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Optimal Aeroassisted Intercept Trajectories
at Hyperbolic Speeds

Elmer G. Gilbert,* Robert M. Howe,t Ping Lu,J and Nguy.en X. Vinh*
University of Michigan, Ann Arbor, Michigan 48109

This paper considers the optimization of Earth-based multistage rocket interceptors with very short flight times
and long ranges. The objective is the minimization of the launch mass as a function of interceptor design variables
such as stage size, engine burn times, and the angle-of-attack program. Because of the demanding target conditions,
the payload reaches hyperbolic speeds and the centrifugal forces greatly exceeds the gravity force. The minimiza-
tion of launch mass shows that the needed downforce on the payload is best provided by negative aerodynamic lift.
The description of such negative-lift, aeroassisted optimal trajectories is a principal goal of the paper. Topics
treated include the following: a model for the multistage interceptor, the formulation of the optimization problem,
the mathematical derivation of a universal curve that provides a simple and accurate model for negative-lift
segments of the optimal trajectories, and effective procedures for efficient numerical optimization. Results of
solution studies are reported. For flight times of 6 min and a range of about 3000 miles, a five-stage interceptor
requires a mass ratio of several thousand. The dependence of the optimal mass ratio on key design and target
parameters is described.

Nomenclature
A = dimensionless thrust in g = 77(ra0g0)
CL>CD — lift and drag coefficients
D — dimensionless drag force = \pv2SCD /(fw0g0)
g0 = gravitational acceleration at r0
H = dimensionless altitude = h/r0
h = altitude = r — r0
hs = scale height of exponential

atmosphere = 7.16 km l
7sp = dimensionless specific impulse = isp/(ro/£o)5

4P
 = specific impulse

L = dimensionless lift force = \pv2SCL /(w0g0)
M = dimensionless mass = m/m0
m — vehicle mass
ra0 = reference mass
N = number of stages
R = dimensionless distance = r/r0
r = distance of vehicle from center of Earth
r0 = reference distance
5 — cross-sectional reference area
T = engine thrust
t = real time L
V = dimensionless speed = fl/(g0

ro)5

v = vehicle speed
x = dimensionless time for universal curve
a = angle of attack
y = flight-path angle with respect to local horizontal
r\ = dimensionless force coefficient = p0r05/m0
6 = polar angle of vehicle trajectory
1 = fineness ratio = stage length/stage base diameter
[i — dimensionless inverse scale height = r0/hs
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P(H) = dimensionless density = p(rQH + r0)/p0
p(r) = atmospheric density
p0 = reference density = p(r0)
fff = mass-ratio parameter for /th ftage
T = dimensionless time = £/(r0/go)5

I. Introduction

THE utilization of satellite-based missiles for intercepting
intercontinental ballistic missiles (ICBMs) during their

ascent constitutes one of the major efforts in the U.S. Strate-
gic Defense Initiative. Here, an alternative approach is consid-
ered: the use of high-performance, multistage, Earth-based
interceptors. The very short flight times and long ranges
require hyperbolic speeds and a high ratio of takeoff mass to
payload mass. A natural objective is the minimization of the
mass ratio with respect to interceptor design variables such as
stage size, engine burn times, coasting times between stages,
and the angle-of-attack program. Using techniques described
in this paper, numerical solutions of such minimization prob-
lems have been obtained. In addition to giving information on
how target parameters affect the optimum launch mass, the
solutions show that negative aerodynamic lift plays a crucial
role in the midcourse portion of the optimal trajectories. The
general physical basis for this key result is easy to understand:
The hyperbolic speed generates a centrifugal force far in
excess of the gravity force, and the required downforce is
generated more efficiently by negative aerodynamic lift than
by engine thrust. The primary objectives of this paper are
threefold: 1) to summarize the models and methods by which
the optimal aeroassisted trajectories are computed; 2) to
clarify by analysis the detailed nature of the aeroassisted
portion of the optimal trajectories; and 3) to give some insight
into how design and target parameters affect the optimal
launch mass.

The presentation begins in Sec. II with the details of the
mathematical model for the multistage interceptor. Physically
reasonable simplifying assumptions are introduced to keep
the complexity of the model within acceptable bounds. The
minimum launch mass problem is formulated in Sec. III. To
emphasize the importance of the negative aerodynamic lift,
three examples of optimal trajectories are given. They corre-
spond to different assumptions on the trajectory of the pay-
load stage: extra-atmospheric flight, atmospheric flight with
zero aerodynamic lift, and negative-lift aeroassisted flight.
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With respect to launch mass the aeroassisted flight offers a
clear advantage.

Over a wide range of target conditions it has been observed
that the optimal aeroassisted trajectories share a common
feature. The atmospheric segments of the payload trajectories
follow closely a speed-altitude relationship that we call the
universal curve. the theory of this universal curve is developed
in Sec. IV. It provides simple formulas that describe accurately
the aeroassisted motion of the payload.

Section V reviews techniques used in the computation of
the optimal trajectories. The minimum launch mass problem
is a nonlinear, multistage, optimal control problem with
parameters and constraints. The effect of its inherent com-
plexity on the computations is eased by using a direct method
in which the angle-of-attack program is approximated by a
finite-dimensional functional representation. The resulting
finite-dimensional optimization problem is solved efficiently
by the application of an augmented-Lagrangian, quasi-New-
ton algorithm. Important practical aspects of the overall
procedure are discussed. For example, it is shown how the
angle-of-attack program can be parameterized indirectly
through a direct parameterization of the flight-path angle.
This step is crucial in obtaining a numerically well-condi-
tioned optimization problem.

Many optimal trajectories have been computed. Some of
the results are summarized in Sec. VI. They show the effect on
launch mass of such parameters as the time of flight, the
intercept altitude, the number of stages, and the specific
impulse of the engines. For five- and six-stage interceptors
mass ratios on the order of several thousand are necessary.
Short flight times and low intercept altitudes increase appre-
ciably the launch mass.

II. Model for the Multistage Interceptor
To obtain the equations of motion, it is assumed that all

stages of the interceptor are modeled as a point mass moving
in a plane that contains the center of a spherical, nonrotating
Earth with an inverse-square gravitational field. Choosing
state variables r, 6, v, y, and m and writing the resulting
equations1 in dimensionless form then gives

els. For the exponential variation,

dR „ •— = V siny
di
dfl _ cosy

~
i f^sina V2 \

dV _A cosa — D siny
~dr= M ~~R*

(la)

db)

(Ic)

(Id)

(le)

These equations are well scaled when r0 ̂  Earth radius and
m0 = nominal mass of vehicle. Note that V= 1 corresponds
to the circular orbital speed at r0, and t = 2n corresponds to
the period of a circular orbit at r0.

The dimensionless lift and drag forces are given in terms of
H and V by

(2a)

(2b)

For the results reported later in this paper an exponential
variation of density with altitude has been used. This approx-
imation simplifies the computations and produces almost the
same optimal trajectories as more complex atmospheric mod-

Lift and drag coefficients are modeled by the formulas2

CL = CN cosa — CA sina

CD — CN sina + CA cosa

^ = 0.13

CL= sin2a cos^a + 5(n) ~ U sina |sina |

(3)

(4a)

(4b)

(4c)

(4d)

In addition to choosing an angle-of-attack program, a(Y), in
Eq. (1), it is necessary to specify the thrust program and
describe parametrically the physical characteristics of the
stages. Our model of the thrust program is simple and is
consistent with the requirements of solid- fuel engines. For the
ith stage it consists of an initial coasting period, if, where
A = 0, and a single thrusting period, tf , where A = const > 0.
The first stage has no coasting period (rf = 0), and there are
N powered stages. The final payload stage is unpowered but
may generate a controlled aerodynamic lift. Its coasting time
from burnout of the Nth stage to target interception is
denoted by T£+. IV

The stage masses are modeled as follows. For the- ith stage
let Mf , Mf , and Mf denote the masses of the payload, fuel,
and structure (together with the engine and other jettisoned
components), respectively. Then

(5a)

(5b)

(5c)

Mf = Mf

MO — launch mass of entire vehicle

M£ = mass of final payload

Let

(6)

Here, 0 <at < 1 is a stage mass ratio parameter. Once
ffl9...9aN and AfjJ- are specified, the individual stage payload
masses Afo,.-->^Jv-i are known. To avoid the need for
additional stage size parameters, a final simplifying assump-
tion is made:

Mf = 0.1Mf, i =

Then from Eqs. (5) it follows that

(l.l)-1(Mf_1-Mf),

(7)

(8)

Although Eq. (7) neglects many details of the structural
design, it is representative of attainable structural efficiencies.
Once the fuel masses are determined, the thrust levels At can
be computed. They are proportional to Mf /if .

The masses of stages also affect, through their reference
areas, the aerodynamic forces. Let Si9"di9'an.d A,- be, respec-
tively, the base area, base diameter, and fineness ratio of the
ith stage including its payload. Assume that the mass density
of each stage prior to the ignition of stage burning is the
same. Then, mf_l = (const)*/? A£. Since St is proportional to
d2, this gives

(9)

We have chosen C5 to make Eq. (9) conform closely with the
corresponding relation for the Minuteman I vehicle. In our
computations A/ = 10 for / = 1,..., N. Since the final payload is
subject to aerodynamic forces during its coast to the target, its
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reference area SN+ 1 and fineness ratio AN+ 1 are needed. This
explains i = N + l in Eq. (9). In our computations we have
chosen 1N+ 1 = 5.

III. Optimization Problem
In this section we outline the general features of the optimal

interception problem and show by some examples the charac-
ter of the optimal trajectories. The specified interception data
are the flight time of the interceptor tf, the target range angle
Of, the target altitude hf, and the payload mass m^. The
optimization objective is to minimize the total launch mass
W Q . The free variables in the interception are the angle-of-at-
tack program, the coasting and thrusting periods tf and tf ,
and the mass ratio parameters at.

Once the free variables are given it is clear how the corre-
sponding multistage trajectory is generated. Let r0 = Earth's
radius. Then the multistage nondimensional equations of
motion can be written. For the first stage, R(G) = 1, 0(0) = 0,
7(0) = 90 deg, F(0) = 0, and M(0) = M£. Since the free vari-
ables determine A(t) = Al (through Mf and if) and M% , the
equations of motion can be integrated for 0 < T < rf . At
i — tf , staging occurs and the equations of motion use data
appropriate to the second stage. Specifically, Eqs. (1) are
integrated for tf < T < if + T^ + T| with R, 9, y, and V

THETA = 45DEG. T = 360 SEC.

400 -I

300-

200-

100-

ALTITUDE (KM)

10 20 30
THETA (DEG.)

40 50

Fig. 1 Optimal trajectories for minimum launch mass: A, Keplerian;
B, aeroassisted; C, zero-lift atmospheric; D, burnout of fifth stage; £,
burnout of fourth stage; F, end of coast for fifth stage. Payload = 10 kg;
range angle = 45 deg; target altitude = 400 km; flight time = 360 s.

continuous across staging and with A(t) determined by A^
rf, and if in the obvious way. The initial mass of the second
stage is M(tf) =Mf. The remaining stages are handled in
the same way until T = if = if + T^ + rf + - + IN + ?£+ 1 •
Actually, this equation is used to determine T^+I .

Of course, there are constraints on the free parameters:

0 < f f < T f , (10)

The lower bounds, if, provide a means for limiting the
maximum thrust or acceleration of each stage; they may, for
instance, depend on other parameters such as Mf . In addition
to these direct parameter constraints, there are the implicit
constraints corresponding to target interception: Q(if ) =
0/vKv)= r/-

Operational considerations may add further constraints to
the interception problem. For example, we have considered
three distinct optimization problems. They differ only in the
assumptions placed on the motion of the unpowered final
stage; the models for the powered ascent stages remain the
same. In the first problem the final payload is constrained to
move essentially outside the atmosphere. Thus, the trajectory
for the payload is computed easily as a Keplerian transfer
from the burnout of stage N to target interception. The
constraint is imposed by requiring the minimum altitude of
the Keplerian trajectory to exceed a specified altitude. In the
second problem, the payload is allowed to move through the
atmosphere, but it generates no aerodynamic lift: a(-r) =
0» T/~ T^ < T < ty-. This avoids any increase in drag and
heating that may result from lift. In the third problem there is
no constraint on the payload so that an aeroassisted coasting
trajectory is possible.

Figure 1 and Table 1 show typical numerical results for the
three problems. The intercept conditions are if = 360 s,
Of = 45 deg (approximately 3100 miles), hf = 400 km (approx-
imately 250 miles), payload mass = mp

N = 10kg, /sp = 300s,
and N = 5. In general, the optimal coasting periods for the
powered stages turn out to be zero. The only exception is the
fifth stage of the Keplerian case.

The launch mass is least for the aeroassisted case. There is
a simple physical explanation. The short flight time demands
hyperbolic speed (F>x/2) while simultaneously the trajec-
tory must be kept close to the Earth in order to intercept the
target. To resolve these conflicting demands, a net downforce
on the vehicle is needed. This force is supplied, without
expensive engine thrusting, by negative aerodynamic lift as
the payload begins its coast toward the target.

For the zero-lift atmospheric case negative aerodynamic lift
is also exploited, but because of the no-lift constraint on the
payload it occurs together with engine thrust in the fifth stage.
This accounts for the long burn time of this stage; it allows
more time for the negative aerodynamic lift to act.

In the Keplerian case the altitude of the payload is con-
strained to exceed 100km. This leads to a very large mass

Table

Type of
solution

Aeroassisted
Zero lift atmospheric
Keplerian

Type of
Solution

Aeroassisted
Zero lift atmospheric
Keplerian

1 Numerical

Launch
mass, kg

18,990
23,070
50,720

Coasting time
between 4th

and 5th stage

0
0

90.6

data for optimal trajectories in Fig:• i
Burnout conditions for 4th stage

h, km

58.3
57.0
64.6

V 6, deg

1.68 2.2
1.89 2.5
1.82 5.8

y, deg J, s

3.2 40.6
3.5 42.5

-1.6 75.2

Burnout conditions for 5th stage

h, km

63.7
66.5

127.8

V 0, deg

2.11 3.7
1.96 24.0
2.10 19.5

7, deg t, s

0 52.6
0.005 201.9
-4.7 182.0
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because it essentially eliminates effective utilization of nega-
tive aerodynamic lift. The Keplerian solution does have a
potential operational advantage. Since the trajectory is essen-
tially outside the atmosphere, communication with the pay-
load is not blocked by atmospheric ionization.

IV. Midcourse Universal Curve
The aeroassisted trajectory in Fig. 1 has an obvious mid-

course segment, on which the final pay load coasts for an
extended period of time until it begins its rise to the target.
On the segment there is a negative aerodynamic lift and the
path is nearly horizontal. We have observed such segments on
all optimal aeroassisted trajectories where performance re-
quirements are high; i.e., /7is small, Ofis large, and hfis small.
Moreover, they can be modeled accurately by a single univer-
sal curve that relates altitude and speed. This unique relation-
ship is obtained by balancing the difference between
centrifugal and gravity forces with negative aerodynamic lift
and minimizing the drag losses by choosing the angle of
attack that maximizes the lift-to-drag ratio. As will be seen,
the time-dependent motion of the payload on the universal
curve also has a universal character.

Our development begins with some notation and simplify-
ing parametric assumptions. Let — C| and C£ be the lift and
drag coefficients that maximize —CL/CD. They are obtained
from Eqs. (4) and depend only on the fineness ratio,
A=A,N+.i, of the payload. Recall that the reference area of
the payload, SN + 1, is given by Eq. (9) and is therefore
determined by AN+i and the mass of the payload m^. A
dimensionless coefficient, C^/2, plays an important role in
the equations that we will consider. It is given by

(H)

Since CJ and SN+l are fixed by A^+1 and m^, C£*//2
depends only on m0 and r0. For the purpose of this section it
is convenient to make the following choices for m0 and >0:

— (12)

This gives M(x) = 1 in Eqs. (1) and \C\r\ =f.
The required balance of forces on the nearly horizontal

trajectory is achieved by setting the normal acceleration V'dy/
di and y equal to zero in Eqs. (1) and CL = — CJ in Eqs. (4).
The result is the expression for the universal curve:

V = (1 + H) -5[1 -1(1 + H)P(H)] - (13)

The reason for choosing r0 by Eq. (12) is now clear: V is
determined entirely by P(H), and at the reference altitude
(H = 0) the dimensionless speed has a nice nominal value
(K = 2). Now let P(H) be given by Eq. (3). Noting that
// ^ 103, it is easy to show that 1.3 < V < 4 implies
\H\< 0.6 x 10~3. Since the expected varition of H is so small,
Eq. (13) is closely approximated by

(14)

Even for a nonexponential atmosphere this expression is an
excellent representation of Eq. (13) because the exponential
approximation of P(H) only needs to be accurate for
\liH\ < 0.6, or \h\ < 0.6/zs. For the payload described in the
previous section, r0 corresponds to an altitude of 64.0km
above the Earth's surface.

Along the universal curve there are drag losses and V must
decrease. This in turn causes H, 9, y, and a to depend on T. To
obtain these dependencies we begin by substituting Eq. (14)

into Eqs. (1) with A =0:

siny
= G'(H)G(H)smy = -D-—£

Here, G'(H) is the derivative of G(H) so that

(15)

(16)

From this expression it is not difficult to verify that V =
G(H) > 1.3 implies G'(H)G(H) > 0.58/*. Since \JL ^ 103, R ^ 1,
and y is small, the identity on the right side of Eq. (1-5) is
closely approximated by

D= -G'(H)G(H) siny (17)

This is the drag required for motion along the universal curve.
By Eqs. (2) and (4), D defines a and thus CL. Since the line

CL=(-Cl/C%)CD is the tangent to the lift-drag polar at
C£, it is a good approximation for it in the neighborhood of
C%. This approximation with D determined by Eqs. (16) and
(17) gives

(18)

Substituting Eqs. (14) and (18) into Eqs. (1) yields the
equations of motion on the universal curve.

To simplify these equations, it is assumed with very little
error that siny £ y, cosy ^ 1, and R=\+H^\. Then

di

d̂r

8

(19a)

(19b)

(We)

Because Af (T) = 1 and V(t) = G(H(z)) the order of the origi-
nal system of equations, Eqs. (1), has been reduced from five
to three. However, Eqs. (19) are still complicated because
they are coupled and nonlinear. Fortunately, the parameter ^
is large, and this leads to a singularly perturbed system whose
solution can be obtained analytically.

The nature of the singularly perturbed problem is revealed
more clearly by introducing the scaled variables:

and G(H) =(1 -t

Then Eqs. (19) become

dt

8 C

(20)

(21a)

(21b)

(21c)

Standard singular perturbation theory can be applied to this
system,3 and it shows that the term in the braces goes to zero
quickly and that the remaining asymptotic solution satisfies

(22.)
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(22b)

This is a first-order system that can be integrated easily when
expressed in terms of the variable y = [G(Ha)]~l.

The details of the integration and backsubstitution to the
original problem variables are lengthy and are omitted. They
produce the following formulas for the asymptotic motion
along the universal curve:

J?(T) =

- D

2CI

2C»f~^T (T ~ To)

(23*)

(23b)

(23c)

(23d)

(23e)

where

f 1) (24a)

(24b)

(24c)

.0(x) = - x + 2 /4(3e* - 1) (24d)

and x0 is determined by V(XQ) = F(TO), or, equivalently, by

Ij-^F^-hl] (25)

It is easy to confirm that the preceding formulas cause H and
V to lie on the universal curve. Also, using Eqs. (2), (14),
(16), (17), and (24), it follows that

(26)

Thus, within the accuracy of the approximation siny ^ y, the
motion of the universal curve actually does maximize the
lift-to-drag ratio.

-0.5

Fig. 2 Functions describing motion on the universal curve.

The functions H, $, y, and V are plotted in Fig. 2. The
ranges of variables that are shown are adequate for any
reasonable target conditions. For example, with C£/
Cp = 2.5, the value corresponding to k — 5, a unit change in
^corresponds to a 72-deg change in'.0.. For the entire range
that is shown, |f|<0.6l. This implies |y| < 0.61/*-1 ̂ 6 x
10~4 rad = 0.034 deg. The departure of y from zero is indeed
small.

V. Numerical Optimization Procedure
A. General Discussion

Over the years many procedures have been developed for
the numerical solution of problems in optimal control. One
approach is to write the necessary conditions and solve the
resulting two-point boundary-value problem by well-devel-
$ped techniques.4'5 There are difficulties in applying this
approach to the interceptor problem. The two-point bound-
ary-value problem is replaced by a complex multipoint bound-
ary-value problem, and derivatives of the nonlinear functions
appearing in the problem statement are needed. Moreover,
reasonably good initial estimates of the optimal solution and
the corresponding necessary condition multipliers are needed.
Various gradient methods6'7 can be extended with less
difficulty to the multistage problem, but at best convergence is
slow and terminal conditions cannot be met accurately. Sec-
ond-order gradient methods8'9 have better convergence rates,
but they require second derivatives of the problem functions
that are difficult to obtain because of the complex nonlinear
and multistage character of the interceptor problem.

In view of the aforementioned difficulties it seems most
appropriate to use a direct method in which the infinite-
dimensional optimal control problem is replaced by a finite-
dimensional approximation. Many approaches for doing this
have appeared in the literature (see, for example, the review
given by Hargraves and Paris10). In our approach the angle-
of-attack program a(r) is approximated by a finite-dimen-
sional functional parameterization, and the equations of
motion with staging conditions are integrated accurately. The
details of the overall process are described in the following
subsections. Other direct methods, such as collocation meth-
ods,10 could also be applied to the interceptor problem. A
possible advantage would be the elimination of special proce-
dures, such as the one described in the next subsection, for
improving numerical conditioning. Collocation methods, as
well as many other direct methods, do have a potential
disadvantage. An accurate solution of the differential equa-
tions may necessitate a fine collocation grid, which in turn
increases the dimension of the finite-dimensional optimization
problem.

B. Indirect Parameterization of a(t)
In the approximation of the angle-of-attack program sev-

eral questions arise: the dimension and the form of the
functional representation, the accuracy of the corresponding
approximate optimum solution, and the conditioning of the
resulting numerical optimization problem. Our experience
shows that relatively low-dimensional parameterizations are
quite effective, provided the approximating functions are cho-
sen with some care. The dimensionality is important because
it has a strong effect on the computational time. Conditioning
affects both the speed and reliability of the optimization
process.

A direct parameterization of a(r) is the most obvious way
to proceed. For example, a continuous piecewise linear func-
tion, which is parameterized by its values at its joints (points
of slope discontinuity), is simple and has flexibility in that the
joints may be placed closely where rapid changes in OC(T) are
expected. The fatal shortcoming of direct parameterizations is
poor conditioning of the optimization problem. The terminal
constraints are very sensitive with respect to small changes in
a(-r), especially when the changes occur early in the flight. This
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is not surprising in view of the open-ended integrations that
occur in solving the equations of motion.

To circumvent this poor conditioning, it is better to
parameterize a(r) indirectly through a direct parameterization
of y(-r). In this approach dy/dr is computed from the parame-
terized y(-r) and substituted, together with R, y, F? and M,
into Eq. (lc). This equation then becomes through sina and L
an implicit equation in a. The indirect parameterization of a
is obtained by solving the implicit equation. Note that this
eliminates the need to integrate the differential equation for
dy/dr. Of course, the remaining differential equations in Eqs.
(1) must be integrated as usual. When the indirect parameter-
ization is used, the entire trajectory is under more direct
control. Changes in y(-r) near the beginning of the trajectory
have very little effect on the terminal portions of the trajec-
tory. Thus, the sensitivity of the terminal constraints to the
parameterization is greatly reduced. Another advantage, per-
haps less important, is evident at launch. Here, the differential
equation for dy/dr has a singularity because V = 0. With the
y parameterization the differential equation is not integrated
and the normally troublesome singularity is circumvented.

The implicit equation for a presents possible difficulties. An
inadmissible y(i) may be specified, i.e., one in which the
implicit equation has no solution. This corresponds physically
to requiring more transverse acceleration than is available. In
most of our work inadmissibility has not been a problem,
provided the line search in the optimization algorithm has a
procedure for reducing step size when it produces an inadmis-
sible y(r). Occasionally, when a must be very large, as in the
fifth stage of the Keplerian problem of Fig. 1, it is better to
parameterize a(i) directly, keeping the y parameterization for
the other stages. The actual numerical solution of the implicit
equation is straightforward. One approach is to use several
Newton iterations. Alternatively, L may be approximated by
a quadratic function of sina; then the implicit equation is
quadratic in sina and may be solved by a formula.

Another issue is the smoothness of a(i) and other problem
variables. If y(r) is continuous but has slope discontinuities, as
in the case of a piecewise linear parameterization, the differen-
tiation of y(r) causes a(t) to be discontinuous. Even for
smoother parameterizations the problem is not avoided. At
the staging times the vehicle mass, thrust, and aerodynamic
parameters change discontinuously, and this causes disconti-
nuities in a(r). Continuity of a(r) can be imposed by introduc-
ing, through the functional representation of y(r), an
appropriate jump in dy/dt at the staging time. The value of
dy/dr just after staging, (dy/d-r)+, is evaluated by using its
defining equation [Eq. (lc)] with JR, y, F, and a continuous
across staging and the changes in M, A, and aerodynamic
parameters determined by the staging equations of Sec. II.

It is also possible to introduce other smoothness con-
straints. For example, consider the pitch angle ^ = a + y .
Although \l/ does not appear in the point mass equations, it
has practical implications because the moment applied to the
vehicle is proportional to its second derivative. To avoid an
impulsive moment it is necessary to require continuity of
d^/dr. This leads to the condition (da/dt)+ - (da/
dr)~ =(dy/dr)+ — (dy/dt)~, where the superscripts give the
values immediately before and after staging. In order for the
derivatives with respect to a to exist, it is certainly necessary
that a(-r) be continuous. Thus, as in the previous paragraph,
both (dy/d-r) + and (dy/di)~ are known. The resulting condi-
tion on (da/di)+ - (da/di) ~ can be obtained by differentiat-
ing the dy/dT equation once. This in turn defines the value of
(d2y/dT2) + . Thus, conditions on both (dy/di)+ and (d2T/
dT2)+ are obtained.

Our numerical experience has produced some guidelines on
the functional form of the y parameterization. Because of the
large changes in y encountered in the first stage, it has been
found necessary to use a parameterization with at least three
free parameters. Since y(0) = 90 deg, a cubic in T satisfies this
requirement and has been as effective as any other choice. For

tf = 0.5(ff + if) + 0.5(ff - f f) sinu,.

the remaining stages one free parameter suffices. When there
are no smoothness constraints, a linear function works well.
Only one parameter is involved for each stage because y(-r)
must be continuous across staging. When the various continu-
ity constraints are imposed, a more elaborate, one-parameter
representation is needed. For instance, when d\l//dt is contin-
uous, we have found it effective to use y(r) = a + bi +
ce~ar + de~v\ The parameters c and d allow the matching
of the constraints on (dy/dr)+ and (d2y/dr2) + . The values a
and v are chosen so that the effect of the continuity conditions
does not persist for too long. For a given functional form the
free parameters may be defined in different ways. It has been
found that problem conditioning is usually better if values of
y at specified interpolation points are used. For example,
when there is one free parameter for a stage, the value of y at
the thrust termination time is a good choice.

C. Formulation of the Finite-Dimensional Problem
The variables in the finite-dimensional optimization prob-

lem are the parameters in the representation of y(r) and the
staging parameters: a/, rf, and rp, for / = 1,... ,7V. The con-
straints on these parameters [Eq. (10)] are implemented by
means of nonlinear transformations:

(27)

(28)

(29)

In Eq. (27) e > 0 is a small positive number that implements
the strict inequalities on at. The variables (/>,-, .0,-, and fa
become unconstrained variables in the finite-dimensional opti-
mization problem. The parameters ff and ff are scaling
parameters that establish upper limits for rf and r.f and
improve the numerical conditioning of the optimization prob-
lem. The nonlinearities introduced by the transformations do
not appear to affect the speed or reliability of the numerical
optimization process. If coasting of the powered stages is not
allowed and the guidelines of the preceding subsection are
followed, there is a total of 3N + 2 variables: N each for Eqs.
(27) and (28), three for the parameterization of y in the first
stage, and one for the parameterization of y in each of the
remaining stages.

The remaining constraints in the optimization problem are
the terminal conditions Q(if) = 9f and R(xf) = Rf. Errors in
meeting these equality conditions are evaluated by integrating
the differential equations of motion, which are fully defined
once the variables of the preceding paragraph are specified.
The cost to be minimized is M£, obtained from the af by Eq.
(6).
D. Numerical Evaluations

In order to implement the optimization algorithm it is
necessary to numerically evaluate #(T/), ^(T/), and M£ and
their gradients with respect to the variables. To avoid the very
complex direct evaluation of the gradients, first-order finite
differences on 0(ty), R(rf), and M% are used. This is numeri-
cally expensive because each evaluation of the gradient re-
quires n + 1 integrations of the differential equations, where n
is the number of variables. Techniques for speeding the
integrations have been reported by Howe et al.11 For the
specific results reported here a fixed-step RK-4 procedure was
used with approximately 10 steps per stage. Rounding and
truncation errors in the computation of the gradients can
seriously degrade the performance of the minimization al-
gorithm. In this regard the naturally good scaling of the
dimensionless equations [Eqs. (1)] is a distinct advantage.
Balancing the rounding and truncation errors by a proper
choice of the finite-difference increment is also important.12

For cases where the payload stage closely follows the
universal curve, it is possible to eliminate for the payload the
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parameterization of y(-r) and the numerical integration of the
equations of motion. At the time of final-stage burnout, Vfa)
is known. By setting TO = tb, formulas (23-25) define the
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Fig. 3 Additional details of the optimal aeroassisted trajectory shown
in Fig. 1.

motion along the universal curve. In general the conditions
V(tb) = G[H(tb)] and y(ib) = 0 (a very accurate approxima-
tion since | y | < 6 x l O ~ 4 on the universal curve) are not
satisfied by the ascent trajectory! thus, they must be imposed
as additional equality constraints. The universal curve is
followed until a time t = id is reached. After this time a(Y) is
set to zero. Because there is no aerodynamic lift and V > 1,
the trajectory then departs from the universal curve and rises
toward the target. By evaluating this departure trajectory at
i = Ty-j the errors in the target conditions are determined.
Because• y(tb) = 0, one variable is omitted from the parame-
terization of 7(1); this is balanced by the addition of the
parameter id.
E. Optimization Algorithm

The equality constraints are treated by the augmented
Lagrangian method, which reduces the constrained problem
to a sequence of unconstrained problems. Both the penalty
coefficients and the multipliers are updated automatically by a
scheme that is described on page 292 of Fletcher.13 The
unconstrained rhinimization program used in our computa-
tions is a variant of the BFGS, quasi-Newton implementation
due to Shanno and Phua.14 It provides super-linear conver-
gence without requiring the evaluation of second derivatives.
A reset procedure has been added that greatly reduces the
probability that the descent will terminate prematurely due to
accumulation of rouncl-off errors in the quasi-Newton update.

Generally, the performance of the overall optimization
procedure has been very satisfactory. The number of gradient
evaluations required to obtain a solution is between 300 and
400. This is not unreasonable for the typical number of
problem variables; 17 for N = 5 and 20 for N = 6. Errors in
meeting the specified target conditions are very small: about
1 m in altitude and about 0.05 deg in range angle. The compu-
tational time for a solution is typically between 60 and 90 min
on an Apollo DN 4000.

VI. Some Specific Results
Many optimal intercept problems have been solved using

the methods and models of the preceding sections. In this
section we summarize some of our results for the aeroassisted
problem. The pitch angle is constrained to have a continuous
derivative except at the entry and exit points of the universal
curve, where a(r) is allowed to be discontinuous. A variety of
problems have been solved where coasting of the stages is
allowed. In these problems the optimal coasting times are

i ooooo -i

Zero-lift, Atmospheric

320 340 360 380
TIME (sec.)

400 420

Fig. 4 Optimal launch mass as a function of flight time. Number of
stages = 5; paylpad = 10 kg; range angle = 45 deg; target altitude =
200 km; specific impulse = 300 s.
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either zero or so small that they have little effect on the
optimal launch mass. For all the problems considered here the
coasting times have been set to zero. The minimum burn time
for each stage is 10s, and the payload mass is 10 kg. Except
for the results in Fig. 6, the specific impulse is fixed at 300 s.

Additional details of the optimal aeroassisted solution de-
scribed in Sec. Ill are shown in Fig. 3. The staging times are
apparent. With the exception of the fifth stage, the optimal
burn times are at their lower limits of 10 s. The resulting
vehicle acceleration A/Mis quite high, ranging from about 20
to 70 g. If the minimum burn time is reduced below 10 s, even
higher accelerations are obtained. The universal curve is
followed from about 53s to; 194s. The slight drop in V
predicted by Fig. 2 is evident. There is little loss in speed after
the exit from the universal curve. The reason is obvious from
Fig. 1: The trajectory leaves the atmosphere quickly; hence,
there is little aerodynamic drag. Close inspection of 7(1) for
0 < T < 6 0 shows its linear-exponential parameterization. If
the smoothness constraint on the pitch angle is removed and
a(-r) is allowed to be discontinuous at the staging points, the

60000 -i

320 340 400360 380
TIME (sec.)

Fig. 5 Optimal launch mass as a function of flight time for
aeroassisted trajectories. Payload == 10 kg; range angle = 45 deg; target
altitude = 200 km; specific impulse = 300 s.

100000-1
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320 340 360 380
TIME (sec.)

400 420

Fig. 6 Optimal launch mass as a function of flight time for
aeroassisted trajectories. Number of stages = 5; payload = 10 kg; range
angle == 45 deg; target altitude = 200 km.

overall character of the trajectory is essentially the same and
the launch mass is reduced by about 0.5%. Thus, the smooth-
ness of the pitch angle does not seem to be a very stringent
constraint.

Figures 4-6 illustrate the effect of key parameters on the
optimal launch mass. Note that the target altitude is 200 km,
a more demanding intercept condition than the 400 km of the
preceding problem. Figure 4 shows the relative performance
of optimal aeroassisted trajectories and optimal zero-lift, at-
mospheric trajectories. The advantage of aeroassisted trajec-
tories is greater for shorter intercept times. For both types of
trajectories the launch mass grows very rapidly as the flight
time approaches 320 s. Figure 5 shows the difference between
five- and six-stage aeroassisted interceptors. The six-stage
interceptor has a decided advantage for shorter flight times.
Figure 6 shows the affect of reducing the specific impulse. The
10-s reduction increases the launch mass by over 40% for the
shorter flight times.

Additional solution results for the aeroassisted case suggest
other trends. If all other parameters, are fixed, the optimal
launch mass varies little if the range angle and intercept time
of the target vary in direct proportion. Increasing the axial
drag coefficient CA by 0.02 increases the launch mass by
about 10%. Increasing the mass density of the stages by 50%
decreases the launch mass by about 6%. More accurate
models of atmospheric density have very little effect on the
launch mass.

VII. Conclusions
Models for high-performance^ multistage rocket intercep-

tors have been introduced. Efficient numerical procedures for
minimizing their launch mass with respect to staging parame-
ters and the angle-of-attack program have been described.
These procedures circumvent many of the complexities associ-
ated with the nonlinear, multistage character of the minimiza-
tion problem. Even though the angle-of-attack program is
represented approximately, the equations of motion are
solved accurately. Inherent ill-conditioning of the procedure is
overcome by parameterizing the control variable (angle of
attack) indirectly by a direct parameterization of a state
variable (flight-path angle). A key aspect of the optimal
trajectories is the negative-lift, aeroassisted character of the
coasting payload stage. A simple and accurate analytical
model of this coasting motion (the universal curve) has been
derived. This model may prove useful in other problems
where planetary atmospheres are encountered at hyperbolic
speeds. The effects of various design parameters and target
conditions on the optimal launch mass are described. As the
intercept time is reduced, the optimal launch mass rises at an
ever-increasing rate.
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