C.  Tissues were then rinsed and treated with X-gal 

staining solution overnight at 37° C.  Following staining, tissues were post-fixed in 10% 

NBF and processed as above, with nuclear fast red staining in place of hematoxylin and 

eosin. 

Immunohistochemistry and in situ hybridization 

For all immunohistochemistry and immunofluorescence, slides were stripped of 

paraffin and rehydrated by passing through xylenes followed by a graded series of 

ethanol washes.  Slides were then subjected to antigen retrieval by boiling in pH 6.0 
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sodium citrate buffer for 10 minutes, followed by cooling on the benchtop for 15 minutes.  

For all non-mouse primary antibodies, blocking was performed for one hour with 10% 

normal goat serum and 2 mg/ml BSA in PBS.  All primary antibodies were applied 

overnight at 4° C.  For immunohistochemistry, species-appropriate biotinylated 

secondary antibody (Vector Labs) was used at 1:200 dilution for 30 minutes, followed by 

treatment with ABC reagent (Vector Labs).  Color was developed using DAB as the 

chromogenic substrate (Sigma-Aldrich).  For immunofluorescence, species-appropriate 

fluorescein- or Texas red-conjugated secondary antibody (Jackson ImmunoResearch) was 

used at 1:75 dilution.  For all mouse primary antibodies, the Mouse on Mouse kit (Vector 

Labs) was used according to manufacturer’s instructions, with the exception of extending 

primary antibody incubation to overnight at 4° C.  Primary antibodies, host species and 

concentrations used include rat α-HA High Affinity, 1:100 (Roche Applied Science, 1 

867 423); rat α-BrdU, 1:100 (Abcam, ab6326); rabbit α-GFAP, 1:200 (Lab 

Vision/NeoMarkers, RB-087-A0); rabbit α-Ki67, 1:2000 (Vector Labs, VP-K451); rabbit 

α-cleaved Caspase-3, 1:500 (Cell Signaling Technologies, #9661); rabbit α-phospho-

histone H3, 1:1000 (Upstate/Millipore, 06-570); rabbit α-GABRA6, 1:2000 (Chemicon, 

AB5610); rabbit α-p27Kip1, 1:100 (LabVision/NeoMarkers, BR-9019-P0); mouse α-NeuN, 

1:200 (Chemicon, MAB377); mouse α-synaptophysin, 1:1000 (Chemicon, MAB5258); 

mouse α-nestin, 1:4 (Developmental Studies Hybridoma Bank, Rat-401); mouse anti-

Myc tag, 1:50 (Developmental Studies Hybridoma Bank, 9E 10). For 

immunohistochemistry, species-appropriate biotinylated secondary antibodies were used, 

followed by use of the ABC avidin-biotin complex kit (Vector Labs) per manufacturer’s 

instructions.  DAB or DAB + Co enhancer (Sigma) was used as the chromogenic 
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substrate, and slides were lightly counterstained with dilute hematoxylin.  For 

immunofluorescence, FITC- or TXRed-conjugated species-specific secondary antibody 

was used, followed by mounting in DAPI-containing aqueous mounting medium (Vector 

Labs.) 

Non-radioactive in situ hybridization for detection of Ptch1, Gli1, and SmoA1 was 

performed essentially as described in detail elsewhere  (Grachtchouk et al., 2003). SmoA1 

was detected using riboprobe specific to the SV40 small t poly(A), as described. 

Real time quantitative rt-PCR 

RNA was prepared from the cerebella of control and tumor-bearing tTA-SmoA1 

and rtTA-SmoA1 mice using the RNEasy kit (Qiagen).  Following treatment with DNAseI 

(Invitrogen), 1 µg of total RNA was reverse transcribed to first strand cDNA with 

SuperScript II reverse transcriptase (Invitrogen).  The RT reaction was performed using 

random hexamer primers in accordance with the manufacturer’s instructions.  

Quantitative real time rt-PCR was performed on a LightCycler 2 (Roche Applied 

Science) using 1/20th of the resulting cDNA per reaction and the following primer sets:  

Actin: 5’-tgttaccaactgggacgaca-3’ and 5’-tctcagctgtggtggtgaag-3’.   

Math1: 5’-tgcgctcactcacaaataag-3’ and 5’-taacaacacaatagtccgtgttc-3’.   

N-myc: 5’-gctgcggtcactagtgtgtc-3’ and 5’-ggagaagcctcgctcttgat-3’.   

Ptch1 (Takabatake et al., 1997): 5’-aacaaaaattcaaaccaaacctc-3’ and 

5’-tgtcttcattccagttgag-3’. 

Ptch2: 5’-ggtaatcctcgtggcctctat-3’ and 5’-ggagacagctccatcagtca-3’. 
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Gli1 (Allen et al., 2003); 5’-gtcggaagtcctattcacgc-3’ and 5’-cagtctgctctcttccctgc-3’.  

CyclinD1 (Berman et al., 2002): 5’-ctctggctctgtgcctttct-3’ and 

5’-ccggagactcagagcaaact-3’.   

CyclinD2 (Berman et al., 2002): 5’-ttcagcaggatgatgaagtga-3’ and 

5’-gagaaggggctagcagatga-3’.   

P-values were calculated using the t-test assuming unequal variances.
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Full name Abbreviation Nature of transgene Location of transgene 
expression 

Activated or 
repressed by 
doxycycline 

Epitope 
tag 

Tumor 
phenotype 

K5-tTA;TRE-SmoA1 none Activated murine 
SmoA1 

Basal layer and hair 
follicles of squamous 

epithelium 
Repressed HA 

Basaloid 
Follicular 

Hamartoma 

K5-rtTA;TRE-
SmoA1 none Activated murine 

SmoA1 

Basal layer and hair 
follicles of squamous 

epithelium 
Activated HA 

Basaloid 
Follicular 

Hamartoma 

GFAP-tTA;TRE-
SmoA1 tTA-SmoA1 Activated murine 

SmoA1 
Scattered EGL cells; stem 
cells of SVZ; mature glia Repressed HA Medulloblastoma 

GFAP-tTA;TRE-Gli2 tTA-Gli2 Full length murine Gli2 Scattered EGL cells; stem 
cells of SVZ; mature glia Repressed n/a None 

GFAP-tTA;TRE-
GLI2* tTA-GLI2* Repressor-deleted 

active human GLI2 
Scattered EGL cells; stem 
cells of SVZ; mature glia Repressed Myc "Progenitoroma" 

GFAP-tTA;TRE-lacZ tTA-lacZ β-galactosidase Scattered EGL cells; stem 
cells of SVZ; mature glia Repressed n/a n/a 

GFAP-Cre;R26-LSL-
rtTA; TRE-SmoA1 rtTA-SmoA1 Activated murine 

SmoA1 

GFAP-positive cells and 
their progeny, includes all 
EGL cells; undetermined 

cells in skin. 

Activated HA Medulloblastoma 
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n/a = not applicable 
 
Table 2-1.  Summary of transgenic mice.

 



 

Results 

Postnatal Epithelial SmoA1 activation induces basaloid follicular hamartoma-like 

lesions 

Unrestricted embryonic epithelial SmoA1 expression caused neonatal lethality 

associated with multiple developmental abnormalities.  To bypass this and examine adult 

epithelial response to SmoA1 expression, expression of SmoA1 was activated postnatally 

by removing K5-tTA;TRE-SmoA1 mice from doxycycline or placing 

K5-rtTA;TRE-SmoA1 mice on doxycycline after birth.  Doxycycline-switch transgene 

activation experiments were performed at postnatal day 7, during the initial round of 

postnatal hair follicle growth, at 4 weeks of age, just prior to the first true postnatal 

anagen cycle, and at 8 weeks old, during the first prolonged telogen.  Similar results were 

seen regardless of whether K5-tTA or K5-rtTA was used to drive SmoA1 expression. 

In all experiments, the first appreciable phenotypic change was the development 

of a greasy appearance, in which the pelage fur clumped together and became matted 

down.  This greasy appearance was initially evident at the most posterior region of the 

dorsal skin, and moved progressively forward.  This initial change was appreciable 

between 8 days and 3 weeks after transgene activation.  Greasy fur was poorly attached to 

the animals, and came away easily with gentle pulling, an observation made following 

sacrifice of affected animals.  Within several weeks of the appearance of the greasy 

phenotype, animals began losing their hair in a posterior to anterior pattern that mirrored 

the initial appearance of the phenotype.  The underlying skin was thickened, scaly and 

hyperpigmented.  In animals which had progressed to the point of significant hair loss, 
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thickening and hyperpigmentation of the ear which bore the identification tag was 

appreciable (Figure 2-1 A).  This phenotype was confined to the tagged ear, suggesting 

an involvement of wound healing response.  In additional to the skin changes, animals 

began to appear cachectic and slow-moving, generally between the time of the 

appearance of the greasy phenotype and the beginning of hair loss.  Affected animals sat 

hunched, moved very little, and appeared to be in significant distress. As such, double 

transgenic animals were terminated within no more than 9 weeks of transgene activation.  

The same phenotype was evident in both K5-tTA;TRE-SmoA1 and K5-rtTA;TRE-SmoA1 

double transgenic animals. 

Histological examination of skin from postnatally activated transgenic mice 

revealed the presence of generalized hyperplasia of the epidermis, consistent with a 

proliferative response of basal keratinocytes to Hh activation.  The affected ears 

contained large collections of densely packed cells (Figure 2-1 B).  Thickening of the 

basal layer of dorsal skin was evident, and follicles had become badly distorted.  Rather 

than the well-ordered follicular structures of control animals, the affected skin bore a 

collection of immature follicle-like structures, some of which had evident remaining hair 

shafts (Figure 2-1 C).  The same phenotype was observed in ventral skin (not shown.)  

The hyperpigmentation seen grossly in the dorsal skin and ears of bitransgenic animals 

can be appreciated histologically as collections of brown melanin evident in hematoxylin 

and eosin-stained sections.  Immunophenotyping of dorsal skin confirmed widespread 

expression of SmoA1 (Figure 2-1 D) and a high level of proliferation in both the distorted 

follicles and the interfollicular epidermis (Figure 2-1 E).  Distorted follicles in adult mice 

ubiquitously expressed K5, indicating a lack of appropriate differentiation (Figure 2-1 F).
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Figure 2-1.  Hair loss and epithelial hyperplasia following post natal SmoA1 activation.  (A) Gross photographs of control animal 
(left) and K5-tTA;TRE-SmoA1 double transgenic animal after 3 weeks of transgene activation (middle), with greasy appearance and 
matted fur evident.  After 6 weeks of transgene activation in a K5-rtTA;TRE-SmoA1 double transgenic mouse, loss of posterior dorsal 
hair and skin hyperpigmentation are evident (right), as is thickening and hyperpigmentation of the ear bearing the identification tag 
(right, inset).  Hyperpigmentation, thickening and scale development were also evident on the ventral skin (not shown).  (B – C) 
Hematoxylin and eosin staining of ear (B) and dorsal skin (C) from control and double transgenic mice after 6 weeks of transgene 
activation.  Basaloid follicular hamartoma (BFH)-like lesions and melanin deposition are appreciable in both sites.  (D – F) 
Immunohistochemical analysis of control and double transgenic skin.  SmoA1 expression is evident throughout both BFHs and 
interfollicular epidermis, but not in control skin (D).  BFHs and interfollicular epidermis are highly proliferative, as measured by Ki67 
expression (E).  As with newborn lesions, BFHs stain uniformly for keratin 5 (F).
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Figure 2-1.  Hair loss and epithelial hyperplasia following post natal SmoA1 activation
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Proximal activation of the Hh pathway using SmoA1 in developing cerebellum 

induces medulloblastoma 

In order to assess the impact of inappropriate activation of the Hh pathway on the 

cerebellum of developing mice, we used the TRE-SmoA1 mouse lines described in 

Chapter 2.  We activated cerebellar expression of SmoA1 by crossing TRE-SmoA1 mice 

with GFAP-tTA mice, which express the tetracycline transactivator under the control of 

the human glial fibrillary acidic protein promoter (Lin et al., 2004) (Fig. 2-2 A).  The 

resulting double transgenic mice express SmoA1 in a doxycycline-repressable manner in 

cells in which the GFAP promoter is active.  For brevity’s sake, double transgenic 

GFAP-tTA;TRE-SmoA1 mice are referred to simply as tTA-SmoA1 (Table 2-1).  At birth, 

tTA-SmoA1 mice were grossly indistinguishable from their control littermates.  

Furthermore, there was no appreciable histological difference between the external 

granular layer (EGL) of P0 control mice and P0 tTA-SmoA1 mice (Fig. 2-2 B, C).  Small 

distortions and expansions of the EGL were evident in some animals by P7, however, and 

100% (80/80) of animals examined at P14 or later harbored significant tumor burden 

(discussed below, see Fig. 2-7).  By P21, the tumor burden was quite large, and often 

extended along the entire anterior-posterior length of the cerebellum, whereas genotype 

control animals or animals maintained on doxycycline from conception to harvest did not 

develop tumors (Fig. 2-2 D, E, data not shown).  Tumors arose on the external surface of 

the molecular layer, a region which, by P21, is normally devoid of tissue other than the 

leptomeninges and vasculature.  If left untreated, tTA-SmoA1 mice developed very large 

tumor burden, resulting in development of hydrocephalus, which was appreciable grossly 

51 



in late stage animals as doming of the skull (Fig. 2-3).  Mice also developed marked 

ataxia, and became generally non-responsive.  Mice rarely survived past 7 weeks without 

displaying obvious signs of tumor burden, and by 10 – 12 weeks old, mice were 

extremely ill.  The longest an untreated tTA-SmoA1 mouse survived was 16 weeks.   

tTA-SmoA1 medulloblastomas are highly proliferative and display dysregulated 

differentiation  

Immunohistochemical analysis of tumors using an anti-HA antibody revealed 

extensive expression of the transgene throughout the tumor, but not in tissue from control 

mice (Fig. 2-2 F, G).  The medulloblastomas were highly proliferative, as nearly every 

cell within the tumors stained for the proliferation marker Ki67, while control IGL was 

largely quiescent (Fig. 2-2 H, I).  The tumors displayed a moderate baseline level of 

apoptosis, consistent with results seen in other medulloblastoma models as well as human 

medulloblastomas (Fig. 2-2 J, K) (Schiffer et al., 1995, Kim et al., 2003).  Despite the 

high proliferative status of the tumors, many cells also expressed NeuN, a marker for 

mature, post-mitotic cerebellar granule neurons of the IGL and inner EGL (Fig. 2-2 L, M) 

(Kim et al., 2003), and scattered expression of the neuronal marker synaptophysin was 

appreciable, as well (Fig. 2-2 N, O).  The tumors did not express gamma-aminobutyric 

acid receptor, subunit alpha 6 (GABRA6), an inhibitory neurotransmitter receptor 

broadly expressed by mature IGL neurons (Fig. 2-2 P, Q).   
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Figure 2-2.  100% of double transgenic tTA-SmoA1 mice develop medulloblastomas.  
(A) Breeding scheme demonstrating crossing of GFAP-tTA and TRE-SmoA1 mice to 
generate GFAP-tTA;TRE-SmoA1 (tTA-SmoA1) bitransgenic mice.  (B, C) Hematoxylin 
and eosin stained sagittal sections of newborn control and tTA-SmoA1 cerebella 
demonstrating no appreciable histological differences in the EGL.  (D, E) Hematoxylin 
and eosin stained coronal sections of cerebella from 21 day old tTA-SmoA1 mice with (D) 
or without (E) continuous doxycycline treatment.  Large tumor burden can be appreciated 
in E.  Insets show low magnification.  (F – Q) Immunohistochemical analysis of tumors 
(F, H, J, L, N, P) or genotype control IGL (G, I, K, M, O, Q) for SmoA1, detected by 
means of the HA epitope tag (F, G), Ki67 (H, I), cleaved caspase 3 (J, K), NeuN (L, M), 
synaptophysin (N, O) and GABRA6 (P, Q). 
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Figure 2-2.  100% of double transgenic 
tTA-SmoA1 mice develop medulloblastomas 
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Figure 2-3.  Medulloblastomas cause cranial doming and hydrocephalus.  Effects of 
tumor burden can be appreciated grossly in an 8-week old tTA-SmoA1 mouse as 
significant doming of the skull, secondary to hydrocephalus.  Hydrocephalus can be 
appreciated as distortion of the lateral ventricles, visible on T2-weighted MRI (asterisks).
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tTA-SmoA1 medulloblastomas express Hh pathway targets and key cell cycle 

regulators 

Comparison of hematoxylin and eosin-staining (Fig. 2-4 A) and in situ 

hybridization of neighboring sections demonstrated expression of SmoA1 (Fig. 2-4 B) and 

activation of the Hh pathway in tumors, as measured by expression of Gli1 and Ptch1 

(Fig. 2-4 C, D).  We also examined pathway and target gene expression in 5 wild type 

adult control cerebella and 5 tumor-bearing cerebella by quantitative, real time RT-PCR.  

Both Gli1 and Ptch2, markers for Hh pathway activation, were significantly upregulated 

in tumor-bearing cerebella (Fig. 2-5 A, C).  Surprisingly in light of the in situ 

hybridization data, Ptch1 levels were not significantly different between control 

cerebellum and SmoA1-induced medulloblastomas when measured by qPCR (Fig. 2-5 B). 

All other measures of Hh pathway activation in tumors however, both by in situ 

hybridization and qPCR, indicated a strong upregulation of pathway activity, perhaps 

suggesting a problem with the Ptch1 primers or reaction conditions.  N-myc, a key 

downstream target of the Hh pathway in normal cerebellar development and 

medulloblastoma development (Hatton et al., 2006), was upregulated 17-fold in 

medulloblastomas (Fig. 2-5 D).  CyclinD1 was upregulated 11-fold and CyclinD2 was 

upregulated 24-fold  (Fig. 2-5 E, F).  Both CyclinD1 and CyclinD2 are hedgehog target 

genes, and CyclinD1 has recently been identified as a critical factor in both normal 

cerebellar development and the formation of medulloblastoma (Pogoriler et al., 2006).  

Additionally, Math1, a marker for immature, proliferating granule cell precursors (Helms 

et al., 1998), was overexpressed approximately 550-fold in tumors (Fig. 2-5 G).  

Expression of Math1 is consistent with previous reports of Math1 in pre-neoplastic 
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lesions and medulloblastomas in the Ptch+/-
 mouse model (Oliver et al., 2005) as well as 

in human disease (Ueba et al., 2008).    
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Figure 2-4.  Expression of SmoA1 and Hh pathway activation in tumors.  (A) 
Hematoxylin and eosin staining of a parasagittal cerebellar section  from a 7 week old 
tTA-SmoA1 mouse.  Tumor burden (T) is clearly appreciable external to the molecular 
layer (ML).  The internal granular layer (IGL) is also visible.  (B – D) In situ 
hybridization demonstrating expression of SmoA1 (B) and activation of the Hh pathway 
in medulloblastoma, indicated by expression of the Hh target genes Gli1 (C) and Ptch1 
(D).
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Figure 2-5.  qPCR demonstrates activation of Hh target genes in tumors.  (A – G) 
Quantitative real-time RT-PCR using mRNA isolated from 21 day old genotype control 
or tumor-bearing tTA-SmoA1 cerebellum.  Significant overexpression in tumors was 
detected for Gli1, P=0.0073 (A); Ptch2, P=0.028 (C); N-Myc, P=0.012 (D); Cyclin D1, 
P=0.0026 (E); Cyclin D2, P=0.00064 (F); and Math1, P=0.0097 (G).  Ptch1 expression in 
tumors was not detectably different from control cerebellum (B).  Error bars represent 
standard error of the mean and * indicates a significant difference from control 
cerebellum.  N=5 individual samples for each group.
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Figure 2-5.  qPCR demonstrates 
activation of Hh target genes in tumors
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Cells within tumors retain the ability to differentiate into postmitotic neurons 

In addition to the gross tumor burden in tTA-SmoA1 animals, we also observed 

ectopic clusters of nuclei within the molecular layer, beneath the tumor mass (Fig. 2-6 A 

– D).  Similar populations of cells are seen adjacent to human tumors and in other mouse 

models of medulloblastoma.  The nuclei in these ectopic foci appeared very similar 

histologically to post-mitotic IGL neurons, albeit inappropriately located in the molecular 

layer.  These foci were never appreciated in control cerebella.  Due to their proximity to 

the tumors and their IGL neuron-like appearance, we hypothesized that these rests 

comprised cells that originated within the tumors, recapitulating at least part of the 

behavior of physiologic EGL-derived neurons.  The cells within the rests were non-

proliferative, as they were negative for Ki67 (Fig. 2-6 B) and did not incorporate BrdU 

when injected intraperitoneally one hour prior to sacrifice (Fig. 2-6 G).  In addition to 

their nuclear morphology, these cells resembled normal cerebellar IGL with respect to 

lineage marker expression.  Cells within the clusters expressed p27 (Fig. 2-6 C) and 

GABRA6 (Fig. 2-6 D), both markers of mature, post-mitotic cerebellar granule neurons 

(Kato, 1990, Miyazawa et al., 2000). 

In addition to p27 and GABRA6, cells within the clusters also strongly expressed 

the post-mitotic neuronal marker NeuN (Fig. 2-6 E, F).  As expected, NeuN-positive cells 

in the ML were non-proliferative, as no NeuN and BrdU co-labeled cells were detected 

when BrdU was injected intraperitoneally 1 hour prior to sacrifice (Fig. 2-6 H, upper 

timeline in Fig. 2-6 M).  We also placed tumor-bearing animals on BrdU-containing 

water for one week prior to tissue harvest in order to track the behavior of proliferating 

cells (lower timeline in Fig. 2-6 M).  Co-staining cerebella from long-term BrdU-treated 

61 



mice revealed the presence of numerous cells within the post-mitotic rests which both 

expressed NeuN and had incorporated BrdU at some point during the week of treatment. 

(arrows in Fig. 2-6 I – L).  As indicated by the short-term BrdU labeling and Ki67 

immunostaining experiments, essentially the only proliferative cells in the outer cerebella 

of the tumor bearing animals were within the body of the tumors; cells in the ectopic rests 

within the ML were non-proliferative.  Therefore, these post-mitotic, NeuN- and BrdU-

positive neuronal cells within the ML must have arisen from within the tumors.  This 

suggests that some cells within tumors retain the ability to withdraw from the cell cycle, 

turn on expression of normal IGL neuronal markers, and migrate into the molecular layer.  

However, we cannot formally exclude the possibility that the cells within the rests are 

dividing very slowly and therefore do not incorporate BrdU during the short-term 

injection studies, although lack of Ki67 (Fig. 2-6 B) and NeuN positivity (not shown) in 

these cells argue that this is not the case.
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Figure 2-6.  Cells within medulloblastomas can differentiate into post-mitotic 
neurons.  (A) Hematoxylin and eosin stain of ectopic cell cluster within outer ML, 
underneath tumor burden.  (B) Immunohistochemical staining of ectopic cell clusters for  
Ki67, demonstrating a lack of proliferation in these cells.  (C, D)  Expression of the 
mature neuronal markers p27 (C) and GABRA6 (D) were detected in ectopic clusters.  
Dotted black lines in A – D indicate outer edge of ML.  (E – L) Co-immunofluorescence 
for NeuN and BrdU in tumor-bearing mice injected with BrdU one hour before harvest (E 
– H) or maintained on continuous BrdU treatment for one week prior to harvest (I – L).  
Panels show nuclear DAPI (E, I), NeuN (F, J) or BrdU (G, K) alone or co-staining for 
BrdU and NeuN (H, L). Arrows in I – L indicate some of the visible co-labeled cells.  
Dotted yellow lines in E – L indicate outer edge of ML.  (M) Timeline of BrdU 
treatments prior to harvest.
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SmoA1-induced medulloblastomas arise from the EGL 

It has been hypothesized that medulloblastomas, particularly those driven by 

inappropriate Hh signaling, often arise from the cerebellar granule neuron precursors of 

the immature external granular layer (Eberhart, 2007), and the location of tumors in 21-

day old and older tTA-SmoA1 mice is consistent with development from the EGL.  We 

used several approaches to provide additional evidence that this population serves as the 

cell of origin for SmoA1-induced medulloblastomas.  We crossed GFAP-tTA mice with 

TRE-lacZ mice, in which expression of β-galactosidase is induced by tTA.  We sacrificed 

the resulting tTA-lacZ pups from this cross at two days old, and stained brain tissue with 

X-gal to determine the location of tTA expression in the young cerebellum.  In addition 

to the expected staining in cells scattered throughout the underlying tissue, single X-gal 

stained cells or small clusters of cells were also present in the very young EGL (Fig. 2-7 

A, B).  By postnatal day 7 (P7), the EGL of tTA-SmoA1 mice contained small clusters of 

SmoA1-expressing cells, which were often associated with minor distortion of the 

otherwise smooth outer edge of the ML (Fig. 2-7 C, D).  By 14 days old, tumors with 

robust SmoA1 expression were evident in all tTA-SmoA1 mice.  These tumors were 

contiguous with the EGL, which persisted at this age both in control and in tTA-SmoA1 

mice (Fig. 2-7 E, F).  Regions of tTA-SmoA1 EGL expressing no detectable SmoA1 were 

histologically indistinguishable from age-matched control EGL (Fig. 2-7 F, inset). 

To further support the hypothesis that the EGL serves as the progenitor cell 

population for Hh-driven medulloblastomas, we took advantage of the conditional nature 

of our TRE-SmoA1 mice.  We maintained tTA-SmoA1-producing breeding pairs and 

nursing dams on doxycycline chow, inhibiting transgene expression.  Pups were weaned 
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onto doxycycline-free chow, resulting in SmoA1 expression after the complete 

disappearance of the EGL.  No tumor development was detected in 13 tTA-SmoA1 mice 

removed from doxycycline between three and six weeks after birth and sacrificed 

between 12 and 16 months old (Fig. 2-7 G and data not shown).  Likewise, no tumors 

were detected in four tTA-SmoA1 mice removed from doxycycline treatment between 

E16 – 18 and P1 and sacrificed at 7.5 or 9 months (Fig. 2-7 G and data not shown).  

Expression of SmoA1 was confirmed in confirmed postnatally-activated mice by 

immunostaining. 

In order to more precisely regulate the time point at which SmoA1 expression 

commences, we also employed our TRE-SmoA1 mice in a tetracycline-induced, “Tet-on” 

rtTA model.  To obtain GFAP-driven rtTA expression, we employed GFAP-Cre mice, in 

which expression of Cre recombinase is driven by the human GFAP promoter (Zhuo et 

al., 2001).  We crossed GFAP-Cre mice with R26-LSL-rtTA mice (Belteki et al., 2005).  

In R26-LSL-rtTA mice, a loxP-flanked strong stop sequence and the reverse tetracycline 

transactivator are knocked into the ubiquitously active ROSA26 locus.  In the absence of 

Cre recombinase activity, no rtTA is transcribed.  Following Cre recombinase-mediated 

excision of the stop sequence, rtTA is expressed in the recombined cell and all of its 

progeny from the ubiquitously active ROSA26 locus.  We crossed double transgenic 

GFAP-Cre;R26-LSL-rtTA progeny with TRE-SmoA1HA mice to obtain triple transgenic 

GFAP-Cre;R26-LSL-rtTA;TRE-SmoA1HA mice (Fig. 2-8 A).  For brevity’s sake, these 

triple transgenic mice will hereinafter be referred to as rtTA-SmoA1. 

To induce SmoA1 expression, we maintained rtTA-SmoA1 breeding cages on 

doxycycline-containing chow continuously, and maintained weaned mice on 
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doxycycline-containing chow until harvest.  Mice were harvested for histological analysis 

at P7 (N=3), P14 (N=2), P21 (N=4) or between 4 and 8 weeks old (N=6) (timeline for all 

doxycycline treatment regimens and sacrifices can be seen in Fig. 2-8 B).  While animals 

positive for zero, one or two of the transgenes did not develop tumors (Fig. 2-8 C), triple 

transgenic rtTA-SmoA1 mice developed significant medulloblastoma burden (Fig. 2-8 D).  

Tumor penetrance was 100% in animals examined at P14 or later (12/12).  By 8 weeks of 

age, animals were slow-moving and lethargic prior to euthanasia.  Continuous activation 

of SmoA1 expression also led to a developmental defect in the cerebellum, resulting in 

abnormal foliation and a disordered IGL and Purkinje layer in young adult animals (Fig. 

2-8 D), but no other obvious developmental defects. 

To define the developmental window for medulloblastoma susceptibility, we fed 

breeding pairs normal, doxycycline-free chow during gestation, beginning doxycycline 

treatment either 4 or 7 days after the birth of litters, when the EGL is still actively 

proliferating.  Histological examination revealed that activation of SmoA1 expression at 

either P4 (Fig. 2-8 E) or P7 (not shown) induced medulloblastoma formation by P21, 

with relative normalization of cerebellar foliation and IGL and Purkinje layer 

organization.  To examine the consequences of activating SmoA1 expression after the 

disappearance of the EGL, we weaned rtTA-SmoA1 mice from normal chow to 

doxycycline-containing chow at P21.  These mice were sacrificed 3 weeks (N=3), 16 

weeks (N=3) or 31 weeks (N=1) after weaning to doxycycline chow.  At the time of this 

writing, 3 additional mice are approximately one year old, and will be sacrificed after 52 

weeks of transgene activation.  In stark contrast to animals in which transgene expression 

was activated at P7 or earlier, no tumor development was evident in any animal activated 
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at weaning, and cerebella were grossly indistinguishable from controls (Fig. 2-8 F).  

These data indicate that activation of the Hh pathway in cerebellum by SmoA1 is capable 

of driving tumorigenesis only in the first few weeks of life, during the developmental 

period in which the CGNPs of the EGL are still present and proliferating. 
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Figure 2-7.  Early GFAP-tTA mediated transgene activation and SmoA1-driven 
distortion of the EGL.  X-gal staining of cerebella from 2 day old control (A) and 
double transgenic GFAP-tTA;TRE-lacZ (B) mice revealed activation of few cells 
scattered throughout the EGL (arrow).  (C – F) Immunohistochemical detection of HA-
tagged SmoA1.  No staining was evident in P7 (C) or P14 control mice (E).  Small, 
scattered clusters of SmoA1-positive EGL cells were evident at P7 (D, arrow), and by 
P14, developed into early tumors contiguous with the remaining EGL (F).  Inset in F 
shows a region from the EGL of the same cerebellum, demonstrating that regions which 
did not express transgene were indistinguishable from control EGL.  (G) Timeline for 
doxycycline treatment and tumor development in tTA-SmoA1 mice.
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Figure 2-8.  Breeding scheme and tumor development in rtTA-SmoA1 mice.  (A) 
Initial two step breeding scheme to generate triple transgenic rtTA-SmoA1 mice.  (B) 
Timeline indicating doxycycline treatment regimens and tumor development.  (C – F) 
Low magnification of coronal cerebellar sections from genotype control and rtTA-SmoA1 
mice. No tumors were evident in genotype control mice (C).  Both significant tumor 
development and disruption of the normal cerebellar architecture were evident in P21 
rtTA-SmoA1 mice on continuous doxycycline treatment (D).  Both early tumor 
development and relative normalization of the cerebellar architecture were evident at P21 
when doxycycline treatment was begun at P4 (E).  No tumors developed when rtTA-
SmoA1 animals were placed on doxycycline at P21 (F).
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Expression of repressor-deleted GLI2* in CNS, but not SmoA1 or full-length Gli2, 

induces formation of widespread undifferentiated tumors 

To assess the potential for GFAP-tTA driven SmoA1 to induce tumorigenesis 

outside of the developing cerebellum, we examined the forebrains of medulloblastoma-

bearing tTA-SmoA1 mice.  These mice exhibited no appreciable histologic abnormalities 

in the forebrain other than the development of hydrocephalus, and were indistinguishable 

from genotype control forebrain (Fig. 2-9 A, B).  Immunostaining for the HA tag 

demonstrated expression of SmoA1 in cells within the SVZ, a niche for Sonic hedgehog-

responsive adult neural stem cells (Ahn et al., 2005, Palma et al., 2005).  However, 

SmoA1 was detected not only in the SVZ, but also in cells, presumably glia, scattered 

throughout the brain (Fig. 2-9 C).  Strikingly, despite the broad expression of SmoA1, 

activation of the Hh pathway, as indicated by expression of Gli1 and Ptch1, was 

essentially confined to the cells of the SVZ (Fig. 2-9 D, E).  These results suggest that 

‘inappropriate’ activation of Hh signaling by SmoA1 is blocked in glial cells, rendering 

them unresponsive to this potent oncogene when expressed in the cerebellar EGL. 

In order to examine whether downstream activation of the Hh pathway at the level 

of the Gli transcription factors could bypass the apparent lack of response to SmoA1 in 

glial cells, we employed the TRE-Gli2 (Hutchin et al., 2005) and TRE-GLI2* mouse 

models previously developed in our lab.  We activated expression of exogenous full-

length Gli2 or Myc-tagged, repressor domain-deleted GLI2* in the central nervous 

system by crossing GFAP-tTA mice with TRE-Gli2 or TRE-GLI2* mice. The resulting 

double transgenic mice were designated tTA-Gli2 and tTA-GLI2*, respectively (Table 2-

1).   
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Double transgenic tTA-Gli2 mice did not exhibit any obvious morphological or 

behavioral phenotype.  We sacrificed tTA-Gli2 mice and examined them histologically at 

5.5 weeks (N=1), 22 weeks (N=1), 52 weeks (N=6) and 60 weeks of age (N=2).  

Contrary to our results with tTA-SmoA1 mice, tTA-Gli2 mice failed to develop any 

tumors, and were histologically indistinguishable from their control littermates (not 

shown).  These findings suggest that, despite high-level expression of Gli2 in several 

mouse models of medulloblastoma (Hallahan et al., 2004, Dakubo et al., 2006, Sasai et 

al., 2007), overexpression of this transcription factor is not sufficient to drive 

medulloblastoma development.  This is in contrast to the formation of multiple BCCs in 

skin engineered to overexpress Gli2 (Grachtchouk et al., 2000, Hutchin et al., 2005). 

Conversely, 9/9 newborn tTA-GLI2* mice, derived from two independent 

TRE-GLI2* lines, developed large undifferentiated masses of proliferating cells in their 

forebrains, and were unable to survive past birth.  The lesions in these mice appeared to 

be gross expansions of undifferentiated cells surrounding the lateral ventricles (Fig. 2-10 

A).  The masses, which expressed high levels of GLI2* (Fig. 2-10 B) and were highly 

proliferative (Fig. 2-8 C), were also positive for the stem and progenitor cell marker 

nestin, suggesting a preservation of progenitor-like phenotype (Fig. 2-10 D).  They were 

also negative for the neuronal markers NeuN and TuJ1 (Fig. 2-10 E, F), reflecting their 

undifferentiated status.  The striking phenotype seen in these mice is in keeping with the 

potent transcriptional activity of GLI2*, an ‘activated’ form of GLI2 which is missing the 

amino-terminal repressor domain (Roessler et al., 2005). 

To examine the consequences of GLI2* activation in the adult forebrain, we 

maintained breeding cages on doxycycline chow to repress transgene expression until 
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after birth.  We activated transgene expression by returning animals to regular, 

doxycycline-free chow at P2 (N=2), P21 (N=4), 1 month old (N=1) or 6 weeks old (N=7).  

9 animals were sacrificed for histological examination when they began to exhibit 

abnormal behavior such as slow movement, general unresponsiveness or seizures.  

Abnormal behavior was appreciated between 6 and 14 weeks after transgene activation, 

and had a sudden onset, as animals subsequently deteriorated rapidly over the span of 

several days.  5 animals died spontaneously between 8 and 16 weeks old, and were not 

recovered for histological analysis. 

Histological examination of postnatally activated tTA-GLI2* mice revealed the 

presence of many small tumors scattered throughout both the cerebrum (Fig. 2-11 A top, 

B) and the cerebellum (Fig. 2-11 A bottom).  The number of these small, fairly well-

circumscribed tumors generally increased with greater time of transgene activation.  In 

animals harboring very large tumor burden, adjacent small tumors coalesced into larger, 

confluent lesions, and minor dilation of the lateral ventricles was evident.  Tumor cells 

expressed GLI2*, and the lesions were highly proliferative with little evidence of 

apoptosis (Fig. 2-11 C, D, E).  Tumors appeared to represent collections of 

undifferentiated cells, as they were largely negative for the differentiation markers NeuN, 

synaptophysin, TuJ1 and GFAP (Fig. 2-11 F, G, H, I), and were positive for the neural 

stem and progenitor cell markers nestin, Sox2 and Sox3 (Fig. 2-11 J, K, L).  

Development of these numerous undifferentiated tumors from mature glia, but not of 

SVZ-derived gliomas, in response to GLI2* expression suggests that high level, distal 

activation of the Hh pathway is sufficient to induce de-differentiation of mature glia and 

their proliferative expansion, but not for gliomagenesis.
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Figure 2-9. SmoA1 does not induce tumorigenesis or widespread activation of the Hh pathway in forebrain. (A, B) Hematoxylin 
and eosin staining of control (A) and a 6.5 week old tTA-SmoA1 mouse with a large medulloblastoma, but no appreciable tumor 
development in the forebrain.  (C) Immunohistochemical staining for the HA tag demonstrated broadly scattered SmoA1 expression 
throughout the forebrain.  In situ hybridization for Gli1 (D) and Ptch1 (E) in nearby sections revealed that Hh pathway activation was 
essentially restricted to the SVZ (arrows), a region where the endogenous Hh pathway is normally activated.

 



 

 
 
Figure 2-10. Newborn tTA-GLI2* mice harbor large, undifferentiated forebrain 
tumors.  (A) Low-power hematoxylin and eosin staining of newborn control and 
tTA-GLI2* mice.  Arrows indicate large bilateral forebrain masses in a representative 
tTA-GLI2* mouse and boxes indicate approximate regions of higher-power images.  (B –  
F) Immunohistochemical analysis of newborn lesions revealed poorly-differentiated, 
progenitor-like phenotype.  Arrowheads indicate control SVZ.  (B) GLI2*, detected by 
staining for the transgenic Myc tag, was broadly expressed in lesions, which were highly 
proliferative (C), as was control SVZ.  Many cells in both tumors and control SVZ were 
positive for the stem and progenitor marker nestin (D).  Some cells within tumors 
expressed low levels of the neural markers NeuN (E) and TuJ1 (F), but the majority of 
the cells did not express terminal differentiation markers.
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Figure 2-11.  Postnatally activated tTA-GLI2* mice develop many undifferentiated 
brain tumors.  (A) Hematoxylin and eosin stained section of a 12 week old tTA-GLI2* 
mouse, showing the development of many tumors throughout both the forebrain (top) and 
cerebellum (bottom).  Original magnification in A was 2.5X.  (B) Higher power image of 
a representative lesion.  Original magnification in B – L was 40X.  (C – L) 
Immunohistochemical staining revealed proliferative, undifferentiated, progenitor-like 
nature of tTA-GLI2* tumors.  Myc tag staining demonstrated GLI2* expression in the 
majority of cells within tumors (C).  Tumors expressed the proliferation marker Ki67 (D), 
but not TUNEL positive (E), indicating an absence of apoptosis.  As with newborn 
tumors, some cells within the lesions expressed low levels of NeuN (F).  Tumors were 
negative for the differentiation markers synaptophysin (G), TuJ-1 (H) and GFAP (I).  
Scattered cells within the tumors expressed nestin (J), and nearly every cell expressed 
Sox2 (K) and Sox3 (L).
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Figure 2-11.  Postnatally activated tTA-GLI2* mice developed many 
undifferentiated brain tumors 
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Discussion 

In this chapter, I have described a novel inducible model for dysregulated Hh 

signaling in multiple tissues, driven by the constitutively active Smo allele SmoA1.  

Epithelial activation of SmoA1 expression in K5-tTA;TRE-SmoA1 mice induced 

development of benign follicular hamartoma-like lesions very similar to the tumors 

induced by M2SMO, the human ortholog of SmoA1 (Grachtchouk et al., 2003).  This 

outcome is consistent with previous observations that murine skin is resistant to BCC 

development secondary to upstream Hh pathway activation (Dlugosz et al., 2002).  

Conversely, SmoA1 expression in the cerebella of double transgenic tTA-SmoA1 mice 

and triple transgenic rtTA-SmoA1 mice caused development of robust medulloblastomas 

with 100% penetrance early in life.  This represents a powerful new tool in the study of 

Hh-driven medulloblastoma initiation, progression, and maintenance (see Chapter 3).  

Because p53 mutations and MDM2 amplification are rare in human medulloblastoma 

(Saylors et al., 1991, Adesina et al., 1994), by specifically activating the Hh pathway 

while leaving the function of the tumor suppressor p53 intact, this system represents a 

genetically faithful model of human medulloblastoma, with the caveat that it is based on 

overexpression of a transgene.  Furthermore, while demonstrable mutations in 

components of the HH pathway are evident in roughly 25% of human medulloblastomas 

(Wetmore, 2003, Marino, 2005), there is mounting evidence that the Hh pathway is 

activated across a larger subset of human medulloblastomas.  I have used the conditional 

SmoA1 mouse model to address several key questions in medulloblastoma biology 

related to developmental window for tumor susceptibility, cell of origin, and sufficiency 

of proximal vs. distal Hh pathway activation to induce tumor formation.  
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Multiple independent studies have reported activation of Hh target genes in up to 

60% of human medulloblastomas (Hallahan et al., 2004, Leung et al., 2004).  A possible 

explanation for this phenomenon may come from the observation that up to 50% of 

medulloblastomas harbor a loss of the short arm of chromosome 17 (reviewed in (Gulino 

et al., 2007)).  RENKCTD11, a functional repressor of the HH pathway, maps to 

chromosome 17p (Di Marcotullio et al., 2004), suggesting that loss of this region may 

lead to unrestrained HH signaling in a large fraction of medulloblastomas.  Additionally, 

several mouse models generated by activating disparate pathways result in 

medulloblastomas with Hh pathway activation; both IFN-γ driven medulloblastomas (Lin 

et al., 2004) and tumors arising following Cxcr6 inactivating mutation (Sasai et al., 2007) 

display an increase in Hh signaling. 

Morphological and biochemical features of medulloblastomas which developed in 

tTA-SmoA1 mice resembled both human medulloblastomas and tumors arising in 

previously established mouse models. Tumors were highly proliferative, and displayed a 

moderate baseline level of apoptosis.  Expression of typical medulloblastoma markers 

such as NeuN, synaptophysin, Math1, N-Myc, and Cyclin D1 and D2 was evident in 

tumors from our models.  Likewise, Hh pathway activity in medulloblastomas was 

confirmed by in situ hybridization and quantitative real-time RT-PCR.  Additional 

characterization of rtTA-SmoA1 medulloblastomas will be described in Chapter 4. 

During the course of our studies, we observed ectopic foci of cells within the 

outer regions of the ML of tTA-SmoA1 mice, just deep to tumor burden.  The ML is 

normally sparsely populated with the nuclei of basket and stellate cells (Voogd et al., 

1998), and should never harbor clusters of nuclei.  These rests of cells were non-

78 



 

proliferative, and they were both morphologically and biochemically similar to normal 

cerebellar neurons.  Due to their location and biochemical properties, we hypothesized 

that these cells arise from within the tumor mass.  By long-term labeling with BrdU, we 

were able to confirm that post-mitotic cells within these rests arise from proliferating 

cells in the tumor mass.  This indicates that a subset of cells within tumors retain the 

ability to become non-responsive to the Hh signal, become post-mitotic, express neural 

differentiation markers, and migrate into the ML, behavior which partially recapitulates 

that of normal CNGPs, arguing that these cells serve as the cell of origin for the 

medulloblastomas described herein.  However, we cannot formally exclude the 

possibility that the cells in question are normal CGNPs which have been trapped within 

tumors and continue to proliferate.  NeuN-positive clusters of cells in the ML have been 

reported in other murine medulloblastoma models (Uziel et al., 2005, Hatton et al., 2008), 

and ectopic rests of cells have been seen within the ML deep to human medulloblastomas 

(Franks, 1988, Kleihues et al., 1997), although it is unclear how closely these cells 

resemble those observed in our model. 

To more definitively address the question of medulloblastoma cell of origin, we 

took advantage of the doxycycline-regulated nature of our model to perform timed tumor 

induction studies.  When transgene expression was unimpeded, all tTA-SmoA1 and 

rtTA-SmoA1 mice developed medulloblastomas.  Examination of P2 tTA-lacZ and P7 and 

P14 tTA-SmoA1 mice revealed activation of lacZ in individual cells in the EGL of P2 

mice, followed by small clusters of SmoA1-expressing cells at P7, and presence of 

tumors contiguous with EGL at P14.  Regions of P14 EGL not expressing SmoA1 were 

histologically indistinguishable from control EGL.  Activation of SmoA1 expression as 
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late as P7, when the external granular layer is still actively proliferating, resulted in 

formation of tumors in rtTA-SmoA1 animals.  However, activation of transgene at 

weaning, by which point the EGL had completely disappeared, failed to lead to tumor 

development in either tTA-SmoA1 or rtTA-SmoA1 animals.  These data, together with the 

presence of the ML-bound neuronal rests and lineage marker studies described above, 

strongly argue that the transient, Shh-dependent CNGPs of the EGL serve as a cell of 

origin for medulloblastomas.  However, it should be noted that this study does not rule 

out additional pools of medulloblastoma precursors in human disease, particularly for 

non-HH driven tumors. 

Prenatal activation of transgene in rtTA-SmoA1 animals resulted not only in 

development of medulloblastoma, but also in distortion of normal cerebellar architecture 

(See Fig. 2-8 D).  A possible explanation for the altered cerebellar morphology seen in 

these mice comes from a recent study indicating that high level Hh signaling in neural 

stem cells leads to G2/M cell cycle arrest and apoptosis, as opposed to an increase in 

proliferation of committed CGNPs (Galvin et al., 2008).  Because the entirety of the 

cerebellar anlage has undergone Cre-mediated recombination at birth (Zhuo et al., 2001), 

is it likely that the GFAP promoter is active in the early progenitor cells of the rhombic 

lip, which give rise to the CGNPs of the EGL.  In the rtTA-SmoA1 model, this may lead 

to high level Hh pathway activation and an increased risk for apoptosis or G2/M arrest in 

all precursor cells for the EGL, resulting in the smaller EGL and distorted cerebella seen 

in these mice.  However, initiation of doxycycline treatment at P4 or P7 led both to tumor 

development and to a normalization of cerebellar architecture (See Fig. 2-8 E).  Postnatal 

activation of transgene expression presumably allows for normal initiation of cerebellar 
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development analogous to that seen in tTA-SmoA1 mice in which relatively few cells in 

the early EGL activate transgene expression (see Figure 2-7). 

We next examined the consequences of activating the Hh pathway in the forebrain, 

both proximally with SmoA1, and distally at the level of the Gli2 transcription factor.  To 

do this, we made use of the TRE-Gli2 and TRE-GLI2* mouse lines previously developed 

in our lab.  When Gli2 expression is driven by the keratin 5 promoter in the basal layer of 

the epithelium, the resulting K5-tTA;TRE-Gli2 mice develop basal cell carcinomas with 

100% penetrance by 6 months after birth (Hutchin et al., 2005), and 

MMTV-tTA;TRE-GLI2* mice develop tumors in multiple sites (manuscript in 

preparation).  When we crossed GFAP-tTA mice with TRE-Gli2 mice, we were somewhat 

surprised to discover that the resulting bitransgenic offspring failed to develop any 

tumors.  This suggests that the wild-type Gli2 transgene, which contains both the 

transcriptional activator and repressor domains (Roessler et al., 2005), may not activate 

the Hh pathway strongly enough during the critical window of medulloblastoma 

susceptibility, as discussed above.  The observation that full length Gli2 displays weaker 

oncogenic activity than Gli1 supports this idea (Sheng et al., 2002).  The necessity and 

sufficiency of Gli protein expression for medulloblastoma development is still an open 

question.  Conflicting reports indicate that Gli1 either is (Kimura et al., 2005) or is not 

important for development of medulloblastomas driven by Hh activation (Weiner et al., 

2002). 

However, when we crossed GFAP-tTA mice with TRE-GLI2* mice, the resulting 

double transgenic tTA-GLI2* pups did not survive past birth and harbored large, 

undifferentiated forebrain tumors.  By activating GLI2* after weaning, we were able to 
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bypass the perinatal lethality and observe the effects of unimpeded distal activation of the 

Hh pathway in mature, fully developed brains.  These animals developed large numbers 

of small, well-circumscribed, proliferative, undifferentiated tumors.  The tumors arose in 

widely scattered regions throughout both the forebrain and the hindbrain.  This suggests 

that, rather than originating from the GFAP-positive adult stem cells within the 

subventricular or subgranular zones, these lesions instead appeared to arise from mature, 

GFAP-positive glia scattered throughout the CNS.  Although it is possible that GLI2* 

expression in glia induced a tumorigenic response in neighboring cells, this scenario 

seems unlikely, both because GLI2* induces a cell-autonomous activation of the Hh 

pathway, and because GLI2* expression appeared to be largely confined to tumor lesions 

in mature mice.  A clue as to why tumors do not appear to arise from adult neural stem 

cells may come from the recent finding that forced expression of Gli1 causes apoptosis 

and cell cycle arrest of neural stem cells (Galvin et al., 2008), although we did not 

observe grossly apparent alterations in apoptosis in the SVZ of tTA-GLI2* mice in a pilot 

experiment (data not shown).  These findings suggest that high-level Hh pathway activity 

is sufficient to return mature glial cells to an undifferentiated, proliferative state, but only 

when the pathway is activated directly at the level of the Gli transcription factors.  

Furthermore, despite the link between increasing levels of HH signaling and decreasing 

glioma prognosis (Becher et al., 2008), these results suggest that neither proximal nor 

distal Hh pathway activation is sufficient to induce gliomas in mice.  However, we cannot 

exclude the possibility that the level of Hh pathway activation may have been too high in 

transgenic mice, resulting in cell death or cell cycle arrest, as previously observed 

(Galvin et al., 2008), rather than glioma formation.  Moreover, although deregulated Hh 
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signaling may not be sufficient to drive glioma development, it may synergize with other 

pathways known to be active in forebrain tumorigenesis.  Platelet-derived growth factor 

receptor, for example, is a target of Hh signaling both in skin, where it contributes to 

BCC proliferation (Xie et al., 2001), and in brain (Nery et al., 2001), where excessive 

activation of the PDGF/PDGFR pathway can induce glioma-like growths from the SVZ 

(Jackson et al., 2006). 
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Chapter 3 

Hedgehog Signaling is Required for Tumor Maintenance in Medulloblastoma 

Introduction 

As discussed in Chapter 2, activation of exogenous Hh signaling in the 

developing cerebellum of tTA-SmoA1 and rtTA-SmoA1 mice induces the development of 

medulloblastomas with complete penetrance and short latency.  As I will describe in this 

chapter, I used these models to investigate whether Hh-driven medulloblastomas remain 

dependent on continued Hh signaling for maintenance.  This is a particularly important 

question in terms of treatment of the human disease.  Current treatment for 

medulloblastoma is limited to the standard anticancer therapies of surgical resection, 

multiagent chemotherapy, and craniospinal axis radiation therapy.  These modalities are 

reasonably successful, and 5-year progression-free survival rates have risen to between 

43% and 94%, depending on tumor subtype and specific therapeutic regimen  (Gilbertson, 

2004).  However, these treatments are not without significant adverse sequelae such as 

ataxia, mutism, and cognitive, neuroendocrine and neuropsychological defects  

(Chintagumpala et al., 2001, Mulhern et al., 2004, Robertson et al., 2006).  It is clear that 

tumor-specific, mechanism-based medulloblastoma therapies are needed, both to increase 

treatment efficacy and to avoid potentially devastating sequelae.  This is particularly 

critical in patients with Gorlin syndrome, who cannot tolerate significant radiation dose 

without developing extraordinary basal cell carcinoma burden (Kimonis et al., 1997), and 
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thus would benefit greatly from rational tumor-specific therapies that reduce the required 

radiation dose for effective treatment.   

Previously published studies in mice suggest that some medulloblastomas remain 

dependent on Hh signaling.   Initial reports indicated that growth of cultured Ptch+/-/p53-/- 

medulloblastoma cell lines and subcutaneous allografts can be inhibited by cyclopamine, 

a Hh inhibitor which acts at the level of Smo (Berman et al., 2002).  However, 

cyclopamine treatment did not lead to complete elimination of tumors, and additional 

studies revealed that cultured medulloblastoma cells downregulate the Hh pathway, 

calling into question the usefulness of such studies in understanding tumor biology 

(Romer et al., 2004, Sasai et al., 2006).  Subsequent studies demonstrated that 

pharmacological blockade of the Hh pathway in Ptch+/-/p53-/- medulloblastomas lead to 

inhibition of tumor growth (Romer et al., 2004, Sanchez et al., 2005b).  Similar results 

were seen in medulloblastoma allografts from Cxcr6-/- mice, tumors which also 

demonstrate elevated Hh pathway activity (Sasai et al., 2007).  However, none of the 

previous studies demonstrate complete, durable elimination of medulloblastomas 

following pharmacological blockade of Hh signaling. 

These observations suggest a potential role for HH inhibition in the treatment of 

human medulloblastoma.  Given the significant proportion of human medulloblastomas 

that display activation of HH signaling (Wetmore, 2003, Hallahan, 2004 #13, Leung et al., 

2004, Marino, 2005), inhibition of this powerful mitogenic pathway may represent an 

important therapeutic adjunct for many patients.  Translational investigation of HH 

inhibition for antitumor therapy is already underway, as a small molecule inhibitor 
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developed by Curis and Genentech is currently in Phase II clinical trials for HH-driven 

metastatic colon cancer (ClinicalTrials.gov reference # NCT00636610). 

An important question remains when considering anti-HH therapy for use in 

medulloblastoma patients.  If HH pathway inhibitors induce regression of tumor burden, 

would such therapy confer a permanent benefit to patients, or would tumors return 

following discontinuation of therapy?  Work previously published by our lab provides 

important insight into the analogous question in a murine model of basal cell carcinoma.  

In K5-tTA;TRE-Gli2 mice, skin-targeted activation of distal Hh signaling leads to the 

development of basal cell carcinomas that develop within six months after birth (Hutchin 

et al., 2005).  Inhibition of Gli2 expression by doxycycline treatment causes rapid 

regression of tumors, correlated with a decrease in proliferation and an increase in 

apoptosis.  However, following tumor regression, small populations of non-proliferative 

cells remain.  When doxycycline treatment is discontinued, a subset of the regressed, 

quiescent tumors re-grow, indicating that a pool of dormant tumor-initiating cells remains 

following inhibition of exogenous Hh pathway activation (Hutchin et al., 2005), and 

suggesting the potential existence of similar cells following regression of other Hh-

mediated tumors. 

I investigated whether SmoA1-induced medulloblastomas exhibit a continued 

dependence on exogenous Hh signal and, if so, whether dormant tumor cells remain after 

transgene inhibition.  To achieve this, I took advantage of the conditional nature of the 

TRE-SmoA1 mouse.  I treated medulloblastoma-bearing tTA-SmoA1 mice with 

doxycycline, and observed focal abrogation of SmoA1 expression, perhaps due to 

difficulties achieving sufficiently high drug levels in the CNS.  Regardless, in areas 
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where SmoA1 transgene expression was extinguished, I observed corresponding focal 

inhibition of Hh signaling and regression of tumor burden, indicating that these tumors 

remain dependent on continued activation of the Hh pathway.  To globally inhibit 

transgene expression, I removed tumor-bearing rtTA-SmoA1 (“Tet-on”) mice from 

doxycycline treatment.  Complete loss of transgene expression in these mice resulted in 

total disappearance of tumors within three weeks.  Tumor regression was coupled to loss 

of Hh pathway activation, impaired proliferation, and increased apoptosis.  While 

residual tissue remained on the surface of the cerebella of regressed mice, these regions 

did not harbor dormant tumor-inducing cells, as tumors never recurred, either with or 

without resumption of doxycycline treatment to reactivate transgene expression.  These 

data suggest that relatively brief treatment of patients with HH-driven medulloblastomas 

may be sufficient for potentially curative therapy. 

Materials and Methods 

Mice were obtained, housed and genotyped as described on pp. 38 - 41.  SmoA1 

expression was induced by maintaining breeding pairs, nursing dams and weaned animals 

on doxycycline-containing chow, as previously described on p. 41.  SmoA1 expression 

was inhibited by replacing available chow with doxycycline-free chow.  Tissue fixation 

and processing and immunohistochemistry were performed as previously described.  

Phospho-histone H3 and TUNEL positive cells per high power field were quantified by 

counting ten high power fields’ worth of cells per animal for each of three animals.  

Comparisons were performed between the average count per field for each animal.  

Quantitative real time RT-PCR was performed as described on pp. 44 - 45.  Magnetic 

87 



 

resonance imaging was performed by the University of Michigan Center for Molecular 

Imaging. 

Results 

Focal Hh pathway inhibition results in focal medulloblastoma regression 

In order to examine whether continued Hh pathway activation was necessary for 

the maintenance of medulloblastoma, I placed tumor-bearing tTA-SmoA1 animals on 

doxycycline to repress expression of SmoA1.  I began doxycycline treatment between 

three and six weeks of age (Fig. 3-1 A).  Doxycycline-treated animals were monitored by 

magnetic resonance imaging (MRI) for one month following inception of treatment.  The 

greatly enlarged tumor-bearing cerebellum is readily appreciable in T2-weighted images 

at the beginning of the course of doxycycline treatment (Fig. 3-1 B, C).  Following one 

month of therapy, the overall size of the cerebellar region had not decreased, but the 

cerebellum had changed dramatically in appearance on T2-weighted MRI.  Instead of the 

relatively uniform appearance of an untreated animal, very bright regions appeared along 

the outer edges of the cerebellum and in the region of the cerebellar aqueduct, indicative 

of the presence of greater a amount of cerebrospinal fluid in these regions (Figure 3-1 D).  

This pattern suggests a focal loss of tumor mass, leaving behind space which is filled by 

CSF. 

Histological examination of treated tTA-SmoA1 animals confirmed the presence 

of focal tumor regression.  In 10/10 animals treated with doxycycline, the cerebella 

contained both normal-appearing tumor and focal regions of loose collections of cells 

with light pink cytoplasm and a low nuclear-cytoplasmic ratio (Fig. 3-1 E).  In situ 

hybridization revealed persistent expression of SmoA1 (Fig 3-1 F) and activation of the 
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Hh pathway in regions of unregressed tumor tissue (Fig. 3-1 G), whereas loss of SmoA1 

expression (Fig. 3-1 F) and inhibition of the Hh pathway were evident in regressed areas 

(Fig. 3-1 G).  Regressed areas contained few proliferating cells, in comparison to the 

highly proliferative unregressed tumor (Fig. 3-1 H).  Regressed regions were also 

strongly positive for expression of GFAP, indicative of the presence of astroglial cells in 

these areas (Fig. 3-1 I), indicating either infiltration of glia from outside the tumor in a 

glial scarring phenomenon or differentiation of tumor cells down a glial lineage.  

Additionally, although regressed areas were largely negative for NeuN-positive cells, 

clusters of cells adjacent to the internal borders of regressed regions strongly expressed 

this mature neuronal marker.  Strikingly, expression of the stem and progenitor cell 

marker Nestin, which was appreciable in cells scattered throughout unregressed regions 

of tumor, was completely absent from regressed regions (Fig. 3-1 J), suggesting that a 

loss of progenitor cell-like character contributes to tumor regression.
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Figure 3-1.  Doxycycline treatment of tTA-SmoA1 mice induces focal tumor 
regression.  (A) Timeline showing doxycycline treatment and resultant tumor regression.  
(B – D) Coronal T2-weighted magnetic resonance imaging showing cerebella of control 
(B) or tumor-bearing tTA-SmoA1 mice before treatment (C) and after one month of 
doxycycline treatment (D).  Dotted yellow lines in B – D demarcate the cerebellum.  (E) 
hematoxylin and eosin staining of cerebellum of mouse treated with doxycycline for 3 
weeks.  Arrows in E – J indicate unregressed tumor, also shown at higher magnification 
in left inset; arrowheads indicate regressed regions of tumor, also shown at higher 
magnification in right inset.  (F, G)  In situ hybridization for SmoA1 (F) and Ptch1 (G) 
showing loss of transgene expression and Hh pathway activity in regressed regions of 
tumors.  (H – J) Immunohistochemical staining for Ki67 (H), GFAP (I) and nestin (J), 
demonstrating relative lack of proliferation, robust GFAP staining, and loss of nestin 
expression in regressed medulloblastoma regions relative to unregressed tumor.
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Figure 3-1.  Doxycycline treatment of tTA-SmoA1 
mice induces focal tumor regression
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Total transgene inhibition results in complete and durable tumor regression 

To investigate whether transgene repression leads to total abolition of tumor, I 

employed the triple transgenic rtTA-SmoA1 mouse model described on p. 41.  One 

advantage to this model is that expression of transgene requires continuous 

supplementation with doxycycline-containing chow.  Therefore, discontinuation of 

doxycycline treatment should lead to complete abrogation of SmoA1 expression, in 

contrast to the focal inhibition seen in double transgenic tTA-SmoA1 mice (which may be 

due to inadequate local levels of doxycycline). 

I maintained breeding pairs on doxycycline throughout gestation to generate 

tumors in rtTA-SmoA1 mice.  At P21, I either sacrificed animals for histological 

examination or weaned them to regular chow for tumor regression studies (Fig. 3-2 A, 3-

2 B left).  All mice examined at P21 harbored significant tumor burden, and all mice 

examined after discontinuation of doxycycline chow harbored either regressing tumor or 

regressed regions indicative of previously existent tumor, as discussed below.  One week 

after weaning mice to doxycycline-free chow, significant changes had already begun to 

occur in the tumors, although there was significant viability in tumor regression within 

individual brains at this stage (N=4).  While regions of tumor were still appreciable, the 

tumors appeared less dense, with a lower nuclear to cytoplasmic ratio (Fig. 3-2 B middle).  

In other regions, tumors had already fully regressed, leaving behind residual cells as 

described below. 

Three weeks after removal from doxycycline, medulloblastomas had completely 

regressed, and no tumor mass remained in any of the animals examined at this time point 

(N=6).  Instead, residual clusters of leftover cells were appreciable on the outer surface of 
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the ML, a region normally devoid of cells other than the leptomeninges.  These clusters 

of cells persisted in animals maintained on regular chow for 6 weeks (N=6), 16 weeks 

(N=1), 27 weeks (N=1) or 34 weeks (N=2) (Fig. 3-2 B right). In order to verify complete 

elimination of tumor burden in sacrificed animals, we examined the entire rostral-caudal 

length of the cerebella of selected regressed animals by cutting serial coronal sections.  

Animals were examined by serial coronal sectioning after 3 weeks (N=3), 6 weeks (N=5), 

16 weeks (N=1) and 27 weeks of transgene inhibition (N=1).  No regrowth of tumor was 

evident in any mice, indicating a complete and durable loss of tumor burden.  At the time 

of this writing, 2 additional rtTA-SmoA1 mice, treated with doxycycline until weaning, 

have been maintained on doxycycline-free chow for approximately 52 weeks, and show 

no signs of re-developed tumors.   

To confirm loss of transgene expression in mice removed from doxycycline, we 

examined expression of SmoA1 by immunohistochemical staining for the HA epitope tag.  

Significant transgene expression was readily appreciated in nearly every cell within 

unregressed tumors.  However, mice rapidly lost expression of transgene following 

removal from doxycycline.  Very faint staining for SmoA1 could be appreciated in 

residual tumors one week after discontinuation of doxycycline treatment, and no SmoA1 

was detectable in residual cells three weeks or longer after regression (Fig. 3-2 C). 

Following loss of transgene expression, tumors rapidly changed their proliferative 

and apoptotic status.  While the majority of tumor cells were positive for the proliferation 

marker Ki67, a partial loss of Ki67 positivity was evident following one week of 

regression, and the residual cells left following complete tumor regression were entirely 

non-proliferative (Fig. 3-2 D).  A significant decrease in proliferation, as measured by 
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density of phospho-histone H3 positive cells within the lesions, was evident within one 

week of discontinuation of doxycycline treatment (Fig. 3-2 F left).  Although baseline 

apoptosis was appreciable in tumors from animals maintained on doxycycline, the 

apoptotic index significantly increased during regression (Fig. 3-2 E, F right).  Residual 

cells remaining following regression were no longer apoptotic. 

Regression was also coupled with loss of Hh pathway activity, target gene 

expression, and medulloblastoma marker expression.  qPCR indicated a loss of Gli1 and 

Ptch1 expression in regressing tumors, indicating inhibition of Hh signaling, that reached 

significance within one week of regression (Fig. 3-3 A, B).  Ptch2 expression also 

quickly dropped following discontinuation, and expression in tumors was significantly 

different from that in control cerebellum (Fig. 3-3 C).  While expression of CyclinD1, a 

critical gene for Hh-mediated tumorigenesis (Pogoriler et al., 2006), was increased 

approximately 4-fold over regressing tumors and control cerebellum, P-values did not 

reach significance, due to relatively high variance among tumor samples (Fig. 3-3 D).  

Expression of N-Myc, another key Hh target in medulloblastoma development (Hatton et 

al., 2006), quickly dropped off with tumor regression, reaching significance by three 

weeks after doxycycline removal (Fig. 3-3 E).  Lastly, Math1, a marker for EGL cells and 

medulloblastomas, was overexpressed nearly 300-fold in medulloblastomas compared to 

wild-type cerebellum, and was significantly reduced within three weeks of regression 

(Fig. 3-3 F).
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Figure 3-2. Complete medulloblastoma disappearance following SmoA1 inhibition is 
associated with decreased proliferation and increased apoptosis.  (A) Timeline of 
tumor regression studies.  (B – E) Hematoxylin and eosin staining and 
immunohistochemical analysis of rtTA-SmoA1 mice showing unregressed tumors 
(continuous doxycycline treatment), regressing tumors (one week following 
discontinuation of doxycycline) or residual clusters following complete regression of 
tumors (4 months following discontinuation of doxycycline).  Little transgene expression 
is seen after one week off doxycycline, and none is seen in long-term regression (C).  
Ki67 expression drops off shortly after discontinuation of doxycycline, and residual cells 
are entirely quiescent (D).  Cleaved caspase 3-positive cells are evident in tumors, but are 
more numerous in regressing tissue.  Fully regressed regions are no longer apoptotic (E).  
(F) Quantification of decreased proliferating phospho-histone H3-positive cells (P=0.041) 
and increased apoptotic TUNEL-positive cells (P=0.0029) in unregressed tumors vs. 
tumors from mice removed from doxycycline treatment for one week.  Error bars 
represent standard error of the mean, and * indicates a significant difference from 
unregressed tumors.  N=3 animals for each group.
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proliferation and increased apoptosis

96 



 

 
 

Figure 3-3.  Tumor regression is coupled to loss of Hh pathway activation and target 
gene expression.  (A – F) qPCR on RNA isolated from tumors, control cerebella, and 
cerebella from tumor-bearing mice removed from doxycycline for one or three weeks.  
N=3 for each group.  Expression of Gli1 (A), Ptch1 (B), and Ptch2 (C) was decreased in 
control cerebella or regressing lesions compared to tumors.  Expression of CyclinD1 was 
also decreased, but the difference did not reach significance (D).  Expression of N-Myc 
(E) and Math1 (F) was significantly inhibited by three weeks of regression.  * indicates 
significant difference from unregressed tumor (P<0.05).
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Tumor regression is associated with loss of nestin-positive progenitor-like cells and 

terminal differentiation of residual population 

In order to further characterize the nature of tumor regression and the non-

proliferative residual cells that remain, I examined both progenitor cell and differentiation 

markers.  In unregressed tumor, a subset of the cells expressed the stem and progenitor 

cell marker nestin, suggesting a subpopulation of progenitor-like cells within the tumors.  

Nestin positivity quickly disappeared from the tumors after discontinuing doxycycline 

treatment, and no nestin was detectable in the residual cells following tumor 

disappearance (Fig. 3-4 A).  Both expression of nestin in active tumor and focal loss of 

nestin positivity in regressed regions were also seen in tumors from tTA-SmoA1 mice, as 

described above (Fig. 3-1 J). 

Scattered cells within active rtTA-SmoA1 medulloblastomas stained relatively 

weakly for the neuronal marker NeuN.   This pattern remained largely unchanged early 

on in the regression process, although some regions of more densely NeuN-positive cells 

could be appreciated within the disappearing tumor mass.  Immunostaining revealed that 

the clusters of strongly NeuN-positive residual nuclei persisted in the outer region of the 

molecular layer following regression (Fig. 3-4 B), indicating that these quiescent cells 

had differentiated along a neural lineage. 

As seen in the foci of regression in tTA-SmoA1 medulloblastomas, residual 

regions following tumor disappearance in rtTA-SmoA1 mice stained very strongly for 

GFAP (Fig. 3-4 C).  Although sparse GFAP expression was detected scattered through 

active tumor, likely indicating the astrocytic stroma of the tumor, a peripheral increase in 

GFAP intensity was appreciated one week after doxycycline removal.  This GFAP 
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positivity increased, leaving behind a persistent population of astroglial cells in regions of 

tumor regression.  Whether these cells represent a glial scar generated by glia from 

outside the tumor or indicate differentiation of tumor cells along a glial lineage is unclear.  

In keeping with the latter hypothesis, CGNPs of the EGL can be induced to differentiate 

into mature astroglial cells (Okano-Uchida et al., 2004), suggesting that tumor cells 

derived from the EGL may have the same ability. 
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Figure 3-4.  Loss of nestin positive cells and increased differentiation marker 
expression in regressing tumors.  (A – C) Immunohistochemical stains of unregressed, 
one week regressed and 4 month regressed tumors.  (A) Nestin expression was 
appreciable in tumors, but was rapidly lost following discontinuation of doxycycline.  (B) 
Increased density of NeuN positive neurons could be seen early during regression.  
Clusters of cells staining strongly for NeuN remained permanently in the molecular layer 
in areas of tumor regression.  (C) Increased peripheral GFAP positivity began within one 
week of regression and persisted indefinitely.
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Regressed tumors do not recur after resuming doxycycline treatment 

To determine if dormant residual tumor cells persisted following tumor regression, 

I returned regressed mice to doxycycline treatment.  First, I weaned tumor-bearing 

animals to doxycycline-free chow at P21 to induce tumor regression, as described above.  

Following either three or four weeks of regression, animals were returned to doxycycline-

containing chow until sacrifice.  Mice were sacrificed and examined after 3 weeks (N=1), 

6 weeks (N=3), 8 weeks (N=2) or 28 weeks (N=1) of transgene reactivation.  No 

regrowth of medulloblastomas was evident either grossly or histologically (Fig. 3-5 A).  

Long-term transgene reactivation induced variable levels of alopecia and skin lesions 

resembling basaloid follicular hamartomas, as with postnatal transgene activation since 

the GFAP promoter is active in skin (not shown).  The development of this epithelial 

phenotype indicates that SmoA1 expression was reactivated to a sufficient level to give 

rise to benign tumors in another organ.  At the time this thesis was written, three 

additional mice were being maintained for long-term transgene reactivation studies; 

transgene had been reactivated for 9 months in one mouse 10.5 months in two others.  

None of these mice displayed behavioral evidence of tumor recurrence, although they had 

developed variable levels of alopecia or skin lesions. 

Reactivation of SmoA1 expression in scattered cells within the EGL and ectopic 

regions was confirmed by immunohistochemistry (Fig. 3-5 B).  However, relatively few 

SmoA1-positive cells were evident in the cerebella of examined mice.  Cells within the 

residual regions of reactivated mice were neither proliferative nor apoptotic (Fig. 3-5 D, 

E).  Nestin expression did not return following resumption of doxycycline treatment (Fig. 
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3-5 F), and expression of NeuN and GFAP in residual regions was unchanged as well 

(Fig. 3-5 G, H).  Timeline of regression/reactivation studies is shown (Fig. 3-5 I).  

When compared with unregressed tumors, relatively few cells within the 

cerebellum expressed SmoA1 following resumption of doxycycline treatment.  One 

possible explanation for this phenomenon is that transgene reactivation may induce high 

enough levels of Hh pathway activity to drive apoptosis in SmoA1 re-expressing cells.  

To test this hypothesis, I performed a short-term reactivation experiment.  Mice were 

maintained on doxycycline until weaning to regular chow for three weeks as above.  

Mice were sacrificed for histological analysis one, three, five and seven days after 

resumption of doxycycline treatment.  Transgene expression and apoptosis were assayed 

in serial sections.  While scattered SmoA1-positive cells were seen in cerebella 3, 5, and 

7 days after resumption of doxycycline treatment (Fig. 3-6 A and not shown), no 

apoptotic cells were detected (Fig. 3-6 B).  This suggests that apoptotic deletion of 

SmoA1-expressing cells following reactivation does not account for the relative scarcity 

of SmoA1-positive cells in reactivated cerebellum.
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Figure 3-5.  Reactivation of transgene expression does not lead to regrowth of 
medulloblastomas.  Hematoxylin and eosin staining (A) and immunohistochemistry (B – 
H) examining residual regions 6 weeks after resumption of doxycycline treatment.  (B) 
Transgene expression was detected in cells scattered throughout the IGL and residual 
tissue.  Residual cells did not express Ki67 (D), cleaved caspase 3 (E) or nestin (F).  
Strong staining for NeuN (G) and GFAP (H) were detected in residual regions.  (I) 
Timeline for regression/reactivation studies.
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Figure 3-6.  Brief reactivation of SmoA1 does not induce apoptosis.  Expression of 
SmoA1 can be seen in a few scattered cells with residual regressed tissue following 7 
days of transgene reactivation (arrows in A).  No TUNEL positive, apoptotic cells are 
detected in either control or transgenic cerebella (B).  Because DAB + Co enhancer was 
used as the chromogenic substrate on these sections, positive staining is indicated by 
development of black color.

104 



 

Discussion 

Previously published studies have suggested that pharmacologic inhibition of the 

Hh pathway inhibits the growth of medulloblastomas from both the Ptch+/-/p53-/- model 

and a recently described Cxcr6 mutant model (Romer et al., 2004, Sanchez et al., 2005b, 

Sasai et al., 2007).  Phase II clinical trials of a small molecule HH pathway inhibitor for 

treatment of solid epithelial cancers are currently in progress (ClinicalTrials.gov 

reference # NCT00636610), underscoring the importance of understanding the biological 

responses of Hh-mediated tumors to pathway inhibition.  A previous study from our lab 

demonstrated that Gli2-induced BCCs remain dependent on continued transgene 

expression for survival and proliferation (Hutchin et al., 2005), demonstrating 

“addiction” to the Hh pathway.  However, regressed tumors in these mice harbored 

dormant, quiescent cells capable of regrowth following transgene reactivation, raising the 

possibility that such cells may also exist in medulloblastomas. 

With the work described in this chapter, I demonstrated that, as with Gli2-induced 

BCCs, the medulloblastomas arising in our tTA-SmoA1 and rtTA-SmoA1 mouse models 

are addicted to exogenous Hh signaling, remaining completely dependent on continued 

SmoA1 expression for survival.  I began by examining the consequences of SmoA1 

inhibition in tTA-SmoA1 mice.  In order to achieve this, I exploited the conditional nature 

of the model, treating tumor-bearing tTA-SmoA1 mice with doxycycline to suppress 

transgene expression.  Histological examination revealed focal regression of tumors in 

these animals; both regions of diffuse, pale pink collections of cells indicative of tumor 

regression and regions of persistent tumor were appreciated in 10/10 animals.  All tumor 

and regressed tissue was located outside the external surface of the molecular layer, 
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which represents the outer edge of physiologic cerebella.  Regions interpreted as 

regressed tissue bore notable histological resemblance to regressed Ptch+/-/p53-/- tumors 

following short-term, high-dose treatment with HhAntag, a small molecule Hh inhibitor 

(Romer et al., 2004).  In situ hybridization revealed loss of SmoA1, Gli1, and Ptch1 from 

regressed regions, but with persistent transgene expression and Hh pathway activation in 

non-regressing regions of tumor.  This observation suggested that tumors persisted 

because of incomplete transgene inhibition, presumably due to insufficient doxycycline 

delivery to the tumor. 

These initial results confirmed the dependence of Hh-driven medulloblastomas on 

continued activation of the pathway, but did not allow us to address the question of 

persistent, dormant tumor-forming cells.  Investigating the potential presence of such 

cells following regression required complete elimination of active tumor.  Accordingly, I 

modified my experimental approach, employing a combinatorial model utilizing both the 

Cre/loxP and rtTA-TRE systems to generate rtTA-SmoA1 mice.  In these “Tet-on” mice, 

expression of SmoA1 is induced by doxycycline treatment, and ablation of transgene 

expression is achieved by withholding doxycycline.  Continuous doxycycline 

supplementation throughout gestation and until harvest resulted in the development of 

medulloblastomas by P14, as described in Chapter 2. 

When we removed medulloblastoma-bearing rtTA-SmoA1 mice from doxycycline 

treatment, tumors began regressing quickly, and tumor burden had completely 

disappeared within three weeks of doxycycline discontinuation, leaving behind residual 

tissue histologically similar to regressed regions in tTA-SmoA1 mice.  Loss of tumor 

burden was coupled to decreased Hh pathway activity, inhibited proliferation, and 
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increased levels of apoptosis.  Regressed tissue from both tTA-SmoA1 and rtTA-SmoA1 

mice displayed significant upregulation of GFAP density, and ectopic clusters of NeuN-

positive neurons were evident in the molecular layer near regressed lesions.  The 

presence of robust GFAP staining raises two possibilities: first, loss of tumor tissue may 

induce reactive astrocytosis, a common response to CNS injury (Sofroniew, 2005); 

second, some EGL-derived cells within the tumors may differentiate down an astroglial 

lineage once Hh signaling is repressed.  This latter possibility is suggested by the 

observation that CGNPs of the EGL can differentiate into astroglial cells (Okano-Uchida 

et al., 2004), and may also account for the presence of NeuN-positive clusters.  This 

hypothesis could be investigated by combining the tTA-SmoA1 tumor model with the 

Math1-CreERT2 mouse (Machold et al., 2005) on a ROSA26 background.  Pulsing 

animals with tamoxifen prior to inducing regression would label only the Math1-positive 

tumor cells and allow lineage tracing of these cells following regression.  This hypothesis 

is also consistent with the observation that inhibition of transgene expression induces 

differentiation of tumor cells in a mouse model of hepatocellular cancer (Shachaf et al., 

2004).  Perhaps most significant, however, was the observation that nestin-positive cells 

disappeared prior to complete medulloblastoma regression.  The fact that expression of 

this stem and progenitor cell marker disappears before the bulk of the tumor burden was 

eliminated suggests that nestin-expressing cells may be critical for tumor maintenance, 

and is consistent with loss of nestin seen in cyclopamine-treated medulloblastoma cell 

lines (Berman et al., 2002) and loss of nestin-positive progenitor-like cells in Bmi1-

deficient SmoA1-expressing cerebella (discussed in Chapter 4). 
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Ultimately, the data from this study indicate that Hh-driven medulloblastomas 

remain dependent on continued activation of the Hh pathway.  Inhibition of SmoA1 

expression resulted in complete and durable resolution of tumor in vivo.  Following 

disappearance of tumors, small residual populations of quiescent cells remained.  These 

populations persisted throughout the life of the animal, and never gave rise to additional 

medulloblastomas, even after 7 months of transgene inhibition, and two additional mice 

display no behavioral or gross phenotypic evidence of tumor regrowth approximately one 

year after initial repression of transgene.  These observations are in contrast to numerous 

other conditional tumor models, in which emergence of transgene-independent tumors 

frequently occurs following transgene inactivation (Ewald et al., 1996, Chin et al., 1999, 

Felsher et al., 1999, D'Cruz et al., 2001, Moody et al., 2002, Gunther et al., 2003, Boxer 

et al., 2004). 

To test the hypothesis that dormant tumor cells persist in regressed tissue, I re-

initiated doxycycline treatment after three or four weeks of tumor regression.  In striking 

contrast to the tumor regrowth observed following transgene reactivation in conditional 

models of other tumors (Boxer et al., 2004, Shachaf et al., 2004, Hutchin et al., 2005), no 

medulloblastomas reappeared in rtTA-SmoA1 mice which were returned to doxycycline 

chow following tumor regression.  The Hh pathway was clearly reactivated in these mice, 

as indicated by the appearance of basaloid follicular hamartoma-like lesions in the skin of 

long-term reactivated mice.  I observed that, following reactivation, SmoA1 was 

detectable in relatively few cells in the cerebellum.  Several possibilities may explain this 

phenomenon.  First, the vast majority of potential SmoA1-reactivating cells may die via 

apoptosis during the initial regression stage, and the residual tissue may represent mostly 
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non-recombined tissue.  Second, forced high-level reactivation of the Hh pathway in 

regressed tissue may lead to early apoptosis, resulting in few remaining SmoA1 

expressing cells in later stage reactivation.  I eliminated the latter possibility by 

performing brief periods of transgene re-induction, and observing that while reactivation 

of transgene was evident three, five and seven days after returning mice to doxycycline 

chow, no TUNEL-positive cells were evident in regressed tissue at these early time points.  

Because expression of transgene requires sufficient delivery of doxycycline to cells, I 

cannot formally exclude the possibility that tumors fail to recur because of insufficient 

secondary induction of transgene.  Doxycycline delivery to regressed tumor regions may 

be impaired because of the observed increased astrocytic density along the outer edges of 

the cerebellum, as astrocytes are known to play a role in maintenance of the blood-brain 

barrier (Sofroniew, 2005).  This possibility could be tested by using intracranial osmotic 

pumps to deliver increased levels of doxycycline directly into the cerebellum, bypassing 

the blood-brain barrier function. 

Taken together, the results presented in this chapter demonstrate an absolute 

dependence of SmoA1-induced medulloblastomas on continued oncogenic activation of 

the Hh pathway.  Inhibition of Hh signaling in tumors resulted in impaired proliferation, 

increased apoptosis, and possibly terminal differentiation of tumor cells, culminating in 

complete, durable regression of tumors, without the development of transgene-

independent recurrence seen in many other transgenic mouse models of cancer.  

Furthermore, the regressed tumors do not appear to harbor dormant tumor cells, as 

resumption of doxycycline treatment failed to induce regrowth of regressed tumors, 

although, as mentioned above, we cannot exclude the possibility of insufficient transgene 
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reactivation.  These data strongly argue for the potential utility of anti-HH therapy in at 

least a subset of patients with medulloblastoma, a goal which may soon be achievable, as 

evidenced by ongoing Phase I and II clinical trials of a small molecule pathway inhibitor 

in several HH-mediated cancers.  Studies of anti-HH therapies in children must be 

approached with caution, however, in light of a recent study demonstrating that even 

brief treatment of young mice with a small molecule Hh pathway inhibitor induced 

permanent defects in bone development (Kimura et al., 2008). 
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Chapter 4 

Bmi1 is Required for Normal Keratinocyte Proliferation and Medulloblastoma 
Expansion 

Introduction 

Bmi1 is a member of the Polycomb group of transcriptional repressor proteins and 

regulates stem cell self-renewal, partially by repressing the senescence and apoptosis-

related genes p16Ink4a and p19Arf (Valk-Lingbeek et al., 2004).  In the epithelium, BMI1 is 

expressed in both in vivo and in cultured keratinocytes, and contributes to cell survival 

and proliferation by inhibiting apoptosis and modifying cell cycle machinery (Lee et al., 

2008), in keeping with its role as a repressor of the Ink4a/Arf locus.  Expression of BMI1 

in human skin is inversely correlated with chronological age, and as BMI1 decreases, 

p16INK4A increases (Ressler et al., 2006).  Additionally, cultured epithelial stem cells from 

the bulge region of rat follicles express Bmi1 (Claudinot et al., 2005), further supporting 

the idea that Bmi1 is important in epithelial stem cell function.  However, no studies have 

demonstrated a requirement for Bmi1 in epithelial stem cells. 

In keeping with the idea that normal organ development and maintenance is 

related to tumor formation in a paradevelopmental manner, Bmi1 has also been 

implicated in Hh pathway-mediated self-renewal of both normal mammary stem cells and 

cancer stem cells (Liu et al., 2006b).  Likewise, Bmi1 is a key determinant of the 

proliferative potential of both normal hematopoietic stem cells and leukemic stem cells 

(Lessard et al., 2003).  In developing cerebellum, Bmi1 appears to act downstream of the 
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Hh pathway to control proliferation of cerebellar granule neuron precursors (CGNPs) 

(Leung et al., 2004).  Accordingly, Bmi1-null mice develop smaller cerebella secondary 

to impaired production of granular neurons; however, overall cerebellar organization and 

cell specification and differentiation appear relatively normal (Leung et al., 2004, 

Bruggeman et al., 2005, Molofsky et al., 2005).  In humans, BMI1 is aberrantly 

overexpressed in a number of solid tumor types, including medulloblastoma (Leung et al., 

2004), where BMI1 expression correlates with activation of the Hh pathway. 

These data suggest that Bmi1 may be important in the development of 

medulloblastomas, which appear to arise from CGNPs in response to deregulated Hh 

signaling (Kozmik et al., 1995, Kim et al., 2003, Grimmer et al., 2008), (Chapter 2 of 

this thesis).  While several recent studies suggest a role for Bmi1 in maintenance of 

cultured or grafted tumor cells (Bruggeman et al., 2007, Cui et al., 2007, Wiederschain et 

al., 2007), a requirement for Bmi1 in the spontaneous development of de novo solid 

tumors has not been demonstrated.  In this chapter, I describe work in which I 

investigated the role of Bmi1 both in the function of epithelial cells from skin and in the 

pathogenesis of Hh-driven medulloblastoma.  To accomplish these aims, I used the Bmi1 

knockout mouse line generated by van der Lugt et al. (van der Lugt et al., 1994), and the 

robust, fully penetrant GFAP-tTA;TRE-SmoA1 medulloblastoma model described in 

Chapter 2.  For the sake of simplicity, double transgenic GFAP-tTA;TRE-SmoA1 are 

referred to as SmoA1 in this chapter. 

Materials and Methods 

Maintenance, breeding, and genotyping of knockout and transgenic mice 
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Bmi1-/- mice were obtained for skin experiments by intercrossing Bmi1+/- mice 

(van der Lugt et al., 1994).  I generated SmoA1 mice on Bmi1+/- and Bmi1-/- backgrounds 

by crossing GFAP-tTA and TRE-SmoA1 mice separately with Bmi1+/- mice and then 

intercrossing the resulting GFAP-tTA;Bmi1+/- and TRE-SmoA1;Bmi1+/- progeny.  Pups 

were genotyped between P14 and P21, by which point Bmi1-/- animals were readily 

distinguished by their smaller body size and elongated ear hair.  Bmi1, GFAP-tTA and 

TRE-SmoA1 genotypes were confirmed by PCR.  Bmi1 genotype was confirmed by 

multiplex PCR for both the hygromycin cassette in the Bmi1 knockout allele 

(5’-cgccgtgcacagggtgtcacgttgcaagac-3’ and 5’-caagccaaccacggcctccagaag-3’) (Molofsky 

et al., 2005) and the wild-type Bmi1 allele (5’-ccaccacaacacctcatcac-3’ and 

5’-cgggtgagctgcataaaaat-3’).  SmoA1 genotype was ascertained by individual PCR for the 

tetracycline transactivator to identify GFAP-tTA and the SV40 poly-A tail to identify 

TRE-SmoA1, as described in Chapter 2.  In total, 90 litters were screened, comprising 417 

pups from 70 of the litters, and an additional 20 litters of unrecorded size which 

contained no Bmi1-/- pups by phenotype and were therefore sacrificed without further 

analysis.  All mice used in the experiments described in this chapter were on a pure 

C57BL/6 background, and TRE-SmoA1 mice were from line #140. 

To induce anagen, mice were anesthetized by intraperitoneal injection of a 

ketamine/xylazine mixture.  Pelage fur was clipped, and over-the-counter Nair depilatory 

cream was applied for five minutes.  Due to impaired hematopoietic function and 

increased risk of infection in Bmi1-/- mice, all animals were maintained on water 

supplemented with 0.1214 mg/mL Polymixin B sulfate (Sigma) and 1.1 mg/mL 

Neomycin trisulfate (Sigma).  Maintenance of mouse colonies and experimental 
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procedures were approved by the University of Michigan University Committee on the 

Use and Care of Animals. 

Cell culture, colony formation assay, total cell output assay and in vitro BrdU 

incorporation 

To establish keratinocyte cultures (Dlugosz et al., 1995), 5 cm-long sections of 

tail were removed from euthanized adult Bmi1+/+ and Bmi1-/- mice.  The skin was 

removed as a contiguous sheet, and floated dermis side down in a dish of 0.25% trypsin 

(Invitrogen) overnight at 4°C.  The following morning, the skin was placed epidermis 

side down on a dry culture dish, and the dermis was carefully removed with forceps and 

discarded.  The remaining epithelial portion was placed in a 15 mL conical tube 

containing growth medium, gently vortexed, then passed through a 40 μm cell strainer.  

The resulting cells were plated at multiple dilutions for low density primary colony 

formation assays, and at higher density for use in additional assays.  All cells were plated 

overnight in plating medium: SMEM (Invitrogen) with 10% fetal calf serum at 0.3 mM 

Ca++.  The following morning, plates were rinsed with sterile phosphate buffered saline, 

and media was replaced with either Low Ca++ medium, identical to plating medium but 

containing 0.05 mM Ca++, or Low Ca++ medium with 1 ng/ml keratinocyte growth factor.  

Subsequently, culture medium was aspirated and replaced with fresh medium every 

second day. 

For first passage colony formation assays, cells were allowed to grow for 14 days, 

then were fixed and stained with crystal violet to visualize colonies.  For second passage 

colony formation assays and total cell output experiments, high density plates were 

grown for two days, then treated with 0.025% trypsin with EDTA (Invitrogen), and the 

114 



 

resulting single cell suspension was counted using a Coulter Counter Z2 particle analyzer.  

1 x 105, 1 x 104, or 1 x 103 cells were plated per well in 6-well culture plates.  For second 

passage colony-formation assays, plates were grown and fixed as above.  For total cell 

output experiments, triplicate wells in 6-well plates were plated with 2 x 105 cells.  Cells 

were maintained in culture for up to 50 days.  Each time plates were fed, the culture 

medium was collected and the number of suspended cells was counted. 

Primary keratinocytes were prepared from newborn animals in the same manner 

as adult tail skin, with minor differences.  Newborn animals were sacrificed by primary 

CO2 narcosis followed by immersion in ice water for 20 minutes.  Limbs and tails were 

removed, and the skin was cut longitudinally prior to floating on trypsin.  Skins were 

removed and prepared as adult tail skins.  Following vortexing, the cornified envelope 

was removed with a glass pipette, and the suspension was not filtered.  Primary 

keratinocytes were plated as above. 

To assess in vitro proliferation, newborn Bmi1+/+ and Bmi1-/- keratinocytes were 

prepared as above and plated at medium density.  5 days after plating and 24 hours after 

the last medium change, 30 μM BrdU was added to the culture medium.  1 hour after 

BrdU addition, cells were fixed with 70% ethanol.  After fixation, cells were 

permeabilized with 2N HCl, 0.5% Triton X-100.  Cells were then washed, blocked with 

0.5% BSA/PBS, and exposed to α-BrdU antibody diluted 1:100 (Zymed 03-3900).  

Primary antibody was visualized using Texas Red-conjugated anti-mouse secondary 

antibody (Jackson ImmunoResearch), and cells were mounted under VectaShield 

aqueous mounting medium with DAPI (Vector labs). 

Immunohistochemistry 
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Tissue was fixed overnight in 10% neutral buffered formalin and processed as 

previously described.  To definitively confirm the absence of tumor burden in 

SmoA1;Bmi1-/- mice, serial coronal sections were cut through the entire rostral-caudal 

length of the cerebella.  All sections were cut at 5 μm thick.  Prior to immunostaining for 

HA, NeuN, GFAP, Nestin or PCNA, tissues were subjected to antigen retrieval by 

boiling in sodium citrate buffer for 10 minutes.  The antibodies used comprised HA 

(Roche 3F10, 1:100), NeuN (Chemicon MAB372, 1:200), GFAP (Neomarkers Ab-4, 

1:200), Nestin (Developmental Studies Hybridoma Bank Rat-401, 1:4), PCNA 

(Neomarkers PC10, 1:200), and TUNEL (Chemicon ApopTag in situ peroxidase kit).  

Images were obtained on an Olympus BX51 microscope, using an Olympus DP71 digital 

camera.  For immunostaining of Bmi1, Cyclin D1 and p19Arf, microwave antigen 

retrieval was performed for 20 minutes.  The following primary antibodies were used: 

Bmi1 (mouse monoclonal F6, 1:50), Cyclin D1 (Santa Cruz Sc-753, 1:100), and p19Arf 

(Abcam R562, 1:150).  Antibodies were detected by peroxidase staining using the 

Powervision system (Immunologics) followed by visualization on a Zeiss Axiovert 

microscope. 

Tissue volume, PCNA, and TUNEL measurements 

Approximate tissue volumes were calculated using a previously published 

protocol (Pogoriler et al., 2006).  Serial 5 μm-thick coronal sections were cut through the 

entire rostral-caudal length of P21 SmoA1;Bmi1+/+ and SmoA1;Bmi1-/- cerebella (N = 3 

for each group), and every third or every fourth slide was stained with hematoxylin and 

eosin (H&E).  In order to calculate the rostral-caudal extent of the lesions, I counted the 

total number of sections over which the lesions extended, measured the cross-sectional 
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surface area on each H&E-stained section for an individual lesion using ImageJ software, 

and averaged these values to obtain a mean cross-sectional lesion area.  I multiplied this 

mean area by the total rostral-caudal length of the lesion to calculate approximate volume 

measurements.  P-values were obtained using two-tailed t-test, assuming unequal 

variances. 

The percentage of PCNA- or TUNEL-positive cells was determined on sections 

from P21 SmoA1;Bmi1+/+ and SmoA1;Bmi1-/- mice (N = 3 for each group).  After 

immunostaining tissue sections for PCNA or TUNEL as described, we photographed 10 

random, non-overlapping high power fields of tumor or ectopic tissue for each animal.  If 

there were fewer than 10 high power fields’ worth of cells in a given SmoA1;Bmi1-/- 

lesion, we photographed all ectopic cells present in the section.  We then counted both 

the number of PCNA or TUNEL positive nuclei per field and the total number of nuclei 

per field, and divided the number of positive nuclei by the total number of nuclei to 

obtain the percent positive nuclei.  P-values were calculated as above. 

Results and Discussion 

Bmi1-/- keratinocytes have impaired colony forming ability and in vitro growth 

potential 

When plated at successively increasing dilutions, Bmi1-/- primary adult tail 

keratinocytes displayed inhibited colony formation ability (Fig. 4-1 A), indicating a 

depletion or impaired performance of clonogenic stem or transient-amplifying cells in the 

absence of Bmi1.  These results were consistent across three independent experiments.  

Similar inhibition of colony formation was observed in keratinocytes isolated from 

newborn Bmi1-/- pups (not shown). 
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To generate single-cell suspensions in order to count and plate equal numbers of 

cells, I seeded portions of the adult primary keratinocyte preparations at high density and 

maintained them for two days.  Trypsinization of these cultures resulted in single cell 

suspensions, which were counted in order to plate equal numbers of cells per well for 

quantification experiments.  14 days after plating equal numbers of second passage tail 

keratinocytes, I fixed and stained culture dishes to count colony number and size.  While 

cells from Bmi1+/+ mice formed an average of 82 colonies per 1000 cells plated, Bmi1-/- 

cells formed only 15 colonies per 1000 cells plated (P=5.6 x 10-4, Fig. 4-1 B).  

Additionally, Bmi1+/+ colonies were significantly larger than knockout colonies (106 vs. 

17 cells per colony, P=4.4 x 10-4, Fig. 4-1 C). 

A key feature of stem cells is their ability to self-renew.  Bmi1 is known to be a 

key determinant of the long-term proliferative potential of  both neural and hematopoietic 

stem cells (Molofsky et al., 2003, Park et al., 2003), and, presumably through its 

modulation of p16INK4A, controls the replicative potential of fibroblasts (Itahana et al., 

2003).  In order to assess whether Bmi1 plays a similar role in maintenance of 

keratinocyte proliferation, I tracked the long-term proliferative capacity of wild type and 

Bmi1-/- cells.  I plated 2 x 105 second-passage adult tail keratinocytes in triplicate wells of 

6-well culture plates and monitored cell production for up to 50 days by counting cells 

floating in the culture medium at each feeding.  These cells represent either cells which 

have died and lifted off the dish or have recently divided and not yet reattached. 

In two separate experiments, Bmi1-/- cultures displayed inhibited daily cell output 

and total output.  While cell output was similar for the first few days in culture, the wild 

type plates began producing more cells per day than Bmi1-/- cells within one week (Fig. 

118 



 

4-2 A).  The total number of cells produced per well throughout the course of the 

experiment was significantly higher in wild type cells than Bmi1-/- cells (Fig. 4-2 B, 

P=0.0054).  When this experiment was repeated, similar initial results were observed.  

After approximately three weeks in culture, two wells from the wild type culture 

overcame crisis, and continued proliferating until the termination of the experiment (data 

not shown).  No post-crisis outgrowth was evident in Bmi1-/- cells from either experiment. 

In addition to colony formation and total cell output, we also assessed in vitro 

BrdU incorporation over the span of one hour.  BrdU was added to culture medium of 

newborn keratinocytes after 5 days in culture, 24 hours after the last feeding.  The BrdU 

incorporation rate of wild type keratinocytes was approximately two-fold greater than 

that of Bmi1-/- cells (36% vs. 18.7%, P= 2.7 x 10-5, Fig. 4-2 C, D).  Taken together, these 

data suggest an important role for Bmi1 in colony forming ability and proliferation of 

both newborn and adult keratinocytes in vitro, suggesting a requirement for Bmi1 in 

epithelial stem cell function. 
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Figure 4-1.  In vitro colony formation is dependent on Bmi1.  (A) Successive dilutions 
of primary adult tail keratinocytes were plated as indicated.  Fixation and crystal violet 
staining after two weeks of growth demonstrated impaired colony forming ability of 
Bmi1-/- keratinocytes compared with wild type controls.  (B & C) 1000 second passage 
keratinocytes were plated per well in quadruplicate wells.  14 days after plating, cells 
were fixed and the number (B) and size (C) of colonies were measured.  * indicates 
statistical significance  (B: P=5.6 x 10-4; C: P=4.4 x 10-4).
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Figure 4-2.  Loss of Bmi1 inhibits proliferation rate and total proliferation potential 
of keratinocytes.  (A & B) Equal numbers of cells were plated in triplicate, and total cell 
output was measured.  Detached cells floating in the culture medium were counted every 
other day during cell feeding.  Increased proliferation is evident in wild type cells (A).  
Total number of cells produced was significantly lower in Bmi1-/- cultures (P=0.01 (B).  
In vitro BrdU incorporation by keratinocytes isolated from newborn mice was assayed by 
immunostaining for BrdU after a 1 hour pulse (red).  Nuclei are counterstained with 
DAPI (blue) (C).  BrdU labeling index was twice as high in Bmi1+/+ cells as in Bmi1-/- 
cells ( 36.0% vs. 18.7%, P=2.7 x 10-5 (D).  * indicates statistical significance (P=2.7 x 10-

5).
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Bmi1-/- mice exhibit delayed reactivation of hair cycling 

To further probe the importance of Bmi1 in epithelial stem cell function in skin, I 

subjected Bmi1+/+ and Bmi1-/- mice to repeated rounds of depilation.  Depilation of mouse 

pelage skin, either mechanically or chemically with the over-the-counter hair removal 

cream Nair, induces resting, telogen hair follicles to re-enter anagen, the active growth 

phase of the hair cycle, a process known to be controlled by Hh signaling (Sato et al., 

1999, Paladini et al., 2005).  Cyclic reactivation of the hair cycle involves marked 

expansion of the follicular structures, and requires activation of hair follicle stem cells, 

which reside in the bulge region of the follicle (reviewed in (Tiede et al., 2007)).  Based 

on the proposed importance of Bmi1 in follicular stem cells, I hypothesized that Bmi1-/- 

mice would exhibit an alteration in the onset or magnitude of proliferative expansion of 

hair follicle epithelium during the anagen growth phase of the hair cycle, particularly as 

animals aged.  To test this hypothesis, I subjected Bmi1-/- and wild type control mice to 

repeated rounds of depilation and observed the time until anagen induction. 

In total, I depilated 10 Bmi1-/- mice and an equal number of age-matched controls 

during the first extended postnatal telogen period.  Change in depilated skin color from 

pink to grey, indicative of anagen induction, was detected in all of the control mice and 5 

of the Bmi1-/- mice within 7 days following depilation.  The appearance of anagen in the 

remaining 5 Bmi1-/- mice was delayed between one and 21 days; one of the anagen-

delayed mice was sacrificed 12 days after depilation for histological examination and had 

not yet re-entered anagen (Fig. 4-3 A).  Representative images of a cohort of depilated 

animals exhibiting delayed anagen are shown (Fig. 4-3 B).  Following a return of dorsal 

skin to telogen, 7 of the Bmi1-/- mice, together with wild-type controls, were depilated a 
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second time.  The re-depilated mice included all 5 Bmi1-/- mice which did not exhibit 

delayed anagen following the first depilation.  While anagen was detectable in wild-type 

mice within 7 days, all Bmi1-/- mice were delayed in their return to anagen.  Two mice 

died spontaneously approximately two weeks after depilation without any evidence of a 

return to anagen.  Two mice entered anagen 7 weeks after depilation, one after 8 weeks, 

and the final two mice died without reappearance of anagen approximately 9 weeks after 

depilation.  The reason for this delayed return to anagen is not immediately clear.  If 

Bmi1 is important for self-renewal of follicular epithelial stem cells as is the case in 

nervous and hematopoietic stem cells, loss of Bmi1 may impair the ability of these cells 

to reactivate following depilation, a required event in hair follicle reactivation (reviewed 

in (Tiede et al., 2007)).  Another possibility is raised by the observation that putative 

stem cells from a deeper structure known as the secondary hair germ are capable of 

repopulating the bulge region of follicles with stem cells following trauma such as 

mechanical depilation (Ito et al., 2004).  If, as I hypothesized, bulge cells are 

progressively lost in the absence of Bmi1, this phenomenon, combined with treatment 

with the depilatory cream Nair, may effectively de-populate the bulge region of Bmi1-/- 

hair follicles, requiring repopulation from the secondary hair germ prior to anagen 

reactivation.  This repopulation could, in turn, be inhibited or slowed by loss of Bmi1, as 

well, compounding the progressive defect in hair cycling.
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Figure 4-3.  Bmi1-/- mice exhibit delayed depilation-induced anagen.  (A) Gross photograph and hematoxylin and eosin stained 
histological images of wild type and Bmi1-/- animals sacrificed 12 days after depilation.  The depilated region of wild type skin has 
returned to anagen, as evidenced by the darkening of the skin and full-depth hair follicles on histological examination.  The Bmi1-/- 
mouse has not returned to anagen – its skin remains pink, and follicles are still in telogen histologically.  (B) A series of gross 
photographs of two wild type and two Bmi1-/- mice 16, 31 and 50 days after a single depilation.  While all mice do eventually enter 
anagen and regrow hair, varying degrees of delay before the Bmi1-/- animals enter anagen can be appreciated. 
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Figure 4-3.  Bmi1-/- mice exhibit delayed depilation-induced anagen
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Figure 4-4.  Illustration of anagen delay in wild type and Bmi1  mice.-/-   In three separate experiments, a total of 10 control and 10 
Bmi1-/- mice were depilated, as shown above.  Following an initial depilation (left panel), 5/10 Bmi1-/- mice re-entered anagen without 
delay, and the remainder exhibited varying delay in the inception of anagen.  One anagen-delayed Bmi1-/- mouse was sacrificed for 
histology 12 days after initial depilation.  7 control and Bmi1-/- mice were depilated a second time (right panel).  All Bmi1-/- mice 
exhibited a greatly prolonged delay before anagen reactivation, and four mice died without reactivating anagen.  

 



 

Progressive pigmentation defect in Bmi1-/- mice 
In addition to the delayed anagen seen in Bmi1-/- mice, we also observed an 

interesting pigmentation defect.  Bmi1-/- mice have shortened lifespan, and generally do 

not survive past several months of age (van der Lugt et al., 1994).  However, in these 

experiments, several mice survived for almost 6 months.  All mice from these 

experiments were on a pure C57BL/6 background, and had the expected dark black hair 

when young.  By 6 months of age, wild-type mice exhibited minor lightening of hair 

color, particularly around the head and face, where the fur became slightly brown in color.  

Bmi1-/- mice, on the other hand, had lost all black color, and had become a light brown, 

although this was difficult to appreciate in photographs.  More striking, however, was the 

loss of pigmentation in repeatedly depilated skin.  New hair growth on wild type mice 

was dark black after both the first and second depilations, as expected.  While hair which 

regrew following the initial depilation of Bmi1-/- mice was dark black, the hair induced by 

the second round of anagen had varying levels of pigmentation, with many hair shafts 

appearing to lack pigment altogether (Fig. 4-5, top).  Imaging hair on a dissecting 

microscope confirmed loss of melanin in anagen-induced Bmi1-/- hair (Fig. 4-5, bottom), 

but additional studies are needed to ascertain whether this reflects a depletion of 

melanoblasts residing within the follicle stem cell niche, as has been described during the 

normal aging process and other settings where mice develop premature graying of hair 

(Lerner et al., 1986, Nishimura et al., 2005).  This suggests an as yet undiscovered role 

for Bmi1 in melanocyte biology.  Although the nature of this relationship is unclear, it is 

likely that Bmi1 is required for maintenance of melanocyte stem cells, given its role in 

maintenance of neural and hematopoietic stem cells (Molofsky et al., 2003, Park et al., 

2003, Bruggeman et al., 2005). 
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Figure 4-5.  Aged and repeatedly depilated Bmi1  mice lose hair pigmentation-/- .  
Gross photographs of 6 month-old repeatedly depilated mice (top) and transilluminated 
dissecting microscope images of hair shafts from depilated regions (bottom).  Change of 
pelage fur color from the black of young animals to a faded brown color can be 
appreciated in the gross photograph of the Bmi1-/- mouse. A striking complete loss of 
pigment in much of the hair in the depilated region can also be appreciated, while the 
regrown hair of Bmi1+/+ mice remains black.  Arrows indicate regions of repeated 
depilation.  Complete loss of melanin from the depilation-induced Bmi1-/- hair shafts can 
be appreciated microscopically.
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Bmi1-/- mice do not develop full-blown medulloblastoma 

As discussed in Chapter 2, GFAP-tTA;TRE-SmoA1 mice (referred to as SmoA1 in 

this chapter for the sake of brevity) developed tumors resembling medulloblastoma as 

early as postnatal day 7 (P7), with 100% penetrance by P14.  Early tumors were first 

detected as an expansion of EGL in a small ventrolateral region of the cerebellum.  By 

P21, when the EGL was no longer detected in wild-type animals, tumors frequently 

extended along the entire rostral-caudal length of the cerebellum when examined in serial 

coronal sections (Fig. 4-6 Aa).  Tumor-bearing SmoA1 animals died within 10 to 12 

weeks. 

To generate SmoA1 mice on a Bmi1-deficient background, I crossed Bmi1+/- mice 

with either GFAP-tTA or TRE-SmoA1HA mice, and then crossed the resulting 

GFAP-tTA;Bmi1+/- and TRE-SmoA1HA;Bmi1+/- progeny.  I obtained SmoA1 mice on 

wild-type (N=80), Bmi1+/- (N=17), and Bmi1-/- (N=6) backgrounds.  In striking contrast 

to the complete tumor penetrance in SmoA1 wild-type and SmoA1;Bmi1+/- mice, none of 

the six SmoA1;Bmi1-/- mice developed full-blown medulloblastomas when examined at 

P18-P26.  One of two P18 SmoA1;Bmi1-/- mice contained a small focus of cells with 

some similarities to medulloblastoma, but with notable differences (see below).  In the 

additional P18 SmoA1;Bmi1-/- mouse and three P21 SmoA1;Bmi1-/- mice, tumors were not 

detected.  Instead, small ectopic foci of presumed abortive tumor cells were identified 

external to the molecular layer (Fig. 4-6 Ab), a region normally devoid of cells at this 

stage (Fig. 4-6 Ac, Ad).  These cells were not detected at P26. 

The presence of tumor-like cells in a P18 SmoA1;Bmi1-/- mouse, populations of 

residual ectopic cells in P18 and P21 mice, and the absence of these cells at P26 imply 
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that medulloblastoma formation is initiated in Bmi1-/- mice, but the subsequent expansion 

of tumors is blocked and residual tumor cells are ultimately eliminated (Fig. 4-6 B).  Our 

findings suggest a more stringent requirement for Bmi1 in medulloblastoma development 

than in leukemia, which is blocked by Bmi1 deficiency in secondary but not primary 

recipients (Lessard et al., 2003).  This may reflect differential requirements for Bmi1 in 

expansion of CGNPs versus hematopoietic stem cells.  

Compared to age-matched wild-type medulloblastomas, ectopic cells in P21 

SmoA1;Bmi1-/- mice had a lower nuclear to cytoplasmic ratio and pale eosinophilic 

cytoplasm, and the lesions occupied 1/140th the volume (Fig. 4-6 C): mean 

SmoA1;Bmi1+/+ tumor volume was 2.69 mm3, while mean SmoA1;Bmi1-/- lesion volume 

was 0.019 mm3 (P=0.0044).  Medulloblastoma cells in wild-type mice and cells in 

ectopic foci in Bmi1-/- mice both expressed SmoA1 (Fig. 4-7 Aa), indicating that impaired 

tumor growth in Bmi1-/- mice cannot be attributed to lack of transgene expression.  

Apoptotic cells were 4.7-fold more abundant in ectopic cells than medulloblastoma 

(29.61% vs. 6.26% respectively, P = 0.028) (Fig. 4-7 Ab, C).  Proliferation was also 

impaired in SmoA1;Bmi1-/- lesions; PCNA-positive cells were reduced 13.3-fold, from 

81.93% in SmoA1;Bmi1+/+ tumors to 6.18% in ectopic lesions (P=7.5 x 10-6) (Fig. 4-7 Ac, 

D).  These data suggest that both increased apoptosis and reduced proliferation 

contributed to the impaired outgrowth of putative medulloblastoma progenitors in the 

absence of Bmi1. 

We next examined Bmi1 protein and cell cycle marker expression in P21 Bmi1+/+ 

and Bmi1-/- lesions.  SmoA1;Bmi1+/+ tumors expressed Bmi1 in almost all cells, while no 

Bmi1 was detected in SmoA1;Bmi1-/- animals (Fig 4-7 Ba), as expected.  Conversely, 
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nucleolar p19Arf was detected in cells scattered throughout the ectopic foci in 

SmoA1;Bmi1-/- cerebella, while it was weakly expressed in medulloblastomas (Fig. 4-7, 

Bb).  This observation is consistent with an inhibitory role for p19Arf in CGNP 

proliferation and cerebellar development (Bruggeman et al., 2005), and suggests that 

Bmi1 blocks p19Arf expression in Hh-induced medulloblastoma.  p19Arf was also detected 

in scattered cells within the IGL of Bmi1-/-, SmoA1-negative mice.  However, it is 

difficult to determine from the current studies if SmoA1 induces increased p19Arf 

expression in the absence of Bmi1.  Cyclin D1, a Hh target which acts downstream of 

p16Ink4a (Kenney et al., 2000), was weakly expressed in a small fraction of ectopic cells in 

SmoA1;Bmi1-/- mice, but was strongly expressed in medulloblastomas (Fig. 4-7 Bc).  

Given that Cyclin D1 is required for medulloblastoma development (Pogoriler et al., 

2006), its loss in Bmi1-deficient, SmoA1-expressing cerebellum may contribute to the 

failure to form tumors.  Upregulation of the CDK inhibitor p21 was not detected in Bmi1-

deficient ectopic lesions (not shown). 

We also examined expression of differentiation markers and the stem and 

progenitor cell marker nestin.  Compared to medulloblastomas, ectopic lesions in 

SmoA1;Bmi1-/- mice contained a predominance of cells intensely positive for GFAP, but 

essentially no NeuN positive neuronal cells (Fig. 4-8 A, B).  This marker profile suggests 

that ectopic cells in SmoA1;Bmi1-/- mice are distinct from the pre-neoplastic lesions 

described in PtchlacZ/+ mice (Oliver et al., 2005).  In both SmoA1;Bmi1+/+ and 

SmoA1;Bmi1-/- mice, clusters of post-mitotic, strongly NeuN-positive neuronal cells were 

detected in the outer molecular layer just deep to either tumors or ectopic regions, 

respectively (Fig. 4-8 B).  The presence of these misplaced cell aggregates, never 
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detected in non-transgenic mice, is in keeping with the idea that there is similar initial 

tumorigenic response to SmoA1 in the EGL of Bmi1-/- and wild-type mice (see below), 

but it cannot be sustained in the absence of Bmi1.  We also observed a striking reduction 

in nestin-positive cells in SmoA1;Bmi1-/- ectopic foci (Fig. 4-8 C), indicating a depletion 

of progenitor cells in these presumably abortive lesions.  This loss of progenitor-like cells 

likely contributes to the failure of nascent medulloblastomas to progressively expand in 

the absence of Bmi1. 
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Figure 4-6.  Bmi1 is required for Hh-pathway driven medulloblastoma expansion.   
(A) Hematoxylin and eosin staining of coronal sections from cerebella of P21 mice.  
Tumors (a) or ectopic foci of presumed abortive tumor cells (b), both outlined with dotted 
black line, are evident external to the molecular (ML in c) in SmoA1;Bmi1+/+ and 
SmoA1;Bmi1-/- animals, respectively.  Areas of higher magnification are indicated by 
black boxes on low power images.  (B) Schematic representation of proposed model 
showing cellular compartments in developing cerebellum and SmoA1-induced tumors.  
In transgenic mice expressing SmoA1, tumors arise within the EGL and undergo 
progressive expansion, leading to death within 10 to 12 weeks.  The presence of a small 
focus of tumor-like cells in a P18 SmoA1;Bmi1-/- mouse, with ectopic cells observed in a 
similar location in P21 SmoA1;Bmi1-/- animals, argues that medulloblastoma formation is 
initiated in the absence of Bmi1, but subsequent tumor development is arrested.  (C) 
Comparison of total volumes of medulloblastomas (SmoA1;Bmi1+/+) and ectopic 
cells/abortive tumors (SmoA1;Bmi1-/-) at P21 (N=3).  Error bars indicate range; * 
indicates statistically significant difference (P=0.0044).
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Figure 4-6.  Bmi1 is required for Hh-pathway 
driven medulloblastoma expansion
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Figure 4-7.  Cell death and cell cycle marker expression in SmoA1;Bmi1+/+ medulloblastomas and SmoA1;Bmi1-/- ectopic cells.  
(A) Immunohistochemical staining for transgene, apoptosis and proliferation in P21 mice, with outer edge of molecular layer, when 
visible, outlined with dotted black line.  (a) HA-tagged SmoA1 is detected in SmoA1 tumors and ectopic lesions in SmoA1;Bmi1-/- 
mice, as well as scattered cells in the molecular layer and internal granular later, but not in control (Wild Type) cerebellum.  (b) 
TUNEL staining reveals apoptosis in both tumors and ectopic cells.  (c) High proliferation rate of the tumors is evident from PCNA 
staining of the majority of tumor cells, while only a few cells stain in the lesions of SmoA1;Bmi1-/- mice.  (B) Cell cycle marker 
expression in P21 mice, with outer edge of molecular layer, when visible, outlined with dotted black line.  (a) Tumors express high 
levels of Bmi1 in nearly every cell.  Bmi1 is also appreciable in cells of the molecular layer and internal granular layer of wild-type 
cerebellum.  No Bmi1 is detected in tissue from SmoA1;Bmi1-/- mice.  (b) p19Arf is expressed in ectopic cells, and essentially 
undetectable within medulloblastomas.  Higher magnification (inset) demonstrates nucleolar staining.  (c) Cyclin D1 is broadly 
expressed in medulloblastomas, but is virtually absent from Bmi1-deficient lesions. (C) Apoptosis (% TUNEL-positive cells) is 
significantly higher in SmoA1;Bmi1-/- lesions and proliferation (% PCNA-positive cells) is significantly lower (D) (N=3).  Error bars 
indicate range; * indicates significant differences at P = 0.028 (TUNEL) and P=7.5 x 10-6 (PCNA).
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Figure 4-7.  Cell death and cell cycle marker expression in 
SmoA1;Bmi1+/+ medulloblastomas and SmoA1;Bmi1-/- ectopic cells 

 



 

 
 
 

Figure 4-8.  Differentiation marker expression in SmoA1;Bmi1  medulloblastomas 
and SmoA1;Bmi1  ectopic cells

+/+

-/- .  (A-C) Immunohistochemical staining of tissue from 
P21 mice, with outer edge of molecular layer, when visible, outlined with dotted black 
line.  (A) Intense immunostaining for the glial marker GFAP is seen in the ectopic cells 
of SmoA1;Bmi1-/- mice.  Weaker GFAP immunostaining can be appreciated in cells 
scattered throughout the tumor of SmoA1 mice, and in the molecular layer in all mice.  
(B) Weak expression of the neuronal marker NeuN is detected in scattered cells within 
medulloblastoma, but not abortive tumors.  In addition, strongly NeuN positive clusters, 
representing aberrant collections of neurons, are evident within the outer molecular layers 
of both SmoA1 and SmoA1;Bmi1-/- mice, but not control mice.  NeuN-positive neurons 
are appreciable in the expected location in the internal granular layer of all mice.  (C) 
Expression of the stem and progenitor cell marker nestin is appreciable in SmoA1 tumors, 
but is largely undetectable in lesions in SmoA1;Bmi1-/- mice. 
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Tumor initiation, but not expansion, is evident in SmoA1;Bmi1-/- mice  

In addition to our findings in P21 and P26 animals described above, we also 

examined SmoA1;Bmi1-/- mice at an earlier time point. While one of two P18 

SmoA1;Bmi1-/- mice was similar to P21 mice, the other P18 SmoA1;Bmi1-/- mouse 

contained a small focus of cells with properties intermediate between medulloblastomas 

and ectopic foci seen in SmoA1;Bmi1-/- mice at P21.  This intermediate lesion was much 

thinner than age-matched SmoA1;Bmi1+/+ medulloblastoma (Fig. 4-9 A).  While the 

abortive SmoA1;Bmi1-/- tumor-like lesion was proliferative, fewer cells stained for PCNA 

and Cyclin D1 than in Bmi1+/+ tumor, and expression of p19Arf was elevated (Fig. 4-9 B, 

C, D).  Increased GFAP immunostaining was seen at the periphery of this lesion, as well 

(Fig. 4-10 A).  In keeping with what is seen at P21, there is a marked reduction in nestin 

staining in the Bmi1-deficient lesion and an alteration in its subcellular distribution, 

including the appearance of large, round, nestin-positive cells (Fig. 4-10 B).  These 

distinctive cells, which are never seen in wild-type control or SmoA1;Bmi1+/+ mice, are 

detected both in regions of ectopic cells and in the molecular layer of 18-day-old and, to a 

lesser extent, 21-day-old animals, but are absent by postnatal day 26 (data not shown).  

Immunohistochemical data from all animals are summarized in Table 4-1.
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Figure 4-9.  Cell cycle marker expression in tumor-like focus in P18 SmoA1;Bmi1  cerebellum versus medulloblastoma in 
SmoA1;Bmi1  mice

-/-

+/+ .  (A) Hematoxylin and eosin staining of medulloblastoma (P18 SmoA1) and intermediate lesion (P18 
SmoA1;Bmi1-/-).  Histological appearance of intermediate tumor-like lesion is similar to full-blown tumor, but the lesion is notably 
smaller.  Shown in this image is the ectopic region with the maximal cross-sectional area.  (B) PCNA stains both tumor and 
intermediate Bmi1-/- tumor-like focus, but stains fewer cells in the Bmi1-deficient lesion. Insets show higher magnification. Cyclin D1 
expression is reduced (C) and p19Arf

  is elevated (D) in the SmoA1;Bmi1-/- lesion.  

 



 

 
 
 
Figure 4-10.  Increased GFAP expression and loss of nestin expression in P18 
SmoA1;Bmi1  tumor-like lesion-/- .  (A) GFAP is detected in the outer region of the P18 
SmoA1;Bmi1-/- tumor-like lesion, similar to the pattern seen in the ectopic regions of P21 
animals.  (B) Marked reduction of nestin positive cells and alteration of subcellular nestin 
distribution is appreciable in SmoA1;Bmi1-/- mice at P18.  Insets show higher 
magnification of tumor (SmoA1;Bmi1+/+) or molecular layer (SmoA1;Bmi1-/-).
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 SmoA1;Bmi1+/+ SmoA1;Bmi1-/-

Age P14 and older P18 (8940) * P18 (8941) P21 (8021, 
132-3.2, 135-3.5) P26 (8221) 

H&E † Medulloblastoma Medulloblastoma-
like focus 

Abortive tumor 
cells 

Abortive tumor 
cells Normal 

PCNA ++++ +++ + + NA§

Cyclin D1 ++++ +++ + + NA 

Nestin +++ + - - NA 

Nestin 
(large, round cells) ‡ - ++ ++ + - 

NeuN (lesions) + + - - NA 

NeuN (clusters in 
molecular layer) + + + + - 

GFAP + ++ ++++ ++++ NA 

p19 +/- + ++ ++ NA 
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* Numbers in parentheses are animal identifiers. 
† H&E histology refers specifically to any unexpected cell populations outside of the molecular layer. 
‡ At P18, these distinctive cells were detected both in ectopic regions and molecular layer (Fig. 4-9); at P21, detected only in 

molecular layer. 
§ NA = not analyzed, since ectopic cells were not detected at P26. 
 
 
Table 4-1.  Histology and immunophenotyping summary of cerebella from SmoA1-expressing wild-type and Bmi1-/- mice. 

 



 

Summary 

By exploring the consequences of Bmi1 deficiency in vitro and in vivo, we tested 

the hypothesis that Bmi1 is required for keratinocyte proliferation and repeated induction 

of hair cycling.  Our results suggest a role for Bmi1 in colony forming ability, 

proliferation rate and total proliferative potential of keratinocytes isolated from both 

newborn and adult animals.  Furthermore, we observed a defect in hair follicle 

regeneration and pigmentation that worsens as animals age, suggesting a role for Bmi1 

not only in epithelial cell function, but also in the melanocyte lineage.  Although 

additional studies will be needed to rigorously test whether there are alterations in 

epithelial and melanocyte stem cell number or function in Bmi1-deficient skin, the 

progressive nature of the follicular and pigmentation defects is in keeping with 

observations in other organ systems, where loss of Bmi1 results in progressive post-natal 

deficits in both hematopoietic and neural stem cells.  However, based on the methods 

employed, we cannot be certain if there is a progressive inhibition of in vitro keratinocyte 

proliferation, as well.  This piece of information would be particularly useful in 

distinguishing between the importance of Bmi1 in stem cell self renewal and transient 

amplifying cell proliferation, as Bmi1 is required for both processes in the hematopoietic 

system (Lessard et al., 1999, Lessard et al., 2003), but appears to impact committed 

neural progenitor proliferation in the cerebellum, but not elsewhere in the central and 

peripheral nervous system (Molofsky et al., 2003, Leung et al., 2004). 

By utilizing Bmi1-/- mice in concert with our robust, short-latency SmoA1-driven 

model, we were able to test the hypothesis that Bmi1 is required for medulloblastoma 

development.  While we detected small, relatively non-proliferative lesions, frank 
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medulloblastomas never developed in the context of disrupted Bmi1, indicating an 

absolute requirement for this polycomb gene in the pathogenesis of Hh-driven 

medulloblastoma.  While we cannot formally exclude the possibility that failure of 

SmoA1;Bmi1-/- mice to develop full-blown medulloblastomas is due to a Bmi1-dependent 

loss of tumor progenitor cells, we do not believe this to be the case.  Bmi1 deficiency 

impairs Shh-driven proliferation of CGNPs, the likely cell of origin for the 

medulloblastomas in our model.  However, the cerebella of Bmi1-/- mice develop 

relatively normally, despite their smaller size, with formation of the molecular, Purkinje, 

and internal granular layers, albeit with abnormal basket neuron arborization and reduced 

molecular layer cellularity (Leung et al., 2004).  Moreover, the presence of an 

intermediate tumor-like lesion in a SmoA1;Bmi1-/- mouse at P18 strongly argues that 

tumor initiation can occur. 

Taken together, our data demonstrate involvement of Bmi1 in Hh-mediated 

epithelial stem cell function, establish an obligatory role for Bmi1 in Hh-driven 

medulloblastoma pathogenesis, provide the first demonstration that Bmi1 is required for 

de novo development of a spontaneously-arising solid tumor, and identify Bmi1 as a 

critical downstream effector in tumorigenesis driven by uncontrolled Hh-pathway 

activation.  Progression of SmoA1-expressing CGNPs to medulloblastoma involves many 

of the same molecular pathways that regulate physiologic CGNP proliferation and growth 

arrest, and loss of Bmi1, by disrupting these signals, prevents expansion of Hh-driven 

medulloblastomas.  These data raise the exciting possibility that Bmi1 may be required 

for other physiological or pathological responses to Hh signaling.  Basal cell carcinomas, 

for example, display robust BMI1 expression (Reinisch et al., 2007), suggesting potential 
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involvement in the development of these tumors.  Additionally, further studies will be 

required to establish whether BMI1 will be a useful target for the prevention or treatment 

of human malignancy. 
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Chapter 5 

Summary and Future Directions 

The Hedgehog pathway is a major developmental regulatory pathway, controlling 

organogenesis or tissue maintenance in a wide range of tissues (Wicking et al., 1999, 

Pasca di Magliano et al., 2003).  The darker side to the powerful mitogenic capacity of 

Hh signaling is its well-documented link to cancer development.  Alterations in Hh 

signaling have been found in a variety of tumors in sites as disparate as the lung, pancreas, 

skin and brain (Pasca di Magliano et al., 2003, Rubin et al., 2006).  In this thesis, I have 

addressed several questions in Hh-driven tumor biology using a novel mouse model that I 

developed for studying the oncogenic effects of Hh pathway activation via tissue-specific, 

inducible hyperactivation of Hh signaling.  We achieved this by using the constitutively 

active SmoA1 allele, mimicking a genetic aberration seen in human HH-driven neoplasia 

(Xie et al., 1998, Taipale et al., 2000).  To generate our mouse model, we placed an HA 

epitope-tagged SmoA1 allele under transcriptional control of the tetracycline response 

element (TRE).  With assistance from the University of Michigan transgenic animal core, 

we generated three independent phenotype-producing lines of TRE-SmoA1 mice. 

Epithelial SmoA1 expression does not induce basal cell carcinomas or hair follicle 

growth reactivation (anagen) 

We first utilized our TRE-SmoA1 mice to assess the consequences of high-level, 

proximal activation of the Hh pathway in skin.  Dysregulation of HH signaling is the 
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primary etiologic event in the majority of basal cell carcinomas (BCCs), the most 

common skin tumor (Bale et al., 2001, Gorlin, 2004).  Despite this well-established 

connection, previous attempts to model BCC development via upstream Hh activation 

have met with little success.  While transgenic mice expressing the distal Hh effectors 

Gli1 and Gli2 in skin developed robust BCCs with striking similarities to human tumors 

(Grachtchouk et al., 2000, Nilsson et al., 2000, Hutchin et al., 2005), mice 

overexpressing SHH or M2SMO, a mutant SMO allele cloned from a human BCC, 

developed only microscopic lesions at birth or slow-growing tumors that resembled 

basaloid follicular hamartomas (Oro et al., 1997, Xie et al., 1998, Grachtchouk et al., 

2003).  Unfortunately, most of the mice from these models died at birth, making it 

difficult to follow tumor development postnatally.  However, mice from the 

ΔK5-M2SMO model, which survived well into adulthood, developed slow-growing 

basaloid follicular hamartomas, but not BCCs, a phenomenon ascribed to insufficient 

activation of Hh signaling (Grachtchouk et al., 2003).  This raised both the possibility 

that the ΔK5 promoter may not activate transgene expression to sufficient levels to induce 

tumorigenesis and the possibility that the human M2SMO allele may be insufficient to 

drive carcinogenesis in murine epithelium at all. 

To address these questions, we crossed TRE-SmoA1 mice with K5-tTA and 

K5-rtTA mice (Diamond et al., 2000), which are known to be sufficient to drive BCC 

development via Gli2 overexpression (Hutchin et al., 2005).  We observed that double 

transgenic K5-tTA;TRE-SmoA1 mice maintained on doxycycline-free chow throughout 

gestation (SmoA1 transgene “on”) were either stillborn or died in the first few hours after 

birth with significant developmental abnormalities, including distortions of the skin, gut 

146 



 

and limbs.  Taking advantage of the conditional nature of our model system, we activated 

epithelial SmoA1 expression postnatally in order to test they hypothesis that upstream 

dysregulation of Hh signaling by constitutively active murine SmoA1 can induce BCCs 

in adult mice.  Following transgene activation, mice developed progressively worsening 

epithelial phenotype that began with a greasy appearance of the pelage fur and progressed 

to hair loss and thickening of the skin, with associated appearance of scale.  Histological 

examination of skin from these animals revealed widespread distortion of both follicular 

structures and interfollicular epidermis, in a pattern quite similar to that seen in the 

previously characterized ΔK5-M2SMO mice.  These data are in keeping with the 

previously described resistance of murine skin to BCC development (Dlugosz et al., 

2002), indicating a notable difference between proximal Hh-driven BCC susceptibility in 

mice and man. 

It is somewhat difficult to speculate on the exact nature of this difference.  Much 

of the mechanism involved in trafficking the signal between activated Smo and the Gli 

transcription factors remains incompletely understood.  However, one intriguing 

possibility comes from the observation that the protein suppressor of fused (Sufu) is a key 

inhibitory factor in mammalian Hh signaling (Cheng et al., 2002, Merchant et al., 2004, 

Cooper et al., 2005).  Although the deposited sequences of murine and human Sufu 

proteins are 97% identical (Stone et al., 1999), it is possible that there is differential 

activity or regulation of the protein in the two species, and that tight Hh pathway control 

by Sufu plays a role in mediating the resistance of mice to BCC development.  

Commercial antibodies are available that recognize both human and murine Sufu, and 

gene sequence data is readily available, facilitating investigation of relative Sufu levels in 
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human and mouse skin, both in physiologic and pathologic settings, by Western blot and 

qPCR. 

Additionally, Sufu mutant mice have been generated, and while Sufu-/- mice died 

in utero, Sufu+/- mice survived, and developed very slow growing basaloid tumors well 

over a year after birth (Svärd et al., 2006).  When on a p53-/- background, however, 

Sufu+/- mice developed medulloblastomas and rhabdomyosarcomas, both of which are 

linked to Hh pathway dysregulation (Lee et al., 2007).  By selective breeding, it would be 

straightforward to generate K5-tTA/rtTA;TRE-SmoA1 or even ΔK5-M2SMO mice on a 

Sufu+/- background.  If these mice develop basal cell carcinomas instead of or in addition 

to the previously described hamartomas, this would suggest that differential function of 

Sufu at least partially explains the resistance of murine skin to proximal Hh-pathway 

mediated tumorigenesis. 

Proximal and distal Hedgehog pathway activation in induction of brain tumors 

I next turned my efforts towards examining the consequences of high level, 

proximal Hh activation in the brain, work described in Chapter 3.  When directly driven 

by the NeuroD2 promoter, SmoA1 was sufficient to induce medulloblastoma formation in 

approximately 50% of ND2:SmoA1 transgenic mice, and a higher percentage of 

homozygous transgenic SmoA1/SmoA1 mice (Hallahan et al., 2004, Hatton et al., 2008).  

By employing the GFAP-tTA driver mouse, which is sufficient to drive IFN-γ-induced 

medulloblastomas (Lin et al., 2004), I activated SmoA1 expression in cerebellar granule 

neuron precursor cells of the developing EGL, resulting in robust, 100% penetrant 

medulloblastoma development, evident histologically within two weeks of birth.  This 

represents a powerful model for Hh-driven medulloblastoma, allowing us to modulate 
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transgene expression (and potentially alter tumor development or maintenance) via 

selective doxycycline treatment. 

In order to examine the consequences of complete transgene abrogation in 

established medulloblastoma, an rtTA (“Tet-on”) was required, in order to globally 

inhibit transgene expression by withholding doxycycline.  Because a GFAP-rtTA mouse 

was not available, I  combined the rapid induction and de-induction of a ROSA26-driven 

rtTA/TRE system with the permanent, mitotically heritable activation of the Cre-loxP 

system.  To achieve this, I performed multiple rounds of selective mouse breeding to 

obtain triple transgenic mice positive for GFAP-Cre, R26-X-rtTA, and TRE-SmoA1 (Zhuo 

et al., 2001, Belteki et al., 2005).  In these mice, the GFAP promoter induces expression 

of Cre recombinase, resulting in the excision of a strong stop sequence lying between the 

ubiquitously expressed ROSA26 promoter and the reverse tetracycline transactivator.  

The excision is permanent, resulting in activation of rtTA expression from the ROSA26 

locus in the GFAP-positive cell and all of its progeny, and, in the presence of 

doxycycline, expression of SmoA1 in these cells.  These mice, when maintained on 

doxycycline throughout gestation, also developed completely penetrant 

medulloblastomas apparent within two weeks of birth. 

I performed extensive characterization of SmoA1-induced tumors, including 

analysis of Hh pathway activation and key markers of human medulloblastomas, 

discovering that they exhibited many similarities to both human medulloblastomas and 

previously described mouse models.  The doxycycline-regulated nature of this transgenic 

model provided us with a tool to assess the developmental window for medulloblastoma 

development, an important question in medulloblastoma pathogenesis, particularly with 
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respect to uncovering the identity of tumor precursor cells.  The cell of origin for 

medulloblastoma has not yet been precisely defined, although many medulloblastomas, 

particularly those induced by Hh dysregulation, are believed to arise from the committed 

cerebellar granule neuron precursors of the EGL. The hypothesis that EGL cells serve as 

a pool of medulloblastoma precursors is supported by several observations.  

Medulloblastomas are pediatric cerebellar tumors with a bimodal distribution, usually 

occurring either between 3 and 4 years old or between 8 and 9 years old (Packer et al., 

1999).  This narrow window of tumor susceptibility in early childhood suggests a 

transient precursor population, present only early in postnatal development.  Both the 

location and developmental timing of many human medulloblastomas are consistent with 

a transient precursor cell population on the external surface of the cerebella, such as the 

EGL .  Furthermore, cells within medulloblastomas often express NeuN, a marker for the 

mature cerebellar neurons which develop from the EGL (Min et al., 2006).  Lastly, some 

medulloblastomas express Math1, a key marker for cerebellar EGL cells (Ueba et al., 

2008).  Work described in this thesis provides additional compelling evidence for the 

EGL as a pool of Hh-driven medulloblastoma progenitors. 

As previously discussed, triple transgenic GFAP-Cre;R26-X-rtTA;TRE-SmoA1 

mice developed robust medulloblastomas when maintained on doxycycline throughout 

life.  These mice also developed tumors when placed on doxycycline treatment at 

postnatal day 4 or 7.  However, when doxycycline treatment is initiated at weaning, by 

which time the EGL has completely disappeared, animals never developed 

medulloblastomas, even after extensive duration of transgene expression.  Additionally, 

medulloblastomas from both the double transgenic and triple transgenic models described 
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in this thesis expressed very high levels of the EGL marker Math1, when compared with 

control adult cerebellum.  Furthermore, immunohistochemical examination of 7-day old 

GFAP-tTA;TRE-SmoA1 mice revealed scattered expression of SmoA1 in individual cells 

throughout the EGL, and by postnatal day 14, obvious tumors were evident in the EGL, 

but only in regions of transgene expression.  Taken together, these results provide very 

strong evidence that Hh-driven medulloblastomas can in fact arise from the EGL.  More 

definitive proof of the EGL as a pool of potential precursors for medulloblastoma could 

be achieved by using the tTA-SmoA1 model in concert with the Math1-CreERT2 (Machold 

et al., 2005) mouse on a Cre-ROSA reporter background.  Treating such mice with 

tamoxifen several days after birth, when Math1 is highly expressed in the EGL, would 

permanently activate the lacZ gene in CGNPs and all of their progeny.  Demonstration of 

β-galactosidase activity by X-gal staining in medulloblastomas arising in these mice 

would lend additional strong support to this hypothesis.  

Not all human medulloblastomas are thought to arise from cells of the EGL, 

however.  Human medulloblastoma is a relatively heterogeneous disease, with variations 

in both histological and immunohistochemical subtype.  It is likely that medulloblastomas 

can arise from several discrete cell types, including both the neuroepithelial cells lining 

the fourth ventricle, which give rise to the radial glia and stellate, basket, Golgi and 

Purkinje neurons of the molecular layer, and the CGNPs of the EGL (Marino, 2005, 

Eberhart, 2007).  However, tumors did not appear to arise in any location other than the 

EGL in our model system.  This argues against a causal role for deregulated Hh signaling 

in the pathogenesis of medulloblastomas arising in adults, and is consistent with the 

observations that HH pathway-driven medulloblastomas in human patients comprise the 
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tumors most consistent with having arisen from the EGL (Eberhart, 2007, Packer et al., 

2008). 

When considering the question of medulloblastoma precursors, an additional 

potential cell of origin must be considered, as well – the postnatal cerebellar stem cell.  

The existence of uncommitted, neurosphere-producing stem cells in the cerebellar white 

matter is a relatively recent discovery (Lee et al., 2005).  These CD133+ cells do not 

express lineage markers, although a subset of them does co-express the stem cell marker 

nestin.  The discovery of CD133+ stem cells in human medulloblastomas (Hemmati et al., 

2003, Singh et al., 2003) bolstered the idea that some of these tumors may originate from 

postnatal cerebellar white matter stem cells, although these CD133+ cells may also arise 

from de-differentiation of more committed cells. 

While the majority of cells within cerebellum-derived neurospheres were GFAP 

positive (Lee et al., 2005), it is not known if the CD133+ stem cells in our GFAP-driven 

transgenic mice express SmoA1.  It would be enlightening to purify CD133+ cerebellar 

stem cells from our postnatally-activated, non medulloblastoma-bearing transgenic mice 

via flow cytometry and examine them for SmoA1 expression.  If these cells do express 

SmoA1, the absence of tumor development in postnatally activated 

GFAP-tTA;TRE-SmoA1 and GFAP-Cre;R26-X-rtTA;TRE-SmoA1 mice would indicate 

that proximal dysregulation of the Hh pathway in cerebellar stem cells is not sufficient to 

drive medulloblastoma formation.  Failure of tumor formation secondary to SmoA1 

expression in cerebellar stem cells would be consistent with the observation that CD133+ 

stem cells are unresponsive to Shh in culture (Lee et al., 2005).  This would not, of 

course, rule out the possibility of these cells serving as precursors to medulloblastoma 
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secondary to alternate oncogenic insults, such as overexpression of basic fibroblast 

growth factor, which induces proliferation of these cells (Lee et al., 2005). 

When I analyzed the tTA-SmoA1 transgenic mice, I observed that using the GFAP 

promoter to drive transgene expression resulted in widespread transgene activation.  As 

expected based on the known expression of GFAP in stem cells of the sub-ventricular 

zone (SVZ) (Zhu et al., 2007), SmoA1 expression was detected in cells in this region.  

Despite this broad expression of transgene, tumors failed to develop in any locations 

other than the EGL.  I also used the TRE-Gli2 mouse model, which induces development 

of BCCs when activated in skin (Hutchin et al., 2005), to activate pathway activity in a 

distal manner.  Somewhat surprisingly, tTA-Gli2 mice appeared completely normal, with 

no evidence of tumor development either in the cerebellum or the forebrain, even in mice 

over one year old.  Likewise, postnatally activated tTA-GLI2* mice, which express an 

active, repressor domain-deleted form of human GLI2, did not develop histologically 

detectable tumors arising from the SVZ. 

These data are in keeping with a recent report from Galvin et al. that 

demonstrated that high level activation of the Hh pathway resulted in cell cycle arrest or 

apoptosis in neural stem cells (Galvin et al., 2008).  Further analysis will be required to 

determine whether increased apoptosis and decreased proliferation play a role in the 

failure of our SmoA1-, Gli2- or GLI2*- expressing mice to develop SVZ-derived tumors.  

These experiments would likely include examination of a larger number of animals and 

careful quantitative measurement of transgene expression, Hh pathway activation, 

proliferation and apoptosis in cells of the SVZ.  Ideally, these experiments would be 

performed as time-course experiments, quantifying the above criteria at multiple time 
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points following transgene activation.  The study of transgene expression in 

GFAP-tTA;TRE-Gli2 mice, however, would be complicated by the absence of an epitope 

tag. 

In addition to expression of SmoA1 and GLI2* in the EGL and SVZ of our mice, 

I also observed the expected transgene expression in glial cells throughout the cerebellum 

and cerebrum.  As discussed above, SmoA1 failed to induce tumors from any of these 

glial cells.  Comparative immunostaining and in situ hybridization revealed that while 

SmoA1 expression was widespread in the forebrain, expression of Ptch1 and Gli1, 

indicating activation of the Hh pathway, was detected only in cells along the SVZ.  A 

clue as to the striking disparity in Hh pathway activation in response to SmoA1 may 

come from the observation that endogenous Hh pathway activity in the mature forebrain 

is essentially limited to the cells of the SVZ and SGZ (Ahn et al., 2005, Becher et al., 

2008).  Hh pathway activation in these regions may reflect endogenous signaling, or may 

be the result of SmoA1 expression.  This raises the possibility that cells which normally 

respond to Shh express the appropriate intracellular components to transduce the signal, 

whereas normally non-Shh regulated cells do not.  Given that Ptch1 was not up-regulated 

in glia response to SmoA1 expression, it appears that any difference in Hh regulatory 

machinery must lie downstream of Ptch1 and Smo. 

The above hypothesis was supported by the development of large numbers of 

small, proliferative, undifferentiated tumors scattered throughout both the cerebellum and 

cerebrum of post-natally activated GFAP-tTA;TRE-GLI2* mice.  In these mice, the 

normal regulatory mechanisms in place between Smo and activated Gli2 are bypassed.  

Development of these “progenitoromas” driven by GLI2* indicated that high level 
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activation of the Hh pathway at the most distal level is sufficient to induce a de-

differentiation of mature glial cells to a progenitor cell-like phenotype.  Conversely, full-

length murine Gli2 was not sufficient to induce similar tumors.  This raises the 

possibilities that glial cells either are less well equipped to process full-length Gli2 to its 

active form or more rapidly degrade full-length Gli2 than Shh-responsive EGL cells.  

This is consistent with that observation that, in skin, exogenously expressed full-length 

Gli2 is functionally inactive in the absence of Shh signal (Mill et al., 2003).  Experiments 

designed to address these possibilities may provide us with a deeper understanding of 

normal Hh regulation, and help clarify the differences between Hh regulation in disparate 

organs. 

Hh signaling in tumor maintenance 

Having established a powerful conditional model for robust Hh-driven 

medulloblastoma development, we were able to ask an important question in tumor 

biology with potential clinical impact: do Hh-induced medulloblastomas remain 

“addicted” to the oncogenic Hh stimulus?  The translational extension of this question is 

whether treating medulloblastoma patients with HH antagonists can provide the basis for 

rational tumor-directed therapy.  This is a particularly attractive notion when considering 

Gorlin syndrome patients, who are unable to tolerate the traditional craniospinal axis 

radiation therapy without development of massive numbers of BCCs, and would greatly 

benefit from alternative therapy.  

My original efforts focused on the GFAP-tTA;TRE-SmoA1 mice.  I placed these 

mice on doxycycline treatment administered via chow and water to repress transgene 

expression at various ages ranging from three to 7 weeks old.  In all doxycycline-treated 
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animals, focal transgene repression was observed.  Although this regional blockade of 

transgene expression was somewhat unexpected, the results were quite encouraging since 

focal transgene inhibition correlated with focal repression of Ptch1 and Gli1 expression, 

indicating an inhibition of Hh signaling in these regions.  Furthermore, this inhibition of 

Hh activity was linked to a regression of tumor burden in regions of transgene and Hh 

pathway shutdown.  In regions where SmoA1 expression persisted, tumor burden 

remained, and Ptch1 and Gli1 were detected.  These observations support the hypothesis 

that these tumors remain dependent on Hh signaling for their continued survival.  

However, I was unable, based on these data, to conclude that Hh inhibition was sufficient 

to cause complete regression of tumors. 

To more effectively address this question, I again exploited the triple transgenic 

rtTA-SmoA1 model.  The most likely explanation for incomplete SmoA1 inhibition in 

tTA-SmoA1 mice was insufficient delivery of doxycycline to tumor cells.  One potential 

disadvantage of a tTA/TRE based system is the requirement for continued doxycycline 

delivery to every tTA-expressing cell to completely suppress transgene expression.  As 

an alternate approach, I employed the reverse tetracycline transactivator (rtTA) to drive 

expression of SmoA1.  To this end, we employed the previously established GFAP-Cre 

(Zhuo et al., 2001) and R26-X-rtTA (Belteki et al., 2005) mice, as described above.  

Tumor regression studies in triple transgenic rtTA-SmoA1 mice revealed a 

complete dependence of these tumors on continued Hh activation.  Following cessation 

of doxycycline treatment, tumors completely disappeared within three weeks.  

Furthermore, this regression was permanent, as tumors never returned, following either 

long-term cessation of doxycycline treatment or brief periods of doxycycline 
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discontinuation followed by resumption of doxycycline treatment.  Lack of tumor 

recurrence in this model suggests that all tumor cells either die or terminally differentiate 

following transgene inhibition, leaving behind no dormant tumor cells with tumorigenic 

potential.  These results are in stark contrast to the persistence of dormant tumor initiating 

cells and tumor recurrence seen in regressed BCCs from K5-tTA;TRE-Gli2 mice (Hutchin 

et al., 2005) and other conditional models (Boxer et al., 2004, Shachaf et al., 2004). 

The durable elimination of SmoA1-induced medulloblastomas strongly argues 

that anti-HH therapy may have an important place in the clinical management of a subset 

of medulloblastoma patients.  Although only 20 – 30% of human medulloblastomas have 

identifiable mutations in Hh pathway components (Wetmore, 2003, Marino, 2005), a 

larger fraction demonstrate activation of the pathway, as measured by target gene 

expression (Hallahan et al., 2004, Leung et al., 2004).  It is also known that Hh signaling 

is involved in murine medulloblastomas not directly driven by Hh dysregulation.  For 

example, tumors induced by interferon-γ up-regulated Shh expression (Lin et al., 2004), 

and medulloblastomas arising in Cxcr6-/- mice not only activated the Hh pathway, but in 

fact depended on it, responding to Hh antagonist therapy (Sasai et al., 2007).  Taken 

together with our data, these results suggest that anti-Hh therapy may be important in a 

greater proportion of patients than those with specifically identifiable Hh mutations.  

However, anti-Hh therapies may require refinement before they reach clinical utility, 

particularly in young patients, as a recent study demonstrated that even brief treatment of 

immature mice with the Smo inhibitor HhAntag resulted in permanent defects in bone 

structure (Kimura et al., 2008). 
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The data from the regression experiments suggest that, following abrogation of 

Hh activation, tumors regress due to both decreased proliferation and increased apoptotic 

activity.  One of the most striking changes that occur during regression is the complete 

loss of nestin-positive cells from regressing tumors.  This loss is apparent in both  

GFAP-tTA;TRE-SmoA1 and GFAP-Cre;R26-X-rtTA;TRE-SmoA1 mice, and in the triple 

transgenic system occurs within one week of transgene inhibition.  Nestin is a marker for 

stem and progenitor cells (Lendahl et al., 1990), and its expression in relatively few cells 

scattered throughout the tumors from our models raises the possibility that these cells are 

tumor stem cells.  The fact that nestin-expressing cells are lost before the bulk of the 

tumor disappears supports this hypothesis.  However, additional experiments are needed 

to confirm the importance of these nestin-positive cells to maintenance of tumors. 

The most straightforward approach to directly assess the impact of these putative 

progenitor-like cells on tumor maintenance would be to specifically ablate nestin-

expressing cells from SmoA1-driven tumors.  This experiment would be possible to 

perform by taking advantage of the as-yet unpublished nestin-tk mice developed in the 

laboratory of Dr. Jack Parent here at the University of Michigan (personal 

communication).  These mice express viral thymidine kinase from the nestin promoter, 

and as such, nestin-positive cells can be specifically ablated by treating mice with the 

antiviral drug gancyclovir.  If, following gancyclovir treatment, medulloblastomas from 

SmoA1-expressing, nestin-tk mice gradually regress, that will provide confirmation that 

the crucial cells for maintenance of these tumors are in fact the nestin-positive progenitor 

cells.  If tumors are not impacted by loss of nestin-positive cells in this experiment, this 
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would suggest that these cells do not represent tumor stem or progenitor cells, and would 

prompt a continued search for such a population. 

Alternately, rather than ablating nestin+ cells, permanently labeling nestin+ cells 

and their progeny would facilitate tracking their behavior within tumors.  By treating 

tTA-SmoA1;nestin-CreER(T2);ROSA26R mice (Lagace et al., 2007) with tamoxifen after 

tumor formation, the behavior of nestin+ tumor cells could be followed over time.  If 

these cells truly represent medulloblastoma stem or progenitor cells, a continually-

increasing proportion of the tumors should stain with X-gal.  Purification of nestin+ cells 

from tTA-SmoA1;nestin-GFP tumors (Mignone et al., 2004) by flow cytometry would 

facilitate investigation of the tumor stem cell potential of these cells in grafting studies 

and in vitro tumor stem cell assays. 

Bmi1 in epithelial maintenance and medulloblastoma progression 

The final questions we asked in the course of this work involved the function of 

the polycomb group gene Bmi1 in maintenance of normal epithelium and development of 

Hh-driven medulloblastoma.  Bmi1 mediates stem cell self renewal or committed 

progenitor proliferation in multiple tissues, and is required for development of full-blown, 

serially transplantable murine leukemia and maintenance of breast cancer stem cells and 

gliomas (Lessard et al., 2003, Molofsky et al., 2003, Park et al., 2003, Liu et al., 2006b, 

Bruggeman et al., 2007).  Furthermore, RNAi-mediated knockdown of BMI1 induced 

cell cycle arrest and death of numerous cancer cell lines, but not normal cell lines (Liu et 

al., 2006a), suggesting a requirement for BMI1 in a wide range of tumors. 

Our in vitro assays suggested that appropriate expression of Bmi1 is required for 

the maintenance of epithelial cells, and that Bmi1 controls the replicative lifespan of 
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epithelial stem or transient amplifying cells.  Repeated forced reactivation of hair cycling 

revealed a progressive defect in the capacity of Bmi1-/- follicles to re-enter the active 

anagen growth phase, a functional measure of follicular stem cell capacity.  Additionally, 

aged Bmi1-/- mice displayed a general loss of pigmentation, as their coat color faded to a 

light brown, rather than the dark black color seen at birth.  More impressive was the loss 

of pigmentation seen in regions of repeatedly depilated skin, in which many of the 

individual hair shafts were entirely amelanotic following two rounds of depilation.  One 

interpretation of these results suggests a heretofore unknown role for Bmi1 in melanocyte 

stem cell maintenance, which could be confirmed both by in vitro analysis of Bmi1-/- 

melanocyte stem cell self-renewal and by careful analysis of melanocyte numbers in 

aging or depilated Bmi1-/-;Dct-lacZ melanocyte reporter mice (Mackenzie et al., 1997).  

Given the early lethality of conventional Bmi1-/- mice, conditional deletion of Bmi1 in the 

melanocyte lineage will be required to study this phenotype further and determine 

whether it reflects a cell-autonomous requirement for Bmi1 in melanoblasts, and examine 

the interaction between Bmi1 and other key molecules involved in melanogenesis 

(reviewed in (Lin et al., 2007)).  Targeted deletion or knock-down of Bmi1 in cutaneous 

keratinocytes will similarly be important in examining the function of Bmi1 in epidermal 

and hair follicle homeostasis, and tumorigenesis (see below). 

  While our understanding of the requirement for Bmi1 in epithelial and 

melanocyte lineages in skin is still in its early stages, its role in the developing 

cerebellum has been more thoroughly defined.  In the absence of Bmi1, cerebellar granule 

neuron precursors of the EGL, the proposed cell of origin for medulloblastomas in our 

model, exhibit impaired proliferation in response to Shh stimulation, giving rise to 
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hypomorphic cerebella with decreased IGL area (Leung et al., 2004).  Bmi1 itself is a 

downstream target of Hh signaling in the normal developing cerebellum, and BMI1 

expression in medulloblastomas appears to be correlated with activation of the HH 

pathway (Leung et al., 2004).  Taken together, these data suggest an important role for 

Bmi1 in Hh-mediated medulloblastoma development. 

To test this hypothesis, I performed selective breeding experiments to generate 

GFAP-tTA;TRE-SmoA1 mice on a Bmi1-null background (designated SmoA1;Bmi1-/-).  In 

striking contrast to the complete tumor penetrance in SmoA1;Bmi1 wt mice, none of the 

SmoA1-expressing Bmi1-/- mice developed full-blown medulloblastoma.  At 21 days old, 

SmoA1;Bmi1-/- mice harbored small, loosely packed presumptive abortive tumor lesions 

which were significantly more apoptotic and less proliferative than Bmi1 wild-type 

tumors.  An intermediate lesion was detected in a P18 SmoA1;Bmi1-/- mouse, displaying 

proliferative activity and cell cycle marker expression midway between tumors and P21 

abortive lesions.  The observation of an early intermediate tumor-like lesion, 21 day old 

abortive lesions, and a lack of detectable ectopic tissue in a 26 day old mouse strongly 

argues for medulloblastoma initiation, but not progression, in the absence of Bmi1. 

These data provide the first demonstration of the importance of Bmi1 in 

spontaneous solid tumor development.  The link between the Hh pathway and Bmi1 both 

in normal cerebellar development and in medulloblastoma pathogenesis suggest a role for 

Bmi1 in other Hh-mediated malignancies, such as BCCs, which are known to express 

BMI1 (Reinisch et al., 2007).  To test this hypothesis, it would be necessary to generate 

BCC-susceptible mice on a Bmi1-/- background.  As I observed during the course of the 

experiments discussed in Chapter 5, it can be very difficult to obtain Bmi1-/- mice on a 
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tumor-bearing background, particularly when four individual alleles must be coordinated.  

As such, for practical reasons, a single-transgenic BCC model such as the K5-Gli2 mouse 

would be most appropriate to use.  Any such experiments would be complicated by the 

shortened lifespan of Bmi1-/- mice, however, which rarely survive past several months of 

age.  Although several animals in our repeated depilation experiments survived for 

significantly longer, this is uncommon, and cannot be relied upon for robust, reproducible 

tumor modeling experiments. 

To overcome this obstacle, grafting studies could be employed.  By grafting full-

thickness epithelia from K5-Gli2 and K5-Gli2;Bmi1-/- newborn pups onto the flanks of 

immune-deficient mice, it would be possible to bypass the early lethality of Bmi1-/- mice 

and observe the long-term tumor formation potential of epithelial Hh pathway activation 

in the absence of Bmi1.  As an alternative to grafting studies, development of conditional, 

Cre-mediated Bmi1 knockout mice would allow for skin-specific postnatal ablation of 

Bmi1 using tamoxifen-inducible K5-Cre-ERT2 or K14-Cre-ERtam mice (Vasioukhin et al., 

1999, Kataoka et al., 2008).  Because systemic Bmi1 expression would be preserved in 

these mice, they may not exhibit the shortened lifespan characteristic of Bmi1-/- mice, 

allowing them to survive past the latency period for in situ development of BCCs driven 

by K5-Gli2.  If Bmi1-null skin in either of these experiments were to exhibit impaired 

BCC development when compared to K5-Gli2;Bmi1 wild type skin, this would imply a 

more general role of Bmi1 in Hh-driven tumors, which includes malignancies in a broad 

variety of organs. 

Summary 
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In this thesis, I have described the use of a novel mouse model to examine the 

consequences of proximal dysregulation of the Hh pathway in the epithelium and the 

brain.  I observed that activation of SmoA1 in epithelial basal cells and hair follicles did 

not result in BCC development, whereas expression within the EGL of developing 

cerebella induced aggressive medulloblastoma formation with complete penetrance, 

revealing a striking disparity in tumorigenic response between these two populations.  

Furthermore, comparing the tumorigenic potential of proximal versus distal Hh pathway 

activation in the brain suggested the existence of a strong Hh-inhibitory signal in mature 

glia, somewhere between the level of Smo and the level of activated Gli2.  While further 

experiments will be required to fully understand the implications of these results, they 

provide exciting glimpses into the biology of Hh signaling. 

 I also exploited the conditional nature of our medulloblastoma model to 

demonstrate a potential clinical application for Hh inhibition in medulloblastoma therapy.  

Our data revealed that brief interruption of pathologic levels of Hh signaling was 

sufficient to achieve complete, durable elimination of medulloblastomas, without 

evidence of dormant tumor initiating cells – in effect curing mice of this devastating 

disease, even after resumption of transgene expression.  While murine models and human 

patients are of course different in many ways, the results presented herein paint a very 

encouraging picture of a potential therapeutic avenue for the most common pediatric 

brain malignancy. 

Lastly, I explored the contribution of a known stem cell maintenance gene to 

epithelial maintenance and medulloblastoma development.  Our data suggest an impact of 

Bmi1 deficiency on keratinocyte stem cell function in vitro and in vivo, and point to a role 
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for Bmi1 in melanocyte stem cells, as well.  Furthermore, I demonstrated an absolute 

requirement for Bmi1 in progression, but not initiation, of Hh-driven medulloblastomas.  

This requirement, together with the observation of nestin-positive cells throughout Bmi1 

wild-type tumors, suggested the existence of a tumor stem cell population within Hh-

driven medulloblastomas.  If, with additional experiments, Bmi1 dependence can be 

generalized to other Hh-driven tumor types, this would provide an important insight into, 

and suggest an additional potential therapeutic target for, a wide range of human 

malignancies. 
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